Sources of organic aerosols in Europe: A modelling study using CAMx with modified volatility basis set scheme

Jianhui Jiang ${ }^{1}$, Sebnem Aksoyoglu ${ }^{1}$, Imad El-Haddad ${ }^{1}$, Giancarlo Ciarelli ${ }^{2}$, Hugo A. C. Denier van der
5 Gon 3, Francesco Canonaco ${ }^{1}$, Stefania Gilardoni ${ }^{4}$, Marco Paglione ${ }^{4, *}$, María Cruz Minguillón ${ }^{5}$, Olivier Favez 6, Yunjiang Zhang ${ }^{6,7}$, Nicolas Marchand ${ }^{8}$, Liqing Hao ${ }^{9}$, Annele Virtanen ${ }^{9}$, Kalliopi Florou ${ }^{10}$, Colin O'Dowd 11, Jurgita Ovadnevaite ${ }^{11}$, Urs Baltensperger ${ }^{1}$, and André S. H. Prévôt ${ }^{1}$
${ }^{1}$ Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
${ }^{2}$ Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, USA
$10{ }^{3}$ TNO, Department of Climate, Air and Sustainability, Utrecht, the Netherlands
${ }^{4}$ Italian National Research Council - Institute of Atmospheric Sciences and Climate, Bologna, Italy
${ }^{5}$ Institute of Environmental Assessment and Water Research (IDAEA), CSIC, 08034 Barcelona, Spain
${ }^{6}$ Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
${ }^{7}$ Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Gif-sur-Yvette, France
$15{ }^{8}$ Aix-Marseille Univ, CNRS, LCE, Marseille, France
${ }^{9}$ Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
${ }^{10}$ Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
${ }^{11}$ School of Physics, Ryan Institute's Centre for Climate and Air Pollution Studies, and Marine Renewable Energy Ireland, National University of Ireland Galway, University Road, Galway, H91 CF50, Ireland
20 *now at: Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
Correspondence to: Sebnem Aksoyoglu (sebnem.aksoyoglu@psi.ch), Jianhui Jiang (jianhui.jiang@psi.ch)

Table S1 Description of semi-volatile organic compounds (SVOC) and intermediate-volatility organic compounds (IVOC). The same calculations were adopted for IVOC emissions in BASE and NEW. GV: Gasoline Vehicles; DV: Diesel Vehicles; BB: Biomass Burning; OthA: Other anthropogenic sources.

Species	Source		culations	References	Descriptions
		BASE	NEW		
SVOC	GV	= POA_GV	$=3$ * POA_GV	Shrivastava et al., 2011;	POA emissions of each source were calculated from TNO $\mathrm{PM}_{2.5}$ emissions
	DV	= POA_DV	$=3 *$ POA_DV	Tsimpidi et al., 2010; Ciarelli et al., 2017a	
	BB	= POA_BB	$=3 *$ POA_BB		
	OthA	= POA_OthA	$=3 *$ POA_OthA		
IVOC	GV	$=25 \% * \mathrm{NM}$	OC_GV	Jathar et al., 2014	The portion of NMVOCs considered as IVOCs (25% for GV, 20% for DV) were removed from the NMVOC emissions
	DV	$=20 \% * \mathrm{NM}$	OC_DV	Jathar et al., 2014	
	BB	$=4.5 * \mathrm{POA}^{\text {a }}$		Ciarelli et al., 2017	
	OthA	$=1.5 * \mathrm{POA}^{\text {}}$		Robinson et al., 2007	

Table S2. Evaluation of the meteorological parameters in winter (February, number of stations $=1094$) and summer (July, number of stations $=753$). Performance criteria for model results are from Emery et al., (2001). MB: mean bias; MGE: mean gross error; RMSE: root-mean-square error; IOA: index of agreement.

Meteorological parameters	MB			MGE			RMSE			IOA(-)		
	Feb.	Jul.	Criteria									
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	-1.0	-0.1	$\leq \pm 0.5$	1.2	0.7	$\leq \pm 2$	1.7	0.9	-	1.0	1.0	≥ 0.8
Wind speed ($\mathrm{m} \mathrm{s}^{-1}$)	-0.1	-0.3	$\leq \pm 0.5$	1.3	0.9	-	1.6	1.2	≤ 2	0.8	0.5	≥ 0.6
Wind direction $\left({ }^{\circ}\right)$	5.2	15.8	$\leq \pm 10$	18.1	22.6	≤ 30	28.4	33.3	-	0.7	0.8	-
Humidity $\left(\mathrm{g} \mathrm{~kg}^{-1}\right)$	-0.1	0.0	$\leq \pm 1$	0.2	0.4	≤ 2	0.3	0.5	-	1.0	1.0	≥ 0.6
Precipitation (mm)	-0.3	-0.4	-	0.3	0.5	-	0.7	1.0	-	0.2	0.4	-

Table S3. Evaluation of the model performance for the chemical species in winter (February) and summer (July). MB: mean bias; MGE: mean gross error; RMSE: root-mean-square error; MFB: mean fractional bias; MFE: mean fractional error; IOA: index of agreement.

	Model	Number of Stations	$\mathrm{MB}^{\text {a }}$		MGE ${ }^{\text {a }}$		MFB (\%)		MFE (\%)		RMSE ${ }^{\text {a }}$		IOA(-)	
			Feb.	Jul.										
$\mathrm{PM}_{2.5}$	BASE	565	0.5	-1.3	8.9	2.8	9	-12	35	28	11.7	3.7	0.6	0.4
	NEW	565	2.9	-0.8	9.3	2.6	17	-7	36	26	11.9	3.6	0.6	0.5
O_{3}	NEW	608	2.0	0.9	6.1	4.7	8.8	4.1	23.0	13.5	8.5	6.3	0.7	0.7
NO_{2}	NEW	3036	-6.2	-2.9	8.1	5.1	-43	-36	58.6	63.2	10.9	7.5	0.6	0.5
SO_{2}	NEW	1979	6.7	3.9	7.7	4.5	77.0	65.5	98.5	98.2	17.9	10.2	0.1	0.1

${ }^{\mathrm{a}}$ Units are ppb , except for $\mathrm{PM}_{2.5}$ which is $\mu \mathrm{g} \mathrm{m}{ }^{-3}$.

Table S4. Performance criteria and goals for model results on $\mathrm{PM}_{2.5}$ and ozone (Boylan and Russell, 2006; EPA, 2007).

Species	Metric	Criteria	Goal
$\mathrm{PM}_{2.5}$	MFB	$\leq \pm 60 \%$	$\leq \pm 30 \%$
	MFE	$\leq 75 \%$	$\leq 50 \%$
O_{3}	MFB	$\leq \pm 30 \%$	$\leq \pm 15 \%$
	MFE	$\leq 45 \%$	$\leq 30 \%$

Table S5: Relative contributions (\%) of different sources to the organic aerosol (OA) concentration on a country scale. DJF: December - January - February; JJA: June - July - August.

Country	Gasoline vehicles		Diesel vehicles		Biomass burning		Other anthropogenic		Biogenic	
	DJF	JJA								
Albania	2.0	6.3	1.8	3.1	71.8	34.6	9.2	21.4	15.2	34.7
Austria	1.6	4.8	3.9	3.7	59.9	15.9	10.0	18.7	24.6	57.0
Belarus	0.9	2.2	2.1	1.7	65.7	21.1	8.4	11.5	22.8	63.5
Belgium	1.4	3.9	7.3	6.7	51.0	16.7	14.4	28.7	25.9	44.0
Bosnia_and_Herzegovina	1.3	5.5	1.4	3.2	79.8	35.4	6.4	19.8	11.2	36.1
Bulgaria	1.4	4.0	1.4	2.3	77.9	39.2	7.9	17.5	11.3	37.0
Croatia	1.9	6.1	2.4	3.7	70.8	28.8	7.6	21.1	17.2	40.3
Cyprus	1.3	2.5	2.5	1.5	35.6	13.5	6.1	8.9	54.6	73.6
Czech_Republic	1.1	3.3	4.7	4.4	54.9	16.1	6.7	15.4	32.6	60.7
Denmark	0.6	3.5	2.3	2.9	64.2	20.1	8.2	25.7	24.6	47.9
Estonia	0.4	2.0	1.1	1.3	78.5	19.1	4.3	11.1	15.8	66.5
Finland	0.4	1.4	1.8	0.9	57.0	7.8	7.6	7.4	33.2	82.5
France	1.4	4.6	4.5	4.9	62.7	22.3	10.8	29.4	20.6	38.8
Germany	1.3	3.8	4.2	3.6	46.6	12.5	10.3	19.4	37.5	60.8
Greece	2.3	5.1	1.4	1.8	58.3	23.2	9.9	16.9	28.1	53.0
Hungary	1.5	4.7	2.4	3.8	74.5	30.7	8.1	20.3	13.6	40.5
Ireland	0.6	1.6	3.2	2.8	16.0	5.5	5.8	11.2	74.4	79.0
Italy	4.4	10.9	4.4	4.5	70.0	25.2	10.5	29.3	10.7	30.1
Latvia	0.4	2.2	1.4	1.7	80.1	23.3	4.3	12.2	13.9	60.6
Lithuania	0.6	2.6	2.8	2.5	69.3	22.2	7.5	14.9	19.8	57.8
Luxembourg	1.6	3.9	12.9	11.6	50.3	15.5	13.3	23.6	21.9	45.5
Northern Macedonia	1.5	4.9	1.2	2.5	73.8	36.9	7.6	18.2	15.8	37.5
Malta	5.4	11.7	3.2	6.1	57.3	20.2	19.6	45.7	14.5	16.3
The Netherlands	1.6	3.9	7.1	5.5	44.4	11.6	14.5	28.3	32.4	50.7
Norway	0.4	1.4	1.2	1.1	59.3	9.8	9.8	11.3	29.3	76.5
Poland	0.9	3.1	5.4	4.6	56.9	17.0	8.9	17.1	27.8	58.2
Portugal	0.9	2.2	2.4	2.8	42.4	17.8	8.9	17.9	45.4	59.3
Republic_of_Moldova	1.4	3.7	1.3	2.2	78.7	44.3	9.5	19.5	9.1	30.3
Romania	1.1	3.7	1.0	2.2	82.2	42.5	6.7	17.2	9.1	34.3
Russia	0.7	1.4	1.7	1.0	62.9	13.9	8.8	8.0	25.8	75.7
Serbia_and_Montenegro	1.4	5.1	1.3	3.0	81.9	44.0	7.0	19.0	8.3	28.9
Slovakia	0.9	3.8	2.3	4.0	74.1	27.5	5.3	16.8	17.4	47.9
Slovenia	1.3	5.5	2.3	3.7	76.2	26.5	5.2	17.6	14.9	46.6
Spain	0.9	2.0	2.4	2.0	42.0	18.9	8.0	17.2	46.6	59.9
Sweden	0.5	1.6	1.5	1.0	34.3	7.0	8.8	9.7	55.0	80.6
Switzerland	2.9	6.9	4.6	3.9	56.4	17.5	15.8	23.4	20.3	48.3
Turkey	1.1	2.3	1.2	1.3	60.7	21.2	9.0	11.9	28.0	63.3
Ukraine	1.2	3.1	1.6	2.0	71.7	33.8	11.2	17.4	14.3	43.8
United_Kingdom	0.8	2.0	3.7	3.0	28.1	7.5	11.5	20.7	56.0	66.7

Figure S1: Model domain and spatial distribution of the ACSM/AMS stations.

Figure S2: Temporal variations of modelled and measured organic aerosol concentrations together with some meteorological parameters available at Bologna, Marseille and Mace Head.

Figure S3: Comparison between modelled relative contribution of OA components and positive matrix factorization (PMF) 5 analysis results. GV: Gasoline Vehicles; DV: Diesel Vehicles; BB: Biomass Burning; OthA: Other anthropogenic sources; BIO: Biogenic sources.

Figure S4: Spatial distributions of primary and secondary OA from different sources in winter (a, b) and summer (c, d). The winter and summer results are the averages of December - January - February and June - July - August, respectively. Note

PM2.5

Figure S5: Relative contributions of different anthropogenic sources to total $\mathrm{PM}_{2.5}$ and NMVOC emissions in 2011. The 8 sub-regions are the Iberian Peninsula (IP), the Mediterranean (MD), Po Valley (PV), eastern Europe (EE), central Europe (CE), Benelux (BX), Ireland and Great Britain (IG), and Scandinavia (SC).

