Sources of organic aerosols in Europe: A modelling study using CAMx with modified volatility basis set scheme

Jianhui Jiang¹, Sebnem Aksoyoglu¹, Imad El-Haddad¹, Giancarlo Ciarelli², Hugo A. C. Denier van der
Gon³, Francesco Canonaco¹, Stefania Gilardoni⁴, Marco Paglione^{4,*}, María Cruz Minguillón⁵, Olivier
Favez⁶, Yunjiang Zhang^{6,7}, Nicolas Marchand⁸, Liqing Hao⁹, Annele Virtanen⁹, Kalliopi Florou¹⁰, Colin
O'Dowd¹¹, Jurgita Ovadnevaite¹¹, Urs Baltensperger¹, and André S. H. Prévôt¹

¹Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland ²Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, USA

- ³TNO, Department of Climate, Air and Sustainability, Utrecht, the Netherlands ⁴Italian National Research Council – Institute of Atmospheric Sciences and Climate, Bologna, Italy ⁵Institute of Environmental Assessment and Water Research (IDAEA), CSIC, 08034 Barcelona, Spain ⁶Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France ⁷Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Gif-sur-Yvette, France
- ⁸Aix-Marseille Univ, CNRS, LCE, Marseille, France
 ⁹Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
 ¹⁰Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
 ¹¹School of Physics, Ryan Institute's Centre for Climate and Air Pollution Studies, and Marine Renewable Energy Ireland, National University of Ireland Galway, University Road, Galway, H91 CF50, Ireland
- 20 *now at: Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece

Correspondence to: Sebnem Aksoyoglu (sebnem.aksoyoglu@psi.ch), Jianhui Jiang (jianhui.jiang@psi.ch)

Table S1 Description of semi-volatile organic compounds (SVOC) and intermediate-volatility organic compounds (IVOC). The same calculations were adopted for IVOC emissions in BASE and NEW. GV: Gasoline Vehicles; DV: Diesel Vehicles; BB: Biomass Burning; OthA: Other anthropogenic sources.

Species	Source	Cal	culations	- Deferences	Descriptions			
	Source	BASE	NEW	Kelelences				
SVOC	GV	$= POA_GV$	$= 3 * POA_GV$	Shrivastava et al., 2011;	POA emissions of each source			
	DV	$= POA_DV$	$= 3 * POA_DV$	Tsimpidi et al., 2010;	were calculated from TNO PM _{2.5}			
	BB	$= POA_BB$	$= 3 * POA_BB$	Ciarelli et al., 2017a	emissions			
	OthA	$=$ POA_OthA	$= 3 * POA_OthA$					
IVOC	GV DV BB OthA	= 25% * NMVOC_GV = 20% * NMVOC_DV = 4.5 * POA_BB = 1.5 * POA_OthA		Jathar et al., 2014 Jathar et al., 2014 Ciarelli et al., 2017 Robinson et al., 2007	The portion of NMVOCs considered as IVOCs (25% for GV, 20% for DV) were removed from the NMVOC emissions			

Table S2. Evaluation of the meteorological parameters in winter (February, number of stations = 1094) and summer (July, number of stations = 753). Performance criteria for model results are from Emery et al., (2001). MB: mean bias; MGE: mean gross error; RMSE: root-mean-square error; IOA: index of agreement.

Meteorological	MB			MGE			RMSE			IOA(-)		
parameters	Feb.	Jul.	Criteria	Feb.	Jul.	Criteria	Feb.	Jul.	Criteria	Feb.	Jul.	Criteria
Temperature (°C)	-1.0	-0.1	≤ <u>+</u> 0.5	1.2	0.7	≤ <u>+</u> 2	1.7	0.9	-	1.0	1.0	≥ 0.8
Wind speed (m s ⁻¹)	-0.1	-0.3	≤ <u>+</u> 0.5	1.3	0.9	-	1.6	1.2	≤ 2	0.8	0.5	≥0.6
Wind direction (°)	5.2	15.8	≤ <u>+</u> 10	18.1	22.6	≤ 30	28.4	33.3	-	0.7	0.8	-
Humidity $(g kg^{-1})$	-0.1	0.0	≤ <u>+</u> 1	0.2	0.4	≤ 2	0.3	0.5	-	1.0	1.0	≥ 0.6
Precipitation (mm)	-0.3	-0.4	-	0.3	0.5	-	0.7	1.0	-	0.2	0.4	-

Table S3. Evaluation of the model performance for the chemical species in winter (February) and summer (July). MB: mean bias; MGE: mean gross error; RMSE: root-mean-square error; MFB: mean fractional bias; MFE: mean fractional error; IOA: index of agreement.

	Model	Number of	MB ^a		MGE ^a		MFB (%)		MFE (%)		RMSE ^a		IOA(-)	
		Stations	Feb.	Jul.	Feb.	Jul.	Feb.	Jul.	Feb.	Jul.	Feb.	Jul.	Feb.	Jul.
PM _{2.5}	BASE	565	0.5	-1.3	8.9	2.8	9	-12	35	28	11.7	3.7	0.6	0.4
	NEW	565	2.9	-0.8	9.3	2.6	17	-7	36	26	11.9	3.6	0.6	0.5
O_3	NEW	608	2.0	0.9	6.1	4.7	8.8	4.1	23.0	13.5	8.5	6.3	0.7	0.7
NO_2	NEW	3036	-6.2	-2.9	8.1	5.1	-43	-36	58.6	63.2	10.9	7.5	0.6	0.5
SO_2	NEW	1979	6.7	3.9	7.7	4.5	77.0	65.5	98.5	98.2	17.9	10.2	0.1	0.1

^a Units are ppb, except for $PM_{2.5}$ which is $\mu g m^{-3}$.

5

Table S4. Performance criteria and goals for model results on PM_{2.5} and ozone (Boylan and Russell, 2006; EPA, 2007).

Species	Metric	Criteria	Goal
PM _{2.5}	MFB	≤ <u>+</u> 60%	≤ <u>+</u> 30%
	MFE	\leq 75%	\leq 50%
O ₃	MFB	$\leq \pm 30\%$	≤ <u>+</u> 15%
	MFE	\leq 45%	\leq 30%

10

Country	Gasoline	vehicles	Diesel	vehicles	Biomass	burning	Other anthropogenic		Biogenic	
Country	DJF	JJA	DJF	JJA	DJF	JJA	DJF	JJA	DJF	JJA
Albania	2.0	6.3	1.8	3.1	71.8	34.6	9.2	21.4	15.2	34.7
Austria	1.6	4.8	3.9	3.7	59.9	15.9	10.0	18.7	24.6	57.0
Belarus	0.9	2.2	2.1	1.7	65.7	21.1	8.4	11.5	22.8	63.5
Belgium	1.4	3.9	7.3	6.7	51.0	16.7	14.4	28.7	25.9	44.0
Bosnia_and_Herzegovina	1.3	5.5	1.4	3.2	79.8	35.4	6.4	19.8	11.2	36.1
Bulgaria	1.4	4.0	1.4	2.3	77.9	39.2	7.9	17.5	11.3	37.0
Croatia	1.9	6.1	2.4	3.7	70.8	28.8	7.6	21.1	17.2	40.3
Cyprus	1.3	2.5	2.5	1.5	35.6	13.5	6.1	8.9	54.6	73.6
Czech_Republic	1.1	3.3	4.7	4.4	54.9	16.1	6.7	15.4	32.6	60.7
Denmark	0.6	3.5	2.3	2.9	64.2	20.1	8.2	25.7	24.6	47.9
Estonia	0.4	2.0	1.1	1.3	78.5	19.1	4.3	11.1	15.8	66.5
Finland	0.4	1.4	1.8	0.9	57.0	7.8	7.6	7.4	33.2	82.5
France	1.4	4.6	4.5	4.9	62.7	22.3	10.8	29.4	20.6	38.8
Germany	1.3	3.8	4.2	3.6	46.6	12.5	10.3	19.4	37.5	60.8
Greece	2.3	5.1	1.4	1.8	58.3	23.2	9.9	16.9	28.1	53.0
Hungary	1.5	4.7	2.4	3.8	74.5	30.7	8.1	20.3	13.6	40.5
Ireland	0.6	1.6	3.2	2.8	16.0	5.5	5.8	11.2	74.4	79.0
Italy	4.4	10.9	4.4	4.5	70.0	25.2	10.5	29.3	10.7	30.1
Latvia	0.4	2.2	1.4	1.7	80.1	23.3	4.3	12.2	13.9	60.6
Lithuania	0.6	2.6	2.8	2.5	69.3	22.2	7.5	14.9	19.8	57.8
Luxembourg	1.6	3.9	12.9	11.6	50.3	15.5	13.3	23.6	21.9	45.5
Northern Macedonia	1.5	4.9	1.2	2.5	73.8	36.9	7.6	18.2	15.8	37.5
Malta	5.4	11.7	3.2	6.1	57.3	20.2	19.6	45.7	14.5	16.3
The Netherlands	1.6	3.9	7.1	5.5	44.4	11.6	14.5	28.3	32.4	50.7
Norway	0.4	1.4	1.2	1.1	59.3	9.8	9.8	11.3	29.3	76.5
Poland	0.9	3.1	5.4	4.6	56.9	17.0	8.9	17.1	27.8	58.2
Portugal	0.9	2.2	2.4	2.8	42.4	17.8	8.9	17.9	45.4	59.3
Republic_of_Moldova	1.4	3.7	1.3	2.2	78.7	44.3	9.5	19.5	9.1	30.3
Romania	1.1	3.7	1.0	2.2	82.2	42.5	6.7	17.2	9.1	34.3
Russia	0.7	1.4	1.7	1.0	62.9	13.9	8.8	8.0	25.8	75.7
Serbia_and_Montenegro	1.4	5.1	1.3	3.0	81.9	44.0	7.0	19.0	8.3	28.9
Slovakia	0.9	3.8	2.3	4.0	74.1	27.5	5.3	16.8	17.4	47.9
Slovenia	1.3	5.5	2.3	3.7	76.2	26.5	5.2	17.6	14.9	46.6
Spain	0.9	2.0	2.4	2.0	42.0	18.9	8.0	17.2	46.6	59.9
Sweden	0.5	1.6	1.5	1.0	34.3	7.0	8.8	9.7	55.0	80.6
Switzerland	2.9	6.9	4.6	3.9	56.4	17.5	15.8	23.4	20.3	48.3
Turkey	1.1	2.3	1.2	1.3	60.7	21.2	9.0	11.9	28.0	63.3
Ukraine	1.2	3.1	1.6	2.0	71.7	33.8	11.2	17.4	14.3	43.8
United_Kingdom	0.8	2.0	3.7	3.0	28.1	7.5	11.5	20.7	56.0	66.7

Table S5: Relative contributions (%) of different sources to the organic aerosol (OA) concentration on a country scale. DJF: December – January – February; JJA: June – July – August.

Figure S1: Model domain and spatial distribution of the ACSM/AMS stations.

Figure S2: Temporal variations of modelled and measured organic aerosol concentrations together with some meteorological parameters available at Bologna, Marseille and Mace Head.

Figure S3: Comparison between modelled relative contribution of OA components and positive matrix factorization (PMF)
analysis results. GV: Gasoline Vehicles; DV: Diesel Vehicles; BB: Biomass Burning; OthA: Other anthropogenic sources; BIO: Biogenic sources.

Figure S4: Spatial distributions of primary and secondary OA from different sources in winter (a, b) and summer (c, d). The winter and summer results are the averages of December – January – February and June – July – August, respectively. Note
that different scales are used for biomass burning and biogenic source to facilitate visualization.

Figure S5: Relative contributions of different anthropogenic sources to total PM_{2.5} and NMVOC emissions in 2011. The 8 sub-regions are the Iberian Peninsula (IP), the Mediterranean (MD), Po Valley (PV), eastern Europe (EE), central Europe 5 (CE), Benelux (BX), Ireland and Great Britain (IG), and Scandinavia (SC).