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Abstract 23 
Peat fuels representing four biomes of boreal (western Russia and Siberia), temperate 24 

(northern Alaska, U.S.A.), subtropical (northern and southern Florida, U.S.A), and tropical 25 

(Borneo, Malaysia) regions were burned in a laboratory chamber to determine gas and particle 26 

emission factors (EFs).  Tests with 25 % fuel moisture were conducted with predominant 27 

smoldering combustion conditions (average modified combustion efficiency [MCE] = 0.82 ± 28 

0.08).  Average fuel-based EFCO2 (carbon dioxide) are highest (1400 ± 38 g kg-1) and lowest (1073 29 

± 63 g kg-1) for the Alaskan and Russian peats, respectively.  EFCO (carbon monoxide) and EFCH4 30 

(methane) are ~12‒15 % and ~0.3‒0.9 % of EFCO2, in the range of 157‒171 g kg-1 and 3‒10 g kg-31 
1, respectively.  EFs for nitrogen species are at the same magnitude of EFCH4, with an average of  32 

5.6 ± 4.8 and 4.7 ± 3.1 g kg-1 for EFNH3 (ammonia) and EFHCN (hydrogen cyanide); 1.9 ± 1.1 g kg-33 
1 for EFNOx (nitrogen oxides); as well as 2.4 ± 1.4 and 2.0 ± 0.7 g kg-1 for EFNOy (total reactive 34 

nitrogen) and EFN2O (nitrous oxide). 35 

An oxidation flow reactor (OFR) was used to simulate atmospheric aging times of ~2 and 36 

~7 days to compare fresh (upstream) and aged (downstream) emissions.  Filter-based EFPM2.5 37 

varied by >4-fold (14‒61 g kg-1) without appreciable changes between fresh and aged emissions.  38 

The majority of EFPM2.5 consists of EFOC (organic carbon), with EFOC/EFPM2.5 ratios in the range 39 

of 52‒98 % for fresh emissions, and ~15 % degradation after aging.  Reductions of EFOC (~7‒9 g 40 

kg-1) after aging are most apparent for boreal peats with the largest degradation in low temperature 41 

OC1 that evolves at <140°C, indicating the loss of high vapor pressure semi-volatile organic 42 

compounds upon aging.  The highest EFLevoglucosan is found for Russian peat (~16 g kg-1), with ~35-43 

50 % degradation after aging.  EFs for water-soluble OC (EFWSOC) accounts for ~20‒62 % of fresh 44 

EFOC. 45 

The majority (>95 %) of the total emitted carbon is in the gas phase with 54‒75 % CO2, 46 

followed by 8-30 % CO.  Nitrogen in the measured species explains 24‒52 % of the consumed 47 

fuel nitrogen with an average of 35 ± 11 %, consistent with past studies that report ~one- to two-48 

thirds of the fuel nitrogen measured in biomass smoke.  The majority (>99 %) of the total emitted 49 

nitrogen is in the gas phase, with an average of 16.7 % as NH3 and 9.5 % as HCN.  N2O and NOy 50 

constituted 5.7 % and 2.9 % of consumed fuel nitrogen.  EFs from this study can be used to refine 51 

current emission inventories. 52 
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1 Introduction 55 
Globally, peatlands occupy ~3 % of the Earth’s land surface, but they store as much as 610 56 

gigatonnes (i.e., 610×1015 grams) of carbon, representing 20–30 % of the planet’s terrestrial carbon 57 

(Page et al., 2011;Rein et al., 2009).  Peatland fires can persist for weeks to months and are 58 

dominated by the smoldering-phase as opposed to the flaming-phase of biomass burning 59 

(Stockwell et al., 2016;Hu et al., 2018).  This results in lower combustion efficiencies, increased 60 

particulate matter (PM) emissions, and larger fractions of brown carbon (BrC) compared to black 61 

carbon (BC) or soot (Pokhrel et al., 2016).  Peat fires emit reduced nitrogen compounds (e.g., 62 

ammonia [NH3] and hydrogen cyanide [HCN]); volatile and semi-volatile organic compounds 63 

(VOCs and SVOCs); and PM2.5 (PM with aerodynamic diameters <2.5 µm) (Akagi et al., 64 

2011;Yokelson et al., 2013).  Peat smoke and ash affect ecosystem productivity, soil acidity, 65 

biogeochemical cycling, atmospheric chemistry, Earth’s radiation balance, and human health.  66 

Warmer climates lower the water table in peatlands and change the pattern, frequency, and 67 

intensity of the peatland fires causing local- and regional-scale air pollution and visibility 68 

impairment (Page et al., 2002;Turetsky et al., 2010;2015a;2015b). For Southeast Asia, fire-related 69 

regional air pollution and its effects on atmospheric visibility, ecosystems, and human health have 70 

been addressed in many studies (e.g., Behera et al., 2014;Betha et al., 2013;Bin Abas et al., 71 

2004;Engling et al., 2014;Heil and Goldammer, 2001;Kundu et al., 2010;Levine, 1999;Hu et al., 72 

2019;Tham et al., 2019;Fujii et al., 2017;Dall'Osto et al., 2014). 73 

Nitrogen, one of the most important plant nutrients, affects global carbon and 74 

biogeochemical cycles (Crutzen and Andreae, 1990;Gruber and Galloway, 2008).  Deposition of 75 

oxidized and reduced nitrogen species from biomass burning, such as gaseous nitric oxide (NO), 76 

nitrogen dioxide (NO2), and NH3 as well as particulate nitrate (NO3
-) and ammonium (NH4

+), alters 77 

terrestrial ecosystems (Chen et al., 2010), while nitric acid (HNO3) contributes to soil acidification 78 

and excessive nitrification that reduce plant resistance to environmental stresses (Goulding et al., 79 

1998).  Gaseous nitrogen oxides (NOx) affect atmospheric chemistry through: 1) reactions with 80 

hydroxyl (OH) and peroxy (HO2 + RO2) radicals; 2) conversion to nitrate radical (NO3), dinitrogen 81 

pentoxide (N2O5), and acyl peroxy nitrates (particularly peroxyacetyl nitrate [PAN]), which are 82 

important NOx reservoirs; and 3) formation of ozone (O3) and secondary organic aerosols (SOA) 83 

(Alvarado et al., 2010;Cubison et al., 2011;Ng et al., 2007).  While NH3 neutralizes HNO3 to form 84 

particulate ammonium nitrate (NH4NO3), it may also react with alkanoic acids to form alkyl 85 
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amides, nitriles, and ammonium salts that can also contribute to SOA formation (Na et al., 86 

2007;Simoneit et al., 2003;Zhao et al., 2013).  In addition, NH3 interacts with SOA to form “BrC” 87 

that further influence the aerosol radiative forcing (Updyke et al., 2012). 88 

This study quantifies peat burning emission factors (EFs) for fresh and aged multipollutant 89 

mixtures through controlled burns in a laboratory combustion chamber with atmospheric aging 90 

simulated by an oxidation flow reactor (OFR).  These tests are applied to peat samples from diverse 91 

parts of the world.   92 

2 Experiment 93 
2.1 Fuel types 94 

Peatlands are found all over the world, as illustrated in Fig. 1 (based on Yu et al., 2010) 95 

with large deposits found in the northern USA and Canada, northern Europe, Russia/Siberia, and 96 

southeast Asia.  Eight types of peat fuels from different regions and climates were collected for 97 

testing, including: boreal (i.e., Odintsovo, Russia and Pskov, Siberia); temperate (i.e., black spruce 98 

forest, northern Alaska, USA); subtropical (i.e., northern [Putnam County Lakebed] and southern 99 

[Everglades National Park] Florida, USA and Caohai and Gaopo, Guizhou, southwest China); and 100 

tropical (i.e., Borneo, Malaysia) peats.  101 

Representative peat samples of 250‒1150 g from the upper 20 cm of the peatland surface 102 

were excavated for each region indicated in Fig. 1.  As peat is a heterogeneous mixture of 103 

decomposed plant material, it can be formed in different wetlands under changing climates and 104 

nutrient contents (Turetsky et al., 2015a).  Supplemental Fig. S1 shows that the appearance of peat 105 

fuels varies by region.  106 

To quantify carbon (C), hydrogen (H), nitrogen (N), sulfur (S), and oxygen (O) content, 107 

~2‒3 g of each peat fuel were dried in a vacuum oven (~105°C) for two hours prior to elemental 108 

analysis (Thermo Flash-EA 1112 CHNS/O Analyzer, Waltham, MA, USA). 109 

Import and export regulations (USDA, 2010) require high temperature heating of soil/peat 110 

fuels as part of the sterilization process. Peat fuels were heated to 90°C and weighed every 24 111 

hours to achieve a stable dry mass with ~0.16 % moisture by weight content (after ~96 hours of 112 

heating).  The low heating temperature (i.e., below the water boiling point) minimized VOC losses, 113 

although some compounds with high volatilities could have been removed at 90°C.  To better 114 

simulate the field conditions during peat fires, distilled-deionized water (DDW) was added to 115 

rehydrate the dry peat and achieve a fuel moisture of ~25 % (by weight) before each experiment 116 
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(Yatavelli et al., 2017).  To examine the effects of fuel moisture on emissions, additional 117 

experiments (n=3) were conducted at 60 % fuel moisture content (by weight) for the Putnam (FL) 118 

peat. 119 

2.2 Experimental setup  120 
The laboratory setup shown in Fig. 2 used a biomass combustion chamber with a volume 121 

of ~8 m3 (1.8 m[W] x 1.8 m[L] x 2.2 m[H]) (Tian et al., 2015).  Instrument specifications and 122 

operating principles are shown in Table S1.  The chamber is made of 3 mm-thick aluminum to 123 

withstand high temperature heating.  A blower supplied air filtered by a charcoal bed and a high-124 

efficiency particulate air (HEPA) filter near the bottom of the chamber to remove background gas 125 

and particle contaminants. The ventilation rate was controlled by the blower and exhaust fan at 126 

~2.65 m3 min-1, resulting in a smoke residence time of ~ 3 min in the chamber assuming a well-127 

stirred flow model.  128 

For each test, ~10‒30 g of dried peat was placed in an asbestos insulated circular container 129 

on top of an induction heater that provided heating during the first ~5‒10 minutes of combustion 130 

(see Fig. S2).  This method replaced a propane torch used in initial test burns, thereby minimizing 131 

non-peat burning emissions.  The smoldering process is usually self-propagating and sustained by 132 

heat conduction and radiation with fuel mass continuously monitored by a scale underneath the 133 

induction heater (Ohlemiller et al., 1979).   134 

Continuous PM2.5  mass concentrations were monitored with a DustTrak (TSI Model 8532, 135 

Shoreview, MN, USA) (Wang et al., 2009) (Table S1).  When PM2.5 concentrations reached their 136 

maximum and started to decline, the induction heater was turned off.  The fuel was consumed with 137 

diminished smoke emissions after ~20 minutes.  Preliminary tests were conducted using ~10‒20 138 

g of fuel and a dilution ratio of ~3 to 5, yielding sufficient particle loadings on the filters (~150‒139 

290 µg per 47 mm filter disc).  To achieve higher filter deposits of 300‒600 µg per filter that 140 

accommodate comprehensive organic speciation, additional fuels (~15‒20 g) were added with the 141 

induction heater turned on for another ~10 minutes.  Sampling continued until the concentrations 142 

returned to background level. 143 

Sampling ports for stack concentrations of carbon dioxide (CO2) and multiple gases by  144 

Fourier transform infrared (FTIR; Model DX 4015; Gasmet Technologies Oy, Finland) 145 

spectroscopy were located ~1 m above the top of the chamber roof in the exhaust duct (Fig. 2).  146 

The FTIR spectrometer measured gaseous emissions prior to dilution to obtain enhanced signal-147 
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to-noise ratios for trace gases (Jaakkola et al., 1998). An exhaust gas sample was drawn into the 148 

FTIR where the infrared (IR) absorption spectra in the wave number range of 900–4200 cm-1 were 149 

measured. The instrument software compares the measured absorption spectra with reference gas 150 

absorption spectra in the calibration library to identify gas species and calculate concentrations. 151 

Examples of reference gas spectra and an Everglades (FL) peat sample spectrum are plotted in Fig. 152 

S3. 153 

Smoke from the chamber was drawn through a dilution sampling manifold where the 154 

exhaust was diluted with clean air to achieve cooling that allowed for condensation of SVOCs.  A 155 

portion of the exhaust was directed through a potential aerosol mass (PAM)-OFR (Aerodyne 156 

Research Inc., Billerica, MA, USA) to simulate atmospheric aging prior to quantification by the 157 

sampling instruments shown in Fig. 2.  The 185 and 254 nm (OFR185) ultraviolet (UV) lamps in 158 

the OFR were operated at 2 and 3.5 volts with 10 L min-1 flow rate to simulate intermediate-aged 159 

(~2 days) and well-aged (~7 days) emissions assuming an average daily OH concentration of 1.5 160 

x 106 molecules cm-3.  The estimated OH exposures (OHexp) at 2 and 3.5 volts were 2.6 x 1011 and 161 

8.8 x 1011 molecules-sec cm-3  based on the measured decay of sulfur dioxide (SO2). Due to 162 

external OH reactivity from carbon monoxide (CO), NOx, and other reactants, these OHexp levels 163 

represent upper limits of the actual OH exposures inside the OFR (Peng et al., 2015;Li et al., 2015). 164 

Oxides of nitrogen were measured as NOx (the sum of NO and NO2) and total reactive 165 

nitrogen (NOy, including NO, NO2, N2O5, HNO3, HNO4, ClONO2, HONO, alkyl nitrates, and PAN) 166 

by chemiluminescence NOx and NOy analyzers (Ballenthin et al., 2003;Allen et al., 2018).  The 167 

NOx analyzers placed upstream and downstream of the OFR determined NOx changes with OHexp 168 

in the OFR.  There are known interferences for the non-selective catalytic converter in the 169 

chemiluminescent NOx analyzer and for spectroscopic absorption in the FTIR (Allen et al., 170 

2018;Prenni et al., 2014;Villena et al., 2012).  The chemiluminescence monitor converts most 171 

nitrogenous compounds to NO, with HNO3 and PAN being the most important potential 172 

interferents (Winer et al., 1974).  However, much of the available HNO3 and PAN is removed by 173 

the tubing leading to the molybdenum converter in the standard NOx analyzer, which is why the 174 

NOy analyzer locates the converter at the inlet.  Allen et al. (2018) found no significant differences 175 

between NOx measurements of biomass burning plumes when comparing a chemiluminescent 176 

analyzer with more specific UV absorption measurements.   177 
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The following analyses are based on: 1) the commercial NOx analyzers for NO, NO2, and 178 

NOx (NO + NO2 as equivalent NO2); 2) the NOy analyzer for total reactive nitrogen; and 3) the 179 

FTIR spectrometer for trace gas measurements of methane (CH4), NH3, HCN, nitrous oxide (N2O), 180 

and 13 low molecular-weight VOCs (C2‒C6).  181 

PM2.5 filter packs were sampled upstream and downstream of the OFR to characterize fresh 182 

and aged emissions, respectively, with Minivol PM2.5 samplers (Airmetrics, Springfield, OR, 183 

USA) operated at 5 L Min-1 flow rate per channel.  PM2.5 mass, elements, carbon, water-soluble 184 

organic carbon (WSOC), ions, carbohydrates, organic acids, as well as gaseous NH3 and HNO3 185 

were obtained from the paired upstream and downstream filter samples to examine changes in 186 

speciated EFs and source profiles with photochemical aging.  Average filter-based EFs are 187 

examined by peat types and aging times (i.e., denoted as Fresh 2 vs. Aged 2 and Fresh 7 vs. Aged 188 

7) (Chow et al., 2019). 189 

2.3 Filter pack measurements 190 
PM2.5 mass and major chemical species concentrations were obtained from the parallel 191 

Teflon-membrane and quartz-fiber filters (Teflo©, 2 µm pore size, R2PJ047 and Tissuquartz 2500 192 

QAFUP, Pall Life Sciences, Port Washington, NY, USA).  Teflon-membrane filters were 193 

equilibrated in a temperature (20‒23°C) and relative humidity (30‒40 %) controlled environment 194 

for a minimum of 48 hours prior to gravimetric analysis by a microbalance with ± 1 µg sensitivity 195 

(Watson et al., 2017).  This was followed by multielemental analysis by x-ray fluorescence 196 

(Watson et al., 1999).  Quartz-fiber filters were pre-fired at 900° C for four hours to minimize 197 

organic artifacts. A portion (0.5 cm2) of the quartz-fiber filter was submitted for organic, elemental, 198 

and brown carbon (OC, EC, and BrC) analysis following the IMPROVE_A thermal/optical 199 

reflectance (TOR) protocol (Chow et al., 2007;2015).  Half of the quartz-fiber filters was extracted 200 

in DDW for ionic speciation (i.e., chloride [Cl-], nitrate [NO3
-], nitrite [NO2

-], sulfate [SO4
=], water-201 

soluble sodium [Na+] and potassium [K+], ammonium [NH4
+], 17 carbohydrates, and 10 organic 202 

acids) by ion chromatography (Chow and Watson, 2017) and for WSOC by combustion and non-203 

dispersive infrared detection.  Citric acid and sodium chloride impregnated cellulose-fiber filters 204 

placed behind the Teflon-membrane and quartz-fiber filters, respectively, acquired NH3 as NH4
+ 205 

and HNO3 as volatilized nitrate, respectively, with analysis by ion chromatography. Details on 206 

chemical analyses can be found in Chow et al. (2019). 207 
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The open face sampling manifold allows homogenous particle deposits on 47-mm filters 208 

(Watson et al., 2017).  To test the uniformity of particle deposits, five individual punches were 209 

removed from the center and each quadrant of the 47-mm quartz-fiber filter disc for carbon 210 

analyses.  Table S2 shows total carbon (TC = OC + EC) concentration variations of 1.7 % to 5 % 211 

across the filters for the five test burns, within the overall uncertainty of the emission estimates.  212 

Standard deviations from the five filter punches for each experiment are low with coefficients of 213 

variation of 1.7‒5.0 %. 214 

2.4 Modified combustion efficiency and fuel-based emission factors   215 
The modified combustion efficiency (MCE) is defined as the ratio of background-216 

subtracted CO2 to the sum of CO2 and CO (Ward and Radke, 1993): 217 

MCE =  ∆CO2 

∆CO2 + ∆CO
        (1)  218 

where ∆CO2 and ∆CO are CO2 and CO concentrations above background. MCE provides a real-219 

time indicator of the combustion status (e.g., MCE > ~0.9 for flaming and MCE <~0.85 for 220 

smoldering).  221 

Each burn was completed when concentrations of pollutants measured on-line (i.e., CO, 222 

NOx, NOy, and PM2.5) returned to the baseline/background levels.  Dilution ratios ranging from 223 

2.7 to 5 were taken into account when calculating EFs.  Fuel-based EFs are calculated based on 224 

carbon mass balance, expressed as grams of emission per kilogram of dry fuel (g kg-1) (Wang et 225 

al., 2012).  For gaseous and particle species i, the time-integrated EFi is: 226 

 227 

EF𝑖𝑖 = CMFfuel
C𝑖𝑖

CCO2�
Mc

MCO2
�+CCO�

Mc
MCO

�+CCH4�
Mc

MCH4
�+∑ CVOC𝑗𝑗�

n𝑗𝑗×Mc
MVOC𝑗𝑗

�𝑗𝑗 +PMc

× 1000 (2) 228 

 229 

where CMFfuel is the carbon mass fraction of the fuel in kg carbon per kg of fuel; Ci, CCO₂, CCO, 230 

CCH₄, and CVOC𝑗𝑗are the background-subtracted concentrations for species i (e.g., nitrogen or PM2.5 231 

species), CO2, CO, CH4, and VOC (C2‒C6) species j in mg m-3 under standard conditions 232 

(temperature = 293K and pressure = 1 atm), respectively; PMc is the total carbon concentration of 233 

PM2.5 in mg m-3; MC, MCO₂, MCO, MCH₄, and M𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗 are the atomic or molecular weights of carbon, 234 
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CO2, CO, CH4, and VOC species j in mg per mole, respectively; nj is the number of carbon atom 235 

in VOC species j; and the factor 1000 converts kg to g.  All concentrations are converted to stack 236 

concentration, i.e., species measured after dilution are adjusted by the dilution ratio.  Equation 2 237 

assumes that the carbon mass in unmeasured VOCs and other emissions not listed above is 238 

negligible compared to that in CO2, CO, CH4, measured VOCs (C2‒C6), and PM2.5 carbon.   239 

2.5 Estimation of wall losses 240 
Gas and particle wall losses can result in some underestimation of measured EFs, but it is 241 

well within the measurement uncertainties of ± 15 %. Losses can occur inside the combustion 242 

chamber, in the exhaust stack, sampling lines, and inside the OFR. Due to the low surface-to-243 

volume ratio of the chamber (2.9 m-1) and short residence time (~3 min) in this study, the gas and 244 

particle losses are expected to be low in the combustion chamber. Grosjean (1985) estimated an 245 

NH3 loss rate of 4-17 × 10-4 min-1 in a small Teflon chamber (3.9 m3) with a surface-to-volume 246 

ratio of 3.8 m-1, resulting in < 0.5 % NH3 wall loss. Even though the NH3 accommodation 247 

coefficient might be higher for aluminum than Teflon (Neuman et al., 1999), the chamber wall 248 

loss in this study is expected to be < 5 % for NH3. To reduce wall losses of sticky gases, the FTIR 249 

sampled exhaust gas from the stack without dilution, as shown in Fig. 2. Approximately 9 % NH3 250 

would encounter the stack wall due to turbulent diffusion (Hinds, 1999). The maximum NH3 loss 251 

in the stack is <9 % and the maximum overall NH3 loss is <14 %. Losses of less sticky gases would 252 

be lower. 253 

The particle wall loss rates by McMurry and Grosjean (1985) and Wang et al. (2018) 254 

indicate <5 % particle number losses for 10 nm‒2.5 µm in a similar chamber. Particle losses by 255 

turbulent diffusion in the stack are also low (<0.5 %). For a 2 m-long horizontal heated sampling 256 

line in this study (Fig. 2), particle losses by diffusion and gravitational settling are negligible (<0.1 257 

%) for 10 nm - 1 µm particles and ~6 % for 2.5 µm particles. Earlier measurements showed that 258 

the dilution tunnel had ~100% penetration for 0.5-5 µm particles (Wang et al., 2012). Therefore, 259 

maximum particle losses in this study are estimated to be <5 % for 10 nm - 1 µm and <10 % for 260 

2.5 µm. Past studies (Lambe et al., 2011;Bhattarai et al., 2018;Karjalainen et al., 2016) showed 261 

that particle number losses through the OFR may be ~50 % for 20 nm and <10 % for >100 nm 262 

particles, with a negligible effect on mass concentration.   263 
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3 Results and discussion 264 
3.1 Fuel composition 265 

Table 1 shows that peat contains 44‒57 % C and 31‒39 % O with the exception of the two 266 

Guizhou, China peats (20‒30 % C and 21‒24 % O).  The carbon content (50.6 ± 2.5 % C) in 267 

Borneo, Malaysian peat is within the range of carbon fractions reported for Kalimantan and 268 

Sumatra, Indonesia peat (44‒60 % C) (Christian et al., 2003;Hatch et al., 2015;Iinuma et al., 269 

2007;May et al., 2014;Setyawati et al., 2017).  The low carbon content (20‒30 % C) of Guizhou 270 

peats is similar to the 28‒30 % C reported for two eastern North Carolina, USA peats (Black et 271 

al., 2016).  272 

Hydrogen contents of 2‒7 % H in Table 1 are  consistent with abundances found elsewhere, 273 

including: 1) ~6 % H for northern Minnesota, USA peat (Yokelson et al., 1997); 2) ~2‒3 % H for 274 

the eastern North Carolina peat (Black et al., 2016); and 3) ~5‒7 % H for Indonesian peats (Iinuma 275 

et al., 2007;Christian et al., 2003;Hatch et al., 2015).  Sulfur (S) contents are below detection limits 276 

(<0.01 %), and nitrogen contents are 1‒4 % N.  Ratios of N/C are 0.02‒0.08, consistent with the 277 

reported N/C ratios of: 1) 0.036 for Neustädter Moor, northern Germany (Iinuma et al., 2007); 2) 278 

0.017‒0.04 for Ireland and United Kingdom (Wilson et al., 2015); 3) 0.02‒0.03 for Alberta and 279 

Ontario, Canada (Stockwell et al., 2014); 4) 0.062 for Minnesota, U.S.A. (Yokelson et al., 1997); 280 

5) 0.022‒0.03 for the eastern coast of North Carolina, U.S.A. (Black et al., 2016); and 6) 0.036‒281 

0.039 for Kalimantan and Sumatra, Indonesia (Christian et al., 2003;Hatch et al., 2015).  282 

The sum of elements (i.e., C, H, N, S, and O) accounts for 91‒98 % of total mass except 283 

for the Guizhou peats (47‒56 %).  As Guizhou peats appear to be a mixture of peat and soil, these 284 

samples may represent degraded peats (Miettinen et al., 2017) or contain additional minerals or 285 

high ash contents, similar to North Carolina peats (44‒62 % ash, Black et al., 2016).  Therefore, 286 

these peats were only used for preliminary testing of sample ignition and heating to optimize 287 

burning conditions.  Overall, the six other peats in Table 1 represent biomes from different regions 288 

of the world.   289 

3.2 Emission factors (EFs) 290 
Table S3 summarizes the 40 peat combustion tests with the peat masses before and after 291 

each burn.  The after burn residue may have contained unburned peat as well as non-combustible 292 

ash.  The residues were not analyzed for carbon and nitrogen contents.  A few samples were voided 293 

due to sampling abnormalities.  The following analyses are based on the 32 paired (Fresh vs Aged) 294 
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samples at 25 % fuel moisture and 3 paired samples at 60 % fuel moisture.  The amount of fuel 295 

consumed per test ranged from 21‒48 g for all but Russian peat (14‒15 g) due to limited supply.   296 

PM2.5 mass concentrations, in the range of 328‒2277 µg/m3, are one to two orders of 297 

magnitude higher than those commonly measured at ambient monitoring sites.  Typical sample 298 

durations from ignition to completion were ~40‒60 minutes, except for the Everglades (FL) peats 299 

that took longer (up to 135 minutes).  Similar particle loadings (mostly within ± 20 %) were found 300 

for downstream (aged) and upstream (fresh) samples.  The exception is Everglades (FL) peat, 301 

where prolonged sample durations and 7-days aging times resulted in higher downstream particle 302 

loadings with ratios of aged/fresh mass concentrations ranging 1.6‒2.0.  303 

3.2.1 Gaseous carbon emission factors 304 
Individual and average carbonaceous gas EFs are summarized in Table S4. As shown in  305 

Fig. S4,  variations by biome are found among the different peats with relative standard deviations 306 

ranging from 2‒27 %.  The largest EFs are found for CO2 (EFCO2), ranging from 994‒1455 g kg-307 
1, which are 1‒2 orders of magnitude higher than the corresponding EFCO and EFCH4.  Average 308 

EFCO2 varied by >30 % among biomes, ranging from 1073 ± 61 to 1400 ± 38 g kg-1 for the Russian 309 

and Alaskan peats, respectively.  310 

Muraleedharan et al. (2000) reported the first laboratory-combustion EFs of 150‒185 g kg-311 
1 for EFCO2, 15‒37 g kg-1 for EFCO, and 6‒11 g kg-1 for EFCH4 on a wet mass basis for Brunei peat 312 

with a 51.4 % moisture content.  Table 2 shows studies conducted over the past decade, with more 313 

field monitoring during the 2015 ENSO period in Indonesia.  Open path (OP)-FTIR was commonly 314 

used to acquire gaseous emissions with MCEs ranging 0.77‒0.86, consistent with smoldering 315 

combustion.  A limited number of burns (n of 1 to 6) were conducted in laboratories using 316 

combustion chambers, whereas a larger number of in situ field-burn samples (n of 17 to 35) were 317 

acquired for southeast Asian peats (Wooster et al., 2018;Setyawati et al., 2017;Stockwell et al., 318 

2016).  319 

Table 2 exhibits  >2-fold variations in EFCO2 among studies.  The highest EFCO2 with the 320 

lowest variability was found for tropical peats (ranges 1331‒1831 g kg-1 for smoldering).  Average 321 

EFCO2 (1331 ± 78 g kg-1) for Malaysian peat (n=6) from this study is ~16 % and ~18 % lower than 322 

the 1579 ± 58 and 1615 ± 184 g kg-1 for Peninsula, Malaysia (Smith et al., 2018) and average 323 

boreal/temperate peats (Hu et al., 2018), respectively.  Malaysian peat EFCO2 measured in this 324 
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study is 20 % lower than the 1681 ± 96 g kg-1, averaged from seven studies of Kalimantan and 325 

Sumatra, Indonesia peats (Christian et al., 2003;Stockwell et al., 2014;Huijnen et al., 2016;Nara et 326 

al., 2017).  327 

Overall average EFCO₂ (1269 ± 139 g kg-1, n=32) from this study (Table S4) are ~19‒25 % 328 

lower than the 1563 ± 65 g kg-1 for peatland fires used in atmospheric models (Akagi et al., 2011); 329 

1550 ± 130 g kg-1 in a recent review (Andreae, 2019); and 1703 g kg-1 (Christian et al., 2003) 330 

adopted by the 2014 Intergovernmental Panel on Climate Change (IPCC) for organic soil fire 331 

inventories (IPCC, 2014).  EFs derived from this study cover four biomes which may improve 332 

global emission estimates. 333 

Average EFCO is typically ~12‒15 % of EFCO₂ in the range of 157‒171 g kg-1 for all but the 334 

two Florida peats with 394 ± 46 g kg-1 (MCE = 0.65 ± 0.04) and 93 ± 21 g kg-1 (MCE = 0.90 ± 335 

0.03) for the Putnam and Everglades peats, respectively (Table S4 and Table 2).  This is consistent 336 

with a higher EFCO under lower MCEs reported by Setyawati et al. (2017) ‒a 45-fold increase from 337 

3.1 ± 7.2 g kg-1 for flaming (MCE = 0.998 ± 0.005) to 138 ± 72 g kg-1 for smoldering (MCE = 338 

0.894 ± 0.055) combustion. 339 

Average EFCO of 157‒161 g kg-1 for boreal and temperate peats are ~10 % lower than the 340 

179 ± 61 g kg-1 from Hu et al. (2018).  The overall average EFCO of 175 ± 92 g kg-1 from this study 341 

is ~4 % lower than the 182 ± 60 g kg-1 in Akagi et al. (2011), ~30 % lower than the 250 ± 23 g kg-342 
1 in Andreae (2019), and ~15 % lower than the 207‒210 g kg-1 used in IPCC (2014). 343 

Average EFCH4 is ~0.3‒0.9 % of EFCO2, lowest for cold climates with 3.2‒6.9 g kg-1 for the 344 

boreal and temperate peats and 6.7‒10.4 g kg-1 for the subtropical and tropical peats (Table S4).  345 

Table 2 shows that EFCH4 for Malaysian and Indonesian peats exceed ~10 g kg-1 in five of the eight 346 

past studies. These EFs are more in line with the 11.8 ± 7.8 g kg-1 in Akagi et al. (2011), 9.3 ± 1.5 347 

g kg-1 in Andreae (2019), and 9‒21 g kg-1 in IPCC (2014), but are higher than the average (6.6 ± 348 

2.4 g kg-1) found in this study. 349 

Emission factors depends on both fuel composition and combustion conditions. Figure S5a 350 

shows that total measured gas and particle carbon increases with fuel carbon content for the six 351 

types of peat. EFCO2 increases with fuel carbon content (Fig. S5b) except for the Putnam (FL) peat, 352 

which has the highest fuel carbon (56.6 %) but low EFCO2. It has high EFCO and EFTC (Figs. S5c-353 

d), consistent with its low MCE (0.65 ± 0.04). EFCO and EFTC do not show a clear trend with fuel 354 
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carbon content; however, EFCH4 increases with fuel carbon (Fig. S5e)  but decreases with fuel 355 

oxygen content (Fig. S5f).  356 

3.2.2 Gaseous nitrogen emission factors 357 
Individual and average gaseous nitrogen species EFs are summarized in Table S5. EFNO 358 

and EFNO2 (Fig. S6b) are low in the range of 0.2‒2.1 g kg-1. For fresh emissions, most of the NOx 359 

(NO + NO2) is present as NO. After the OFR, NO decreased while NO2 increased, as shown in 360 

Fig. S7. A low correlation coefficient (r = 0.67) between the downstream and upstream EFNOx 361 

suggests the changes of NO/NO2 ratios between the fresh and aged emissions as well as 362 

variabilities among tests. 363 

Table 3 shows that most studies do not report EFNO or EFNO2, partially due to the low 364 

concentrations and large variabilities under atmospheric aging. Stockwell et al. (2016;2014) 365 

reported 0.31‒1.85 g kg-1 EFNO and 2.31‒2.36 g kg-1 EFNO2 for Indonesia peats. These levels are 366 

much higher than the EFNOx (as NO2) of 0.75 ± 0.10 g kg-1 for Malaysian peat in this study. 367 

Emissions for reactive nitrogen, EFNOy (as NO2), ranged 0.61‒6.3 g kg-1 with an average 368 

of 2.4 ± 1.4 g kg-1 (Table S5). EFNOy >2.5 g kg-1 are found for the two Florida peats (Fig S6c) with 369 

an average of 4.3 ± 1.1 g kg-1 for Everglades, which reports the highest nitrogen content (3.93 ± 370 

0.08 %) among peats (Table 1). Figure S5g shows that EFNO increases with fuel nitrogen content, 371 

while EFNO2 is not dependent on fuel nitrogen content (Fig. S5h). Because EFNO is higher than 372 

EFNO2, EFNOx and EFNOy increase with fuel nitrogen content (not shown).  Figure S8 shows that 373 

~74 % of the NOy is NOx with high correlation coefficient (r = 0.93). Nitrogen oxides are typically 374 

converted to other oxidized nitrogen species within 24 hours after emission (Seinfeld and Pandis, 375 

1998;Prenni et al., 2014). The ratio of NOx/NOy has been used to infer photochemical aging 376 

(Kleinman et al., 2003;Kleinman et al., 2007;Olszyna et al., 1994;Parrish et al., 1992). The high 377 

NOx/NOy ratios suggest that NOX had not converted to other reactive nitrogen species in the diluted 378 

peat plume.  379 

Nitrous oxide (N2O), an inert form of oxide from nitrogen with an atmospheric lifetime of 380 

~110 years, commonly emitted from fossil fuel, solid waste fertilizers, and biomass combustion, 381 

is a greenhouse gas defined by U.S. EPA (2016). Table S5 shows that EFN2O are similar to EFNOy 382 

except for Everglades (FL) peat with low EFN2O (1.5 ± 0.3 g kg-1), in the range of 1.1‒4.4 g kg-1 383 
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and average of 2.0 ± 0.7 g kg-1. The highest average EFN2O (3.6 ± 0.6 g kg-1) is found for Putnam 384 

(FL) peat (Fig. S6c).  385 

Hydrogen cyanide (HCN), a known emission from biomass burning (Li et al., 386 

2000;Stockwell et al., 2014), exhibits  >7-fold differences (1.8‒14 g kg-1) in EFHCN (Table S5). 387 

The average EFHCN (11.5 ± 2.3 g kg-1) for Putnam (FL) peat is 2- to 5-fold higher than for the other 388 

biomes (Fig. S6a). Table 3 shows large EFHCN variations among studies, from 0.73 ± 0.50 g kg-1 389 

(Ireland, Wilson et al., 2015) to 5.75 ± 1.60 g kg-1 (Indonesia, Stockwell et al., 2016). More 390 

consistent EFHCN are found for tropical peats in the range of 3‒6 g kg-1. Average EFHCN in this 391 

study, 4.7 ± 3.1 g kg-1, are in-line with the 5.0 ± 4.9 and 4.4 ± 1.2 g kg-1 reported by Akagi et al. 392 

(2011) and Andreae (2019).  393 

EFNH3 (0.4‒8.3 g kg-1) are of the same magnitude as EFHCN (Fig. S6a) and independent of 394 

fuel nitrogen content (Fig. S5i) except for the Everglades (FL) peat (9‒18 g kg-1) which has the 395 

highest fuel nitrogen content. Total reduced nitrogen emissions, EFNH3 + EFHCN, for the two 396 

Florida peats (12‒25 g kg-1) are ~2- to 3-fold higher than those for other regions. Table 3 also 397 

shows high variabilities in EFNH3 among studies (1‒11 g kg-1). The overall average of 5.6 ± 4.8 g 398 

kg-1 in this study is consistent with the 4.2 ± 3.2 g kg-1 in Andreae (2019), but ~50 % of the 10.8 399 

± 12.4 g kg-1 in Akagi et al. (2011). The high standard deviations associated with these averages 400 

signify large variabilities among experiments.  401 

Figure S9a shows some difference in EFNH3 determined by FTIR and the impregnated filter, 402 

especially at high concentrations. The regression slope shows that EFNH3 by the FTIR was ~22 % 403 

lower than that of filters with a correlation coefficient of 0.76. Variable baselines in the FTIR 404 

measurements along with some nitrogen content in the diluted air and breath NH3 (Hibbard and 405 

Killard, 2011) in the testing laboratory may have contributed to these variations. The impregnated 406 

filter collects all of the NH3 over the sampling period, including amounts that are below the FTIR 407 

detection limits, so it is probably better representing the time-integrated EFNH3. Reduction of EFNH3 408 

is most apparent after atmospheric aging in Fig. S9b (slope of 0.11), with 2‒14 g kg-1 in fresh 409 

emissions and reduced to ~0.5‒3 g kg-1 after aging.  410 

3.2.3 PM2.5 mass and carbon emission factors 411 
Continuous PM2.5 from the DustTrak with the factory calibration factor yielded PM2.5 EFs 412 

3- to 5 times higher than of those derived from gravimetric analyses, higher than the 2-fold mass 413 
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differences by Wooster et al. (2018).  This discrepancy is well known as the factory calibration 414 

uses Arizona road dust with a size distribution that is much coarser than that of biomass burning.  415 

Therefore, EFPM2.5 is calculated from the filter samples. Chow et al. (2019) present the species 416 

abundances in PM2.5 mass for this study based on the average fresh and aged profiles, separated 417 

by 2- and 7-day photochemical aging times simulated with the OFR (Aerodyne, 2019). The same 418 

approach is used in Table S6 to compare fresh and aged particle EFs. Comparisons between 419 

combined fresh vs. aged EFs for PM2.5 mass, carbon (OC, EC, and TC), and levoglucosan for 420 

individual tests are shown in Table S7. 421 

Figure S10 shows that EFPM2.5 varies >4-fold (14‒61 g kg-1) for different peats without 422 

large differences between fresh and aged emissions. EFOC varied from 9‒44 g kg-1 while EFEC 423 

(0.00‒2.2 g kg-1) were low (Table S7). The majority of EFPM2.5 consist of EFOC, with average 424 

EFOC/EFPM2.5 ratios of 52‒98 % by peat type in fresh emissions, followed by ~14‒23 % reductions 425 

after aging, with the exception of Putnam (FL) peats (remained at 69‒70 %). 426 

Reductions of EFOC after ~7 days of photochemical aging are most apparent (~7‒9 g kg-1) 427 

for the boreal peats, with the largest degradation for low temperature OC1 (evolved at 140°C 428 

during carbon analysis), indicating losses of high vapor pressure SVOCs upon aging (Table S6). 429 

The two Florida peats exhibit an initial EFOC decrease of ~2 g kg-1 after 2-days aging, but with an 430 

increase of 1.8‒4.0 g kg-1 after 7 days. However, these changes are less than the standard deviations 431 

associated with the averages.  432 

EFWSOC varies by 5-fold (3‒16 g kg-1) with over a ~50 % increase for the Putnam (FL) and 433 

Malaysian peats after 7 days. Average EFWSOC by peat type accounts for ~16‒36 % and ~20‒62 % 434 

of fresh EFPM2.5 and EFOC, respectively.  From 2- to 7-day aging, Fig. S11 shows reduced 435 

correlation coefficients (r from 0.86 to 0.76 for PM2.5, from 0.88 to 0.84 for OC, and 0.94 to 0.68 436 

for WSOC).  437 

As WSOC is part of the OC, the WSOC/OC ratio can be used to illustrate atmospheric 438 

aging. Figure S12 shows that WSOC/OC ratios increased by 6‒16 % after aging. This is attributed 439 

to a combination of oxygenation of the aged organic emissions and the reduction of EFOC (Table 440 

S7). The increase in WSOC/OC ratios may also be due to photochemical transformation of primary 441 

OC to WSOC and/or formation of water-soluble SOA during atmospheric aging (Aggarwal and 442 

Kawamura, 2009;Agarwal et al., 2010). 443 
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Table 4 compares filter-based PM mass and carbon from different studies. Since different 444 

carbon protocols yield different fractions of OC and EC (Watson et al 2005), the analytical 445 

protocols are listed. Most studies follow either IMPROVE_A TOR (Chow et al., 2007) or NIOSH 446 

thermal/optical transmittance (TOT) protocols (NIOSH, 1999). As the transmittance pyrolysis 447 

correction (i.e., TOT) accounts for charred OC both on the filter surface and organic vapor within 448 

the filter substrate, lower EFEC are expected as compared to TOR (Chow et al., 2004). To remove 449 

the OC and EC split uncertainty, TC to PM mass ratios are listed for comparison. Two studies 450 

reported black carbon (BC) from a micro-aethalometer (Wooster et al., 2018) or a single particle 451 

soot photometer (SP2; May et al., 2014). As BC levels are very low, not much differences can be 452 

distinguished between BC and EC . 453 

Most studies report EFPM2.5 with a few exceptions for EFPM10 (Kuwata et al., 2018;Iinuma 454 

et al., 2007) and EFPM1 (May et al., 2014). As most of the PM10 is in the PM2.5 fraction for biomass 455 

combustion, particle size fractions have a minor effect on PM EFs (Geron and Hays, 2013;Hu et 456 

al., 2018).  457 

Table 4 shows that the majority of EFPM2.5 lies in the range of ~20‒50 g kg-1 with the 458 

exception of very low EFPM2.5 of 4‒8 and 6‒7 g kg-1 reported by Bhattarai et al. (2018) and Black 459 

et al. (2016). These are probably due to low filter mass loadings and limited testing (n of 1 to 3), 460 

which may result in large uncertainties in gravimetric mass.  461 

Despite different carbon analysis methods, most EFOC lies in the range of ~5‒30 g kg-1 with 462 

the exception of EFOC (37 g kg-1) for Putnam (FL) and EFOA (organic aerosol, 34.5 g kg-1) for 463 

Indonesian peat measured by a time-of-flight/mass spectrometer (May et al., 2014). Most studies 464 

show that EFTC accounts for ~60‒85 % of the EFPM2.5, with low EFEC (0.02‒1.3 g kg-1). 465 

EFWSOC of 6‒7 and 4‒6 g kg-1 for the Alaskan and Malaysian peats from this study are 466 

consistent with the 6.7 and 3.1 g kg-1 from German and Indonesian peats in Iinuma et al. (2007), 467 

respectively. EFLevoglucosan exhibits >2 orders of magnitude variabilities among the biomes with 468 

0.24‒16 g kg-1 and 0.24‒9.6 g kg-1 in fresh and aged emissions, respectively.  469 

Past studies show that the extent of levoglucosan degradation depends on OH exposure in 470 

the OFR, organic aerosol composition, and vapor wall losses (e.g., Bertrand et al., 471 

2018a;2018b;Hennigan et al., 2010;Hoffmann et al., 2010;May et al., 2012;Lai et al., 472 

2014;Pratap et al., 2019). Potential chemical pathways for the formation of organic species in 473 
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biomass combustion emissions were proposed by Gao et al. (2003) that suggested the 474 

fragmentaion of levoglucosan to C3‒C5 diacids, followed by oxalic acid, acetic acid, and formic 475 

acid. This is consistent with the increases in EForganic acids after atmospheric aging, as shown in 476 

Table S6. However, detailed chemical mechanisms need to be further investigated. 477 

The highest EFLevoglucosan is found for the fresh Russian peats (15.8 ± 2.9 g kg-1), and this is 478 

diminished by 45 % after 7-day aging (8.8 ± 2.1 g kg-1). Few studies report EFLevoglucosan and results 479 

are highly variable. The EFLevoglucosan of 0.57  g kg-1 in PM2.5 (converted from 46 mg/g OC) by 480 

Jayarathne et al. (2018) is ~23 % of the 2.5 g kg-1 by Iinuma et al. (2007), both for Indonesia peats.  481 

The EFLevoglucosan of 0.5‒1.0 g kg-1 from fresh Malaysian peat in this study is comparable to 0.57 g 482 

kg-1 by Jayarathne et al. (2018). The 4.6 g kg-1 of EFLevoglucosan for the northern German peat 483 

(Iinuma et al., 2007) is higher than the 1.2‒4.7 g kg-1 found for the average Siberian and Alaskan 484 

peats in this study.  485 

EFs for ionic nitrogen species are low (<0.1 g kg-1) in fresh emissions. Both EFNH4
+ and 486 

EFNO3
- increase with 7-day aging ‒ >0.5 g kg-1 EFNH4

+ for all peat and >1 g kg-1 EFNO3
- for all but 487 

Russian (0.79 ± 0.08 g kg-1) and Putnam (FL) peats (0.66 ± 0.08 g kg-1), consistent with the 488 

formation of secondary inorganic aerosol. 489 

3.3 Effect of fuel moisture content on emission factors  490 
Only a few studies examine the effects of fuel moisture on peat emissions with inconsistent 491 

results. An early study by McMahon et al. (1980) reported high emissions for total suspended 492 

particle (TSP, ~<30‒60 µm) of 30 ± 20 g kg-1 for dry (<11 % moisture) as compared to 4.1 ± 3.8 493 

g kg-1 (after the first 24 hours) for wet (53‒97 % moisture) organic soil. Rein et al. (2009) found 494 

higher CO2 (but not CO) yields while increasing fuel moisture to 600 % for tests of boreal Scotland 495 

peats in a cone calorimeter which continuously supplies heat to the fuel.  Smoldering combustion 496 

is possible with high in situ fuel-moisture contents when surrounding peat provides insulation and 497 

heat from combustion is available for drying just before the advancing front, but such samples will 498 

not burn in the laboratory.  Watts (2013) sustained lab-based peat smoldering from a cypress 499 

swamp (FL) at ~250 % moisture content, which appears to be a maximum. 500 

Table 2 shows that increasing moisture content from ~25 % to ~60 % for the three Putnam 501 

(FL) peats resulted in an 11 % increase in EFCO2 but reductions of 20 % EFCO and 12 % EFCH4.  502 

No consistent variabilities are found for nitrogen species (Table 3), with negligible changes in 503 
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EFNH3 and EFHCN; 13‒30 % reduction in EFNO, EFNOₓ, and EFNOy, as well as 45 % increase in EFNO2 504 

and 9 % increase in EFN2O.  On the other hand, a reduction of ~30 % EFPM2.5 is found (Table 4) as 505 

fuel moisture increased from 25 % to 60 %.  Higher fuel moisture contents typically result in less 506 

efficient burning conditions, thereby increasing CO and reducing MCE (Chen et al., 2010).  507 

However, an opposite trend is found with EFCO reduced from 394 ± 46 to 315 ± 10 g kg-1 and 508 

MCEs increased from 0.65 ± 0.04 to 0.72 ± 0.01.  It is hypothesized that at higher fuel moisture 509 

contents, combustion residence time is slowed enough so that radiant heat transfer from ignited 510 

particles to uncombusted areas of peat can be greater, thus increasing the combustion efficiency. 511 

It is also possible that the higher water content results in water-gas shift reaction that converts CO 512 

and water to CO2 and hydrogen. Overall, the EFs for ~60 % moisture contents are comparable to 513 

EFs for the six other peats with ~25 % moisture content.  514 

Increased (~25 to 60 %) fuel moisture yields a ~20 % reduction in fresh EFOC, much lower 515 

than the 35‒43 % reduction (~25 to 50 % moisture) reported by Chakrabarty et al. (2016) for the 516 

Siberian and Alaskan peats. By increasing fuel moisture, Chakrabarty et al (2016) also reported an 517 

increase in EFCO2 by 20 % but a ~75 % reduction and 35 % increase in EFCO for Siberian and 518 

Alaskan peats, respectively, based on a single sample.  519 

3.4 Distribution of carbon and nitrogen species 520 
Figure 3 shows the distribution of carbonaceous species. Because the EFs are calculated 521 

based on the carbon mass balance method (Eq. (2)), the total emitted carbon is assumed to be the 522 

same as total consumed carbon. The majority (>90 %) of total emitted carbon are present in the 523 

gas phase with 54‒75 % CO2, followed by 8‒30 % CO. On average, emitted carbon includes 69.8 524 

± 7.5 % CO2; 14.8 ± 6.5 % CO; 1.0 ± 0.3 % CH4; 9.4 ± 2.4 % volatile carbon compounds; and 4.8 525 

± 1.3 % PM2.5 TC. The highest (30 ± 4 %) and lowest (8.4 ± 1.9 %) CO abundances for the Putnam 526 

(FL) and Everglades (FL) peats are consistent with the lowest and highest average MCEs of 0.65 527 

and 0.90, respectively.  528 

The nitrogen budget in Fig. 4 accounts for 24‒52 % of nitrogen in the consumed fuel.  Since 529 

burn temperatures are below those at which NOx forms from oxygen reactions with N2 in the air, 530 

most of the nitrogen in emissions derives from the nitrogen content of the fuels.  Kuhlbusch et al. 531 

(1991) found N2 emissions constituted an average of 31 ± 20 % of nitrogen in consumed grass, 532 

hay, pine needle, clover, and wood fuels.  Since N2 measurements require combustion in N2-free 533 



20 
 

atmosphere (e.g., a He-O2 mixture), N2 was not quantified here, but it was probably emitted in 534 

similar quantities.  Isocyanic acid (HNCO) is another important nitrogen-containing compound 535 

found in biomass burning emissions (Roberts et al., 2011).  Koss et al. (2018) report a 0.16 g/kg 536 

nitrogen-equivalent EF (0.5 g/kg for HNCO) for a peat sample, comparable to EFs for several of 537 

the measured nitrogen compounds summarized in Table 3.  Other nitrogen-containing gases 538 

reported by Koss et al. (2018) with EFs >0.1 g/kg include acetonitrile (CH3CN), acetamide 539 

(CH3CONH2), benzonitrile (C6H5CN), and pyridine + pentadienenitriles (C5H5N), which could 540 

account for part of the unmeasured nitrogen in emissions.  Neff et al. (2002) found that organic 541 

nitrogen formed from photochemical reactions of hydrocarbon with NOx plays an important role 542 

in the global nitrogen cycle. Approximately 30 ± 16 % of Neff et al.’s total nitrogen was from 543 

organic nitrogen, similar to the 25 % of total nitrogen deposition flux reported by Jickells et al. 544 

(2013). Alkaloids, dissolved organic nitrogen, along with nitroaromatic compounds have been 545 

reported (e.g., Benitez et al., 2009;Laskin et al., 2009;Kuhlbusch et al., 1991;Koppmann et al., 546 

2005;Kopacek and Posch, 2011;Stockwell et al., 2015). 547 

The majority (>99 %) of the measured nitrogen in emissions is in the gas phase.  On 548 

average, 16.7 % of the fuel nitrogen was emitted as NH3 and 9.5 % was emitted as HCN.  N2O and 549 

NOy constituted 5.7 % and 2.9 % of nitrogen in the consumed fuel.  NH3 emissions accounted for 550 

26‒28 % of consumed nitrogen for Everglades (FL) and Malaysian peats while HCN emissions 551 

dominated fuel nitrogen(13‒17 %) for the Putnam (FL) and Malaysian peats.  The fraction of N2O 552 

emissions in Malaysian peat nitrogen (10.3 ± 1.1 %) was more than twice the fractions found for 553 

the other regions with reactive nitrogen (NOy) only accounting for 2‒4 % of the fuel nitrogen. The 554 

sum of NH3 and HCN nitrogen ranged 35‒39 % of consumed nitrogen for the Malaysian and 555 

Everglades (FL) peats, which is about three times the fraction for Russian peat.  556 

Lobert et al. (1990) point out the importance of nitrogen-containing gases in biomass 557 

burning for the atmospheric nitrogen balance. On average, the emitted nitrogen includes 17 ± 10 558 

% NH3, 9.5 ± 3.8 % HCN, 5.7 ± 2.5 % N2O, 2.8 ± 1.0 % NOy (including NOx), and 0.14 ± 0.18 % 559 

of PM nitrogen (sum of NO2
-, NO3

-, and NH4
+). The average nitrogen budget accounts for 35 ± 11 560 

% of the total consumed nitrogen, consistent with past studies showing that ~one- to two-thirds of 561 

the fuel nitrogen is accounted for during biomass combustion. 562 
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4 Summary and conclusions 563 
This paper reports fuel composition and emission factors (EFs) from laboratory chamber 564 

combustion of six types of peat fuels representing boreal (Russia and Siberia), temperate (northern 565 

Alaska, USA), subtropical (northern and southern Florida, USA), and tropical (Borneo, Malaysia) 566 

climate regions. Dried peat fuel contains 44‒57 % carbon (C), 31‒39 % oxygen (O), 5‒6 % 567 

hydrogen (H), 1‒4 % nitrogen (N), and <0.01 % Sulfur (S). The nitrogen to carbon ratios are low, 568 

in the range of 0.02‒0.08, consistent with peat compositions reported in other studies. 569 

Thirty-two tests with 25 % fuel moisture were reported with predominant smoldering 570 

combustion conditions (MCE = 0.82 ± 0.08). Average fuel-based EFs for CO2 (EFCO2) are highest 571 

(1400 ± 38 g kg-1) and lowest (1073 ± 63 g kg-1) for the Alaskan and Russian peats, respectively. 572 

EFCO and EFCH4 are ~12‒15 % and ~0.3‒0.9 % of EFCO2 in the range of ~157‒171 g kg-1 and 3‒573 

10 g kg-1, respectively. The exception is the two Florida peats, reporting the highest (394 ± 46 g 574 

kg-1) and lowest (93 ± 21 g kg-1) EFCO for Putnam and Everglades, respectively.  575 

Filter-based EFPM2.5 varied by >4-fold (14‒61 g kg-1) without appreciable changes between 576 

fresh and aged emissions. The majority of EFPM2.5 consists of EFOC, with average EFOC/EFPM2.5 ratios 577 

by peat type in the range of 52‒98 % in fresh emissions, followed by ~14‒23 % reduction after aging 578 

with the exception of Putnam (FL) peats (retained at 69‒70 %). Reduction of EFOC (~7‒9 g kg-1) are 579 

most apparent for boreal peats with the largest decrease in low temperature OC1 (evolved at 580 

140°C), suggesting the loss of high vapor pressure semi-volatile organic compounds during aging.  581 

EFs for water-soluble OC (EFWSOC) accounts for ~20‒62 % of EFOC with ~6‒16 % increase in 582 

EFWSOC/EFOC ratios after aging.  The highest EFLevoglucosan is found for Russian peat (15.8 ± 2.9 g 583 

kg-1) with a 45 % degradation after aging.  584 

The majority (>90 %) of the total emitted carbon is in the gas phases with 54‒75 % CO2, 585 

followed by 8‒30 % CO. Nitrogen budget only explains 24‒52 % of the consumed nitrogen with 586 

an average of 35 ± 11 %, consistent with past studies that ~one- to two-thirds of the total nitrogen 587 

are lost upon biomass combustion. The majority (>99 %) of the total emitted nitrogen is in the gas 588 

phase, dominated by the two reduced nitrogen species with 16.7 % for NH3 and 9.5 % for HCN. 589 

N2O and NOy are detectable at 5.7 % and 2.9 % abundance. EFs from this study can be used to 590 

refine current emission inventories. 591 
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Table 1. Average peat compositiona (dry weight percentage) for total carbon (C), hydrogen (H), nitrogen (N), sulfur (S), and oxygen (O). 948 

Peat Location C (%) H (%) N (%) S (%) O (%) 
N/C mass 

ratio Sum (CHNSO; %) 
Odintsovo, Russia 44.20 ± 1.01 6.43 ± 0.16 1.50 ± 0.52 <0.01 38.64 ± 0.78 0.034 90.8 
Pskov, Siberia 52.03 ± 0.23 6.30 ± 0.05 2.92 ± 0.12 <0.01 36.83 ± 0.39 0.056 98.1 
Northern Alaska, USA 50.94 ± 0.81 6.05 ± 0.07 1.79 ± 0.09 <0.01 36.62 ± 0.30 0.035 95.4 
Putnam County Lakebed, Florida, USA 56.64 ± 0.37 6.25 ± 0.40 3.53 ± 0.05 <0.01 31.43 ± 0.36 0.062 97.8 
Everglades, Florida, USA 47.22 ± 0.57 5.15 ± 0.16 3.93 ± 0.08 <0.01 34.18 ± 0.87 0.083 90.5 
Caohai, Guizhou, Southeast China 19.74 ± 2.01 2.09 ± 1.26 1.35 ± 0.16 <0.01 23.95 ± 1.15 0.068 47.1 
Gaopo, Guizhou, Southeast China 29.70 ± 2.09 3.13 ± 0.16 2.08 ± 0.22 <0.01 21.46 ± 1.27 0.070 56.4 
Borneo, Malaysia 50.55 ± 2.53 6.46 ± 0.99 1.16 ± 0.08 <0.01 33.72 ± 0.30 0.023 91.9 

aElemental analyses were performed using Elemental Analyzer (Flash EA1112 CHNS/O Analyzer, Thermo Fisher Scientific, Waltham, MA, USA). Each dried peat sample (~2‒3 949 
g) was submitted for combustion analysis at 900°C for C, H, N, and S in a helium/oxygen atmosphere and at 1060°C for O in a helium atmosphere. Three to four replicate sample 950 
analyses were conducted for each type of peat to obtain the average and standard deviations. 951 
  952 
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Table 2. Peat combustion emission factors (EFs) for CO2, CO, and CH4
a.  953 

Sampling Location or Review                            
(Reference) 

Sampling 
Method (No. of 

samples)b 
Modified Combustion 

Efficiency (MCE) 
Measurement 

Method 

Average Emission Factors (g/kg) 
Ratio 

(EFCO/EFCO2) EFCO2 EFCO EFCH4 
Boreal               

Odintsovo, Russia Lab 0.81 ± 0.03 CO/CO2 monitors  1073 ± 63 157 ± 24 3.20 ± 0.69 0.15 

(This study) (n=6, 25 % FMc)   and FTIRd         

Pskov, Siberia Lab 0.85 ± 0.01 CO/CO2 monitors  1380 ± 27 159 ± 14 6.94 ± 1.48 0.12 

(This study) (n=7, 25 % FMc)   and FTIRd         
Western Siberia Lab                        Smoldering CO/CO2 monitors                                     

 

 

(Chakrabarty et al., 2016) (n=1, 25 % FMc) 
  

1432 204 NA 0.14 
 

(n=1, 50 % FMc) 
  

1698 49 
 

0.029 

Temperate               

Northern Alaska, USA Lab                          0.86 ± 0.03 CO/CO2 monitors 1400 ± 38 161 ± 19 5.69 ± 1.07 0.12 

(This study) (n=6, 25 % FMc)    and FTIRd         
Northern Alaska, USA                                           Lab Smoldering CO/CO2 monitors 

  

  
(Chakrabarty et al., 2016) (n=1, 25 % FMc)      

  
1238 83 NA 0.067 

 
(n=1, 50 % FMc) 

  
1598 128 

 
0.08 

Hudson Bay lowland, Ontario, 
Canada 

Lab                      0.81 ± 0.009 FTIR 1274 ± 19 197 ± 9 6.25 ± 2.17 0.15 

(Stockwell et al., 2014) 
       

Alaska and Minnesota, USA Lab 0.81 ± 0.327 FTIR 1395 ± 52e 209 ± 68e 6.85 ± 5.66e 0.15 

(Yokelson et al., 1997) 
       

Edinburg, Scotland, UK Lab Smoldering Infrared system 420 ± 134 170 ± 33 NA 0.40 
(Rein et al., 2009) 

       

Sphagnum moss peat, Ireland Lab                   0.84 ± 0.019 FTIR 1346 ± 31 218 ± 22 8.35 ± 1.3 0.16 
(Wilson et al., 2015) (n=5) 

      

Subtropical               

Putnam County Lakebed, FL, USA Lab   CO/CO2 monitors          

(This study) (n=6, 25 % FMc) 0.65 ± 0.04       and FTIRd 1126 ± 89    394 ± 46     10.42 ± 1.81        0.35 
  (n=3, 60 % FMc) 0.72 ± 0.01   1262 ± 27 315 ± 10 9.18 ± 0.26 0.25 
Everglades National Park, FL, USA Lab                     0.90 ± 0.03                              CO/CO2 monitors  1292 ± 80 93 ± 21 7.65 ± 1.36 0.07 
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(This study) (n=3, 25 % FMc) (mix of flaming and 
smoldering) 

and FTIRd         

Pocosin Lake NWRf, NC, USA Field                       0.77‒0.83 CO and Infrared 1010‒1140 230‒300 NA NA 

(Geron and Hays, 2013) (Feb & Aug 
2008) 

 
 gas monitoring 

    

 
(n=3) 

      

Green Swamp Preserve, NC, USA Field                                  0.80‒0.81 CO and Infrared  1100‒1640 10‒280 NA NA 
(Geron and Hays, 2013)) (Feb 2009)     

 
gas monitoring 

    
 

(n=8) 
      

Alligator River (AR) NWRf, NC, 
USA 

Field                         0.79-0.86 CO and Infrared  1092‒1440 125‒290 NA NA 

(Geron and Hays, 2013) (May 2011)     
 

gas monitoring 
    

 
(n=8) 

      

Pocosin Lake NWRf, NC, USA Lab                   0.83 ± 0.02 CO/CO2 monitors 922 ± 47  122 ± 14  NA 0.13 

(Black et al., 2016) (n=2) 
      

Alligator River NWRf, NC, USA Lab                           0.86 ± 0.02              CO/CO2 monitors 861 ± 112                    108 ± 20     NA 0.13 

(Black et al., 2016)  (n=2)          
      

Tropical               

Borneo, Malaysia                                Lab                      0.85 ± 0.02 CO/CO2 monitors  1331 ± 78 171 ± 22 6.65 ± 0.93 0.13 

(This study) (n=6, 25 % FMc)   and FTIRd         
Peninsula, Malaysia                      Field                        0.80 ± 0.03 FTIR 1579 ± 58 251 ± 39 11 ± 6.1 0.16 
(Smith et al., 2018) (Aug 2015) 

      
 

(n=10) 
      

Central Kalimantan, Indonesia      Field                   0.81 ± 0.032 Cavity-enhanced 1775 ± 64 279 ± 44 7.9 ± 2.4 0.16 
(Wooster et al., 2018) (Sep/Oct 2015)   

 
laser absorption 

    
 

 (n=23) 
 

spectrometer and 
    

   
 FTIR 

    

Central Kalimantan, Indonesiaj     Field                0.77 ± 0.053 FTIR 1564 ± 77 291 ± 49 9.51 ± 4.74 0.19 
(Stockwell et al., 2016)  (Oct/Nov 2015) 

      
 

(n=35) 
      

Central Kalimantan, Indonesia      Field                    0.8 Cavity-ring down  1594 ± 61 255 ± 39 7.4 ± 2.3 0.16 
(Huijnen et al., 2016) (Oct 2015) 

 
spectrometer 

    

West Kalimantan, Indonesia       Lab                        Flaming (0.998 ± 
0.005)             

CO/CO2 monitors  2088 ± 21          3.10 ± 7.17           0.14 ± 0.13 0.0015 
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(Setyawati et al., 2017)  (n=17 each) Smoldering (0.89 ± 
0.06) 

and gas   1831 ± 131 138 ± 72  17 ± 1.2 0.075 
   

chromatography 
    

South Kalimantan, Indonesia                         Lab                    0.82 ± 0.065 FTIR 1637 ± 204 233 ± 72 12.8 ± 6.61 0.14 
(Stockwell et al., 2014) (n=3) 

      

South Sumatra, Indonesia       Lab                  0.84 FTIR 1703 210 20.8 0.12 
(Christian et al., 2003)  (n=1) 

      

North-Central Sumatra, Indonesia  Shipboard              0.84 Infrared and cavity  1663 ± 54 205 ± 23 7.6 ± 1.6 0.12 
(Nara et al., 2017) (June-Aug 2013)     

 
ring-down  

    
 

(n=5) 
 

spectrometer 
    

Reviewsg               

Atmospheric Modeling                            NA NA NA 1563 ± 65 182 ± 60 11.8 ± 7.8 0.12 
(Akagi et al., 2011) 

       

Boreal/Temperate    1327 ± 150h 207 ± 70h 9 ± 4h NA 
Tropical NA NA NA 1703i 210i 21i NA 
(IPCC, 2014)        
Boreal/Temperate                                                                  NA Smoldering NA 1134 ± 139          179 ± 61            8.1 ± 4.1           0.16 
Tropical 

   
1615 ± 184 248 ± 50 12.3 ± 5.0 0.40 

(Hu et al., 2018) 
       

Peat Fire                                               NA NA NA 1550 ± 130 250 ± 23 9.3 ± 1.5 0.45 
(Andreae, 2019) 

       

 954 
aData acquired from this study are highlighted in green 955 
bOnly included number of samples reported 956 
cFM; Fuel moisture content 957 
dFTIR: Fourier transform infrared spectroscopy. CH4 was acquired by FTIR in this study 958 
eObtained from Stockwell et al. (2014) as only the ratios of moles compound/total moles carbon detected was reported in Yokelson et al. (1997) 959 
fNWR: National Wildlife Reserve 960 
gReviews for atmospheric modeling and emission inventory development 961 
hFrom Ward and Hardy (1984); Yokelson et al.  (1997;2013) 962 
iFrom Christian et al. (2003) for tropical peats 963 
jDetailed volatile organic gas emission factors for one of these samples are reported by Koss et al. (2018) 964 
  965 
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Table 3. Peat combustion emission factors (EFs) for gaseous nitrogen speciesa.  966 

Sampling Location                            
(Reference) 

No. of 
samples 

   Average Emission Factors (g/kg) 
Percent   

NOx/NOy EFNH₃
b EFHCN

b EFNO
c EFNO₂

c EFNOₓ(as NO₂) 
EFNOy

d
(as 

NO₂) EFN₂O
b EFHONO 

Boreal                     
Odintsovo, Russia  6 0.99 ± 0.47 2.45 ± 0.43 0.34 ± 0.04 0.48 ± 0.11 1.01 ± 0.14 1.06 ± 0.11 1.64 ± 0.32 NA 95 ± 6% 
(This study)                     
Pskov, Siberia 7 4.65 ± 1.38 5.00 ± 0.74 0.84 ± 0.12 0.42 ± 0.03 1.70 ± 0.20 2.22 ± 0.27 2.29 ± 0.29 NA 77 ± 5% 
(This study)                     
Pskov, Siberia 3 NA NA NA NA 0.08 ± 0.04e NA NA NA NA 
(Bhattarai et al., 2018) 

          

Temperate                     
Northern Alaska, USA 6 2.7 ± 0.62 2.33 ± 0.22 0.84 ± 0.44 0.37 ± 0.13 1.67 ± 0.76 2.10 ± 0.85 1.57 ± 0.16 NA 79 ± 9% 
(This study)                     
Hudson Bay lowland, Ontario, Canada NA 2.21 ± 0.24 1.77 ± 0.55 NA NA NA NA NA 0.18 NA 
(Stockwell et al., 2014) 

          

Alaska and Minnesota, USA NA 8.76 ± 13.76 5.09 ± 5.64 NA NA NA NA NA NA NA 
(Yokelson et al., 1997) 

          

Sphagnum moss peat, Ireland 5 2.20 ± 0.35 0.73 ± 0.50 NA NA NA NA NA NA NA 
(Wilson et al., 2015) 

          

Coastal Swamp land, NC, USA NA 1.87 ± 0.37 4.45 ± 3.02 NA NA NA NA NA 8.48 ± 0.05 NA 
(Stockwell et al., 2014) 

          

Subtropical                     
Putnam County Lakebed, FL, USA 6 (25 % FM) 3.2 ± 0.26 11.5 ± 2.3 1.01 ± 0.33 0.35 ± 0.28 2.01 ± 0.68 2.91 ± 0.34 3.57 ± 0.63 NA 68 ± 15% 
(This study) 3 (60 % FM) 3.3 ± 0.05 11.7 ± 0.3 0.71 ± 0.07 0.65 ± 0.05 1.74 ± 0.15 2.39 ± 0.19 3.89 ± 0.01  NA 73 ± 5% 
Everglades National Park, FL, USA                                          6 11.9 ± 2.01 5.12 ± 1.60 1.78 ± 0.31 0.83 ± 0.16 3.56 ± 0.58 4.33 ± 1.10 1.46 ± 0.28 NA 85 ± 14% 
(This study)                     
Putnam County Lakebed, FL, USA                      

 
NA NA NA NA 0.11 ± 0.05e NA NA NA 73 ± 5% 

(Bhattarai et al., 2018) 
          

Tropical                     
Borneo, Malaysia 6 3.66 ± 0.27 2.84 ± 0.44 0.26 ± 0.04 0.35 ± 0.05 0.75 ± 0.10 1.07 ± 0.56 1.88 ± 0.19 NA 81 ± 26% 
(This study)                     
Peninsula, Malaysia 

 
7.82 ± 4.37 3.79 ± 1.97 NA NA NA NA NA NA NA 

(Smith et al., 2018) 
          

Central Kalimantan, Indonesia 35 2.86 ± 1.00 5.75 ± 1.60 0.31 ± 0.36 NA NA NA NA 0.208 ± 0.059 NA 
(Stockwell et al., 2016) 

          

South Kalimantan, Indonesia 3 1.39 ± 0.79 3.30 ± 0.79 1.85 ± 0.56 2.36 ± 0.03 NA NA NA 0.1 NA 
(Stockwell et al., 2014) 

          

Overall Extratropical Peat NA 3.38 ± 3.02 3.66 ± 2.43 0.51 ± 0.12 2.31 ± 1.46 NA NA NA NA NA 
(Stockwell et al., 2014) 

          

Reviewsg                     
Atmospheric Modeling                      NA 10.8 ± 12.4 5.0 ± 4.93 NA NA 1.23 ± 0.87f NA NA NA NA 
(Akagi et al., 2011) 

          

Smoldering Boreal/Temperate 
 

3.39 ± 6.89 3.38 ± 3.21 NA 2.31 ± 1.46 NA NA NA NA NA 
Smoldering Tropical        

 
8.0 ± 3.04 5.24 ± 1.55 

 
2.36 ± 0.03 

     

(Hu et al., 2018) 
          

Peat Fire                                                     3 4.2 ± 3.2 4.4 ± 1.2 
  

1.84 f NA NA NA NA 
(Andreae, 2019)           (± 0.48 to 3.4)         

aData acquired from this study is highlighted in green 967 
bData acquired from Fourier Transport Infrared (FTIR) spectroscopy for this study 968 
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cData acquired from the NOx instrument upstream of the oxidation flow reactor for this study 969 
dData acquired from the NOy instrument for this study 970 
eReported as NOx 971 
fThe reported NOx as NO was converted to NOx as NO2 for comparison 972 
gReviews for atmospheric modeling and emission inventory development 973 
 974 

 975 
  976 
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Table 4. Peat combustion emission factors (EFs) for PM2.5 mass and carbona.  977 

Sampling Location                             
(Reference) 

Sampling Method              
(No. of samples) 

Modified 
Combustion 
Efficiency 

(MCE) 
Carbon Analysis 

Methodb 

Average Emission Factor (g/kg) 

EFPM₂.₅ 
c                   

(PM size) EFOC EFEC 

Ratio             
(EFTC/EF

PM) 
Boreal               
Odintsovo, Russia                            
(This study)a 

Lab (n=6, 25% FM)d 0.81 ± 0.03 IMPROVE_A 42.6 ± 5.2 (Fresh)e   
40.5 ± 7.2 (Aged)e                    

25.1 ± 3.3 (Fresh)e   
17.2 ± 2.7 (Aged)e                    

0.77 ± 0.38 (Fresh)e   
0.69 ± 0.19 (Aged)e                    

0.61 ± 0.05              
0.45 ± 0.07 

Siberia                                                              
(This study)a 

Lab (n=7, 25% FM)d 0.85 ± 0.01 IMPROVE_A 33.9 ± 6.3 (Fresh)e   
30.7 ± 10.2 (Aged)e                    

26.0 ± 3.4 (Fresh)e   
18.1 ± 4.5 (Aged)e                    

0.69 ± 0.58 (Fresh)e   
0.78 ± 0.31 (Aged)e                    

0.80 ± 0.08              
0.64 ± 0.13 

Pskov, Siberia                               
(Bhattarai et al., 2018) 

Lab                                      
(n=3) 

NA IMPROVE_A 7.98 ± 1.58      6.52 ± 1.4 0.02 ± 0.01 0.82 

Western Siberia                              
(Chakrabarty et al., 2016) 

Lab (n=1, 25% FM)d 
xxxx(n=1, 50% FM)d 

<0.7 IMPROVE_A NA 17            
11 

0.2 
                0.1  

NA 

Neustädter Moor, Northern 
Germany                                 
(Iinuma et al., 2007) 

Lab                       0.84 VDI 44                   
(PM10)g 

12.8 0.96 0.31 

Temperate               
Northern Alaska , USA                                            
(This study)a 

Lab (n=6, 25% FM)d 0.85 ± 0.02 IMPROVE_A 24.0 ± 7.6 (Fresh)e   
24.8 ± 5.3 (Aged)e                    

17.4 ± 4.1 (Fresh)e   
14.9 ± 3.9 (Aged)e                    

0.60 ± 0.24 (Fresh)e   
0.55 ± 0.42 (Aged)e                    

0.77 ± 0.12              
0.63 ± 0.16 

Interior Alaska, USA                              
(Chakrabarty et al., 2016) 

Lab (n=1, 25% FM)d 
xxxx(n=1, 50% FM)d 

0.7                                     
0.7 

IMPROVE_A NA 7                 
                4  

0.1                       
                0.2 

NA 

Subtropical               
Putnam County Lakebed, 
FL, USA                                                 
(This study)a 

Lab (n=4, 25% FM)d   

xxxxxxxxxxxxxxxxxxxxxxx      

Lab (n=2, 25% FM)d      

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xLab (n=3, 60% FM)d               

 

0.65 ± 0.04      
xxxxxxxxxxx
0.67 ± 0.02  

 
0.72 ± 0.01 

IMPROVE_A 53.1 ± 6.8 (Fresh)e   
53.9 ± 8.3 (Aged)e                                                    

51.6 ± 7.9 (Fresh 2)f   
48.2 ± 8.4 (Aged 2)f 
35.9 ± 4.3 (Fresh 2)f 
34.7 ± 2.6 (Aged 2)f                                                               

36.6 ± 1.9 (Fresh)e   
37.3 ± 6.7 (Aged)e                                                   

36.6 ± 1.8 (Fresh 2)f   
34.0 ± 8.3 (Aged 2)f  
29.3 ± 2.2 (Fresh 2)f 
22.1 ± 2.3 (Aged 2)f                                                              

1.33 ± 0.60 (Fresh)e   
0.95 ± 0.07 (Aged)e                                                    
1.8 ± 0.61 (Fresh 2)f   
0.99 ± 0.15 (Aged 2)f 
1.00 ± 0.07 (Fresh 2)f 
0.85 ± 0.85 (Aged 2)f                                                              

0.72 ± 0.08              
0.71 ± 0.04                                 
0.85 ± 0.04              
0.66 ± 0.10 
0.75 ± 0.11 
0.72 ± 0.05                                           

Everglades National Park, 
FL, USA                                            
(This study)a 

Lab (n=7, 25% FM)d 0.90 ± 0.03 IMPROVE_A 23.6 ± 5.1 (Fresh)e   
33.5 ± 11.4 (Aged)e                   

19.0 ± 4.4 (Fresh)e   
18.8 ± 5.2 (Aged)e                    

0.78 ± 0.45 (Fresh)e   
0.67 ± 0.30 (Aged)e                    

0.85 ± 0.15              
0.60 ± 0.12 
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Pocosin Lakes NWRh, NC, 
USA                                               
(Geron and Hays, 2013) 

Field (n=3)                 
(Feb & Aug 2008)            

0.77-0.83 NA 34-55                    NA NA NA 

Green Swamp Preserve, NC, 
USA                                      
(Geron and Hays, 2013) 

Field (n=8)                     
(Feb 2009)                        

0.80-0.81  NA 44-53 NA NA NA 

Alligator River NWRh, NC, 
USA                                               
(Geron and Hays, 2013) 

Field (n=8)                  
(May 2011)              

0.79-0.86i NA 48-79                 NA NA NA 

Pocosin Lakes NWRh, NC, 
USA                                     
(Black et al., 2016) 

Lab (n=2) 0.83 ± 1.02 NIOSH 5.9 ± 6.7                  4.3 ± 4.1 0.082 ± 0.091 0.74 

Alligator River NWRh, NC, 
USA                                 
(Black et al., 2016) 

Lab (n=2) 0.86 ± 0.02 NIOSH 7.1 ± 5.6                  6.3 ± 4.1 0.052 ± 0.057 0.89 

Putnam County Lakebed, 
FL, USA                                       
(Bhattarai et al., 2018) 

Lab (n=3) NA IMPROVE_A 6.89 ± 1.28        6.56 ± 1.10 0.04 ± 0.02 0.96 

Tropical               

Borneo, Malaysia                                      
(This study)a 

Lab (n=4, 25% FM)d 0.83 ± 0.03 IMPROVE_A 22.6 ± 3.1 (Fresh)e  
22.6 ± 5.0 (Aged)e                    

18.0 ± 2.0 (Fresh)e   
14.4 ± 1.7 (Aged)e                    

0.28 ± 0.11 (Fresh)e  
0.29 ± 0.20 (Aged)e                    

0.81 ± 0.02              
0.68 ± 0.16 

Borneo, Malaysia                                 
(Bhattarai et al., 2018) 

Lab (n=1) NA IMPROVE_A 3.9 9.62 0.1 2.4 

Selangor, Malaysia                           
(Roulston et al., 2018) 

Field (n=6)              
(Jul/Aug 2016) 

0.8-0.85  NA 28.0 ± 18.0                 NA NA NA 

Sumatra, Indonesia                       
(Christian et al., 2003) 

Lab (n=1) Smoldering Unspecified NA                  6.02 0.04 NA 

Southern Sumatra, Indonesia            
(Iinuma et al., 2007) 

Lab                Smoldering VDI 33.0                 
(PM10)g                

8 0.57 0.26 

Raiu, Indonesia                           
(Kuwata et al., 2018) 

Field (June 2013)         
Field (Feb-Mar 2014) 

NA NA 13.0 ± 2.0 (PM10)                     
19.0 ± 2.0 (PM10) 

NA NA NA 

Central Kalimantan, 
Indonesia     
(Wooster et al., 2018) 

Field (n=23)            
(Sep/Oct 2015) 

0.81 ± 0.032 NA 17.82 ± 6.86                  NA 0.106 ± 0.043  
(BC)j 

NA 

Central Kalimantan, 
Indonesia                  
(Jayarathne et al., 2018) 

Field (n=21)         
(Oct/Nov 2015)                 

0.78 ± 0.04 NIOSH 17.3 ± 6.0                             12.4 ± 5.4                0.24 ± 0.1 0.73 

Indonesia (location not 
specified)                                         
(May et al., 2014) 

Lab                     0.89 TOF-AMS and SP2 34.9                                        
(PM1)k 

34.5                   
(OA)k 

0.01                        
(BC)k 

0.99 
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Reviewsl               

Peatlands from tropical 
forest            
(Akagi et al., 2011) 

NA NA NA NA 6.23 ± 3.6 0.2 ± 0.11 NA 

Smoldering 
Boreal/Temperate              
Smoldering Tropical                             
(Hu et al., 2018) 

NA                               
NA 

NA                              
NA 

NA                              
NA 

19.2 ± 6.8                 
17.3 ± 6.0 

8.38 ± 4.14           
8.8 ± 4.24 

0.36 ± 0.28            
0.28 ± 0.18  

0.46              
0.52           

Peat fires                                     
(Andreae, 2019) 

NA NA NA 17.3 12.4 0.19 0.73 

aData acquired from this study are highlighted in green 978 
bThe IMPROVE_A protocol reports OC and EC by Thermal/Optical reflectance (TOR, Chow et al., 2007); The NIOSH and NIOSH5040 reports OC and EC by Thermal/Optical transmittance 979 
(NIOSH, 1999); VDI is German Industrial Standard (VDI, 1999); TOF-MS: time-of-flight mass spectrometer (Drewnick et al., 2005); and Single Particle Soot Photometer (SP2, DMT Inc., Boulder, 980 
CO, USA) measures black carbon (BC) by laser-induced incandescence technique (Stephens et al., 2003). 981 
cSize fraction is PM2.5 except where otherwise noted. 982 
dFM; Fuel Moisture 983 
eIncludes averages of all fresh and all aged emission factors (EFs) for the 25% fuel moisture (i.e., grouped Fresh 2 and Fresh 7 vs Aged 2 and Aged 7 shown in Table S7)  984 
fComparison between 25% and 60% fuel moisture content are only made with Fresh 2 vs. Aged 2 of Putnam (FL) peats. 985 
gSum of five stages of Berner Impactor with 0.05-0.14, 0.14-0.42, 0.42-1.2, 1.2-3.5, and 3.5-10 µm size ranges. 986 
hNational Wildlife Refuge, eastern NC 987 
iFrom Jayarathne et al. (2018) 988 
jBC by MicroAethalometer (AE 51) (Cheng et al., 2013;Wooster et al., 2018) 989 

kPM1 and organic aerosol (OA) acquired from Time-of-Flight Mass Spectrometry (TOF-MS) measurements (Drewnick et al., 2005) 990 
lReviews for atmospheric modeling and emission inventory development. 991 
  992 
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 993 
Figure 1. Global distribution of peatlands (based on Yu et al., 2010). Samples were obtained from Odintsovo, Russia; Pskov, Siberia; black spruce 994 
forest, Northern Alaska, USA; Putnam County Lakebed and Everglades National Park, Florida, USA; Caohai and Gaopo, Guizhao, China; and 995 
Borneo, Malaysia. 996 
  997 
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 998 
 999 
Figure 2. Configuration for peat combustion experimental set up. (FTIR: Fourier Transform Infrared Spectrometer; OFR: oxidation flow reactor; 000 
OFR lamps were operated at 2 and 3.5 volts to simulate aging of ~2 and 6.79 days, respectively). 001 
  002 
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 1003 
Figure 3. Average carbonaceous species abundances in total emitted carbon (the sum of carbon in CO2, CO, CH4, VOCs, and PM2.5 total carbon [TC 004 
= OC + EC]). Numbers on top of the bars are average Modified Combustion Efficiencies (MCE) and the number of samples in each average. The 005 
Carbon Compounds include hydrogen cyanide (HCN), formaldehyde (CH2O), methanol (CH3OH), formic acid (HCOOH), carbonyl sulfide (COS), 006 
ethylene (C2H4), ethane (C2H6), acetaldehyde (C2H4O), ethanol (C2H5OH), acetic acid (CH3COOH), propane (C3H8), acrolein (C3H4O), acetone 007 
(C3H6O), 3-butadiene (C4H6), benzene (C6H6), hexane (C6H14), phenol (C6H5OH), and chlorobenzene (C6H5Cl) acquired by Fourier Transfer Infrared 008 
Spectrometry. 009 
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 1010 
 011 
Figure 4. Ratio of emitted over consumed nitrogen for each type of peat (emitted nitrogen is the sum of nitrogen in HCN, NH3, NO, NO2, and NOz 012 
[NOy-NOx], N2O, HNO3, and PM2.5 ions [NO2

- + NO3
- + NH4

+]; and the consumed nitrogen is the product of percent fuel nitrogen content and mass 013 
of fuel burned). 014 
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