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Abstract. Dry deposition is a major sink of tropospheric ozone. Increasing evidence has shown that ozone dry deposition 10 

actively links meteorology and hydrology with ozone air quality. However, there is little systematic investigation on the 11 

performance of different ozone dry deposition parameterizations at the global scale, and how parameterization choice can 12 

impact surface ozone simulations. Here we present the results of the first global, multi-decade modelling and evaluation of 13 

ozone dry deposition velocity (vd) using multiple ozone dry deposition parameterizations. We model ozone dry deposition 14 

velocities over 1982-2011 using four ozone dry deposition parameterizations that are representative of current approaches in 15 

global ozone dry deposition modelling. We use consistent assimilated meteorology, land cover, and satellite-derived leaf area 16 

index (LAI) across all four, such that the differences in simulated vd are entirely due to differences in deposition model 17 

structures or assumptions about how land types are treated in each.We use consistent assimilated meteorology and satellite-18 

derived leaf area index (LAI) to drive four ozone dry deposition parameterizations that are representative of the current 19 

approaches of global ozone dry deposition modelling over 1982-2011, such that the differences in simulated vd are entirely 20 

due to differences in deposition model structures. In addition, we use the surface ozone sensitivity to vd predicted by a chemical 21 

transport model to estimate the impact of mean and variability of ozone dry deposition velocity on surface ozone. Our estimated 22 

vd from four different parameterizations are evaluated against field observations, and while performance varies considerably 23 

by land cover types, our results suggest that none of the parameterizations are universally better than the others. Discrepancy 24 

in simulated mean vd among the parameterizations is estimated to cause 2 to 5 ppbv of discrepancy in surface ozone in the 25 

Northern Hemisphere (NH) and up to 8 ppbv in tropical rainforests in July, and up to 8 ppbv in tropical rainforests and 26 

seasonally dry tropical forests in Indochina in December. Parameterization-specific biases based on individual land cover type 27 

and hydroclimate are found to be the two main drivers of such discrepancies. We find statistically significant trends in the 28 

multiannual time series of simulated July daytime vd in all parameterizations, driven by warming and drying (southern 29 

Amazonia, southern African savannah and Mongolia) or greening (high latitudes). The trend in July daytime vd is estimated to 30 

be 1 % yr-1 and leads to up to 3 ppbv of surface ozone changes over 1982-2011. The interannual coefficient of variation (CV) 31 

of July daytime mean vd in NH is found to be 5%-15%, with spatial distribution that varies with the dry deposition 32 
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parameterization. Our sensitivity simulations suggest this can contribute between 0.5 to 2 ppbv to interannual variability (IAV) 33 

in surface ozone, but all models tend to underestimate interannual CV when compared to long-term ozone flux observations. 34 

We also find that IAV in some dry deposition parameterizations are more sensitive to LAI while others are more sensitive to 35 

climate. Comparisons with other published estimates of the IAV of background ozone confirm that ozone dry deposition can 36 

be an important part of natural surface ozone variability. Our results demonstrate the importance of ozone dry deposition 37 

parameterization choice on surface ozone modelling, and the impact of IAV of vd on surface ozone, thus making a strong case 38 

for further measurement, evaluation and model-data integration of ozone dry deposition on different spatiotemporal scales. 39 

1 Introduction 40 

Surface ozone (O3) is one of the major air pollutants that poses serious threats to human health (Jerrett et al., 2009) and plant 41 

productivity (Ainsworth et al., 2012; Reich, 1987; Wittig et al., 2007). Ozone exerts additional pressure on global food security 42 

and public health by damaging agricultural ecosystems and reducing crop yields  (Avnery et al., 2011; McGrath et al., 2015; 43 

Tai et al., 2014). Dry deposition, by which atmospheric constituents are removed from the atmosphere and transferred to the 44 

Earth’s surface through turbulent transport or gravitational settling, is the second-largest and terminal sink of tropospheric O3 45 

(Wild, 2007). Terrestrial ecosystems are particularly efficient at removing O3 via dry deposition through stomatal uptake and 46 

other non-stomatal pathways (Wesely and Hicks, 2000) (e.g., cuticle, soil, reaction with biogenic volatile organic compounds 47 

(BVOCs) (Fares et al., 2010; Wolfe et al., 2011). Meanwhile, stomatal uptake of O3 inflicts damage on plants by initiating 48 

reactions  that impair their photosynthetic and stomatal regulatory capacity (Hoshika et al., 2014; Lombardozzi et al., 2012; 49 

Reich, 1987). Widespread plant damage has the potential to alter the global water cycle (Lombardozzi et al., 2015) and suppress 50 

the land carbon sink (Sitch et al., 2007), as well as to generate a cascade of feedbacks that affect atmospheric composition 51 

including ozone itself (Sadiq et al., 2017; Zhou et al., 2018). Ozone dry deposition is therefore key in understanding how 52 

meteorology (Kavassalis and Murphy, 2017), climate, and land cover change (Fu and Tai, 2015; Ganzeveld et al., 2010; Geddes 53 

et al., 2016; Heald and Geddes, 2016; Sadiq et al., 2017; Sanderson et al., 2007; Young et al., 2013) can affect air quality and 54 

atmospheric chemistry at large.  55 

 56 

Analogous to other surface-atmosphere exchange processes (e.g., sensible and latent heat flux), O3 dry deposition flux (FO3) 57 

is often expressed as the product of ambient O3 concentrations at the surface ([O3]) and a transfer coefficient (dry deposition 58 

velocity, vd) that describes the efficiency of transport (and removal) to the surface from the measurement height: 59 

FO3
=-[O3]vd (1) 60 

Also analogous to other surface fluxes, FO3, [O3], and hence vd can be directly measured by the eddy covariance (EC) method 61 

(e.g. Fares et al., 2014; Gerosa et al., 2005; Lamaud et al., 2002; Munger et al., 1996; Rannik et al., 2012) with random 62 

uncertainty of about 20% (Keronen et al., 2003; Muller et al., 2010). Apart from EC, FO3 and vd can also be estimated from 63 

the vertical profile of O3 by exploiting flux-gradient relationship (Foken, 2006) (termed the gradient method, GM) (e.g. Gerosa 64 
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et al., 2017; Wu et al., 2016, 2015). A recent study (Silva and Heald, 2018) complied 75 sets of ozone deposition measurement 65 

from the EC and GM across different seasons and land cover types over the past 30 years.  66 

 67 

At the site level, ozone dry deposition over various terrestrial ecosystems can be simulated comprehensively by 1-D chemical 68 

transport models (Ashworth et al., 2015; Wolfe et al., 2011; Zhou et al., 2017), which are able to simulate the effects of vertical 69 

gradients  inside the canopy environment, and gas-phase reaction with BVOCs in addition to surface sinks. Regional and global 70 

models, which lack the fine-scale information (e.g. vertical structure of canopy, in-canopy BVOCs emissions) and horizontal 71 

resolution for resolving the plant canopy in such detail, instead represent plant canopy foliage as 1 to 2 big leaves, and vd is 72 

parameterized as a network of resistances, which account for the effects of turbulent mixing via aerodynamic (Ra), molecular 73 

diffusion via quasi-laminar sublayer resistances (Rb), and surface sinks via surface resistance (Rc): 74 

vd=
1

Ra+Rb+Rc

 (2) 75 

 76 

A diverse set of parameterizations of ozone dry deposition are available and used in different models and monitoring networks. 77 

Examples include the Wesely parameterization (1989) and modified versions of it (e.g. Wang et al., 1998), the Zhang et al. 78 

parameterization (Zhang et al., 2003), the Deposition of O3 for Stomatal Exchange model (Emberson et al., 2000; Simpson et 79 

al., 2012), and the Clean Air Status and Trends Network (CASTNET) deposition estimates (Meyers et al., 1998). The 80 

calculation of Ra (mostly based on Monin-Obukhov similarity theory) and Rb across these parameterizations often follow a 81 

standard formulation from micrometeorology (Foken, 2006; Wesely and Hicks, 1977, 2000; Wu et al., 2011) and thus does 82 

not vary significantly. The main difference between the ozone dry deposition parameterizations lies on the surface resistance 83 

Rc. This resistance includes stomatal resistance (Rs), which can be computed by a Jarvis-type multiplicative algorithm (Jarvis, 84 

1976) where Rs is the product of its minimum value and a series of response functions to individual environmental conditions. 85 

Such conditions typically include air temperature (T), photosynthetically available radiation (PAR), vapour pressure deficit 86 

(VPD) and soil moisture (θ), with varying complexity and functional forms.  87 

 88 

Such formalism is empirical in nature and does not adequately represent the underlying ecophysiological processes affect Rs 89 

(e.g. temperature acclimation). An advance of these efforts includes harmonizing Rs with that computed by land surface models 90 

(Ran et al., 2017a; Val Martin et al., 2014), which calculate Rs by coupled photosynthesis-stomatal conductance (An-gs) models 91 

(Ball et al., 1987; Collatz et al., 1992, 1991). Such coupling should theoretically give a more realistic account of 92 

ecophysiological controls on Rs. Indeed, it has been shown that the above approach may better simulate vd than the 93 

multiplicative algorithms that only considers the effects T and PAR (Val Martin et al., 2014; Wu et al., 2011). The non-stomatal 94 

part of Rc often consists of cuticular (Rcut), ground (Rg) and other miscellaneous types of resistances (e.g., lower canopy 95 

resistance (Rlc) in Wesely (1989)). Due to very limited measurements and mechanistic understanding towards non-stomatal 96 

deposition, non-stomatal resistances are often constants (e.g., Rg) or simply scaled with leaf area index (LAI) (e.g., Rcut) 97 
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(Simpson et al., 2012; Wang et al., 1998; Wesely, 1989), while some of the parameterizations (Zhang et al., 2003; Zhou et al., 98 

2017) incorporate the observation of enhanced cuticular O3 uptake under leaf surface wetness (Altimir et al., 2006; Potier et 99 

al., 2015, 2017; Sun et al., 2016). Furthermore, terrestrial atmosphere-biosphere exchange is also directly affected by CO2, as 100 

CO2 can drive increases in LAI (Zhu et al., 2016) while inhibiting gs (Ainsworth and Rogers, 2007). These can have important 101 

implications on vd, as shown by Sanderson et al. (2007), where doubling current CO2 level reduces gs by 0.5 – 2.0 mm s-1, and 102 

by Wu et al. (2012) where vd increases substantially due to CO2 fertilization at 2100. Observations from the Free Air CO2 103 

Enrichment (FACE) experiments also confirm CO2 fertilization and inhibition of gs effects, but the impacts are variable and 104 

species specific such that extrapolation of these effects to global forest cover is cautioned (Norby and Zak, 2011). 105 

 106 

Various efforts have been made to evaluate and assess the uncertainty in modelling ozone dry deposition using field 107 

measurements. Hardacre et al. (2015) evaluate the performance of simulated monthly mean vd and FO3 by 15 chemical transport 108 

models (CTM) from the Task Force on Hemispheric Transport of Air Pollutant (TF HTAP) against seven long-term site 109 

measurements, 15 short-term site measurements, and modelled vd from 96 CASTNET sites. This work suggests  that the 110 

difference in land cover classification is the main source of discrepancy between models. In this case, most of the models in 111 

TF HTAP use the same class of dry deposition parameterization (Wang et al., 1998; Wesely, 1989), so a global evaluation of 112 

different deposition parameterizations was not possible. Also, the focus in this intercomparison study was on seasonal, but not 113 

other (e.g. diurnal, daily, interannual) timescales. Using an extended set of measurements, Silva and Heald (2018) evaluate the 114 

vd output from the Wang et al. (1998) parameterization used by the GEOS-Chem chemical transport model. They show that 115 

diurnal and seasonal cycles are generally well-captured, while the daily variability is not well-simulated. They find that 116 

differences in land type and LAI, rather than meteorology, are the main reason behind model-observation discrepancy at the 117 

seasonal scale, and eliminating this model bias results in up to 15% change in surface O3. This study is also limited to a single 118 

parameterization. Using parameterizations that are explicitly sensitive to other environmental variables (e.g. Simpson et al., 119 

2012; Zhang et al., 2003) could conceivably lead to different conclusions.  120 

 121 

Other efforts have been made to compare the performance of different parameterizations. Centoni (2017) find that two different 122 

dry deposition parameterizations, Wesely (1989) versus Zhang et al. (2003), implemented in the same chemistry-aerosol model 123 

(United Kingdom Chemistry Aerosol model, UKMA), result in up to a 20% difference in simulated surface O3 concentration. 124 

This study demonstrates that uncertainty in vd can have large potential effect on surface O3 simulation. Wu et al. (2018) 125 

compare vd simulated by five North-American dry deposition parametrizations to a long-term observational record at a single 126 

mixed forest in southern Canada, and find a large spread between the simulated vd, with no single parameterization uniformly 127 

outperforming others. They further acknowledge that as each parameterization is developed with its own set of limited 128 

observations, it is natural that their performance can vary considerably under different environments, and advocate for an 129 

“ensemble” approach to dry deposition modelling. This highlights the importance of parameterization choice as a key source 130 

of uncertainty in modelling ozone dry deposition. Meanwhile, in another evaluation at a single site, Clifton et al. (2017) show 131 
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that the GEOS-Chem parameterization largely underestimates the interannual variability (IAV) of vd in Harvard Forest based 132 

on the measurement from 1990 to 2000, although they do not show how the IAV of vd may contribute to the IAV of O3.  133 

 134 

These developments have made a substantial contribution to our understanding of the importance of O3 dry deposition in 135 

atmospheric chemistry models. Still, pertinent questions remain about the impact of dry deposition model on simulations of 136 

the global distribution of ozone and its long-term variability. Here, we build on previous works by posing and answering the 137 

following questions:  138 

1) How does the global distribution of mean vd vary with different dry deposition parameterizations, and what drives the 139 

discrepancies among them? How much might the choice of deposition parameterization affect spatial distribution of 140 

surface ozone concentration simulated by a chemical transport model? 141 

2) How are the IAV and long-term trends of vd different across deposition parameterizations, and what drives the 142 

discrepancies among them? Do they potentially contribute different predictions of the long-term temporal variability 143 

in surface ozone? 144 

The answers to such question could have important consequences on our ability to predict long-term changes in atmospheric 145 

O3 concentrations as a function of changing climate and land cover characteristics. In general, there is a high computational 146 

cost to thorough and large-scale evaluations of different dry deposition parameterizations embedded in CTMs. In this study, 147 

we explore these questions using a strategy that combines an offline dry deposition modelling framework incorporating long-148 

term assimilated meteorological and land surface remote sensing data, in combination with a set of CTM sensitivity 149 

simulations. 150 

2 Method 151 

2.1 Dry deposition parameterization 152 

Here we consider several “big-leaf” models commonly used by global chemical transport models. More complex multilayer 153 

models require the vertical profiles of leaf area density for different biomes which are generally not available for regional and 154 

global models. From the wide range of literature on dry deposition studies, we observe that Rs is commonly modelled through 155 

one of the following approaches: 156 

1) Multiplicative algorithm that considers the effects of LAI, temperature and radiation (Wang et al., 1998). 157 

2) Multiplicative algorithm that considers the effects of LAI, temperature, radiation and water stress (e.g. Meyers et al., 158 

1998; Pleim and Ran, 2011; Simpson et al., 2012; Zhang et al., 2003).  159 

3) Coupled An-gs model, which exploit the strong empirical relationship between photosynthesis (An) and stomatal 160 

conductance (gs) (e.g. Ball et al., 1987; Lin et al., 2015) and to simulate An and gs = 1/Rs simultaneously (e.g. Ran et 161 

al., 2017b; Val Martin et al., 2014). 162 

Similarly, their functional dependence of non-stomatal surface resistances can be classified into two classes: 163 
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1) Mainly scaling with LAI, with in-canopy aerodynamics parameterized as function of friction velocity (u*) or radiation 164 

(Meyers et al., 1998; Simpson et al., 2012; Wang et al., 1998) 165 

2) Additional dependence of cuticular resistance on relative humidity (Pleim and Ran, 2011; Zhang et al., 2003) 166 

 167 

With these considerations, we identify four common parameterizations that are representative of the types of approaches 168 

described above:  169 

1) The version of Wesely (1989) with the modification from Wang et al. (1998) (hereafter referred to as W98), which is 170 

used extensively in global CTMs (Hardacre et al., 2015) and comprehensively discussed by Silva and Heald (2018). 171 

This represents Type 1 in both stomatal and non-stomatal parametrizations. 172 

2) The Zhang et al. (2003) parameterization (hereafter referred to as Z03), which is used in many North American air 173 

quality modelling studies (e.g. Huang et al., 2016; Kharol et al., 2018) and Canadian Air and Precipitation Monitoring 174 

Network (CAPMoN) (e.g. Zhang et al., 2009). This represents Type 2 in both stomatal and non-stomatal 175 

parameterizations 176 

3) W89 with Rs calculated from a widely-used coupled An-gs model, the Ball-Berry model (hereafter referred to as 177 

W98_BB) (Ball et al., 1987; Collatz et al., 1992, 1991), which is similar to that proposed by Val Martin et al. (2014), 178 

and therefore the current parameterization in Community Earth System Model (CESM). This represents Type 3 in 179 

stomatal and Type 1 in non-stomatal parametrization. 180 

4) Z03 with the Ball-Berry model (Z03_BB), which is comparable to the configuration in Centoni (2017) implemented 181 

in United Kingdom Chemistry and Aerosol (UKCA) model. This represents Type 3 in stomatal and Type 2 in non-182 

stomatal parametrization. 183 

 184 

Another important consideration in choosing Z03 and W98 is that they both have parameters for all major land types over the 185 

globe, making them widely applicable in global modelling. We extract the source code (Wang et al., 1998) and parameters 186 

(Baldocchi et al., 1987; Jacob et al., 1992; Jacob and Wofsy, 1990; Wesely, 1989) of W98 from GEOS-Chem CTM 187 

(http://wiki.seas.harvard.edu/geos-chem/index.php/Dry_deposition). The source code of Z03 are obtained through personal 188 

communication with Zhiyong Wu and Leiming Zhang, which follows the series of papers that described the development and 189 

formalism of the parameterization (Brook et al., 1999; Zhang et al., 2001, 2002, 2003). The Ball-Berry An-gs model (Ball et 190 

al., 1987; Collatz et al., 1992, 1991; Farquhar et al., 1980) and its solver are largely based on the algorithm of CLM 191 

(Community Land Model) version 4.5 (Oleson et al., 2013), which is numerically stable (Sun et al., 2012). We use identical 192 

formulae of Ra and Rb (Paulson, 1970; Wesely and Hicks, 1977) for each individual parameterizations, allowing us to focus 193 

our analysis on differences in parameterizations of Rc alone. Table S1 gives a brief description on the formalism of each of the 194 

dry deposition parameterizations.  195 
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2.2 Dry deposition model configuration, inputs, and simulation 196 

The above parameterizations are re-implemented in R language (R core team, 2017) in the modeling framework of the 197 

Terrestrial Ecosystem Model in R (http://www.cuhk.edu.hk/sci/essc/tgabi/tools.html), and driven by gridded surface 198 

meteorology and land surface data sets. The meteorological forcing chosen for this study is the Modern-Era Retrospective 199 

Analysis for Research and Application-2 (MERRA-2) (Gelaro et al., 2017), an assimilated meteorological product at hourly 200 

time resolution spanning from 1980 to present day. MERRA-2 contains all the required surface meteorological fields except 201 

VPD and RH, which can be readily computed from T, specific humidity (q) and surface air pressure (P). We use the CLM land 202 

surface dataset (Lawrence and Chase, 2007), which contains information for land cover, per-grid cell coverage of each plant 203 

functional type (PFT) and PFT-specific LAI, which are required to drive the dry deposition parameterizations, and soil 204 

property, which is required to drive the An-gs model in addition to PFT and PFT-specific LAI. CLM land types are mapped to 205 

the land type of W98 following Geddes et al. (2016). The mapping between CLM and Z03 land types are given in Table S2. 206 

Other relevant vegetation and soil parameters are also imported from CLM 4.5 (Oleson et al., 2013), while land cover specific 207 

roughness length (z0) values follow Geddes et al. (2016). Leaf is set to be wet when either latent heat flux < 0 W m-2 or 208 

precipitation > 0.2 mm hr-1. Fractional coverage of snow for Z03 is parameterized as a land-type specific function of snow 209 

depth following the original manuscript of Z03, while W98 flags grid cells with albedo > 0.4 or permanently glaciated as 210 

snow-covered.  211 

 212 

 213 

As the IAV of LAI could be an important factor in simulating vd, the widely-used third generation Global Inventory Modelling 214 

and Mapping Studies Leaf Area Index product (GIMMS LAI3g, abbreviated as LAI3g in this paper) (Zhu et al., 2013), which 215 

is a global time series of LAI with 15-day temporal frequency and 1/12 degree spatial resolution spanning from late 1981 to 216 

2011, is incorporated in this study. We derive the interannual scaling factors that can be applied to scale the baseline CLM-217 

derived LAI (Lawrence and Chase, 2007) for each month over 1982 to 2011. All the input data are aggregated into horizontal 218 

resolution of 2°×2.5° to align with the CTM sensitivity simulation described in the next sub-section. To represent sub-grid 219 

land cover heterogeneity, grid cell-level vd is calculated as the sum of vd over all sub-grid land types weighted by their 220 

percentage coverage in the grid cell (a.k.a tiling or mosaic approach, e.g. Li et al., 2013). This reduces the information loss 221 

when land surface data is aggregated to coarser spatial resolution, and allows us to retain PFT-specific results for each grid 222 

box in the offline dry deposition simulations.  223 

 224 

We run three sets of 30-years (1982-2011) simulations with the deposition parameterizations to investigate how vd simulated 225 

by different parameterizations responds to different environmental factors over multiple decades. The settings of the 226 

simulations are summarized in Table 1. The first set, [Clim], focuses on meteorological variability alone, driven by MERRA-227 

2 meteorology and a multiyear (constant) mean annual cycle of LAI derived from LAI3g. The second set, [Clim+LAI], 228 

http://www.cuhk.edu.hk/sci/essc/tgabi/tools.html
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combines the effects of meteorology and IAV in LAI, driven by the same MERRA-2 meteorology plus the LAI time series 229 

from LAI3g. As the increase in atmospheric CO2 level over multidecadal timescales may lead to significant reduction in gs as 230 

plants tend to conserve water (e.g. Franks et al., 2013; Rigden and Salvucci, 2017), we introduce the third set of simulation, 231 

[Clim+LAI+CO2], which is driven by varying meteorology and LAI, plus the annual mean atmospheric CO2 level measured 232 

in Mauna Loa (Keeling et al., 2001) (for the first two sets of simulations, atmospheric CO2 concentration held constant at 390 233 

ppm). Since W98 and Z03 do not respond to changes in CO2 level, only W98_BB and Z03_BB are run with [Clim+LAI+CO2] 234 

to evaluate this impact. We focus on the daytime (solar elevation angle > 20°) vd, as both vd and surface O3 concentration 235 

typically peak around this time. We calculate monthly means, filtering out the grid cells with monthly total daytime < 100 236 

hours, which would be an indication of dormant biosphere.  237 

 238 

In summary, we present for the first time a unique set of global dry deposition velocity predictions over the last 30 years driven 239 

by identical meteorology and land cover, so that discrepancies (in space and time) among the predicted vd are a result 240 

specifically of dry deposition parameterization choice, or assumptions about how land cover is treated in each.s alone.   241 

2.3 Chemical transport model sensitivity experiments 242 

We quantify the sensitivity of surface O3 to variations in vd using a global 3D CTM, GEOS-Chem version 11.01 (www.geos-243 

chem.org), which includes comprehensive HOx-NOx-VOC-O3-BrOx chemical mechanisms (Mao et al., 2013) and is widely 244 

used to study tropospheric ozone (e.g. Hu et al., 2017; Travis et al., 2016; Zhang et al., 2010). The model is driven by the 245 

assimilated meteorological data from the GEOS-FP (Forward Processing) Atmospheric Data Assimilation System (GEOS-5 246 

ADAS) (Rienecker et al., 2008), which is jointly developed by National Centers for Environmental Prediction (NCEP) of 247 

National Oceanic and Atmospheric Administration (NOAA) and the Global Modelling and Assimilation Office (GMAO). The 248 

model is run with a horizontal resolution of 2°×2.5°, and 47 vertical layers. The dry deposition module, which has been 249 

discussed above (W98), is driven by the monthly mean LAI retrieved from Moderate Resolution Imaging Spectroradiometer 250 

(MODIS) (Myneni et al., 2002) and the 2001 version of Olson land cover map (Olson et al., 2001). Both of the maps are 251 

remapped from their native resolutions to 0.25°×0.25°.  252 

 253 

We propose to estimate the sensitivity of surface O3 concentrations to uncertainty/changes in vd by the following equation: 254 

∆𝑂3 = 𝛽
∆𝑣𝑑

𝑣𝑑

 255 

where ΔO3 is the response of monthly mean daytime surface O3 to fractional change in vd (Δvd/vd), and β accounts for the 256 

sensitivity of surface O3 concentration in a grid box to the perturbation in vd within that grid box. To estimate β, we run two 257 

simulations for the year 2013, one with default setting and another where we perturb vd by +30%. Thus, this approach could 258 

represent a conservative estimate of O3 sensitivity to vd if the impacts on other species result in additional effects on O3.  We 259 

use this sensitivity to identify areas where local uncertainty and variability in vd is expected to affect local surface O3 260 
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concentration, and we use the assumption of linearity to estimate those impacts to a first order (e.g. Wong et al. 2018). In the 261 

Supplemental Methods, we justify this first order assumption mathematically, as well as demonstrate the impact of using a 262 

second order approximation, and estimate the uncertainty using an assumption of linearity to be within 30%. However, we 263 

note this first-order assumption may not be able to capture the effects of chemical transport, changes in background ozone and 264 

non-linearity in chemistry, which can contribute to response of O3 concentration to vd. Our experiment could help identify 265 

regions where more rigorous modelling efforts could be targeted in future work. We limit our analysis to grid cells where the 266 

monthly average vd is greater than 0.25 cm s-1 in the unperturbed GEOS-Chem simulation, since changes in surface O3 267 

elsewhere are expected to be attributed more to change in background O3 rather than the local perturbation of vd (Wong et al., 268 

2018).  269 

3. Evaluation of Dry Deposition Parameterizations  270 

We first compare our offline simulations of seasonal mean daytime average vd that result from the four parameterizations in 271 

the [Clim] and [Clim+LAI] scenarios with an observational database largely based on the evaluation presented in Silva and 272 

Heald (2018). We do not include the evaluation of vd from [Clim+LAI+CO2] scenario as we find that the impact of CO2 273 

concentration on vd is negligible over the period of concern, as we will show in subsequent sections. We use two unbiased and 274 

symmetrical statistical metrics, normalized mean bias factor (NMBF) and normalized mean absolute error factor (NMAEF), to 275 

evaluate our parameterizations. Positive NMBF indicates that the parameterization overestimates the observations by a factor 276 

of 1 + NMBF and the absolute gross error is NMAEF times the mean observation, while negative NMBF implies that the 277 

parameterization underestimates the observations by a factor of 1 - NMBF and the absolute gross error is NMAEF times the 278 

mean model prediction (Yu et al., 2006). We use the simulated subgrid land type-specific predictions of vd that correctly match 279 

the land type and the averaging window indicated by the observations. We exclude instances where the observed land type 280 

does not have a match within the model grid box. While this removes 1/3 of the original data sets used in Silva and Heald 281 

(2018), this means that mismatched land-cover types can be ignored as a factor in model bias.  282 

 283 

Figure 1 shows the fractional coverage within each grid cell and the geographic locations of O3 flux observation sites for each 284 

major land type. Nearly all the observations are clustered in Europe and North America, except three sites in the tropical 285 

rainforest and one site in tropical deciduous forest in Thailand. For most major land types, there are significant mismatches 286 

between the locations of flux measurements and the dominant land cover fraction, which may hinder the spatial 287 

representativeness of our evaluation. The resulting NMBF and NMAEF for five major land type categories are shown in Table 288 

2, and the list of sites and their descriptions are given in Table S3. In general, the numerical ranges of both NMBF and NMAEF 289 

are similar to that of Silva and Heald (2018), and no single parameterization of the four parameterizations outperforms the 290 

others across all five major land types.  291 

 292 
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 The performance metrics of each parameterization at each land type are summarized in table 2. Comparing the two 293 

multiplicative parameterizations (W98 and Z03), we find that W98 performs satisfactorily over deciduous forests and 294 

tropical rainforests, while strongly underestimating daytime vd over coniferous forests. In contrast, Z03 performs better in 295 

coniferous forests but worse in tropical rainforests and deciduous forests. The severe underestimation of daytime vd by Z03 296 

over tropical rainforests has previously been attributed to persistent canopy wetness, and hence stomatal blocking imposed 297 

by the parameterization (Centoni, 2017). We also note that even for the same location, vd can vary significantly between 298 

seasons (Rummel et al., 2007) and management practices (Fowler et al., 2011), which models may fail to capture due to 299 

limited representations of land cover. Given the small sample size (N = 5), diverse environments, and large anthropogenic 300 

intervention in the tropics, the disparity in performance metrics may not fully reflect the relative model performance. 301 

Baseline cuticular resistances in Z03 under dry and wet canopy are 1.5 and 2 times that of coniferous forests, respectively 302 

(Zhang et al., 2003), such that the enhancement of cuticular uptake by wetness may not compensate the reduced gs over 303 

tropical rainforests, and, to a lesser extent, deciduous forests.  304 

 305 

Over grasslands, W98 has higher positive biases, while Z03 has higher absolute errors. This is because for datasets at high 306 

latitudes, the dominant grass PFT is arctic grass, which is mapped to “tundra” land type (Geddes et al., 2016). While tundra 307 

is parameterized similarly to grasslands in W98, this is not the case in Z03. Combined with the general high biases at other 308 

sites for these parameterizations, the large low biases for “tundra” sites in Z03 lower the overall high biases but leads to 309 

higher absolute errors.  310 

 311 

Over croplands, the positive biases and absolute errors are relatively large for both W98 and Z03 (with Z03 performing worse 312 

in general than W98). The functional and physiological diversity with the “crop” land type also contributes to the general 313 

difficulty in simulating vd over cropland. Even though Z03 has individual parameterizations for 4 specific crop types (rice, 314 

sugar, maize and cotton), this advantage is difficult to fully leverage as most global land cover data sets do not resolve croplands 315 

into such detail. Having land cover maps that distinguish between more crop types could potentially improve the performance 316 

of Z03. The evaluation for herbaceous land types also suggests that as CLM PFT do not have exact correspondence with W98 317 

and Z03 land types, our results over herbaceous land types are subject to the uncertainty in land type mapping (e.g. tundra vs 318 

grassland, specific vs generic crops, C3 vs C4 grass). 319 

 320 

Substituting the native gs in W98 and Z03 by that simulated by Ball-Berry model (the W98_BB and Z03_BB runs) generally, 321 

though not universally, leads to improvement in model performance against the observations. W98_BB has considerably 322 

smaller biases and absolute errors than W98 over grassland. While having little effect on the absolute error, W98_BB improves 323 

the biases over coniferous forest and cropland compared to W98, but worsens the biases over rainforests and deciduous forests. 324 

In contrast, Z03_BB is able to improve the model-observation agreement over all 5 land types when compared to Z03. This 325 

finding echoes that from Wu et al. (2011), who explicitly show the advantage of replacing the gs of Wesely (1989) with the 326 
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Ball-Berry model in simulating vd over a forest site, and in addition shows the potential of Ball-Berry model in improving 327 

spatial distribution of mean vd. The different responses to substituting native gs with that from Ball-Berry model highlight the 328 

significant differences in parameterizing non-stomatal uptake between W98 and Z03, which further suggests that the 329 

uncertainty in non-stomatal deposition should not be overlooked. 330 

 331 

The minimal impact that results from using LAI that matches the time of observation is not unexpected, since the 332 

meteorological and land cover information from a 2°×2.5° grid cell may not be representative of the typical footprint of a site 333 

measurement (on the order of 10-3 to 101 km2, e.g. Chen et al., 2009, 2012). The mismatch between model resolution and the 334 

footprint of site-level measurements has also been highlighted in previous evaluation efforts in global-scale CTMs (Hardacre 335 

et al., 2015; Silva and Heald, 2018). Furthermore, the sample sizes for all land types are small (N ≤ 16) and the evaluation 336 

may be further compromised by inherent sampling biases.  337 

 338 

In addition to the evaluation against field observation, we find good correlation (R2 = 0.94) between the annual mean vd from 339 

GEOS-Chem at 2013 and the 30-year mean vd of W98 run with static LAI, providing further evidence that our 340 

implementation of W98 is reliable. Overall, our evaluation shows that the quality of our offline simulation of dry deposition 341 

across the four parameterizations in this work is largely consistent with previous global modelling evaluation efforts.  342 

4. Impact of Dry Deposition Parameterization Choice on Long-Term Averages  343 

Here we summarize the impact that the different dry deposition parameterizations may have on simulations of the spatial 344 

distribution of vd and on the inferred surface O3 concentrations. We begin by comparing the simulated long-term mean vd 345 

across parameterizations, then use a chemical transport model sensitivity experiment to estimate the O3 impacts.  346 

 347 

Figure 2 shows the 30-year July daytime average vd simulated by W98 over vegetated surfaces (defined as the grid cells with 348 

>50% plant cover), and Figure 3 shows the difference between the W98 and the W98_BB, Z03, Z03_BB predictions 349 

respectively. We first focus on results from July because of the coincidence of high surface O3 level, biospheric activity and 350 

vd in the Northern Hemisphere (NH), and will subsequently discuss the result for December, when such condition holds for 351 

the Southern Hemisphere (SH). W89 simulates the highest July mean daytime vd in Amazonia (1.2 to 1.4 cm s-1), followed by 352 

other major tropical rainforests, and temperate forests in northeastern US. July mean daytime vd in other temperate regions in 353 

North America and Eurasia typically range from 0.5 to 0.8 cm s-1, while in South American and African savannah, and most 354 

parts of China, daytime vd is around 0.4 to 0.6 cm s-1. In India, Australia, western US, and polar tundra Mediterranean region, 355 

July mean daytime vd is low (0.2-0.5 cm s-1).  356 

 357 
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The other three parameterizations (W98_BB, Z03, Z03_BB) simulate substantially different spatial distributions of daytime 358 

vd. In North America, we find W98_BB, Z03 and Z03_BB produce lower vd (by -0.1 to -0.4 cm s-1) compared to W98 in 359 

deciduous forest-dominated northeastern US and slightly higher vd in boreal forest-dominated regions of Canada. Z03 and 360 

Z03_BB produce noticeably lower vd (by up to -0.2 cm s-1) in arctic tundra and grasslands in western US. In southeastern US, 361 

W98_BB and Z03_BB simulate a slightly higher vd (by up to +0.1 cm s-1), while Z03 suggests a slightly lower vd (by up to -362 

0.1 cm s-1). W98_BB simulates a lower (-0.1 to -0.4 cm s-1) vd in tropical rainforests, with larger reductions concentrated in 363 

southern Amazonia, where July is within the dry season, while the northern Amazonia is not (Malhi et al., 2008). Z03 and 364 

Z03_BB simulate much smaller (-0.4 to -0.6 cm s-1) vd in all tropical rainforests.  365 

 366 

Over the midlatitudes in Eurasia, Australia and South America except Amazonia, W98_BB, Z03 and Z03_BB generally 367 

simulate a lower daytime vd by up to 0.25 cm s-1, possibly due to the dominance of grasslands and deciduous forests, where 368 

W98 tends to be more high-biased than other parameterizations when compared to the observations of vd. In southern African 369 

savannah, W98_BB and Z03_BB suggest a much lower daytime vd (by -0.1 to -0.4 cm s-1) because of explicit consideration of 370 

soil moisture limitation to An and gs (demonstrated by the spatial overlap with soil moisture stress factors shown in Fig. S2). 371 

Z03_BB simulates a particularly high daytime vd over the high-latitude coniferous forests (+0.1 to +0.3 cm s-1). W98_BB and 372 

Z03_BB produce higher daytime daytime vd (up to +0.15 cm s-1) in India and South China due to temperature acclimation 373 

(Kattge and Knorr, 2007), which allows more stomatal opening under the high temperature that would largely shut down the 374 

stomatal deposition in W98 and Z03, as long as the soil does not become too dry to support stomatal opening. This is guaranteed 375 

by the rainfall from summer monsoon in both regions. Low vd is simulated by Z03 and Z03_BB in the grasslands near Tibetan 376 

plateau because the grasslands are mainly mapped to tundra land type, which typically has low vd as discussed in section 3.  377 

 378 

Our results suggest that the global distribution of simulated mean vd depends substantially on the choice of dry deposition 379 

parameterization, driven primarily by the response to hydroclimate-related parameters such as soil moisture, VPD and leaf 380 

wetness, in addition to land type-specific parameters, which could impact the spatial distribution of surface ozone predicted 381 

by chemical transport models. To estimate the impact on surface ozone of an individual parameterization “i” compared to the 382 

W98 predictions (which we use as a baseline), we apply the following equation: 383 

ΔO3,i ≈ β
Δ𝑣𝑑,𝑖̅̅ ̅̅̅

𝑣𝑑𝑊98
̅̅ ̅̅ ̅̅ ̅

 (3) 384 

where ∆O3,i is the estimated impact on simulated O3 concentrations in a grid box, Δvd,i̅̅ ̅̅   is the difference between 385 

parameterization i and W98 simulated mean daytime vd in that grid box, 𝑣𝑑𝑊98
̅̅ ̅̅ ̅̅ ̅ is W98 output mean daytime vd for that grid 386 

box, and β is the sensitivity of surface ozone to vd calculated by the method outlined in Section 2.3   387 

 388 

Figure 4 shows the resulting estimates of ∆O3 globally. We find ∆O3 is the largest in tropical rainforests for all the 389 

parameterizations (up to 5 to 8 ppbv).Other hotspots of substantial differences are boreal coniferous forests, eastern US, 390 
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continental Europe, Eurasian steppe and the grassland in southwestern China, where ∆O3 is either relatively large or the signs 391 

disagree among parameterizations. In India, Indochina and South China, ∆O3 is relatively small but still reaches up to up to -392 

2 ppbv. We find that ∆O3 is not negligible (1-4 ppbv) in many regions with relatively high population density, which suggests 393 

that the choice of dry deposition parameterization can be relevant to the uncertainty in the study of air quality and its implication 394 

on public health. We note that we have not estimated ∆O3 for some regions with low GEOS-Chem-predicted vd (< 0.25 cm s-395 

1, as described in section 2.3), but where the disagreement in vd between parameterizations can be large (e.g., southern African 396 

savannah, see Figure 3). Given this limitation, the impacts on O3 we have summarized may therefore be spatially conservative.  397 

 398 

To explore the impact of different prediction of vd on surface O3 in different seasons, , we repeat the above analyses for 399 

December. Figure 5 shows the 1982-2011 mean December daytime vd predicted by W98, while Figure 6 shows the difference 400 

between W98 and the Z03, W98_BB, Z03_BB respectively. High latitudes in the NH are excluded due to the small number of 401 

daytime hours. Z03 and Z03_BB simulate substantially lower in daytime vd at NH midlatitudes because Z03 and Z03_BB 402 

allow partial snow cover but W98 and W98_BB only allow total or no snow cover. At midlatitudes, the snow cover is not high 403 

enough to trigger the threshold of converting vegetated to snow covered ground in W98 and W98_BB, resulting in lower 404 

surface resistance, and hence higher daytime vd comparing to Z03 and Z03_BB; in Amazonia, the hotspot of difference in 405 

daytime vd shifts from the south to the north relative to July, which is in the dry season (Malhi et al., 2008). These results for 406 

December, together with our findings from July, suggest that the discrepancy in simulated daytime vd between W98 and other 407 

parameterizations is due to the explicit response to hydroclimate in the former compared to the latter. Given that field 408 

observations indicate a large reduction of vd in dry season in Amazonia (Rummel et al., 2007), the lack of dependence of 409 

hydroclimate can be a drawback of W98 in simulating vd in Amazonia.  410 

 411 

Figure 7 shows the resulting estimates of ∆O3 globally for December using Equation 3.  In all major rainforests, ∆O3 is smaller 412 

in December due to generally lower sensitivity compared to July. A surprising hotspot of both daytime ∆vd and ∆O3 is the 413 

rainforest/tropical deciduous forest in Myanmar and its eastern bordering region, which also has distinct wet and dry season. 414 

The proximity of December to the dry season, which starts at January (e.g. Matsuda et al., 2005), indicates that the consistent 415 

∆vd between W98 and other parameterizations is driven by hydroclimate as in Amazonia. Comparison with field measurements 416 

(Matsuda et al., 2005) suggests that the W98_BB and Z03_BB capture daytime vd better than W98, while Z03 may 417 

overemphasize the effect of such dryness. The above reasoning also explains some of the ∆vd in India and south China across 418 

the three parameterizations. These findings identify hydroclimate as a key driver of process uncertainty of vd over tropics and 419 

subtropics, and therefore its impact on the spatial distribution of surface ozone concentrations, independent of land type-based 420 

biases, in these regions. 421 

 422 

Overall, these results demonstrate that the discrepancy in the spatial distribution of simulated mean daytime vd resulting from 423 

choice of dry deposition parameterization can have an important impact on the global distribution of surface O3 predicted by 424 
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chemical transport models. We find that the response to hydroclimate by individual parametrization not only affects the mean 425 

of predicted surface ozone, but also has different impacts in different seasons, which is complementary to the findings of 426 

Kavassalis and Murphy (2017) that mainly focus on how shorter-term hydrometeorological variability may modulate surface 427 

O3 through dry deposition. 428 

 429 

5. Impact of Dry Deposition Parameterization Choice on Trends and Interannual Variability  430 

Here we explore the impact that different dry deposition parameterizations may have on predictions of IAV and trends in vd 431 

and on the inferred surface O3 concentrations. We use the Theil-Sen method (Sen, 1968), which is less susceptible to outliers 432 

than least-square methods, to estimate trends in July daytime vd (and any underlying meteorological variables), and use p-value 433 

< 0.05 to estimate significance. 434 

  435 

Figure 8 shows the trend in July mean daytime vd from 1982-2011 predicted by each of the parameterizations and scenarios 436 

([Clim], [Clim + LAI], and [Clim + LAI + CO2]). Figure 9 shows the potential impact of these trends in vd on July daytime 437 

surface ozone, which we estimate to a first order using the following equation: 438 

ΔO330y,i
≈β × mvd,i

 × 30 (4) 439 

where ∆O3 30y,i and mvd,i are the absolute change in ozone inferred to a first order as a result of the trend of vd and the normalized 440 

Theil-Sen slope (% yr-1) of vd, for parameterization i over the 30-years (1982-2011). 441 

 442 

In [Clim] simulations (where LAI is held constant), significant decreasing trends in July daytime vd are simulated by the Z03, 443 

W98_BB and Z03_BB Mongolia, where significant increasing trend in T (warming) and decreasing trend in RH (drying) 444 

detected in the MERRA-2 surface meteorological field in July daytime. This trend is not present in the W98 parameterization 445 

as this formulation does not respond to the long-term drying. We find some decreasing trends in vd across parts of central 446 

Europe and the Mediterranean to varying degrees across the parameterizations. In the SH, we find consistent decreasing trends 447 

across all four parameterizations in southern Amazonia and southern African savannah due to warming and drying, which we 448 

estimate could produce a concomitant increase in July mean surface ozone of between 1 to 3 ppbv (Figure 9).  449 

 450 

In [Clim+LAI] scenario, all four parameterizations simulate a significant increasing trend of vd over high latitudes, which is 451 

consistent with the observed greening trend over the region (Zhu et al., 2016). We estimate this could produce a concomitant 452 

decrease in July mean surface ozone of between 1 to 3 ppbv. The parameterizations generally agree in terms of the spatial 453 

distribution of these trends in O3. Exceptions include a steeper decreasing trend in most of Siberia predicted by W98, while 454 

the trend is more confined in the eastern and western Siberia in the other three parameterizations. Including the effect of CO2-455 

induced stomatal closure ([Clim+LAI+CO2] runs) partially offset the increase of vd in high latitudes, but does not lead to large 456 
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changes in both the magnitudes and spatial patterns of vd trend. We find negligible trends in daytime vd for December in all 457 

cases. These results show that across all dry deposition model parameterizations, LAI and climate, more than increasing CO2, 458 

can potentially drive significant long-term changes in vd and should not be neglected when analyzing the long-term change in 459 

air quality over 1982-2011. We note that the importance of the CO2 effect could grow as period of study further extend to 460 

allow larger range of atmospheric CO2 concentration (Hollaway et al., 2017; Sanderson et al., 2007).  461 

 462 

We go on to explore the impact of parameterization choice in calculations of IAV in vd.  Figure 10 shows the coefficient of 463 

variation of linearly detrended July daytime vd (CVvd). Figure 11 shows the potential impact this has on IAV in surface ozone, 464 

which we estimate to a first order by the following equation:  465 

σO3,i
≈β×𝐶𝑉𝑣𝑑,𝑖

  (5) 466 

where σO3,i is the estimated interannual standard deviation in surface ozone resulting from IAV in vd given predicted by dry 467 

deposition parameterization i. In both cases, we show only the [Clim] and [Clim+LAI] runs, since IAV in CO2 has negligible 468 

impact on interannual variability in vd. 469 

 470 

Using the W98 parameterization, IAV in predicted vd and O3 is considerably smaller in the [Clim] run than that for the [Clim 471 

+ LAI] run, since both the stomatal and non-stomatal conductance in W98 are assumed to be strong functions of LAI rather 472 

than meteorological conditions. This implies that long-term simulations with W98 and constant LAI can potentially 473 

underestimate the IAV of vd and surface ozone. In contrast, IAV in vd calculated by the Z03 parameterization is nearly the 474 

same for the [Clim] and [Clim+LAI] runs. In Z03, gs is also directly influenced by VPD in addition to temperature and radiation, 475 

and non-stomatal conductance in Z03 is much more dependent on meteorology than W98, leading to high sensitivity to climate. 476 

Though the Ball-Berry model also responds to meteorological conditions, it considers relatively complex An-gs regulation and 477 

includes temperature acclimation, which could dampen its sensitivity to meteorological variability compared to the direct 478 

functional dependence on meteorology in the Z03 multiplicative algorithm. Thus, the climate sensitivity of W98_BB and 479 

Z03_BB is in between Z03 and W98, as is indicated by more moderate difference between σO3,i from [Clim] and [Clim+LAI] 480 

runs in Figure 11. 481 

 482 

For regional patterns of CVvd and σO3, we focus on the [Clim+LAI] runs (Fig. 10e to 10h and Fig. 11e to 11h) as they allow for 483 

a comparison of all 4 parameterizations and contain all the important factors of controlling vd. In North America, we estimate 484 

modest IAV in vd across all 4 parameterizations (CVvd < 15%) in most places. We find this results in relatively low σO3 in 485 

northeastern US, and larger σO3 in central and southeast US (in the range of 0.3 to 2 ppbv). These results are of a similar 486 

magnitude to the standard deviation of summer mean background ozone suggested by Fiore et al. (2014) over similar time 487 

period, sugggesting that IAV of dry deposition can be a potentially important component of the IAV of surface ozone in 488 

summer over North America.  489 

 490 
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All parameterizations produce larger CVvd (and therefore larger σO3) in southern Amazonia compared to northern and central 491 

Amazonia, but we find substantial discrepancies across parameterizations. The estimated impact on IAV in O3 (σO3) in southern 492 

Amazonia ranges from less than 1 ppbv predicted by the W98 and W98_BB parameterizations, to exceeding 1.5 - 2.5 ppbv 493 

predicted by the Z03 parameterization. IAV is also relatively large in central Africa. We find that the parameterizations which 494 

include a Ball-Berry formulation (W98_BB and Z03_BB) estimate higher IAV in this region (with σO3 varying between 1 to 495 

4 ppbv), compared to the W98 and Z03 parameterizations (σO3 up to 2ppbv). We also note that the Ball-Berry formulations 496 

show more spatial heterogeneity compared to W98 and Z03. In our implementation of the Ball-Berry model, impact of soil 497 

moisture on gs is parameterized as a function of root-zone soil matric potential, which makes gs very sensitive to variation in 498 

soil wetness when the its climatology is near the point that triggers limitation on An and gs. Given the large uncertainty in 499 

global soil property map (Dai et al., 2019), such sensitivity could be potentially artificial, which should be taken into 500 

consideration when implementing Ball-Berry parameterizations in large-scale models despite their relatively good 501 

performance in site-level evaluation (Wu et al., 2011).  502 

 503 

Across Europe, the magnitude of IAV predicted by all four parameterizations show relatively good spatial consistency. 504 

Simulated CVvd is relatively low in western and northern Europe (<10%), which we estimate translates to less than 1 ppbv of 505 

σO3. We find larger CVvd (and therefore large σO3) over parts of southern Russia and Siberia (σO3 up to 2.5 ppbv) from all 506 

parameterizations except W98. The local geographic distribution of CVvd and σO3 also significantly differs among the 507 

parameterizations. Z03 and Z03_BB simulate larger CVvd in eastern Siberia than W98_BB, while W98 BB and Z03_BB predict 508 

larger CVvd over the southern Russian steppe then Z03. Finally, all four parameterizations estimate relatively low CVvd and σO3 509 

in India, China and Southeast Asia.  510 

 511 

We compare the simulated IAV July CVvd from all four deposition parameterizations with those recorded by publicly available 512 

long-term observations. Hourly vd is calculated using eq. (1) from raw data. We filter out the data points with extreme (> 2 cm 513 

s-1) or negative vd, and without enough turbulence (u* < 0.25 m s-1). As vd in each daytime hours are not uniformly sampled in 514 

the observational datasets, we calculate the mean diurnal cycle, and then calculate the daytime average July of vd for each year 515 

from the mean diurnal cycle, from which CVvd can be calculated.  516 

The IAV predicted by all four parameterizations at Harvard Forest is between 3% to 7.9%, which is 2 to 6 times lower than 517 

that presented in the observations (18%). We find similar underestimates by all four parameterizations compared to the long-518 

term observation from Hyytiala (Junninen et al., 2009; Keronen et al., 2003; https://avaa.tdata.fi/web/smart/smear/download), 519 

where observed CVvd (16%) is significantly higher than that predicted by the deposition parameterizations (3.5% - 7.1%). In 520 

Blodgett Forest we find that the models underestimate the observed annual CVvd  more seriously (~1% – 3%  compared to 18% 521 

in the observations). This suggests that the IAV of vd may be underestimated across all deposition parameterizations we 522 

investigated (and routinely used in simulations of chemical transport). Clifton et al. ( 2019) attribute this to the IAV in 523 

deposition to wet soil and dew-wet leaves, and in-canopy chemistry under stressed condition for forests over northeastern U.S. 524 
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Some of these processes (e.g. in-canopy chemistry, wetness slowing soil ozone uptake) are not represented by existing 525 

parameterizations, contributing to their difficulty in reproducing the observed IAV. The scarcity of long-term ozone flux 526 

measurements (Fares et al., 2010, 2017; Munger et al., 1996; Rannik et al., 2012) limits our ability to benchmark the IAV in 527 

our model simulations with observational datasets.  528 

 529 

In summary, when both the variability in LAI and climate are considered, the IAV in simulated vd translates to IAV in surface 530 

O3 of 0.5 – 2ppbv in July for most regions. Such variability is predicted to be particularly strong in southern Amazonian and 531 

central African rainforest, where the predicted IAV in July surface O3 due to dry deposition can be as high as 4 ppbv. This 532 

suggests that IAV of vd can be an important part of the natural variability of surface O3. The estimated magnitude of IAV is 533 

also dependent of the choice of vd parameterization, which highlights the importance of vd parameterization choice on 534 

modelling IAV of surface O3.  535 

6 Discussion and Conclusion 536 

We present the results of multidecadal global modelling of ozone dry deposition using four different ozone deposition 537 

parameterizations that are representative of the major types of approaches of gaseous dry deposition modelling used in global 538 

chemical transport models. The parameterizations are driven by the same assimilated meteorology and satellite-derived LAI, 539 

which minimizes the uncertainty of model input across parameterization and simplifies interpretation of inter-model 540 

differences. The output is evaluated against field observations and shows satisfactory performance. One of our main goals was 541 

to investigate the impact of dry deposition parameterization choice on long-term averages, trends, and IAV in vd over a 542 

multidecadal timescale, and estimate the potential concomitant impact on surface ozone concentrations to a first order using a 543 

sensitivity simulation approach driven by the GEOS-Chem chemical transport model. 544 

 545 

We find that the performance of the four dry deposition parameterizations against field observations varies considerably over 546 

land types, and these results are consistent with other evaluations, reflecting the potential issue that dry deposition 547 

parameterizations can often be overfit to a particular set of available observations, requiring caution in their application at 548 

global scales. We also find that using more ecophysiologically realistic output gs predicted by the Ball-Berry model can 549 

generally improve model performance, but at the cost of high sensitivity to relatively unreliable soil data. However, the number 550 

of available datasets of ozone dry deposition observation are still small and concentrated in North America and Europe. We 551 

know of only one multi-season direct observational record in Asia (Matsuda et al., 2005) and none in Africa, where air quality 552 

can be an important issue. To better constrain regional O3 dry deposition, effort must be made in making new observations of 553 

gaseous dry deposition (Fares et al., 2017) especially in the under-sampled regions.  Evaluation and development of ozone dry 554 

deposition parameterizations will continue to benefit from publicly available ozone flux measurements and related 555 
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micrometeorological variables that allow for partitioning measured flux into individual deposition pathways (e.g. Clifton et 556 

al., 2017, 2019; Fares et al., 2010; Wu et al., 2011, 2018)..  557 

 558 

We find substantial disagreement in the spatial distribution between the mean daytime vd predicted by the different 559 

parameterizations we tested. We find that these discrepancies are in general a function of both location and season. In NH 560 

summer, vd simulated by the 4 parameterizations are considerably different in many regions over the world. We estimate that 561 

this could lead to around 2 to 5 ppbv in uncertainty of surface ozone concentration simulations over a vast majority of land in 562 

the NH. In tropical rainforests, where leaf wetness is prevalent and the dry-wet season dynamics can have large impact on vd 563 

(Rummel et al., 2007),  we estimate the uncertainty due to dry deposition model choice could even lead to an uncertainty in 564 

surface ozone of up to 8 ppbv. We also find noticeable impacts in parameterization choice during SH summer, but we note 565 

that due to the unreliability of β at low vd, we have not assessed its impact on surface ozone in many high-latitude regions of 566 

the NH. In general, we find hydroclimate to be an important driver of the uncertainty. This demonstrates that the potential 567 

impact of parameterization choice (or, process uncertainty) of vd is neither spatiotemporally uniform nor negligible in many 568 

regions over the world. More multi-seasonal observations are especially needed over seasonally dry ecosystems where the role 569 

of hydroclimate in deposition parameterizations need to be evaluated. Recently, standard micrometeorological measurements 570 

have been used to derive gs and stomatal deposition of O3 over North America and Europe (Ducker et al., 2018), highlighting 571 

the potential of using global networks of micrometeorological observation (e.g. FLUXNET (Baldocchi et al., 2001)) to 572 

benchmark and calibrate gs of drydeposition parameterizations, which could at least increase the spatiotemporal 573 

representativeness, if not the absolute accuracy, of dry deposition parameterizations, since it would be difficult to constrain 574 

non-stomatal sinks with this method. Further research is required to more directly verify whether better constrained gs leads to 575 

improved vd simulation. 576 

 577 

Over the majority of vegetated regions in the NH, we estimate the IAV of mean daytime vd is generally on the order of 5 to 578 

15% and may contribute between 0.5 to 2 ppbv of IAV in July surface O3 over the thirty-year period considered here, with 579 

each parameterization simulating different geographic distribution of where IAV is highest. The predicted IAV from all four 580 

models is smaller than what long-term observations suggest, but its potential contribution to IAV in O3 is still comparable to 581 

the long-term variability of background ozone over similar timescales in U.S. summer (Brown-Steiner et al., 2018; Fiore et al., 582 

2014). This would seem to confirm that vd may be a substantial contributor to natural IAV of O3 in summer, at least in U.S. In 583 

the southern Hemisphere, the IAV mainly concentrates in the drier part of tropical rainforests. The Ball-Berry 584 

parameterizations simulate large and spatially discontinuous CVvd and σO3 due to their sensitivity to soil wetness. Globally, we 585 

find that IAV of vd in W98 is mostly driven by LAI, while in other parameterizations climate generally plays a more important 586 

role. We therefore emphasize that temporal matching of LAI is important for consistency when W98 is used in long-term 587 

simulations. While our results show notable impacts across the globe, in many regions there are no available long-term 588 
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observation to evaluate the model predictions over interannual timescales. This information is helpful in designing and 589 

identifying sources of error in model experiments that involve variability of vd. 590 

 591 

We are also able to detect statistically significant trends in July daytime vd over several regions. The magnitudes of trends are 592 

up to 1% per year and both climate and LAI contribute to the trend. All four deposition parameterizations identify three main 593 

hotspots of decreasing July daytime vd (southern Amazonia, southern African savannah, Mongolia), which we link mainly to 594 

increasing surface air temperature and decreasing relative humidity. Meanwhile, extensive areas at high latitudes experience 595 

LAI-driven increasing July daytime vd, consistent with the greening trend in the region (Zhu et al., 2016). We don’t find a 596 

strong influence of CO2-induced stomatal closure in the trend over this time period. Over the 30-years we estimate the trend 597 

in July daytime vd could translate approximately to 1 to 3 ppbv of ozone changes in the areas of impact, indicating the potential 598 

effect of long-term changes in vd on surface ozone. This estimate should be considered conservative, since we are unable to 599 

reliably test the sensitivity of ozone to regions with low vd with our approach.  600 

 601 

While the approach we have presented here allows us to explore the role of dry deposition parameterization choice on 602 

simulations of long-term means, trends, and IAV in ozone dry deposition velocity, there remain some limitations and 603 

opportunities for development. First, we only used one LAI and assimilated meteorological product. The geographic 604 

distribution of trend and IAV of vd may vary considerably as the LAI and meteorological products used due to their inherent 605 

uncertainty (e.g. Jiang et al., 2017). While we expect the qualitative conclusions about how LAI and climate controls the 606 

modelled trend and IAV of vd to be robust to the choice of data set, the magnitude and spatial variability could be affected. 607 

Second, the estimated effects on surface O3 are a first-order inference based on a linear approximation of the impact that vd 608 

has directly on O3. We have not applied our analysis to regions with low GEOS-Chem vd, where other components of 609 

parameterization (e.g. definition and treatment of snow cover, difference in ground resistance) may have major impact on vd 610 

prediction (Silva and Heald, 2018), nor accounted for the role that vd variability can have on other chemical species which 611 

would have feedbacks on O3. Moreover, the sensitivity of surface ozone to vd may be dependent on the choice of chemical 612 

transport model (here, the GEOS-Chem model has been used), and possibly the choice of simulation year for the sensitivity 613 

simulation. Finally, we have neglected the effect of land use and land cover change on global PFT composition at this stage, 614 

which can be another source of variability for vd, and even long-term LAI retrieval (Fang et al., 2013). Nevertheless, the 615 

relatively high NMAEF of simulated vd and the inherent uncertainty in input data (land cover, soil property, assimilated 616 

meteorology and LAI) are considered as the major source of uncertainty in our predictions of vd.  617 

 618 

The impact of dry deposition parameterization choice may also have impacts which we have not explored in this study on 619 

other trace gases with deposition velocity controlled by surface resistance, and for which stomatal resistance is an important 620 

control of surface resistance (e.g. NO2). As vd has already been recognized as a major source of uncertainty in deriving global 621 

dry deposition flux of NO2 and SO2 (Nowlan et al., 2014), systematic investigation on the variability and uncertainty of vd for 622 
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other relevant chemical species does not only contribute to understanding the role of gaseous dry deposition on air quality, but 623 

also to biogeochemical cycling. Particularly, gaseous dry deposition has been shown to be a major component in nitrogen 624 

deposition (Geddes and Martin, 2017; Zhang et al., 2012), highlighting the potential importance of understanding the role of 625 

vd parameterization in modelling regional and global nitrogen cycles. 626 

 627 

Here we have built on  the recent investigations of modelled global mean (Hardacre et al., 2015; Silva and Heald, 2018) and 628 

observed long-term variability (Clifton et al., 2017) of O3 vd. We are able to demonstrate the substantial impact of vd 629 

parameterization on modelling the global mean and IAV of vd, and their non-trivial potential impact on simulated seasonal 630 

mean and IAV of surface ozone. We demonstrate that the parameterizations with explicit dependence on hydroclimatic 631 

variables have higher sensitivity to climate variability than those without. Difficulties in evaluating predictions of vd for many 632 

regions of the world (e.g. most of Asia and Africa) persist due to the scarcity of measurements. This makes a strong case for 633 

additional measurement and model studies of ozone dry deposition across different timescales, which would be greatly 634 

facilitated by an open data sharing infrastructure (e.g. Baldocchi et al., 2001; Junninen et al., 2009).  635 

Code Availability 636 
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669 

 670 

Figure 1: Fractional coverage of each major land type at each grid cell. Blue dots indicate the locations of the observational 671 

sites. 672 
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 673 

Figure 2: 1982-2011 July mean daytime vd (solar elevation angle > 20°) over vegetated land surface simulated by W98.  674 

 675 

 676 

Figure 3: Differences of 1982-2011 July mean daytime vd (Δvd̅) between three other parameterizations (Z03, W98_BB and 677 

Z03_BB) and W98 over vegetated land surface. 678 

 679 

 680 

Figure 4: Estimated difference in July mean surface ozone (∆O3) due to the discrepancy of simulated July mean daytime vd 681 

among the parameterizations. 682 
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 683 

 684 

 685 

 686 

 687 

Figure 5: 1982-2011 December mean daytime vd (solar elevation angle > 20°) over vegetated land surface simulated by 688 

W98. The data over high latitudes over Northern Hemisphere is invalid due to insufficient daytime hours over the month (< 689 

100 hours month-1)  690 

 691 

 692 

Figure 6: Differences of 1982-2011 December mean daytime vd (Δvd̅) between three other parameterizations (Z03, W98_BB 693 

and Z03_BB) and W98 over vegetated land surface. 694 

 695 

 696 
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 697 

Figure 7: Estimated difference in December mean surface ozone (∆O3) due to the discrepancy of simulated December mean 698 

daytime vd among the parameterizations. 699 

 700 
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 701 

702 

 703 

Figure 8: Trends of July mean daytime vd during 1982-2011 over vegetated land surface. Black dots indicate statistically 704 

significant trends (p < 0.05) 705 
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706 

 707 

Figure 9: Estimated impact of trends of July mean daytime vd on July mean surface ozone during (∆O3 30y) 1982-2011 over 708 

vegetated land surface. Only grid points with statistically significant trends (p < 0.05) in July mean daytime vd are 709 

considered.  710 

 711 
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 712 

Figure 10: Interannual coefficient of variation of linearly detrended July mean daytime vd (CVvd) during 1982-2011 over 713 

vegetated land surface. 714 

 715 

Figure 11: Estimated contribution of IAV in July mean daytime vd to IAV of July mean surface ozone (σO3) during 1982-716 

2011 over vegetated land surface. 717 

 718 

 719 

 720 
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 722 

 723 

 724 
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 725 

vd simulation Meteorology LAI Atmospheric CO2 concentration 

[Clim] 
MERRA-2 

meteorology 

LAI3g monthly climatology 
390 ppm 

[Clim+LAI] 
LAI3g monthly time series 

[Clim+LAI+CO2] Manoa Loa time series 

Table 1: List of vd simulations with input data 726 

 727 

Land 

types 
Metrics Static LAI Dynamic LAI 

  W98 Z03 W89-BB Z03_BB W98 Z03 W89-BB Z03_BB 

Dec 

(N=8) 

NMBF 0.134 -0.367 -0.287 -0.142 0.119 -0.376 -0.299 -0.153 

NMAEF 0.322 0.369 0.305 0.215 0.319 0.376 0.321 0.226 

Con 

(N=16) 

NMBF -0.362 -0.217 -0.252 -0.025 -0.355 -0.209 -0.248 -0.023 

NMAEF 0.448 0.455 0.483 0.399 0.427 0.458 0.470 0.394 

Tro 

(N=5) 

NMBF 0.080 -0.808 -0.086 -0.438 0.075 -0.813 -0.090 -0.441 

NMAEF 0.423 0.831 0.404 0.569 0.422 0.832 0.399 0.567 

Gra 

(N=10) 

NMBF 0.276 0.015 0.175 0.097 0.294 0.011 0.186 0.110 

NMAEF 0.392 0.479 0.307 0.318 0.396 0.467 0.302 0.311 

Cro 

(N=11) 

NMBF 0.297 0.360 0.241 0.282 0.318 0.371 0.255 0.292 

NMAEF 0.473 0.541 0.474 0.570 0.485 0.550 0.480 0.576 

Table 2: Performance metrics (NMBF and NMAEF) for daytime average vd simulated by the four dry deposition 728 

parameterizations, with N referring to number of data points (1 data points = 1 seasonal mean). “Static LAI” is the result 729 

from [Clim] run, which uses 1982-2011 AVHRR monthly climatological LAI, while “Dynamic LAI” is the result from 730 

[Clim+LAI], which uses 1982-2011 AVHRR LAI time series. Dec = deciduous forest, Con = coniferous forest, Tro = 731 

tropical rainforest, Gra = grassland, Cro = cropland. N indicates the number of observational datasets involved in that 732 

particular land type. The best performing parameterization for each land type has its performance metrics bolded.  733 

 734 

 735 

 736 

 737 

 738 

 739 
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1. Mathematical analysis for sensitivity of O3 to Δvd/vd: 

Assume that Δ𝑂3 is due to changes in dry deposition flux (with proportionality constant kd) and other 

first-order processes (e.g. NO titration, loss to HO2 and OH, having total reaction rate kc): 

𝑑𝑂3 = 𝑑(−𝑘𝑐𝑂3 − 𝑘𝑑𝑣𝑑𝑂3) (𝑆1) 

Here, kc and kd (which are related to meteorology and concentration of other relevant chemical species), 

are assumed to be relatively constant, so that that the perturbation in vd does not trigger significant non-

linearity. Expanding the differential and rearranging the terms yields: 

𝑑𝑂3

𝑂3
=

−𝑘𝑑 𝑑𝑣𝑑

1 + 𝑘𝑐 + 𝑘𝑑
 (𝑆2) 

Integrating S2 between perturbed (O3 + ΔO3, v + Δvd) and unperturbed (O3 and vd) values yields: 

ln (1 +
Δ𝑂3

𝑂3
) = − ln (1 +

𝑘𝑑𝛥𝑣𝑑

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑   
) (𝑆3) 

Since ΔO3 is small compared to O3,0, first-order expansion is valid. When Δvd is small enough relative to 

vd for first-order approximation, Taylor’s expansion of S4 yield: 

Δ𝑂3

𝑂3
= −

𝑘𝑑

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑
𝛥𝑣𝑑  (𝑆4) 

S5 can be rearranged to yield: 

Δ𝑂3 = −
𝑘𝑑𝑣𝑑𝑂3

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑

𝛥𝑣𝑑

𝑣𝑑
= 𝛽

𝛥𝑣𝑑

𝑣𝑑
, 𝑤ℎ𝑒𝑟𝑒 𝛽 = −

𝑘𝑑𝑣𝑑𝑂3

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑
< 0 (𝑆5) 

This shows that when the Δvd/vd is small enough (ln(1+x) ≈ x) and does not cause non-linearity (kc and kd 

= constant) in chemistry, ΔO3 is linearly proportional to Δvd/vd. The error of linearizing the natural 

logarithms equals to the difference between ln(1+x) and x. This analysis gives the conditions for when the 

first-order approximation is reasonable, and allowing us to estimate the error when deviating from these 

condition. Assuming β is correctly estimated by chemical transport model, the error of linearization at 

Δvd/vd = ± 50% (the upper bound of Δvd/vd consistent with our analysis), is on the order of 25%. For more 

typical value of Δvd/vd (20%), the error is around 10%.  

As Δvd/vd gets larger, we can expand R.H.S of S3 to the second order and investigate sensitivity of ΔO3 to 

Δvd/vd: 

Δ𝑂3 = 𝛽
𝛥𝑣𝑑

𝑣𝑑
−

𝛽2

2𝑂3
(

𝛥𝑣𝑑

𝑣𝑑
)

2

= (𝛽 −
𝛽2

2𝑂3

𝛥𝑣𝑑

𝑣𝑑
) (

𝛥𝑣𝑑

𝑣𝑑
) = 𝛽′ 𝛥𝑣𝑑

𝑣𝑑
 (𝑆6) 

Where β’ is the “corrected β”, which is a function of Δvd/vd.  

To illustrate the potential impact of such non-linearity on ΔO3, we compare July ΔO3,Z03_BB estimated 

using first-order estimation with β derived from Δvd/vd = +15% (fig. S1b) and +30% (fig. S1a), and 

second-order approximation (fig. S1c), and the result is shown in figure S1. The three different methods 

produce very similar ΔO3, and their differences have little impact on our conclusion. For simplicity, we 

only show the result using β derived from Δvd/vd = +30% in the main manuscript.  



As noted above and in the main manuscript, our approach is limited by the assumption that chemistry and 

transport do not introduce non-linear terms which may not be realistic. Rather, our approach is intended to 

identify hotspots of impact, and quantify these potential impacts to a first order. More rigorous modeling 

efforts could then be targeted in future work.  

 

Figure S1. July ΔO3,Z03_BB calculated using a) first-order method where β is derived from Δvd/vd = 

+30% GC sensitivity run, b) first order method where β is derived from Δvd/vd = +15% GC 

sensitivity run, and c) second-order method with β derived from Δvd/vd = +15%. 

 

 

2. A brief description of photosynthesis-stomatal conductance (An-gs) module in TEMIR (a 

manuscript is in prep) 

TEMIR largely follows Oleson et al. (2013), where net photosynthetic rate (An, μmol CO2 m-2 s-1), 

stomatal conductance for water (gsw, μmol m-2 s-1) and CO2 concentration in leaf mesophyll (ci, mol mol-1) 

are solved simultaneously by the following coupled set of equations: 

𝐴𝑛 =
𝑔𝑠𝑤

1.6
(𝑐𝑎 − 𝑐𝑖) (𝑆7) 

𝑔𝑠𝑤 = 𝛽𝑡𝑔0 + 𝑔1

𝐴𝑛

𝑐𝑠
𝑅𝐻𝑠 (𝑆8) 

𝐴𝑛 = 𝐴 − 𝑅𝑑  (𝑆9) 

Here, ca is CO2 concentration (mol mol-1), βt is soil moisture stress factor (unitless), g0 is minimum 

stomatal conductance (μmol m-2 s-1), An is net photosynthetic rate (μmol CO2 m-2 s-1), A is gross 

photosynthetic rate (μmol CO2 m-2 s-1) and Rd is dark respiration rate (μmol CO2 m-2 s-1). Furthermore, cs 

and RHs are the CO2 concentration (mol mol-1) and relative humidity (unitless) at leaf surface. A is 

calculated following Bonan et al. (2011), which is based on Farquhar et al. (1980) and Collatz et al. 

(1992): 

Θ𝑐𝑗𝐴𝑖
2 − (𝐴𝑐 + 𝐴𝑗)𝐴𝑖 + 𝐴𝑐𝐴𝑗 = 0 (𝑆10) 

Θ𝑖𝑝𝐴2 − (𝐴𝑖 + 𝐴𝑝)𝐴 + 𝐴𝑖𝐴𝑝 = 0 (𝑆11) 

For C3 plants, Θcj = 0.98 and Θip = 0.95. For C4 plants, Θcj = 0.80 and Θip = 0.95. Rubisco-limited rate 

(Ac, μmol CO2 m-2 s-1), light-limited rate (Aj, μmol CO2 m-2 s-1), product-limited rate (Ap, μmol CO2 m-2 s-

1) and Rd are calculated as: 



𝐴𝑐 = {

𝑉𝑐 𝑚𝑎𝑥(𝑐𝑖 − Γ∗)

𝑐𝑖 + 𝐾𝑐(1 +
0.21𝑃𝑎𝑡𝑚

𝐾𝑜
)

 𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

𝑉𝑐 𝑚𝑎𝑥  𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆12) 

𝐴𝑗 = {

𝐽(𝑐𝑖 − Γ∗)

4𝑐𝑖 + 8Γ∗
 𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

0.23𝜙  𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆13) 

𝐴𝑐 = {

3𝑇𝑝 𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

𝑘𝑝

𝑐𝑖

𝑃𝑎𝑡𝑚
  𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆14) 

𝑅𝑑 = {
0.015𝑉𝑐 𝑚𝑎𝑥 𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠
0.025𝑉𝑐 𝑚𝑎𝑥  𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆15) 

Here, Vcmax, Γ*, Patm, J, φ, Tp and kp are the maximum rate of carboxylation (μmol m-2 s-1), CO2 

compensation point (mol mol-1), atmospheric pressure (Pa), electron transport rate (μmol m-2 s-1), 

absorbed photosynthetically active radiation (PAR) (W m-2), triose phosphate utilization rate (μmol m-2 s-

1) and initial slope of C4 CO2 response curve (μmol Pa-1 m-2 s-1). Kc and Ko are the Michaelis-Menten 

constants for CO2 and O2 (Pa). Furthermore, J is calculated as the smaller root of the following equation: 

0.7𝐽2 + (1.955𝜙 + 𝐽𝑚𝑎𝑥)𝐽 + 1.955𝜙 = 0 (𝑆16) 

Where Jmax is the maximum potential rate of electron transport (μmol m-2 s-1). As Jmax, φ, Vcmax and the 

variables related to Vcmax (Γ*, Jmax, Tp, Rd) differ between sunlit and shaded leaves, the above set of 

equations are solved separately for sunlit and shaded leaves. 

The parameters (Vcmax, Γ*, Kc, Ko, Jmax, Tp, Rd) are functions of vegetation temperature (Tv), and the 

temperature scaling formulae are given at eq. 8.9 to eq. 8.14, while the effect of temperature acclimation 

(Kattge and Knorr, 2007) on Jmax and Vcmax are given at eq. 8.15 and 8.16 in Oleson et al. (2013). Other 

details of the model formalism (e.g. canopy scaling and effect of βt on Vcmax) also follow Chapter 8 in 

Oleson et al. (2013), therefore we will focus on describing the main differences between CLM 4.5 and 

TEMIR. 

First, TEMIR is driven entirely by assimilated meteorology. Instead of solving the whole surface energy 

balance equation, TEMIR consistently calculates Tv from 2-meter air temperature (T2, K) and sensible 

heat flux (H, W m-2) using Monin-Obukhov similarity theory (Monin and Obukhov, 1954): 

𝑇𝑣 = 𝑇2 +
𝐻

𝜌𝑐𝑝
(𝑟𝑎,ℎ + 𝑟𝑏,ℎ) (𝑆16) 

Where ρ, cp, ra,h and rb,h are air density (kg m-3), specific heat of air at constant pressure (J kg-1 K-1), 

aerodynamic and laminar boundary-layer resistance (s m-1) of heat, respectively. 

Secondly, MERRA-2 only provides soil moisture output at two levels (surface and root zone), which is 

not compatible with the multi-layer soil module in CLM. Therefore, instead of aggregating βt from 

multiple soil layers, TEMIR calculates βt from the root-zone soil wetness of MERRA-2. Soil wetness (s) 

is first converted into soil matric potential (ψ, mm) using the following equation: 

𝜓 = 𝜓𝑠𝑎𝑡𝑠−𝐵 (𝑆17) 



Where ψsat and B are the soil matric potential (mm) at saturation and Clapp-Hornberger exponent (Clapp 

and Hornberger, 1978), which are related to soil property. Then βt is calculated as: 

𝛽𝑡 =
𝜓𝑐 − 𝜓

𝜓𝑐 − 𝜓0
 (

𝜃𝑠𝑎𝑡 − 𝜃𝑖𝑐𝑒

𝜃𝑠𝑎𝑡
) , 0 ≤ 𝛽𝑡 ≤ 1 (𝑆18) 

Where ψc and ψ0 are the soil matric potential (mm) at which stomata are full close or fully open, and the 

term in the bracket account for the fact that frozen water are not available for plants. 

 

 

Figure S2. July average soil moisture stress factor (βt). βt = 1 represents no soil moisture stress, 

while smaller βt means stronger soil moisture stress and more stomatal closure. βt = 0 signifies that 

soil moisture stress is so strong that it completely shuts down stomatal activity. 

 

 

 

 

 

 

 

 

 

 

  



3. Table A1 to Table A3 

 

 W98 Z03 W98_BB Z03_BB 

Ra 

𝑅𝑎 =
1

𝜅𝑢∗

[ln(
𝑧

𝑧0

) − Ψ (
𝑧

𝐿
) + Ψ(

𝑧0

𝐿
)] 

When 𝜍 ≥ 0, Ψ(𝜍) = −5𝜍 

When 𝜍 < 0, Ψ(𝜍) = 2 ln(
1+√1−16𝜍

2
)  

Rb 𝑅𝑏 =  
2

𝜅𝑢∗
(

𝑆𝑐

𝑃𝑟
)2/3  

Rs 

𝑅𝑠

= 𝑟𝑠(𝑃𝐴𝑅, 𝐿𝐴𝐼)𝑓𝑇

𝐷H2O

𝐷O3

 

𝑅𝑠

=
𝑟𝑠(𝑃𝐴𝑅, 𝐿𝐴𝐼)

(1 − 𝑤𝑠𝑡)𝑓𝑇𝑓𝑣𝑝𝑑𝑓𝜓

𝐷H2O

𝐷O3

 

𝑔𝑠 = 𝑔0 + 𝑚
𝐴𝑛

𝐶𝑠

ℎ𝑠 

𝑅𝑠 =
1

𝑔𝑠

𝐷H2O

𝐷O3

 

𝑔𝑠 = 𝑔0 + 𝑚
𝐴𝑛

𝐶𝑠

ℎ𝑠 

𝑅𝑠 =
1

(1 − 𝑤𝑠𝑡)𝑔𝑠

𝐷H2O

𝐷O3

 

Cuticular 

Resistance (Rcut) 
𝑅𝑐𝑢𝑡 =

𝑅𝑐𝑢𝑡0

𝐿𝐴𝐼
 

For dry surface, 

𝑅𝑐𝑢𝑡 =
𝑅𝑐𝑢𝑡𝑑0

𝑒0.03𝑅𝐻𝐿𝐴𝐼0.25𝑢∗

 

For wet surface, 

𝑅𝑐𝑢𝑡 =
𝑅𝑐𝑢𝑡𝑤0

𝐿𝐴𝐼0.5𝑢∗

 

Same as W98 Same as Z03 In-canopy 

aerodynamic 

resistance (Rac) 

Prescribed 𝑅𝑎𝑐 = 𝑅𝑎𝑐0

𝐿𝐴𝐼0.25

𝑢∗

 

Ground 

Resistance (Rg) 
Prescribed 

Lower-canopy 

aerodynamic 

resistance (Ralc) 

𝑅𝑎𝑙𝑐

= 100(1 +
1000

𝑅 + 10
) 

- 

Lower-canopy 

surface 

resistance (Rclc) 

Prescribed -   

Table A1S1: Brief description of the four dry deposition parameterizations. κ = von Karman constant, u* 

= friction velocity, z = reference height, z0 = roughness length, L = Obukhov length, Sc = Schmidt’s 

number, Pr = Prandtl number for air, LAI = leaf area index, PAR = photosynthetically active radiation, Dx 

= Diffusivity of species x in air, fT = temperature (T) stress function, fvpd = vapour pressure deficit (VPD) 

stress function, fψ = leaf water potential (ψ) stress function, wst = stomatal blocking fraction, An = Net 

photosynthetic rate, g0 = minimum stomatal conductance, m = Ball-Berry slope, Cs = CO2 concentration 

on leaf surface, hs = relative humidity on leaf surface, RH = relative humidity, h = canopy height, R = 

downward shortwave radiation 

  



CLM PFT Z03 surface type 

Needleleaf evergreen tree - temperate 
Evergreen needleleaf trees 

Needleleaf evergreen tree - boreal 

Needleleaf deciduous tree - boreal Deciduous needleleaf trees 

Broadleaf evergreen tree - tropical Tropical broadleaf trees 

Broadleaf deciduous tree - tropical 

Deciduous broadleaf trees Broadleaf deciduous tree - temperate 

Broadleaf deciduous tree - boreal 

Broadleaf evergreen shrub - temperate Thorn shrubs 

Broadleaf deciduous shrub - temperate 
Deciduous shrubs 

Broadleaf deciduous shrub - boreal 

C3 arctic grass Tundra 

C3 grass Short grass 

C4 grass Corn* 

C3 crop Crops 

Table A2S2: Mapping between CLM PFT and Z03 surface type.  

*C4 grasses are mapped to corn due to the similarity in photosynthetic pathway, and hence stomatal 

control 

 

Land Type Longitude Latitude Season Mean daytime vd (cm 

s-1) 

Citation 

Deciduous 

Forest 

-80.9° 44.3° Summer 0.92 Padro et al., 1991 

Winter 0.28 

99.7° 18.3° Spring 0.38 Matsuda et al., 2005 

Summer 0.65 

-72.2° 42.7° Summer 0.61 Munger et al., 1996 

Winter 0.28 

-78.8° 41.6° Summer 0.83 Finkelstein et al., 2000 

-75.2° 43.6° Summer 0.82 

Coniferous 

Forest 

-3.4° 55.3° Spring 0.58 Coe et al., 1995 

-79.1° 36.0° Spring 0.79 Finkelstein et al., 2000 

-120.6° 38.9° Spring 0.58 Kurpius et al., 2002 

Summer 0.59 

Autumn 0.43 

Winter 0.45 

-0.7° 44.2° Summer 0.48 Lamaud et al., 1994 

105.5° 40.0° Summer 0.39 Turnipseed et al., 2009 

-66.7° 54.8° Summer 0.26 Munger et al., 1996 

11.1° 60.4° Spring 0.31 Hole et al., 2004 

Summer 0.48 

Autumn 0.20 

Winter 0.074 

8.4° 56.3° Spring 0.68 Mikkelsen et al., 2004 

Summer 0.80 

Autumn 0.83 

Tropical 

Rainforest 

117.9° 4.9° Wet 0.5 Fowler et al., 2011# 

Wet 1.0 

-61.8° -10.1° Wet 1.1 Rummel et al., 2007 

Dry 0.5 

-60.0° 3.0° Wet 1.8 Song-Miao et al., 1990 

Grass -88.2° 40.0° Summer 0.56 Droppo, 1985 



-3.2° 57.8° Spring 0.59 Fowler et al., 2001 

Summer 0.56 

Autumn 0.42 

-119.8° 37.0° Summer 0.15 Padro et al., 1994 

-8.6° 40.7° Summer 0.22 Pio et al., 2000 

Winter 0.38 

-104.8° 40.5° Spring 0.22 Stocker et al., 1993 

10.5° 52.4° Spring 0.44 Ḿesźaros et al., 2009 

-96.4° 39.5° Summer 0.62 Gao and Wesely, 1995 

Crops -2.8° 55.9° 

Not 

applicable* 

0.69 Coyle et al., 2009 

-88.4° 40.1° 0.53 Meyers et al., 1998 

0.12 

-87.0° 36.7° 0.85 

0.39 

-86.0° 34.3° 0.40 

-120.7° 36.8° 0.76 Padro et al., 1994 

8.0° 48.7° 0.41 Pilegaard et al., 1998 

2.0° 48.9° 0.60 Stella et al., 2011 

0.6° 44.4° 0.47 

1.4° 43.8° 0.37 

Table A3S3: Information on all the measurement sites included in model evaluation 

*Crops are heavily influenced by management practices rather than natural seasonality. Thus, two data 

sets in the same location generally represent before and after certain a crop phenology or human 

management event. 

#The two measurements are taken at a rainforest and an oil palm plantation nearby.  
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