
 

September 26, 2019 

RE: Submission acp-2019-429 

 

Dear Handing Editor, 

 

Please find below our response to the Reviewer Comments on our manuscript, “Importance of Dry 

Deposition Parameterization Choice in Global Simulations of Surface Ozone”. We are grateful for the 

reviewer comments, and feel that the changes made in response to these comments have strengthened 

the quality of our manuscript.  

 

We follow the response to the reviewer comments with a Tracked Changes version of our manuscript.  

 

We would like to note that, in response to comments from Reviewer 1, we have uploaded a new 

Supplement to accompany our manuscript. Given that we have added a Supplement, we moved Tables 

A1, A2, and A3 (which were included as Appendices in our original submission) into this new 

Supplement. The new supplement is also attached here following the Tracked Changes manuscript.  

 

As always, we are very grateful for your time and effort as handling editor for our manuscript, and we 

look forward to your decision. 

 

All the best, 

 

Jeffrey Geddes (Corresponding Author) 

Assistant Professor 

Department of Earth & Environment 

Boston University 

jgeddes@bu.edu 

 

mailto:jgeddes@bu.edu


We thank the referee for their positive and constructive comments on our manuscript. We provide our 

response to each individual reviewer comment (shown in italics) below, including detailed changes to the 

manuscript (additions in red). 

 

Major issues: 

1) The linearity of response of surface ozone concentration to ozone deposition velocity is uncertain, 

but a major assumption in this study. I’m not convinced that the results from wong et al. 2018 are 

sufficient to warrant confidence in this assumption. one reason being that they were testing the 

response to surface ozone to LAI, which involves changes in several processes. 

 

Response: 

We agree with the reviewer that our assumption of linearity is important. Our objective with this 

experiment was to use this first order approach to identify “hotspots” globally where 

uncertainty/variability in dry deposition velocity could have large impacts on simulated ozone, and then 

use the assumption of linearity to approximate those impacts. Our approach helps identify regions where 

more rigorous observations and modeling could be targeted for future work. Still, we address this 

assumption further. The reviewer notes in particular that the response involves changes in several 

processes (e.g. non-linearity in chemistry, transport and changes in background ozone).  

In response to the reviewer’s comment, we have made two changes: 

(1) We have changed the manuscript to be more clear about our intentions with using the assumption 

linearity between perturbations in dry deposition velocity and ozone concentrations, and include a 

stronger caveat in this interpretation: 

Nevertheless, we use this sensitivity to estimate the potential impact of vd simulation on surface 

O3 concentration to a first order in subsequent sections. This approach is based on the 

reasonably linear response of surface O3 to vd over comparable range of vd change (Wong et al., 

2018).  We use this sensitivity to identify areas where local uncertainty and variability in vd is 

expected to affect local surface O3 concentration, and we use the assumption of linearity to estimate 

those impacts to a first order (e.g. Wong et al. 2018). […] However, we note this first-order 

assumption may not be able to capture the effects of chemical transport, changes in background ozone 

and non-linearity in chemistry, which can contribute a non-linear response of O3 concentration to vd. 

Our experiment helps identify regions where more rigorous observation and modeling efforts could 

be targeted for future work. 

 

(2) To provide an estimate of the error introduced by assuming linearity, we further investigated this 

assumption in two ways:  

 

(a) We have mathematically derived an argument for our first-order approximation to 

calculate ΔO3 under small Δvd, and included this in a new Supplemental Information 

section. 

(b) We ran another GC sensitivity simulation with 15% increase (instead of the 30% 

increase) in vd and to test a second-order approximation to calculate July ΔO3 with the 



Z03_BB deposition parameterization. This approach is compared with our original 

approach in the new Supplemental Information section.  

Based on our analysis, the uncertainty introduced by first-order approximation is within 30%. We 

have added the following to the manuscript: 

In the Methods Section of the manuscript: 

We use this sensitivity to identify areas where local uncertainty and variability in vd is expected 

to affect local surface O3 concentration, and we use the assumption of linearity to estimate those 

impacts to a first order (e.g. Wong et al. 2018). In the Supplemental Methods, we justify this 

first order assumption mathematically, as well as demonstrate the impact of using a second 

order approximation, and estimate the uncertainty using an assumption of linearity to be 

within 30%. However, we note this first-order assumption may not be able to capture the effects 

of chemical transport, changes in background ozone and non-linearity in chemistry, which can 

contribute to response of O3 concentration to vd. Our experiment could help identify regions 

where more rigorous modelling efforts could be targeted in future work. 

Supplementary Information, Section 1: 

Mathematical analysis for sensitivity of O3 to Δvd/vd: 

Assume that Δ𝑂3 is due to changes in dry deposition flux (with proportionality constant kd) and 

other first-order processes (e.g. NO titration, loss to HO2 and OH, having total reaction rate kc): 

𝑑𝑂3 = 𝑑(−𝑘𝑐𝑂3 − 𝑘𝑑𝑣𝑑𝑂3) (𝑆1) 

Here, kc and kd (which are related to meteorology and concentration of other relevant chemical 

species), are assumed to be relatively constant, so that that the perturbation in vd does not trigger 

significant non-linearity. Expanding the differential and rearranging the terms yields: 

𝑑𝑂3

𝑂3
=

−𝑘𝑑 𝑑𝑣𝑑

1 + 𝑘𝑐 + 𝑘𝑑
 (𝑆2) 

Integrating S2 between perturbed (O3 + ΔO3, v + Δvd) and unperturbed (O3 and vd) values yields: 

ln (1 +
Δ𝑂3

𝑂3
) = − ln (1 +

𝑘𝑑𝛥𝑣𝑑

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑  
) (𝑆3) 

Since ΔO3 is small compared to O3,0, first-order expansion is valid. When Δvd is small enough 

relative to vd for first-order approximation, Taylor’s expansion of S4 yield: 

Δ𝑂3

𝑂3
= −

𝑘𝑑

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑
𝛥𝑣𝑑 (𝑆4) 

S5 can be rearranged to yield: 

Δ𝑂3 = −
𝑘𝑑𝑣𝑑𝑂3

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑

𝛥𝑣𝑑

𝑣𝑑
= 𝛽

𝛥𝑣𝑑

𝑣𝑑
, 𝑤ℎ𝑒𝑟𝑒 𝛽 = −

𝑘𝑑𝑣𝑑𝑂3

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑
< 0 (𝑆5) 

This shows that when the Δvd/vd is small enough (ln(1+x) ≈ x) and does not cause non-linearity (kc 

and kd = constant) in chemistry, ΔO3 is linearly proportional to Δvd/vd. The error of linearizing the 

natural logarithms equals to the difference between ln(1+x) and x. This analysis gives the 



conditions for when the first-order approximation is reasonable, and allowing us to estimate the 

error when deviating from these condition. Assuming β is correctly estimated by chemical 

transport model, the error of linearization at Δvd/vd = ± 50% (the upper bound of Δvd/vd consistent 

with our analysis), is on the order of 25%. For more typical value of Δvd/vd (20%), the error is 

around 10%.  

As Δvd/vd gets larger, we can expand R.H.S of S3 to the second order and investigate sensitivity 

of ΔO3 to Δvd/vd: 

Δ𝑂3 = 𝛽
𝛥𝑣𝑑

𝑣𝑑
−

𝛽2

2𝑂3
(

𝛥𝑣𝑑

𝑣𝑑
)

2

= (𝛽 −
𝛽2

2𝑂3

𝛥𝑣𝑑

𝑣𝑑
) (

𝛥𝑣𝑑

𝑣𝑑
) = 𝛽′ 𝛥𝑣𝑑

𝑣𝑑
 (𝑆6) 

Where β’ is the “corrected β”, which is a function of Δvd/vd.  

To illustrate the potential impact of such non-linearity on ΔO3, we compare July ΔO3,Z03_BB 

estimated using first-order estimation with β derived from Δvd/vd = +15% and +30%, and second-

order approximation, and the result is shown in figure S1. The three different methods produce 

very similar ΔO3, and their differences have little impact on our conclusion. For simplicity, we 

only show the result using β derived from Δvd/vd = +30% in the main manuscript.  

As noted above and in the main manuscript, our approach is limited by the assumption that 

chemistry and transport do not introduce non-linear terms which may not be realistic. Rather, our 

approach is intended to identify hotspots of impact, and quantify these potential impacts to a first 

order. More rigorous modeling efforts could then be targeted in future work.  

  

 Supplemental figure 1:  

 

Figure S1. July ΔO3,Z03_BB calculated using a) first-order method where β is derived from Δvd/vd = 

+30% GC sensitivity run, b) first-order method where β is derived from Δvd/vd = +15% GC 

sensitivity run, and c) second-order method with β derived from Δvd/vd = +15%. 

 

 

2) The authors’ attribution of biases and intermodel differences are entirely speculative. there is no 

rigorous evaluation of the processes/aspects leading to differences. I tend to not be in favor of 

such speculation and I think it masks the strength of the model evaluation (that not any one 

parameterization is best or worst) and model intercomparison. 

 



Response: 

We appreciate the reviewer’s caution, and do not want to detract from other strengths of the 

manuscript. We have identified several speculative statements in our model evaluation, and have 

removed them from the manuscript.  

We have removed the following statements from the manuscript: 

…The simple linear VPD response function in Z03 may overestimate the sensitivity of gs to 

VPD under the high temperature in tropical rainforest… 

…The higher cuticular uptake may explain the better performance of Z03 over W98 over 

coniferous forests, where strong non-stomatal (though not necessarily cuticular) ozone sinks 

are often observed (e.g. Gerosa et al., 2005; Wolfe et al., 2011).… 

…This may be attributed to the lack of response to VPD over all crop and grass land types 

in Z03.… 

  

We believe additional cases are addressed in response to the Reviewer’s minor comments below. 

  

Minor issues: 

10: I tend to think the sinks of ozone are chemistry and dry deposition so “second largest sink” doesn’t 

say much to me: 

Response: We agree with the reviewer that this wording is unnecessary. In response, we have 

changed our manuscript to: 

Dry deposition is the second largest a major sink of tropospheric ozone. 

 

15-16: “to drive four ozone dry deposition parameterizations” 

Response: We have made the suggested changes:  

We use consistent assimilated meteorology and satellite-derived leaf area index (LAI) to 

drive four ozone dry deposition parametrizations simulate vd over 1982-2011 driven by four 

sets of ozone dry deposition parametrization that are representative of the current 

approaches of global ozone dry deposition modelling over 1982-2011 … 

 

 

62: I wouldn’t say Silva & Heald 2018 is a review 

Response: We have made the suggested correction: 

A recent review study (Silva and Heald, 2018)… 

 



66: “account for” is vague; in general this sentence implies canopy column models are better than big-

leaf ones, which has yet to be shown in the literature, and  

67: the authors said previously that reaction with BVOCs is a nonstomatal pathway so here saying that it 

is in addition to surface sinks is a little confusing 

Response: We agree that “account for” is vague. Our intention was to discuss the additional 

processes and details that canopy column model simulates comparing to big-leaf model, rather 

than commenting which one is better (in terms of more accurate simulation of vd). In response to 

the reviewer comment we have reworded this: 

…which are able to account for simulate the effects vertical gradients inside the canopy 

environment, and gas-phase reaction with BVOCs in addition to surface sinks… 

 

67-71: canopy column models still use resistance networks … 

Response: We agree that the main difference between canopy column model and general CTM 

parameterizations is multi-layer vs big-leaf representation, rather than the use of resistance 

network. In response to the reviewer comment we have reworded this.  

…and horizontal resolution for resolving the plant canopy in such detail, instead represent 

plant canopy foliage as 1 to 2 big leaves, and rely on parameterization vd is parameterized as 

a network of resistance… 

 

77-80: this has yet to be shown… these formulations can be variable across models … 

Response: We acknowledge the formulations can be variable across model. Wu et al. (2018) 

show that out of the 4 big-leaf parameterizations that are considered in their work, all of them 

shares very similar formulae for rb. ra is mostly based using Monin-Obukhov similarity theory 

and the difference in universal function is not found to affect vd significantly. Other 

parameterizations that are not included in that study (e.g. Simpson et al., 2012) often use very 

similar formulae for rb and Monin-Obukhov similarity theory for ra. In response to the reviewer 

comment, we have reworded this: 

The calculation of Ra (mostly based on Monin-Obukhov similarity theory) and Rb… 

 

80-88: the connection between these paragraphs (last sentence of previous one and first sentence of next 

one) could be articulated better 

 Response: We agree with this suggestion. In response, we have added the following wording:  

Such formalism is empirical in nature and does not adequately represent the underlying 

ecophyioslogical processes affecting Rs (e.g. temperature acclimation). An advance of these 

efforts includes harmonizing Rs with that computed by land surface models… 

 



101: Hardacre et al. show factor of 2-3 differences across models - so are all models’ seasonal cycles 

well represented? also I suggest changing “demonstrating” to “suggesting”. 

Response: We agree with the reviewer. In response to the reviewer comment, we have reworded 

this sentence: 

This work found that the seasonal cycle is well-simulated across models, while 

demonstrating suggests that the difference in land cover classification is the main source of 

discrepancy between models… 

 

125: “unable” seems harsh; it doesn’t seem Clifton et al. even tried to do this 

 Response: We have reworded this:  

...although they were unable to conclude do not show how the IAV of vd may contribute to 

the IAV of O3… 

 

128: cut “physics” 

Response: We have made this change as requested. 

 

145: I find the placement/existence of this sentence strange. the authors don’t investigate the same 

parameterizations that Wu et al. do. 

Response: We agree with the reviewer, and have removed this sentence. 

 

153: refs for strong empirical relationship 

Response: In response to the reviewer comment, we have added references to this statement: 

…strong empirical relationship between photosynthesis (An) and stomatal conductance (gs) 

(e.g. Ball et al., 1987; Lin et al., 2015)… 

 

162-173: I see that the authors have basically organized their parameterizations according to model (w/ 

exception of #2)  

1) The GEOS Chem parameterization  

2) Zhang parameterization  

3) The CESM parameterization  

4) The UKCA parameterization  

I didn’t realize this at first and the parameterizations chosen seemed quite strange. I would urge the 

authors to re-frame their parameterization description (but also noting that their parameterizations are 

not exact replicates of a given model) 



Response: We agree with the reviewer that our choice of configurations is broadly implemented 

in some CTMs as mentioned. We intentionally separated our choice of parameterizations from 

their actual implementation in CTMs because we want our result to be representative of classes of 

approaches of modelling vd, as we have explained this in line 150 – 158. Furthermore, the choice 

of doing Z03_BB and W98_BB comes from recent efforts to harmonize CTM Rs with Earth 

System Model/Land Surface Model Rs as a viable option for improving vd simulations (line 86). 

However, we agree with the reviewer that we could reframe these descriptions to be more clear, 

and use examples in their description. In response to the reviewer’s comment we have made the 

following changes: 

3) W89 with Rs calculated from a widely-used coupled An-gs model, the Ball-Berry model 

(hereafter referred to as W98_BB) (Ball et al., 1987; Collatz et al., 1992, 1991), which is 

similar to that proposed by Val Martin et al. (2014), and therefore the current 

parameterization in Community Earth System Model (CESM). This represents Type 3 in 

stomatal and Type 1 in non-stomatal parametrization. 

4) Z03 with the Ball-Berry model (Z03_BB), which is comparable to the configuration in 

Centoni (2017) implemented in United Kingdom Chemistry and Aerosol (UKCA) model. 

This represents Type 3 in stomatal and Type 2 in non-stomatal parametrization. 

 

175: It doesn’t quite make sense to me that the authors say the Zhang parameterization is “open source” 

in one sentence and a couple sentences later say that implementing it required personal communication 

with Zhiyong and Leiming. 

Response: This is a good point. We deleted the word “open-source”. 

 

180: Given that GEOS Chem doesnt have a land surface model, I think the authors need to clarify how 

exactly Anet is calculated. 

Response: We have added a brief description of the An-gs model in the new supplemental material 

section: 

 

A brief description of photosynthesis-stomatal conductance (An-gs) module in TEMIR (a 

manuscript is in prep) 

TEMIR largely follows Oleson et al. (2013), where net photosynthetic rate (An, μmol CO2 m
-2 s-1), 

stomatal conductance for water (gsw, μmol m-2 s-1) and CO2 concentration in leaf mesophyll (ci, 

mol mol-1) are solved simultaneously by the following coupled set of equations: 

𝐴𝑛 =
𝑔𝑠𝑤

1.6
(𝑐𝑎 − 𝑐𝑖) (𝑆7) 

𝑔𝑠𝑤 = 𝛽𝑡𝑔0 + 𝑔1

𝐴𝑛

𝑐𝑠
𝑅𝐻𝑠 (𝑆8) 

𝐴𝑛 = 𝐴 − 𝑅𝑑  (𝑆9) 

Here, ca is CO2 concentration (mol mol-1), βt is soil moisture stress factor (unitless), g0 is 

minimum stomatal conductance (μmol m-2 s-1), An is net photosynthetic rate (μmol CO2 m
-2 s-1), A 



is gross photosynthetic rate (μmol CO2 m
-2 s-1) and Rd is dark respiration rate (μmol CO2 m

-2 s-1). 

Furthermore, cs and RHs are the CO2 concentration (mol mol-1) and relative humidity (unitless) at 

leaf surface. A is calculated following Bonan et al. (2011), which is based on Farquhar et al. 

(1980) and Collatz et al. (1992): 

Θ𝑐𝑗𝐴𝑖
2 − (𝐴𝑐 + 𝐴𝑗)𝐴𝑖 + 𝐴𝑐𝐴𝑗 = 0 (𝑆10) 

Θ𝑖𝑝𝐴2 − (𝐴𝑖 + 𝐴𝑝)𝐴 + 𝐴𝑖𝐴𝑝 = 0 (𝑆11) 

For C3 plants, Θcj = 0.98 and Θip = 0.95. For C4 plants, Θcj = 0.80 and Θip = 0.95. Rubisco-

limited rate (Ac, μmol CO2 m
-2 s-1), light-limited rate (Aj, μmol CO2 m

-2 s-1), product-limited rate 

(Ap, μmol CO2 m
-2 s-1) and Rd are calculated as: 

𝐴𝑐 = {

𝑉𝑐 𝑚𝑎𝑥(𝑐𝑖 − Γ∗)

𝑐𝑖 + 𝐾𝑐(1 +
0.21𝑃𝑎𝑡𝑚

𝐾𝑜
)

 𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

𝑉𝑐 𝑚𝑎𝑥   𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆12) 

𝐴𝑗 = {

𝐽(𝑐𝑖 − Γ∗)

4𝑐𝑖 + 8Γ∗
 𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

0.23𝜙  𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆13) 

𝐴𝑐 = {

3𝑇𝑝 𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

𝑘𝑝

𝑐𝑖

𝑃𝑎𝑡𝑚
  𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆14) 

𝑅𝑑 = {
0.015𝑉𝑐 𝑚𝑎𝑥  𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠
0.025𝑉𝑐 𝑚𝑎𝑥   𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆15) 

Here, Vcmax, Γ*, Patm, J, φ, Tp and kp are the maximum rate of carboxylation (μmol m-2 s-1), CO2 

compensation point (mol mol-1), atmospheric pressure (Pa), electron transport rate (μmol m-2 s-1), 

absorbed photosynthetically active radiation (PAR) (W m-2), triose phosphate utilization rate 

(μmol m-2 s-1) and initial slope of C4 CO2 response curve (μmol Pa-1 m-2 s-1). Kc and Ko are the 

Michaelis-Menten constants for CO2 and O2 (Pa). Furthermore, J is calculated as the smaller root 

of the following equation: 

0.7𝐽2 + (1.955𝜙 + 𝐽𝑚𝑎𝑥)𝐽 + 1.955𝜙 = 0 (𝑆16) 

Where Jmax is the maximum potential rate of electron transport (μmol m-2 s-1). As Jmax, φ, Vcmax and 

the variables related to Vcmax (Γ*, Jmax, Tp, Rd) differ between sunlit and shaded leaves, the above 

set of equations are solved separately for sunlit and shaded leaves. 

The parameters (Vcmax, Γ*, Kc, Ko, Jmax, Tp, Rd) are functions of vegetation temperature (Tv), and 

the temperature scaling formulae are given at eq. 8.9 to eq. 8.14, while the effect of temperature 

acclimation (Kattge and Knorr, 2007) on Jmax and Vcmax are given at eq. 8.15 and 8.16 in Oleson et 

al. (2013). Other details of the model formalism (e.g. canopy scaling and effect of βt on Vcmax) 

also follow Chapter 8 in Oleson et al. (2013), therefore we will focus on describing the main 

differences between CLM 4.5 and TEMIR.  

First, TEMIR is driven entirely by assimilated meteorology. Instead of solving the whole surface 

energy balance equation, TEMIR consistently calculates Tv from 2-meter air temperature (T2, K) 



and sensible heat flux (H, W m-2) using Monin-Obukhov similarity theory (Monin and Obukhov, 

1954): 

𝑇𝑣 = 𝑇2 +
𝐻

𝜌𝑐𝑝
(𝑟𝑎,ℎ + 𝑟𝑏,ℎ) (𝑆16) 

Where ρ, cp, ra,h and rb,h are air density (kg m-3), specific heat of air at constant pressure (J kg-1 K-

1), aerodynamic and laminar boundary-layer resistance (s m-1) of heat, respectively.  

Secondly, MERRA-2 only provides soil moisture output at two levels (surface and root zone), 

which is not compatible with the multi-layer soil module in CLM. Therefore, instead of 

aggregating βt from multiple soil layers, TEMIR calculates βt from the root-zone soil wetness of 

MERRA-2. Soil wetness (s) is first converted into soil matric potential (ψ, mm) using the 

following equation: 

𝜓 = 𝜓𝑠𝑎𝑡𝑠−𝐵 (𝑆17) 

Where ψsat and B are the soil matric potential (mm) at saturation and Clapp-Hornberger exponent 

(Clapp and Hornberger, 1978), which are related to soil property. Then βt is calculated as: 

𝛽𝑡 =
𝜓𝑐 − 𝜓

𝜓𝑐 − 𝜓0
 (

𝜃𝑠𝑎𝑡 − 𝜃𝑖𝑐𝑒

𝜃𝑠𝑎𝑡
) , 0 ≤ 𝛽𝑡 ≤ 1 (𝑆18) 

Where ψc and ψ0 are the soil matric potential (mm) at which stomata are full close or fully open, 

and the term in the bracket account for the fact that frozen water are not available for plants.  

 

182-183: It’s fine not to test Ra and Rb, but i suggest that the authors do not use this qualifier. This isn’t 

well understood (Does Fares et al. even show this?) 

Response: In response to the reviewer’s comment we have deleted this qualifier: 

…which is numerically stable (Sun et al., 2012). Since discrepancies in Rc parameterizations 

typically dominates the uncertainty of deposition velocity of O3 vd (Fares et al., 2010; e.g. 

Wu et al., 2018)… 

 

188-9: has this model been evaluated? or used previously?  

Response: An evaluation paper of this model is in prep by collaborators who hope to have this 

submitted shortly in a Discussion format, and we intend to add this citation if possible before 

publicatio.  

 

194-5: what are these variables used for? 

Response: These variables are needed to drive the dry deposition parameterizations, as they 

require land cover classification (basically PFT) and LAI. Soil property is required for running 

the An-gs model. In response to the reviewer’s question we have added the following text to our 

manuscript: 



…We use the CLM land surface dataset (Lawrence and Chase, 2007), which contains 

information for land cover, per-grid cell coverage of each plant functional type (PFT), and 

PFT-specific LAI, which are required to drive the dry deposition parametrizations, and soil 

property, which is required to drive the An-gs model in addition to PFT and PFT-specific 

LAI. 

 

195: presumably the authors' decisions about land type mapping (& differences for “W89” vs “Z03”) 

impact the authors' results… one implication of this is that the authors' statement in the abstract or 

introduction that the only thing different across parameterizations is the model structure is not 

necessarily true 

Response: The reviewer raises an excellent point. We agree that this is one of the key uncertainty 

of our approach and deserves more discussion. This is mostly limited to herbaceous and shrub 

land type as the CLM forest PFT correspond pretty well to W98/Z03 land types. In response to 

the reviewer’s comment, we added the following: 

… do not resolve croplands into such detail. Having land cover maps that distinguish 

between more crop types could potentially improve the performance of Z03. The evaluation 

for herbaceous land types also suggests that as CLM PFT do not have exact correspondence 

with W98 and Z03 land types, our results over herbaceous land types are subject 

uncertainty in land type mapping (e.g. tundra vs grassland, specific vs generic crops, C3 vs 

C4 grass). 

 

197: I would suggest cutting the "(eg. leaf physiological and soil hydrauilic constants)” - becoming more 

specific here doesn’t help readers when the parameterizations are not laid out and we have no idea what 

these terms do/stand for 

Response: This was removed as suggested. 

 

198: what’s z0? 

Response: We have clarified this in the manuscript: 

… while land-cover specific roughness length (z0) values follow Geddes et al. (2016). 

 

198: how is leaf wetness calculated? how is snow calculated? 

Response: We have added the following to our manuscript: 

…follow Geddes et al. (2016). Leaf is set to be wet when either latent heat flux < 0 W m-2 or 

precipitation > 0.2 mm hr-1. Fractional coverage of snow for Z03 is parameterized as a land-

type specific function of snow depth following the original manuscript of Z03, while W98 

flags grid cells with albedo > 0.4 or permanently glaciated as snow-covered.  

 



203: how do the authors scale PFT-specific LAI? is there an established method of doing this? 

presumably this has implications for the findings 

Response: We choose to derive scaling factors as the direct disaggregation method of Lawrence 

and Chase (2007) is very difficult to replicate, and derived the grid-cell level scaling factor at 

2°×2.5°  by comparing the monthly mean LAI at each year with that of the 30-year mean. In 

theory PFT-specific LAI can be simulated by land surface model, but that will be even more 

uncertain and less empirically-constrained then using satellite LAI. In response to the reviewer 

comment, we clarify our approach in the manuscript: 

We use this data set to derive the interannual scaling factors as the ratio between the 

monthly LAI at specific year and that of the 30-year mean of GIMMS LAI3g, that can be 

applied to scale the baseline CLM-derived LAI (Lawrence and Chase, 2007) for each month 

over 1982 to 2011… 

 

217: I think the authors need to articulate here or in the introduction the various effects that high CO2 

may have on ozone dry deposition velocity and the various uncertainties in our understanding of CO2 

fertilization (& reference previous work examining this) 

Response: We added the following:  

…enhanced cuticular O3 uptake under leaf surface wetness (Altimir et al., 2006; Potier et 

al., 2015, 2017; Sun et al., 2016). Furthermore, terrestrial atmosphere-biosphere exchange is 

also directly affected by CO2, as CO2 can drive increases in LAI (Zhu et al., 2016) while 

inhibiting gs (Ainsworth and Rogers, 2007). These can have important implications on vd, as 

shown by Sanderson et al. (2007), where doubling current CO2 level reduces gs by 0.5 – 2.0 

mm s-1, and by Wu et al. (2012) where vd increases substantially due to CO2 fertilization at 

2100. Observations from the Free Air CO2 Enrichment (FACE) experiments also CO2 

fertilization and inhibition of gs effects, but the impacts are variable and species specific 

such that extrapolation of these effects to global forest cover is cautioned (Norby and Zak, 

2011). 

 

229: is the proper/up-to-date way of referencing GEOS-Chem? 

Response: We have replaced the citation to Bey et al. (2001) with a link to the GEOS-Chem 

model, which is up-to-date and we believe is consistent with the GEOS-Chem community’s 

approach (in addition to including citations to the most relevant developments in the GEOS-

Chem chemistry, as we have done).  

 

237: binned = jargon 

Response: We changed the sentence to:  

Both of the maps are binned remapped from their native resolutions to 0.25°×0.25°. 

 



243-246: discussing about dry deposition of other species and impacts on ozone requires introducing 

some concepts (or cutting talking about dry deposition of other species) 

Response: We removed the sentence talking about dry deposition of other species. 

 

249-251: this seems like a strange choice to me. it's not differences in transport per se, it's differences in 

background ozone caused by changes in ozone dry deposition. why wouldn’t the authors want to capture 

this? because it contributes to nonlinear responses to ozone dry deposition? 

Response: We agree with reviewer’s comment that perturbation in vd causes changes in 

background O3, and this can be potentially important. Our main objective is to study the local 

uncertainty in O3 due to local uncertainty in vd. Therefore, we choose to limit our study to regions 

with sufficiently high vd, where the changes and uncertainties in surface O3 are more likely to be 

dominated by the direct effect of vd rather than changes in background O3, and avoid the potential 

non-linearity as suggested by the reviewer. In response to the reviewer’s comment, we have 

clarified this in our mauscript:  

Nevertheless, we We use this sensitivity to identify areas where local uncertainty and 

variability in vd is expected to affect local surface O3 concentration, and we use the 

assumption of linearity to estimate those impacts to a first order (e.g. Wong et al. 2018).  

…are expected to be attributed more to chemical transport changes in background O3 

rather than… 

 

249: what is the baseline simulation? 

Response: We make the following change: 

…where the monthly average vd is greater than 0.25 cm s-1 in the baseline unperturbed 

GEOS-Chem simulation… 

 

254: Why not CLIM+LAI+CO2 as well? 

Response: As we show later, over these 30 years, CO2 has very minor effect on vd (fig. 9). In 

response to the reviewer’s question, we have added the following: 

…largely based on the evaluation presented in Silva and Heald (2018). We do not include 

the evaluation of vd from [Clim+LAI+CO2] scenario as we find that the impact of CO2 

concentration on vd is negligible over the period of concern, as we will show in subsequent 

sections.  

 

261-3: How many sites does this cut? 

Response: This removes 1/3 of the original data (25 data sets). In response to the reviewer’s 

question, we have added this: 



While this leads to reduction of dataset size comparing to removes 1/3 of the original data 

sets used in Silva and Heald (2018)… 

 

265: Fractional coverage of what? (please spell out in text) Why are these figures shown? they are not 

very useful for the reader 

Response: For fractional coverage, we refer to “each major land type” in line 267. We do agree 

that our description did not help readers to understand the graph. In response to the reviewer 

questions, we have made the following changes: 

Nearly all the observations are clustered in Europe and North America, except three sites in 

the tropical rainforest and one site in tropical deciduous forest in Thailand. For most major 

land types, there are significant mismatches between the locations of flux measurements 

and the dominant land cover fraction, which may hinder the spatial representativeness of 

our evaluation.  

 

270-1: Not sure what the point of this sentence is 

Response: We agree that the statement is unnecessary. We have removed the sentence. 

 

273: it seems strange to me that the authors would generalize such as bias, given that it’s unclear if the 

bias is caused by a particular attribute of a land type or process, and that the land type-specific biases 

differ across the parameterizations 

Response: We agree with the reviewer that it may not be a good choice to generalize such bias. 

We have made the following change: 

As summarized in Table 2, each parameterization shows distinct biases over specific land 

types (we subsequently refer to this as the “land-type specific bias” unique to each 

parameterization). The performance metrics of each parameterization at each land type are 

summarized in table 2.  

 

282: what does N=5 mean? 5 sites? 5 data points?  

Response: Thanks for pointing out this ambiguity. We have made the following changes: 

… by the four dry deposition parameterizations, with N referring to number of data points 

(1 data point = 1 seasonal mean). 

 

288: if the authors are implying ambient chemistry is happening then they should just say it 

Response: As suggested in earlier response, this sentence contains unnecessary speculation and 

therefore we have deleted the sentence.  

300: meaning that the authors do not leverage it 



Response: Yes. We have clarified this in our manuscript: 

…as most global land cover data sets do not resolve croplands into such detail. Having land 

cover maps that distinguish between more crop types could potentially improve the 

performance of Z03…  

  

301-302: I’m not sure that the following lines illustrate this; in other words, i think BB “generally but not 

universally leads to improvements” is not supported by the actual findings — it seems to be for Z03 — but 

not for Wesely — which may suggest that we need to be paying attention to nonstomatal deposition 

estimates too. 

Response: We agree that non-stomatal deposition should not be overlooked, and we agree that the 

improvement of Z03_BB over Z03 is more significant than that of W98_BB over W98. We find 

that W98_BB and W98 have comparable performance over forests, but W98_BB significantly 

outperform W98 over herbaceous land types. We also agree that nonstomatal parameterization 

probably contributes to the different responses between W98_BB vs W98 and Z03_BB vs Z03. 

We changed our wording as follows:  

…improving spatial distribution of mean vd. The different responses to substituting native gs 

with that from Ball-Berry model highlight the significant differences in parameterizing non-

stomatal uptake between W98 and Z03, which further suggests that the uncertainty in non-

stomatal deposition should not be overlooked. 

 

313-4: what particular problem has been highlighted?  

Response: This refers to the mismatch between EC footprint and model resolution. In response to 

the reviewer comment, we have clarified this in our manuscript: 

This problem The mismatch between model resolution and the footprint of site-level 

measurements…  

   

315: sampling biases meaning that the authors are not evaluating most locations on earth, right? the 

authors are sampling the time/place of the measurements 

Response: This is correct and we acknowledge our ambiguity in wording. We make the following 

change: 

… the evaluation may be further compromised by inherent spatial sampling biases (fig. 1). 

 

317-320: not sure what the point of this paragraph is. what is the hypothesis being investigated? 

Response: The main purpose of the section is to show that our model implementation gives 

reasonable result at seasonal scale. Comparing the W98 result from our implementation with that 

from GC further supports our argument. In response to the reviewer question, we have added the 

following wording:  



W98 run with static LAI, providing further evidence that our implementation of W98 is 

reliable…  

 

334-5: recommend that the authors don’t speculate here or elsewhere 

Response: We agree that it is unnecessary. We removed the speculative statement: 

In India, Australia, western US, and polar tundra Mediterranean region, July mean 

daytime vd is low (0.2 - 0.5 cm s-1). which could be due to either the high temperature or the 

sparsity of vegetation (or a combination of both). 

 

349-50: on a similar note as the above comment, how do the authors know this? 

Response: We agree that we should provide more information to support our argument, and will 

make our explanation much clearer. We added the soil moisture stress factor map as figure S2. In 

July, over southern Africa, the soil stress factor is exceptionally low, indicating that drought 

stress does strongly limit gs over the region. We have also changed our wording to be more 

cautious in our interpretation (instead of “because”, we state, “which may be due to”. We 

changed line 350 to: 

…which may be due to the explicit consideration of soil moisture limitation to An and gs 

(demonstrated by the spatial overlap with soil moisture stress factors shown in Fig. S2)… 

 And in the Supplemental Information: 

  

Figure S2. July average soil moisture stress factor (βt). βt = 1 represents no soil moisture 

stress, while smaller βt means stronger soil moisture stress and more stomatal closure. βt = 0 

signifies that soil moisture stress is so strong that it completely shuts down stomatal activity. 

 

353: "is not desiccated"? 

Response: We have clarified this in our manuscript as follows: 

… as long as the soil does not desiccate become too dry to support stomatal opening…  



 

358: i don't think the authors show this; they just speculate that this is the cause. 

Response: In response to the reviewer’s comment, we have omitted this comment.  

 

368: will the authors more carefully articulate what Centoni finds so that the reader knows how to 

compare the findings 

Response: We agree this reference may not be ideal since Centoni (2017) did not explicitly talk 

about all four parameterizations. We have removed this reference:  

…We find ∆O3 is the largest in tropical rainforests for all the parameterizations (up to 5 to 

8 ppbv), which agrees with the result from Centoni (2017) … 

 

370: i assume that the authors are identifying the hot spot regions through their large delta O3. related: 

perhaps the authors are missing a delta on the v_d,i in Equation 3. 

Response: We thank the reviewer for catching this oversight. We have amended equation (3) to: 

Δ𝑂3 ≈ 𝛽
Δ𝑣𝑑,𝑖̅̅ ̅̅ ̅

𝑣𝑑𝑊98
̅̅ ̅̅ ̅̅ ̅̅ ̅

 (3) 

 

378: are the authors really "exploring the importance of seasonality in predictions of vd and their 

subsequent impact" with their current approach? (see comment below for line 404) 

404: are the authors actually showing the impacts on seasonality? showing the impact in each season is 

not the same as showing the impact on seasonality (a couple of easy calculations could help here) 

Response: We agree with the reviewer that “showing the impacts in different season” is not 

equivalent to “showing the impact on seasonality”. In response to the reviewers’ comments, we 

have clarified our intentions:  

To explore the impact of different prediction of vd on surface O3 in different seasons, 

importance of seasonality in prediction of vd and their subsequent impact… 

…not only affects the mean of predicted surface ozone, but also has different impacts in 

different seasons, the seasonality, of predicted surface ozone...  

 

382-4: i suggest a semi colon connecting these two sentences 

Response: Changed as suggested 

 

385: “shifts from the south to the north relative to July” 

Response: Changed as suggested 



 

387: i'm not a fan of the authors' use of the term hydroclimate — it's vague — can the authors just say 

soil moisture or VPD or leaf wetness? 

Response: We agree that “hydroclimate” is vague. We have clarified this in the manuscript:  

… driven primarily by the response to hydroclimate-related parameters such as soil 

moisture, VPD and leaf wetness, in addition to and land type-specific parameters… 

 

398: the suggestion that “hydroclimate [is] a key driver of process uncertainty” seems limited to the 

tropics/subtropics. am i correct in this interpretation? if so, this should be emphasized. 

Response: We agree with this interpretation. We have clarified our interpretation as follow:  

These findings identify hydroclimate as a key driver of process uncertainty of vd over 

tropics and subtropics, and therefore its impact on the spatial distribution of surface ozone 

concentrations, independent of land type-based biases, in these regions.  

 

409: briefly describe this method such as the limitations/strengths of it 

Response: We add this to our manuscript: 

We use Theil-Sen method (Sen, 1968), which is less susceptible to outliers than least-square 

methods, to estimate trends… 

 

413: what trends? trends in meteorology, LAI, and/or CO2? 

Response: We are referring to vd. We have clarified this:  

Figure 9 shows the potential impact of these trends the trends in vd on… 

 

415: how is the annual change in vd estimated? is it using the Theil-Sen method? this part needs better 

explanation; the reader needs to at least have some concept of what the method used is 

Response: We have clarified our methods as follows:  

Δ𝑂30𝑦,𝑖 ≈ 𝛽 × 𝑚𝑣𝑑,𝑖
× 30 (4) 

where ∆O3 30y,i and mvd,i is are the absolute change in ozone inferred to a first order as a 

result of the trend of vd and the normalized Theil-Sen slope (% yr-1) of vd, for 

parameterization i the over the 30-years (1982-2011).  

 

423-4: but they are small or nonsignificant per the first line of the paragraph? 



Response: Our wording here was indeed confusing. We have clarified this by making the 

following changes: 

In [Clim] simulations (where LAI is held constant), the trend of July daytime vd is either 

small or non-significant over the vast majority of the NH. significant decreasing trends in 

July daytime vd are simulated by the Z03, W98_BB and Z03_BB parameterizations. An 

exception is observed in the region of over Mongolia, where significant increasing trend in T 

(warming) and decreasing trend in RH (drying) detected in the MERRA-2 surface 

meteorological field in July daytime results in significant decreasing trends using the Z03, 

W98_BB and Z03_BB parameterizations. 

 

439: or it may decrease as plants acclimate or as nutrients become limiting 

We acknowledge that the sensitivity of terrestrial biosphere to CO2 can be highly variable. In 

response to the reviewer’s comment, we have elaborated and included citations to related 

literature:  

We note that the importance of the CO2 effect could grow as period of study further extend 

to allow larger range of atmospheric CO2 concentration (Hollaway et al., 2017; Sanderson 

et al., 2007). in the coming decades, since the 439 sensitivity of stomatal conductance to 

atmospheric CO2 may increase (Franks et al., 2013). 

 

452: assuming that ozone dry deposition should be a strong function of LAI 

Response: We have clarified this statement to include this correction: 

…since both stomatal and non-stomatal conductance in W98 are assumed to be strong 

functions of LAI… 

 

455: “complex” 

Response: Changed as advised  

 

466: “suggesting” 

Response: Changed as advised 

 

466: suggestion to cut “natural” here and in other spots - natural IAV has ambiguous meaning 

Response: Cut as advised 

 

475: heterogeneity? 

Response: We changed this line: 



… show more spatial discontinuities heterogeneity compared to W98 and Z03. 

 

478: soil moisture data?  

The advent of microwave remote sensing data provides excited opportunities for assimilating soil 

moisture. However, converting soil moisture into soil matric potential, which is measures of 

attraction between soil matrix and water, and therefore ecophysiologically relevant, requires data 

of soil property, which is less constrained globally. In response to this comment, we have made 

the following clarification:  

Given the uncertainty in soil data (Folberth et al., 2016)… global soil property maps (Dai et 

al., 2019)… 

 

480: refs for good performance at site level? 

Response: We have added a reference as follows:  

… despite their relatively good performance in site-level evaluation (e.g. Wu et al., 2011). 

 

495-6: whether IAV in vd at Blodgett is caused by chemistry is unknown 

Response: We agree that our wording is ambiguous. Rather than claiming chemistry causing 

IAV, we have reworded this sentence as follows: 

In Blodgett Forest, where O3 uptake is more controlled by gas-phase reactions (fares et al., 

2010; Wolfe et al., 2011), we… 

 

491-497: steps on how authors calculated averages and CVs for long term data needed 

Response: We agree with the reviewer that this subsection would benefit from some clarification. 

As most of the IAV section presents result for July, we now recalculate and present the July CVvd 

for all the 3 sites based on the raw data, and the details of calculation is given in supplemental 

material. We calculated July mean daytime vd for each year by averaging the individual hourly 

averages to avoid hourly sampling bias, and derive CVvd by dividing the standard deviation by the 

mean of July mean vd over all years. The recalculated numbers do not change our conclusion 

significantly. In response to the reviewer’s suggestion, we have made the following changes to 

our manuscript:  

We compare the simulated IAV of vd July CVvd from all four deposition parameterizations 

with those recorded by publicly available long-term observations. Hourly vd is calculated 

using eq. (1) from raw data. We filter out the data points with extreme (> 2 cm s-1) or 

negative vd, and without enough turbulence (u* < 0.25 m s-1). As vd in each daytime hours are 

not uniformly sampled in the observational datasets, we calculate the mean diurnal cycle, 

and then calculate the daytime average July of vd for each year from the mean diurnal cycle, 

from which CVvd can be calculated.  



The IAV predicted by all four parameterizations at Harvard Forest is between 3% to 7.9%, 

which is 2 to 6 times lower than that presented in the observations (19 18%). by Clifton et 

al. (2017). We find similar underestimates by all four parameterizations compared to the 

long-term observation from Hyytiala (Junninen et al., 2009; Keronen et al., 2003; 

https://avaa.tdata.fi/web/smart/smear/download), where observed CVvd (1116%) is 

significantly higher than that predicted by the deposition parameterizations (3.5% - 7.1%). 

In Blodgett Forest, where O3 uptake is more controlled by attributable to gas-phase 

reactions (Fares et al., 2010; Wolfe et al., 2011), we find that the models underestimate the 

observed annual CVvd more seriously (~1%– 3% compared to 12 18% in the observations) 

 

499: Olivia has a new paper on this 

Response: We agree that Olivia’s new paper is an excellent reference of furthering our 

discussion. We have added this reference:  

Clifton et al. (20172019) attribute this to the IAV in deposition to wet soil and dew-wet 

leaves, and in-canopy chemistry under stressed condition for forests over northeastern U.S. 

in non-stomatal deposition, while acknowledging the obscurity of the mechanisms driving 

such variability, Some of these processes (e.g. in-canopy chemistry, wetness slowing soil 

ozone uptake) are not represented by existing parameterizations, contributing to their 

implying the difficulty in reproducing the observed IAV by existing parameterizations.  

 

526: a vague reference to an effort in asia doesn't do much to help the reader 

Response: We add the reference to the measurement in Asia as follow: 

We know of only one multi-season direct observational record in Asia (Matsuda et al., 2005) 

and none in Africa… 

 

527: "constrain"; why all of a sudden call it gaseous dry deposition? 

Response: We agree that our paper does not discuss about other gaseous species. We clarified 

this: 

To better constraint regional O3 dry deposition, effort must be made in making new 

observations of gaseous dry deposition… 

 

528: what do the authors mean by reported? do they mean in the peer reviewed literature? there are 

many reasons why people report fluxes rather than deposition velocities in peer-reviewed publications, 

and previous work doesn’t simply exist to provide deposition velocities for future model evaluation! many 

datasets are available by contacting the research groups that made them. 

Response: We agree that our wording could be misinterpreted and requires clarification. We have 

simplified the text in our manuscript:  



We also find that many existing ozone flux measurements are not usable for our evaluation 

purposes, since only FO3 is reported in detail instead of vd. Evaluation and development of 

ozone dry deposition parameterizations would be greatly benefited if result of ozone flux 

measurements is reported in both FO3 and vd, or even have publically available ozone flux 

and other related micrometeorological variables, which allows both direct evaluation of vd 

and solves the mismatch between coarse model grids and the site (e.g. Wu et al., 2011, 2018).  

Evaluation and development of ozone dry deposition parameterizations will continue to 

benefit from publicly available ozone flux measurements and related micrometeorological 

variables that allow for partitioning measured flux into individual deposition pathways (e.g. 

Clifton et al., 2017; 2019, Fares et al., 2010, Wu et al., 2018). 

 

536: do the authors actually show that the four parameterizations differ most in leafy parts of the world? 

if not, i suggest rephrasing 

Response: We have rephrased this statement.  

We find that these discrepancies are in general a function of both location and season. In 

NH summer, vd simulated by the 4 parameterizations are considerably different in many 

vegetation-dominated regions over the world. 

 

542-544: is this something that is assumed widely? 

Response: We have reworded this statement: 

This demonstrates the potential impact of parameterization choice (or, process uncertainty) 

on vd is neither spatiotemporally uniform nor negligible in most vegetated many regions 

over the world. 

 

543: demonstrates that 

Response: Changed as advised 

 

549: why “at least increase the spatiotemporal representativeness if not the absolute accuracy” - is there 

some limitation of the Ducker dataset that I am missing? 

Response: This is because FLUXNET-based data can provide a constraint stomatal deposition, 

but with limited opportunity to constrain other individual pathways. Potentially, if the biases in 

stomatal and non-stomatal deposition offsets each other, constraining stomatal deposition may 

lead to substantial biases in vd. Whether better constrained gs leads to significantly better 

constrained vd we believe is still an open research question and is something we are investigating 

in a follow up study. In response to the reviewer’s question, we have added the following text to 

the manuscript: 

…increase the spatiotemporal representativeness, if not the absolute accuracy, of dry 

deposition parameterization, since it would be difficult to constrain non-stomatal sinks with 



this method. Further research is required to more directly verify whether better 

constrained gs leads to improved vd simulation. 

 

554-6: the authors could do a better job at illustrating why they are linking these two ideas 

Response: We clarified our statement as follow: 

The predicted IAV from all four models is smaller than what long-term observations 

suggest, but its potential contribution to IAV in O3 is still comparable to the long-term 

variability of background ozone over similar timescales in U.S. summer (Brown-Steiner et 

al., 2018; Fiore et al., 2014). 

 

561-3: yet the authors barely make use of long-term datasets that are available! 

Response: Our intention was to draw attention to the fact that our experiment shows many 

interesting and notable impacts occurring in parts of the world where there are no available long-

term observations to our knowledge, and therefore are these effects are difficult to evaluate. We 

have clarified by replacing this sentence in question with the following:  

The scarcity of long-term ozone deposition measurement poses significant difficulty in 

evaluating the model predictions over interannual (and in particular multidecadal) 

timescales. While our results show notable impacts across the globe, in many regions there 

are no available long-term observation to evaluate the model predictions over interannual 

timescales.  

 

583: what does low baseline vd actually mean? 

Response: Here we were referring to the mean vd in the unperturbed GEOS-Chem simulation. We 

deleted the word “baseline” to avoid confusion. 

 

586: v_d 

Response: We have made this correction. 

 

587: do the authors mean the simulation year for the 30% testing? 

Response: We refer to the whole sensitivity simulation. This has been clarified:  

…and possibly the choice of simulation year for the sensitivity simulation… 

 

588: is this somewhat inherently in the LAI product? 

Response: This is an interesting question and can be answered in two dimensions. First, LAI 

retrieval is land cover-dependent (Fang et al., 2013). LAI products spanning before MODIS era 



(2000) mostly use static land cover (e.g. Liu et al., 2012; Zhu et al., 2013) that may not even 

correctly capture the impact land use and land cover change (LULCC) on LAI. Also, at least in 

those parameterizations, changes in land type causes changes in LAI-independent parameters 

(e.g. in-canopy aerodynamic resistance, cuticular resistance), which also cannot be captured by 

LAI changes. In response to the reviewer comment, we have made the following modification to 

the text: 

…source of variability for vd, and even long-term LAI retrieval (Fang et al., 2013).  

 

593-600: as is, this seems like a stretch to me 

Response: We agree that this is a speculative element of our discussion. We meant to emphasize 

that uncertainty in gaseous dry deposition is not exclusive to O3. We want to encourage similar 

research attention on the uncertainty in dry deposition of other gases (e.g. NO2, SO2). We have 

reworded this statement to avoid speculation:  

The impact of dry deposition parameterization choice may be generalizable to other trace 

gases may also have impacts which we have not explored in this study on other trace 

gases….   

 

608: what is the difference between a model-observation integration and an empirical study? 

Response: We have reworded this sentence to avoid confusion: 

This makes a strong case for additional measurements (e.g. Kammer et al., 2019; Li et al., 

2018; Stella et al., 2011a), empirical studies (e.g. Ducker et al., 609 2018) and model-

observation integrations (e.g. Silva et al., 2019) of ozone dry deposition at different 

timescales, which would 610 be greatly facilitated by an open data sharing infrastructure 

(e.g. Baldocchi et al., 2001; Junninen et al., 2009). This makes a strong case for additional 

measurement and model studies of ozone dry deposition across different timescales, which 

would be greatly facilitated by an open data sharing infrastructure (e.g. Baldocchi et al., 

2001; Junninen et al., 2009).  

 

 

 



We thank the referee for their positive and constructive comments on our manuscript. We provide our 

response to each individual reviewer comment (shown in italics) below, including detailed changes to the 

manuscript (additions in red). 

 

My only general criticism is that the figures need to be presented in a larger form that will be easier for 

readers to see. 

Response: We acknowledge that some of the figures are difficult to see, and our manuscript 

would benefit from addressing this. We have made improvements to Figure 1, 8, and 9 (see 

below) that we hope will help with readability. 

 

Line 660 – 661: The blue dots are very difficult to see on these figures. The figures should be made 

larger! 

Figure 1 has been changed to show larger red dots that make them easier to see. 

Furthermore, Figure 8 and Figure 9 have been adjusted to remove white space to allow for larger 

panels, and zooms into the Earth’s land surface by removing areas around the edges where results 

were minor. 

 

New figure 1: 

 

 

 

 

 



New figure 8: 

 

 

 

New figure 9: 

 

 

 



Specific comments: 

p. 1, line 27: Should be “The trend in July …”, not “trends”.  

Response: We have made this correction.  

 

p. 2, line 62: Should be “… compiled …”. 

Response: We have made this correction.  

 

p. 2, line 63: Should be “measurements from the EC and GM …”.  

Response: We have made this correction. 

 

p. 7, line 205: Should be “… simulation described in the next sub-section.”  

Response: We have made this correction.  

 

p. 7, line 211: Should be “… to investigate how …”.  

Response: We have made this correction. 

 

p. 7, line 216: Should be “… the increase in atmospheric …”.  

Response: We have made this correction.  

 

p. 8, line 233: Should be “… developed by NOAA’s National Centers for Environmental Prediction 

(NCEP) and the NASA Global …”.  

Response: We changed the sentence to: 

…developed by National Centers for Environmental Prediction (NCEP) of National 

Oceanic and Atmospheric Administration (NOAA) and… 

 

p. 13, line 409: Should be “… We use the Theil-Sen method …”.  

Response: We have made this correction. 

 

p. 14, lines 430-431: I believe it should be “… a concomitant decrease in July mean surface ozone …”.  

Response: We changed the sentence to: 

…a concomitant increase decrease in July mean surface ozone… 
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Response: We have made this correction. 
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We also find that many existing ozone flux measurements are not usable for our evaluation 

purposes, since only FO3 is reported in detail instead of vd. Evaluation and development of 

ozone dry deposition parameterizations will continue to benefit from publicly available 

ozone flux measurements and related micrometeorological variables that allow for 

partitioning measured flux into individual deposition pathways (e.g. Clifton et al., 2017; 

2019, Fares et al., 2010, Wu et al., 2018). 
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p. 18, line 562: Should be “… deposition measurements poses …”. 
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The scarcity of long-term ozone deposition measurement poses significant difficulty in 

evaluating the model predictions over interannual (and in particular multidecadal) 

timescales. While our results show notable impacts across the globe, in many regions there 

are no available long-term observation to evaluate the model predictions over interannual 

timescales.  
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p. 19, line 600: Should be “… global nitrogen cycles.”  
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The scarcity of long-term ozone deposition measurement poses significant difficulty in 

evaluating the model predictions over interannual (and in particular multidecadal) 

timescales. While our results show notable impacts across the globe, in many regions there 

are no available long-term observation to evaluate the model predictions over interannual 

timescales.  
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Abstract. Dry deposition is the second largesta major sink of tropospheric ozone. Increasing evidence has shown that ozone 10 

dry deposition actively links meteorology and hydrology with ozone air quality. However, there is little systematic 11 

investigation on the performance of different ozone dry deposition parameterizations at the global scale, and how 12 

parameterization choice can impact surface ozone simulations. Here we present the results of the first global, multi-decade 13 

modelling and evaluation of ozone dry deposition velocity (vd) using multiple ozone dry deposition parameterizations. We use 14 

consistent assimilated meteorology and satellite-derived leaf area index (LAI) to drive four ozone dry deposition 15 

parameterizations simulate vd over 1982-2011 driven by four sets of ozone dry deposition parametrization that are 16 

representative of the current approaches of global ozone dry deposition modelling over 1982-2011, such that the differences 17 

in simulated vd are entirely due to differences in deposition model structures. In addition, we use the surface ozone sensitivity 18 

to vd predicted by a chemical transport model to estimate the impact of mean and variability of ozone dry deposition velocity 19 

on surface ozone. Our estimated vd from four different parameterizations are evaluated against field observations, and while 20 

performance varies considerably by land cover types, our results suggest that none of the parameterizations are universally 21 

better than the others. Discrepancy in simulated mean vd among the parameterizations is estimated to cause 2 to 5 ppbv of 22 

discrepancy in surface ozone in the Northern Hemisphere (NH) and up to 8 ppbv in tropical rainforest in July, and up to 8 ppbv 23 

in tropical rainforests and seasonally dry tropical forests in Indochina in December. Parameterization-specific biases based on 24 

individual land cover type and hydroclimate are found to be the two main drivers of such discrepancies. We find statistically 25 

significant trends in the multiannual time series of simulated July daytime vd in all parameterizations, driven by warming and 26 

drying (southern Amazonia, southern African savannah and Mongolia) or greening (high latitudes). The trends trend in July 27 

daytime vd is estimated to be 1 % yr-1 and leads to up to 3 ppbv of surface ozone changes over 1982-2011. The interannual 28 

coefficient of variation (CV) of July daytime mean vd in NH is found to be 5%-15%, with spatial distribution that varies with 29 

the dry deposition parameterization. Our sensitivity simulations suggest this can contribute between 0.5 to 2 ppbv to 30 

interannual variability (IAV) in surface ozone, but all models tend to underestimate interannual CV when compared to long-31 

term ozone flux observations. We also find that IAV in some dry deposition parameterizations are more sensitive to LAI while 32 
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others are more sensitive to climate. Comparisons with other published estimates of the IAV of background ozone confirm 33 

that ozone dry deposition can be an important part of natural surface ozone variability. Our results demonstrate the importance 34 

of ozone dry deposition parameterization choice on surface ozone modelling, and the impact of IAV of vd on surface ozone, 35 

thus making a strong case for further measurement, evaluation and model-data integration of ozone dry deposition on different 36 

spatiotemporal scales. 37 

1 Introduction 38 

Surface ozone (O3) is one of the major air pollutants that poses serious threats to human health (Jerrett et al., 2009) and plant 39 

productivity (Ainsworth et al., 2012; Reich, 1987; Wittig et al., 2007). Ozone exerts additional pressure on global food security 40 

and public health by damaging agricultural ecosystems and reducing crop yields  (Avnery et al., 2011; McGrath et al., 2015; 41 

Tai et al., 2014). Dry deposition, by which atmospheric constituents are removed from the atmosphere and transferred to the 42 

Earth’s surface through turbulent transport or gravitational settling, is the second-largest and terminal sink of tropospheric O3 43 

(Wild, 2007). Terrestrial ecosystems are particularly efficient at removing O3 via dry deposition through stomatal uptake and 44 

other non-stomatal pathways (Wesely and Hicks, 2000) (e.g., cuticle, soil, reaction with biogenic volatile organic compounds 45 

(BVOCs) (Fares et al., 2010; Wolfe et al., 2011). Meanwhile, stomatal uptake of O3 inflicts damage on plants by initiating 46 

reactions  that impair their photosynthetic and stomatal regulatory capacity (Hoshika et al., 2014; Lombardozzi et al., 2012; 47 

Reich, 1987). Widespread plant damage has the potential to alter the global water cycle (Lombardozzi et al., 2015) and suppress 48 

the land carbon sink (Sitch et al., 2007), as well as to generate a cascade of feedbacks that affect atmospheric composition 49 

including ozone itself (Sadiq et al., 2017; Zhou et al., 2018). Ozone dry deposition is therefore key in understanding how 50 

meteorology (Kavassalis and Murphy, 2017), climate, and land cover change (Fu and Tai, 2015; Ganzeveld et al., 2010; Geddes 51 

et al., 2016; Heald and Geddes, 2016; Sadiq et al., 2017; Sanderson et al., 2007; Young et al., 2013) can affect air quality and 52 

atmospheric chemistry at large.  53 

 54 

Analogous to other surface-atmosphere exchange processes (e.g., sensible and latent heat flux), O3 dry deposition flux (FO3) 55 

is often expressed as the product of ambient O3 concentrations at the surface ([O3]) and a transfer coefficient (dry deposition 56 

velocity, vd) that describes the efficiency of transport (and removal) to the surface from the measurement height: 57 

FO3
=-[O3]vd (1) 58 

Also analogous to other surface fluxes, FO3, [O3], and hence vd can be directly measured by the eddy covariance (EC) method 59 

(e.g. Fares et al., 2014; Gerosa et al., 2005; Lamaud et al., 2002; Munger et al., 1996; Rannik et al., 2012) with random 60 

uncertainty of about 20% (Keronen et al., 2003; Muller et al., 2010). Apart from EC, FO3 and vd can also be estimated from 61 

the vertical profile of O3 by exploiting flux-gradient relationship (Foken, 2006) (termed the gradient method, GM) (e.g. Gerosa 62 

et al., 2017; Wu et al., 2016, 2015). A recent review study (Silva and Heald, 2018) has complied 75 sets of ozone deposition 63 

measurement from the EC and GM methods across different seasons and land cover types over the past 30 years.  64 
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 65 

At the site level, ozone dry deposition over various terrestrial ecosystems can be simulated comprehensively by 1-D chemical 66 

transport models (Ashworth et al., 2015; Wolfe et al., 2011; Zhou et al., 2017), which are able to account forsimulate the 67 

effects of vertical gradients  inside the canopy environment, and gas-phase reaction with BVOCs in addition to surface sinks. 68 

Regional and global models, which lack the fine-scale information (e.g. vertical structure of canopy, in-canopy BVOCs 69 

emissions) and horizontal resolution for resolving the plant canopy in such detail, instead represent plant canopy foliage as 1 70 

to 2 big leaves, and rely on parameterizing vd is parameterized as a network of resistances, which account for the effects of 71 

turbulent mixing via aerodynamic (Ra), molecular diffusion via quasi-laminar sublayer resistances (Rb), and surface sinks via 72 

surface resistance (Rc): 73 

vd=
1

Ra+Rb+Rc

 (2) 74 

 75 

A diverse set of parameterizations of ozone dry deposition are available and used in different models and monitoring networks. 76 

Examples include the Wesely parameterization (1989) and modified versions of it (e.g. Wang et al., 1998), the Zhang et al. 77 

parameterization (Zhang et al., 2003), the Deposition of O3 for Stomatal Exchange model (Emberson et al., 2000; Simpson et 78 

al., 2012), and the Clean Air Status and Trends Network (CASTNET) deposition estimates (Meyers et al., 1998). The 79 

calculation of Ra (mostly based on Monin-Obukhov similarity theory) and Rb across these parameterizations often follow a 80 

standard formulation from micrometeorology (Foken, 2006; Wesely and Hicks, 1977, 2000; Wu et al., 2011) and thus does 81 

not vary significantly. The main difference between the ozone dry deposition parameterizations lies on the surface resistance 82 

Rc. This resistance includes stomatal resistance (Rs), which can be computed by a Jarvis-type multiplicative algorithm (Jarvis, 83 

1976) where Rs is the product of its minimum value and a series of response functions to individual environmental conditions. 84 

Such conditions typically include air temperature (T), photosynthetically available radiation (PAR), vapour pressure deficit 85 

(VPD) and soil moisture (θ), with varying complexity and functional forms.  86 

 87 

Such formalism is empirical in nature and does not adequately represent the underlying ecophysiological processes affect Rs 88 

(e.g. temperature acclimation). An advance of these efforts includes harmonizing Rs with that computed by land surface models 89 

(Ran et al., 2017a; Val Martin et al., 2014), which calculate Rs by coupled photosynthesis-stomatal conductance (An-gs) models 90 

(Ball et al., 1987; Collatz et al., 1992, 1991). Such coupling should theoretically give a more realistic account of 91 

ecophysiological controls on Rs. Indeed, it has been shown that the above approach may better simulate vd than the 92 

multiplicative algorithms that only considers the effects T and PAR (Val Martin et al., 2014; Wu et al., 2011). The non-stomatal 93 

part of Rc often consists of cuticular (Rcut), ground (Rg) and other miscellaneous types of resistances (e.g., lower canopy 94 

resistance (Rlc) in Wesely (1989)). Due to very limited measurements and mechanistic understanding towards non-stomatal 95 

deposition, non-stomatal resistances are often constants (e.g., Rg) or simply scaled with leaf area index (LAI) (e.g., Rcut) 96 

(Simpson et al., 2012; Wang et al., 1998; Wesely, 1989), while some of the parameterizations (Zhang et al., 2003; Zhou et al., 97 
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2017) incorporate the observation of enhanced cuticular O3 uptake under leaf surface wetness (Altimir et al., 2006; Potier et 98 

al., 2015, 2017; Sun et al., 2016). Furthermore, terrestrial atmosphere-biosphere exchange is also directly affected by CO2, as 99 

CO2 can drive increases in LAI (Zhu et al., 2016) while inhibiting gs (Ainsworth and Rogers, 2007). These can have important 100 

implications on vd, as shown by Sanderson et al. (2007), where doubling current CO2 level reduces gs by 0.5 – 2.0 mm s-1, and 101 

by Wu et al. (2012) where vd increases substantially due to CO2 fertilization at 2100. Observations from the Free Air CO2 102 

Enrichment (FACE) experiments also CO2 fertilization and inhibition of gs effects, but the impacts are variable and species 103 

specific such that extrapolation of these effects to global forest cover is cautioned (Norby and Zak, 2011). 104 

 105 

 106 

Various efforts have been made to evaluate and assess the uncertainty in modelling ozone dry deposition using field 107 

measurements. Hardacre et al. (2015) evaluate the performance of simulated monthly mean vd and FO3 by 15 chemical transport 108 

models (CTM) from the Task Force on Hemispheric Transport of Air Pollutant (TF HTAP) against seven long-term site 109 

measurements, 15 short-term site measurements, and modelled vd from 96 CASTNET sites. This work found that the seasonal 110 

cycle is well-simulated across models, while suggests demonstrating  that the difference in land cover classification is the main 111 

source of discrepancy between models. In this case, most of the models in TF HTAP use the same class of dry deposition 112 

parameterization (Wang et al., 1998; Wesely, 1989), so a global evaluation of different deposition parameterizations was not 113 

possible. Also, the focus in this intercomparison study was on seasonal, but not other (e.g. diurnal, daily, interannual) 114 

timescales. Using an extended set of measurements, Silva and Heald (2018) evaluate the vd output from the Wang et al. (1998) 115 

parameterization used by the GEOS-Chem chemical transport model. They show that diurnal and seasonal cycles are generally 116 

well-captured, while the daily variability is not well-simulated. They find that differences in land type and LAI, rather than 117 

meteorology, are the main reason behind model-observation discrepancy at the seasonal scale, and eliminating this model bias 118 

results in up to 15% change in surface O3. This study is also limited to a single parameterization. Using parameterizations that 119 

are explicitly sensitive to other environmental variables (e.g. Simpson et al., 2012; Zhang et al., 2003) could conceivably lead 120 

to different conclusions.  121 

 122 

Other efforts have been made to compare the performance of different parameterizations. Centoni (2017) find that two different 123 

dry deposition parameterizations, Wesely (1989) versus Zhang et al. (2003), implemented in the same chemistry-aerosol model 124 

(United Kingdom Chemistry Aerosol model, UKMA), result in up to a 20% difference in simulated surface O3 concentration. 125 

This study demonstrates that uncertainty in vd can have large potential effect on surface O3 simulation. Wu et al. (2018) 126 

compare vd simulated by five North-American dry deposition parametrizations to a long-term observational record at a single 127 

mixed forest in southern Canada, and find a large spread between the simulated vd, with no single parameterization uniformly 128 

outperforming others. They further acknowledge that as each parameterization is developed with its own set of limited 129 

observations, it is natural that their performance can vary considerably under different environments, and advocate for an 130 

“ensemble” approach to dry deposition modelling. This highlights the importance of parameterization choice as a key source 131 



5 

 

of uncertainty in modelling ozone dry deposition. Meanwhile, in another evaluation at a single site, Clifton et al. (2017) show 132 

that the GEOS-Chem parameterization largely underestimates the interannual variability (IAV) of vd in Harvard Forest based 133 

on the measurement from 1990 to 2000, although they were unable to conclude do not show how the IAV of vd may contribute 134 

to the IAV of O3.  135 

 136 

These developments have made a substantial contribution to our understanding of the importance of O3 dry deposition in 137 

atmospheric chemistry models. Still, pertinent questions remain about the impact of dry deposition model physics on 138 

simulations of the global distribution of ozone and its long-term variability. Here, we build on previous works by posing and 139 

answering the following questions:  140 

1) How does the global distribution of mean vd vary with different dry deposition parameterizations, and what drives the 141 

discrepancies among them? How much might the choice of deposition parameterization affect spatial distribution of 142 

surface ozone concentration simulated by a chemical transport model? 143 

2) How are the IAV and long-term trends of vd different across deposition parameterizations, and what drives the 144 

discrepancies among them? Do they potentially contribute different predictions of the long-term temporal variability 145 

in surface ozone? 146 

The answers to such question could have important consequences on our ability to predict long-term changes in atmospheric 147 

O3 concentrations as a function of changing climate and land cover characteristics. In general, there is a high computational 148 

cost to thorough and large-scale evaluations of different dry deposition parameterizations embedded in CTMs. In this study, 149 

we explore these questions using a strategy that combines an offline dry deposition modelling framework incorporating long-150 

term assimilated meteorological and land surface remote sensing data, in combination with a set of CTM sensitivity 151 

simulations. 152 

2 Method 153 

2.1 Dry deposition parameterization 154 

A detailed description of the common dry deposition parameterizations we explore can be found in Wu et al. (2018). Here we 155 

consider several “big-leaf” models commonly used by global chemical transport models. More complex multilayer models 156 

require the vertical profiles of leaf area density for different biomes which are generally not available for regional and global 157 

models. From the wide range of literature on dry deposition studies, we observe that Rs is commonly modelled through one of 158 

the following approaches: 159 

1) Multiplicative algorithm that considers the effects of LAI, temperature and radiation (Wang et al., 1998). 160 

2) Multiplicative algorithm that considers the effects of LAI, temperature, radiation and water stress (e.g. Meyers et al., 161 

1998; Pleim and Ran, 2011; Simpson et al., 2012; Zhang et al., 2003).  162 
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3) Coupled An-gs model, which exploit the strong empirical relationship between photosynthesis (An) and stomatal 163 

conductance (gs) (e.g. Ball et al., 1987; Lin et al., 2015) and to simulate An and gs = 1/Rs simultaneously (e.g. Ran et 164 

al., 2017b; Val Martin et al., 2014). 165 

Similarly, their functional dependence of non-stomatal surface resistances can be classified into two classes: 166 

1) Mainly scaling with LAI, with in-canopy aerodynamics parameterized as function of friction velocity (u*) or radiation 167 

(Meyers et al., 1998; Simpson et al., 2012; Wang et al., 1998) 168 

2) Additional dependence of cuticular resistance on relative humidity (Pleim and Ran, 2011; Zhang et al., 2003) 169 

 170 

With these considerations, we identify four common parameterizations that are representative of the types of approaches 171 

described above:  172 

1) The version of Wesely (1989) with the modification from Wang et al. (1998) (hereafter referred to as W98), which is 173 

used extensively in global CTMs (Hardacre et al., 2015) and comprehensively discussed by Silva and Heald (2018). 174 

This represents Type 1 in both stomatal and non-stomatal parametrizations. 175 

2) The Zhang et al. (2003) parameterization (hereafter referred to as Z03), which is used in many North American air 176 

quality modelling studies (e.g. Huang et al., 2016; Kharol et al., 2018) and Canadian Air and Precipitation Monitoring 177 

Network (CAPMoN) (e.g. Zhang et al., 2009). This represents Type 2 in both stomatal and non-stomatal 178 

parameterizations 179 

3) W89 with Rs calculated from a widely-used coupled An-gs model, the Ball-Berry model (hereafter referred to as 180 

W98_BB) (Ball et al., 1987; Collatz et al., 1992, 1991), which is similar to that proposed by Val Martin et al. (2014), 181 

and therefore the current parameterization in Community Earth System Model (CESM). This represents Type 3 in 182 

stomatal and Type 1 in non-stomatal parametrization. 183 

4) Z03 with the Ball-Berry model (Z03_BB), which is comparable to the configuration in Centoni (2017) implemented 184 

in United Kingdom Chemistry and Aerosol (UKCA) model. This represents Type 3 in stomatal and Type 2 in non-185 

stomatal parametrization. 186 

 187 

Another important consideration in choosing Z03 and W98 is that they both have open-source parameters for all major land 188 

types over the globe, making them widely applicable in global modelling. We extract the source code (Wang et al., 1998) and 189 

parameters (Baldocchi et al., 1987; Jacob et al., 1992; Jacob and Wofsy, 1990; Wesely, 1989) of W98 from GEOS-Chem CTM 190 

(http://wiki.seas.harvard.edu/geos-chem/index.php/Dry_deposition). The source code of Z03 are obtained through personal 191 

communication with Zhiyong Wu and Leiming Zhang, which follows the series of papers that described the development and 192 

formalism of the parameterization (Brook et al., 1999; Zhang et al., 2001, 2002, 2003). The Ball-Berry An-gs model (Ball et 193 

al., 1987; Collatz et al., 1992, 1991; Farquhar et al., 1980) and its solver are largely based on the algorithm of CLM 194 

(Community Land Model) version 4.5 (Oleson et al., 2013), which is numerically stable (Sun et al., 2012). Since Rc typically 195 

dominates the deposition velocity of O3 (Fares et al., 2010; Wu et al., 2018), we We use identical formulae of Ra and Rb 196 
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(Paulson, 1970; Wesely and Hicks, 1977) for each individual parameterizations, allowing us to focus our analysis on 197 

differences in parameterizations of Rc alone. Table A1 S1 gives a brief description on the formalism of each of the dry 198 

deposition parameterizations.  199 

2.2 Dry deposition model configuration, inputs, and simulation 200 

The above parameterizations are re-implemented in R language (R core team, 2017) in the modeling framework of the 201 

Terrestrial Ecosystem Model in R (http://www.cuhk.edu.hk/sci/essc/tgabi/tools.html), and driven by gridded surface 202 

meteorology and land surface data sets. The meteorological forcing chosen for this study is the Modern-Era Retrospective 203 

Analysis for Research and Application-2 (MERRA-2) (Gelaro et al., 2017), an assimilated meteorological product at hourly 204 

time resolution spanning from 1980 to present day. MERRA-2 contains all the required surface meteorological fields except 205 

VPD and RH, which can be readily computed from T, specific humidity (q) and surface air pressure (P). We use the CLM land 206 

surface dataset (Lawrence and Chase, 2007), which contains information for land cover, per-grid cell coverage of each plant 207 

functional type (PFT), and PFT-specific LAI, which are required to drive the dry deposition parameterizations, and soil 208 

property, which is required to drive the An-gs model in addition to PFT and PFT-specific LAI. CLM land types are mapped to 209 

the land type of W98 following Geddes et al. (2016). The mapping between CLM and Z03 land types are given in Table A2S2. 210 

Other relevant vegetation and soil parameters (e.g. leaf physiological and soil hydraulic constants) are also imported from 211 

CLM 4.5 (Oleson et al., 2013), while land cover specific roughness length (z0 ) values follow Geddes et al. (2016). Leaf is set 212 

to be wet when either latent heat flux < 0 W m-2 or precipitation > 0.2 mm hr-1. Fractional coverage of snow for Z03 is 213 

parameterized as a land-type specific function of snow depth following the original manuscript of Z03, while W98 flags grid 214 

cells with albedo > 0.4 or permanently glaciated as snow-covered.  215 

 216 

 217 

As the IAV of LAI could be an important factor in simulating vd, the widely-used third generation Global Inventory Modelling 218 

and Mapping Studies Leaf Area Index product (GIMMS LAI3g, abbreviated as LAI3g in this paper) (Zhu et al., 2013), which 219 

is a global time series of LAI with 15-day temporal frequency and 1/12 degree spatial resolution spanning from late 1981 to 220 

2011, is incorporated in this study. We use this data set to derive the interannual scaling factors that can be applied to scale the 221 

baseline CLM-derived LAI (Lawrence and Chase, 2007) for each month over 1982 to 2011. All the input data are aggregated 222 

into horizontal resolution of 2°×2.5° to align with the CTM sensitivity simulation described in the next sub-section. To 223 

represent sub-grid land cover heterogeneity, grid cell-level vd is calculated as the sum of vd over all sub-grid land types weighted 224 

by their percentage coverage in the grid cell (a.k.a tiling or mosaic approach, e.g. Li et al., 2013). This reduces the information 225 

loss when land surface data is aggregated to coarser spatial resolution, and allows us to retain PFT-specific results for each 226 

grid box in the offline dry deposition simulations.  227 

 228 

http://www.cuhk.edu.hk/sci/essc/tgabi/tools.html
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We run three sets of 30-years (1982-2011) simulations with the deposition parameterizations to investigate the how vd 229 

simulated by different parameterizations responds to different environmental factors over multiple decades. The settings of the 230 

simulations are summarized in Table 1. The first set, [Clim], focuses on meteorological variability alone, driven by MERRA-231 

2 meteorology and a multiyear (constant) mean annual cycle of LAI derived from LAI3g. The second set, [Clim+LAI], 232 

combines the effects of meteorology and IAV in LAI, driven by the same MERRA-2 meteorology plus the LAI time series 233 

from LAI3g. As the increase in atmospheric CO2 level over multidecadal timescales may lead to significant reduction in gs as 234 

plants tend to conserve water (e.g. Franks et al., 2013; Rigden and Salvucci, 2017), we introduce the third set of simulation, 235 

[Clim+LAI+CO2], which is driven by varying meteorology and LAI, plus the annual mean atmospheric CO2 level measured 236 

in Mauna Loa (Keeling et al., 2001) (for the first two sets of simulations, atmospheric CO2 concentration held constant at 390 237 

ppm). Since W98 and Z03 do not respond to changes in CO2 level, only W98_BB and Z03_BB are run with [Clim+LAI+CO2] 238 

to evaluate this impact. We focus on the daytime (solar elevation angle > 20°) vd, as both vd and surface O3 concentration 239 

typically peak around this time. We calculate monthly means, filtering out the grid cells with monthly total daytime < 100 240 

hours, which would be an indication of dormant biosphere.  241 

 242 

In summary, we present for the first time a unique set of global dry deposition velocity predictions over the last 30 years driven 243 

by identical meteorology and land cover, so that discrepancies (in space and time) among the predicted vd are a result 244 

specifically of dry deposition parameterizations alone.   245 

2.3 Chemical transport model sensitivity experiments 246 

We quantify the sensitivity of surface O3 to variations in vd using a global 3D CTM, GEOS-Chem version 11.01 (www.geos-247 

chem.org) (Bey et al., 2001), which includes comprehensive HOx-NOx-VOC-O3-BrOx chemical mechanisms (Mao et al., 2013) 248 

and is widely used to study tropospheric ozone (e.g. Hu et al., 2017; Travis et al., 2016; Zhang et al., 2010). The model is 249 

driven by the assimilated meteorological data from the GEOS-FP (Forward Processing) Atmospheric Data Assimilation 250 

System (GEOS-5 ADAS) (Rienecker et al., 2008), which is jointly developed by National Centers for Environmental 251 

Prediction (NCEP) of National Oceanic and Atmospheric Administration (NOAA) and the Global Modelling and Assimilation 252 

Office (GMAO). The model is run with a horizontal resolution of 2°×2.5°, and 47 vertical layers. The dry deposition module, 253 

which has been discussed above (W98), is driven by the monthly mean LAI retrieved from Moderate Resolution Imaging 254 

Spectroradiometer (MODIS) (Myneni et al., 2002) and the 2001 version of Olson land cover map (Olson et al., 2001). Both of 255 

the maps are binned remapped from their native resolutions to 0.25°×0.25°.  256 

 257 

We propose to estimate the sensitivity of surface O3 concentrations to uncertainty/changes in vd by the following equation: 258 

∆𝑂3 = 𝛽
∆𝑣𝑑

𝑣𝑑
 259 
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where ΔO3 is the response of monthly mean daytime surface O3 to fractional change in vd (Δvd/vd), and β accounts for the 260 

sensitivity of surface O3 concentration in a grid box to the perturbation in vd within that grid box. To estimate β, we run two 261 

simulations for the year 2013, one with default setting and another where we perturb vd by +30%. Since not every gaseous 262 

species deposit with the same functional relationships as O3, we only adjust the vd of O3 to avoid perturbing the chemistry 263 

resulting from the deposition of other chemically relevant species (e.g. PAN, HNO3). Thus, this approach could represent a 264 

conservative estimate of O3 sensitivity to vd if the impacts on other species result in additional effects on O3. Nevertheless, we 265 

use this sensitivity to estimate the potential impact of vd simulation on surface O3 concentration to a first order in subsequent 266 

sections. This approach is based on the reasonably linear response of surface O3 to vd over comparable range of vd change 267 

(Wong et al., 2018). We use this sensitivity to identify areas where local uncertainty and variability in vd is expected to affect 268 

local surface O3 concentration, and we use the assumption of linearity to estimate those impacts to a first order (e.g. Wong et 269 

al. 2018). In the Supplemental Methods, we justify this first order assumption mathematically, as well as demonstrate the 270 

impact of using a second order approximation, and estimate the uncertainty using an assumption of linearity to be within 30%. 271 

However, we note this first-order assumption may not be able to capture the effects of chemical transport, changes in 272 

background ozone and non-linearity in chemistry, which can contribute to response of O3 concentration to vd. Our experiment 273 

could help identify regions where more rigorous modelling efforts could be targeted in future work. We limit our analysis to 274 

grid cells where the monthly average vd is greater than 0.25 cm s-1 in the baseline unperturbed GEOS-Chem simulation, since 275 

changes in surface O3 elsewhere are expected to be attributed more to chemical transportchange in background O3 rather than 276 

the local perturbation of vd (Wong et al., 2018).  277 

3. Evaluation of Dry Deposition Parameterizations  278 

We first compare our offline simulations of seasonal mean daytime average vd that result from the four parameterizations in 279 

the [Clim] and [Clim+LAI] scenarios with an observational database largely based on the evaluation presented in Silva and 280 

Heald (2018). We do not include the evaluation of vd from [Clim+LAI+CO2] scenario as we find that the impact of CO2 281 

concentration on vd is negligible over the period of concern, as we will show in subsequent sections. We use two unbiased and 282 

symmetrical statistical metrics, normalized mean bias factor (NMBF) and normalized mean absolute error factor (NMAEF), to 283 

evaluate our parameterizations. Positive NMBF indicates that the parameterization overestimates the observations by a factor 284 

of 1 + NMBF and the absolute gross error is NMAEF times the mean observation, while negative NMBF implies that the 285 

parameterization underestimates the observations by a factor of 1 - NMBF and the absolute gross error is NMAEF times the 286 

mean model prediction (Yu et al., 2006). We use the simulated subgrid land type-specific predictions of vd that correctly match 287 

the land type and the averaging window indicated by the observations. We exclude instances where the observed land type 288 

does not have a match within the model grid box. While this removes 1/3 of the original data sets used in leads to a reduction 289 

of dataset size comparing to Silva and Heald (2018), this means that mismatched land-cover types can be ignored as a factor 290 

in model bias.  291 



10 

 

 292 

Figure 1 shows the fractional coverage within each grid cell and the geographic locations of O3 flux observation sites for each 293 

major land type. Nearly all the observations are clustered in Europe and North America, except three sites in the tropical 294 

rainforest and one site in tropical deciduous forest in Thailand. For most major land types, there are significant mismatches 295 

between the locations of flux measurements and the dominant land cover fraction, which may hinder the spatial 296 

representativeness of our evaluation. The resulting NMBF and NMAEF for five major land type categories are shown in Table 297 

2, and the list of sites and their descriptions are given in Table A3S3. In general, the numerical ranges of both NMBF and 298 

NMAEF are similar to that of Silva and Heald (2018), and no single parameterization of the four parameterizations outperforms 299 

the others across all five major land types. Here, we focus on describing how our implementation of the dry deposition 300 

parameterizations produce consistent comparisons with earlier results.  301 

 302 

As summarized in Table 2, each parameterization shows distinct biases over specific land types (we subsequently refer to 303 

this as the “land-type specific bias” unique to each parameterization).  The performance metrics of each parameterization at 304 

each land type are summarized in table 2. Comparing the two multiplicative parameterizations (W98 and Z03), we find that 305 

W98 performs satisfactorily over deciduous forests and tropical rainforests, while strongly underestimating daytime vd over 306 

coniferous forests. In contrast, Z03 performs better in coniferous forests but worse in tropical rainforests and deciduous 307 

forests. The severe underestimation of daytime vd by Z03 over tropical rainforests has previously been attributed to persistent 308 

canopy wetness, and hence stomatal blocking imposed by the parameterization (Centoni, 2017). The simple linear VPD 309 

response function in Z03 may overestimate the sensitivity of gs to VPD under the high temperature in tropical rainforest. We 310 

also note that even for the same location, vd can vary significantly between seasons (Rummel et al., 2007) and management 311 

practices (Fowler et al., 2011), which models may fail to capture due to limited representations of land cover. Given the 312 

small sample size (N = 5), diverse environments, and large anthropogenic intervention in the tropics, the disparity in 313 

performance metrics may not fully reflect the relative model performance. Baseline cuticular resistances in Z03 under dry 314 

and wet canopy are 1.5 and 2 times that of coniferous forests, respectively (Zhang et al., 2003), such that the enhancement of 315 

cuticular uptake by wetness may not compensate the reduced gs over tropical rainforests, and, to a lesser extent, deciduous 316 

forests. The higher cuticular uptake may explain the better performance of Z03 over W98 over coniferous forests, where 317 

strong non-stomatal (though not necessarily cuticular) ozone sinks are often observed (e.g. Gerosa et al., 2005; Wolfe et al., 318 

2011).  319 

 320 

Over grasslands, W98 has higher positive biases, while Z03 has higher absolute errors. This is because for datasets at high 321 

latitudes, the dominant grass PFT is arctic grass, which is mapped to “tundra” land type (Geddes et al., 2016). While tundra 322 

is parameterized similarly to grasslands in W98, this is not the case in Z03. Combined with the general high biases at other 323 

sites for these parameterizations, the large low biases for “tundra” sites in Z03 lower the overall high biases but leads to 324 

higher absolute errors.  325 
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 326 

Over croplands, the positive biases and absolute errors are relatively large for both W98 and Z03 (with Z03 performing worse 327 

in general than W98). This may be attributed to the lack of response to VPD over all crop and grass land types in Z03. The 328 

functional and physiological diversity with the “crop” land type also contributes to the general difficulty in simulating vd over 329 

cropland. Even though Z03 has individual parameterizations for 4 specific crop types (rice, sugar, maize and cotton), this 330 

advantage is difficult to fully leverage as most global land cover data sets do not resolve croplands into such detail. Having 331 

land cover maps that distinguish between more crop types could potentially improve the performance of Z03. The evaluation 332 

for herbaceous land types also suggests that as CLM PFT do not have exact correspondence with W98 and Z03 land types, our 333 

results over herbaceous land types are subject to the uncertainty in land type mapping (e.g. tundra vs grassland, specific vs 334 

generic crops, C3 vs C4 grass). 335 

 336 

 337 

Substituting the native gs in W98 and Z03 by that simulated by Ball-Berry model (the W98_BB and Z03_BB runs) generally, 338 

though not universally, leads to improvement in model performance against the observations. W98_BB has considerably 339 

smaller biases and absolute errors than W98 over grassland. While having little effect on the absolute error, W98_BB improves 340 

the biases over coniferous forest and cropland compared to W98, but worsens the biases over rainforests and deciduous forests. 341 

In contrast, Z03_BB is able to improve the model-observation agreement over all 5 land types when compared to Z03. This 342 

finding echoes that from Wu et al. (2011), who explicitly show the advantage of replacing the gs of Wesely (1989) with the 343 

Ball-Berry model in simulating vd over a forest site, and in addition shows the potential of Ball-Berry model in improving 344 

spatial distribution of mean vd. The different responses to substituting native gs with that from Ball-Berry model highlight the 345 

significant differences in parameterizing non-stomatal uptake between W98 and Z03, which further suggests that the 346 

uncertainty in non-stomatal deposition should not be overlooked. 347 

 348 

The minimal impact that results from using LAI that matches the time of observation is not unexpected, since the 349 

meteorological and land cover information from a 2°×2.5° grid cell may not be representative of the typical footprint of a site 350 

measurement (on the order of 10-3 to 101 km2, e.g. Chen et al., 2009, 2012). This problemThe mismatch between model 351 

resolution and the footprint of site-level measurements has also been highlighted in previous evaluation efforts in global-352 

scale CTMs (Hardacre et al., 2015; Silva and Heald, 2018). Furthermore, the sample sizes for all land types are small (N ≤ 353 

16) and the evaluation may be further compromised by inherent sampling biases.  354 

 355 

In addition to the evaluation against field observation, we find good correlation (R2 = 0.94) between the annual mean vd from 356 

GEOS-Chem at 2013 and the 30-year mean vd of W98 run with static LAI, providing further evidence that our 357 

implementation of W98 is reliable. Overall, our evaluation shows that the quality of our offline simulation of dry deposition 358 

across the four parameterizations in this work is largely consistent with previous global modelling evaluation efforts.  359 
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4. Impact of Dry Deposition Parameterization Choice on Long-Term Averages  360 

Here we summarize the impact that the different dry deposition parameterizations may have on simulations of the spatial 361 

distribution of vd and on the inferred surface O3 concentrations. We begin by comparing the simulated long-term mean vd 362 

across parameterizations, then use a chemical transport model sensitivity experiment to estimate the O3 impacts.  363 

 364 

Figure 2 shows the 30-year July daytime average vd simulated by W98 over vegetated surfaces (defined as the grid cells with 365 

>50% plant cover), and Figure 3 shows the difference between the W98 and the W98_BB, Z03, Z03_BB predictions 366 

respectively. We first focus on results from July because of the coincidence of high surface O3 level, biospheric activity and 367 

vd in the Northern Hemisphere (NH), and will subsequently discuss the result for December, when such condition holds for 368 

the Southern Hemisphere (SH). W89 simulates the highest July mean daytime vd in Amazonia (1.2 to 1.4 cm s-1), followed by 369 

other major tropical rainforests, and temperate forests in northeastern US. July mean daytime vd in other temperate regions in 370 

North America and Eurasia typically range from 0.5 to 0.8 cm s-1, while in South American and African savannah, and most 371 

parts of China, daytime vd is around 0.4 to 0.6 cm s-1. In India, Australia, western US, and polar tundra Mediterranean region, 372 

July mean daytime vd is low (0.2-0.5 cm s-1). which could be due to either the high temperature or the sparsity of vegetation 373 

(or a combination of both).  374 

 375 

The other three parameterizations (W98_BB, Z03, Z03_BB) simulate substantially different spatial distributions of daytime 376 

vd. In North America, we find W98_BB, Z03 and Z03_BB produce lower vd (by -0.1 to -0.4 cm s-1) compared to W98 in 377 

deciduous forest-dominated northeastern US and slightly higher vd in boreal forest-dominated regions of Canada. Z03 and 378 

Z03_BB produce noticeably lower vd (by up to -0.2 cm s-1) in arctic tundra and grasslands in western US. In southeastern US, 379 

W98_BB and Z03_BB simulate a slightly higher vd (by up to +0.1 cm s-1), while Z03 suggests a slightly lower vd (by up to -380 

0.1 cm s-1). W98_BB simulates a lower (-0.1 to -0.4 cm s-1) vd in tropical rainforests, with larger reductions concentrated in 381 

southern Amazonia, where July is within the dry season, while the northern Amazonia is not (Malhi et al., 2008). Z03 and 382 

Z03_BB simulate much smaller (-0.4 to -0.6 cm s-1) vd in all tropical rainforests.  383 

 384 

Over the midlatitudes in Eurasia, Australia and South America except Amazonia, W98_BB, Z03 and Z03_BB generally 385 

simulate a lower daytime vd by up to 0.25 cm s-1, possibly due to the dominance of grasslands and deciduous forests, where 386 

W98 tends to be more high-biased than other parameterizations when compared to the observations of vd. In southern African 387 

savannah, W98_BB and Z03_BB suggest a much lower daytime vd (by -0.1 to -0.4 cm s-1) because of explicit consideration of 388 

soil moisture limitation to An and gs (demonstrated by the spatial overlap with soil moisture stress factors shown in Fig. S2). 389 

Z03_BB simulates a particularly high daytime vd over the high-latitude coniferous forests (+0.1 to +0.3 cm s-1). W98_BB and 390 

Z03_BB produce higher daytime daytime vd (up to +0.15 cm s-1) in India and South China due to temperature acclimation 391 

(Kattge and Knorr, 2007), which allows more stomatal opening under the high temperature that would largely shut down the 392 
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stomatal deposition in W98 and Z03, as long as the soil does not desiccatebecome too dry to support stomatal opening. This 393 

is guaranteed by the rainfall from summer monsoon in both regions. Low vd is simulated by Z03 and Z03_BB in the grasslands 394 

near Tibetan plateau because the grasslands are mainly mapped to tundra land type, which typically has low vd as discussed in 395 

section 3.  396 

 397 

Our results suggest that the global distribution of simulated mean vd depends substantially on the choice of dry deposition 398 

parameterization, driven primarily by the response to hydroclimate-related parameters such as soil moisture, VPD and leaf 399 

wetness, in addition to and land type-specific parameters, which could impact the spatial distribution of surface ozone predicted 400 

by chemical transport models. To estimate the impact on surface ozone of an individual parameterization “i” compared to the 401 

W98 predictions (which we use as a baseline), we apply the following equation: 402 

ΔO3,i ≈ β
Δ𝑣𝑑,𝑖̅̅ ̅̅̅

𝑣𝑑𝑊98
̅̅ ̅̅ ̅̅ ̅

 (3) 403 

where ∆O3,i is the estimated impact on simulated O3 concentrations in a grid box, Δvd,i̅̅ ̅̅   is the difference between 404 

parameterization i and W98 simulated mean daytime vd in that grid box, 𝑣𝑑𝑊98
̅̅ ̅̅ ̅̅ ̅ is W98 output mean daytime vd for that grid 405 

box, and β is the sensitivity of surface ozone to vd calculated by the method outlined in Section 2.3   406 

 407 

Figure 4 shows the resulting estimates of ∆O3 globally. We find ∆O3 is the largest in tropical rainforests for all the 408 

parameterizations (up to 5 to 8 ppbv)., which agrees with the result from Centoni (2017). Other hotspots of substantial 409 

differences are boreal coniferous forests, eastern US, continental Europe, Eurasian steppe and the grassland in southwestern 410 

China, where ∆O3 is either relatively large or the signs disagree among parameterizations. In India, Indochina and South China, 411 

∆O3 is relatively small but still reaches up to up to -2 ppbv. We find that ∆O3 is not negligible (1-4 ppbv) in many regions with 412 

relatively high population density, which suggests that the choice of dry deposition parameterization can be relevant to the 413 

uncertainty in the study of air quality and its implication on public health. We note that we have not estimated ∆O3 for some 414 

regions with low GEOS-Chem-predicted vd (< 0.25 cm s-1, as described in section 2.3), but where the disagreement in vd 415 

between parameterizations can be large (e.g., southern African savannah, see Figure 3). Given this limitation, the impacts on 416 

O3 we have summarized may therefore be spatially conservative.  417 

 418 

To explore the impact of different prediction of vd on surface O3 in different seasons, importance of seasonality in predictions 419 

of vd and their subsequent impact, we repeat the above analyses for December. Figure 5 shows the 1982-2011 mean December 420 

daytime vd predicted by W98, while Figure 6 shows the difference between W98 and the Z03, W98_BB, Z03_BB respectively. 421 

High latitudes in the NH are excluded due to the small number of daytime hours. Z03 and Z03_BB simulate substantially 422 

lower in daytime vd at NH midlatitudes because Z03 and Z03_BB allow partial snow cover but W98 and W98_BB only allow 423 

total or no snow cover. At midlatitudes, the snow cover is not high enough to trigger the threshold of converting vegetated to 424 

snow covered ground in W98 and W98_BB, resulting in lower surface resistance, and hence higher daytime vd comparing to 425 
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Z03 and Z03_BB. In; in Amazonia, the hotspot of difference in daytime vd shifts from the south to the north relative to July, 426 

which is in the dry season (Malhi et al., 2008). These results for December, together with our findings from July, suggest that 427 

the discrepancy in simulated daytime vd between W98 and other parameterizations is due to the explicit response to 428 

hydroclimate in the former compared to the latter. Given that field observations indicate a large reduction of vd in dry season 429 

in Amazonia (Rummel et al., 2007), the lack of dependence of hydroclimate can be a drawback of W98 in simulating vd in 430 

Amazonia.  431 

 432 

Figure 7 shows the resulting estimates of ∆O3 globally for December using Equation 3.  In all major rainforests, ∆O3 is smaller 433 

in December due to generally lower sensitivity compared to July. A surprising hotspot of both daytime ∆vd and ∆O3 is the 434 

rainforest/tropical deciduous forest in Myanmar and its eastern bordering region, which also has distinct wet and dry season. 435 

The proximity of December to the dry season, which starts at January (e.g. Matsuda et al., 2005), indicates that the consistent 436 

∆vd between W98 and other parameterizations is driven by hydroclimate as in Amazonia. Comparison with field measurements 437 

(Matsuda et al., 2005) suggests that the W98_BB and Z03_BB capture daytime vd better than W98, while Z03 may 438 

overemphasize the effect of such dryness. The above reasoning also explains some of the ∆vd in India and south China across 439 

the three parameterizations. These findings identify hydroclimate as a key driver of process uncertainty of vd over tropics and 440 

subtropics, and therefore its impact on the spatial distribution of surface ozone concentrations, independent of land type-based 441 

biases, in these regions. 442 

 443 

Overall, these results demonstrate that the discrepancy in the spatial distribution of simulated mean daytime vd resulting from 444 

choice of dry deposition parameterization can have an important impact on the global distribution of surface O3 predicted by 445 

chemical transport models. We find that the response to hydroclimate by individual parametrization not only affects the mean 446 

of predicted surface ozone, but also the seasonality, ofhas different impacts in different seasons predicted surface O3, which is 447 

complementary to the findings of Kavassalis and Murphy (2017) that mainly focus on how shorter-term hydrometeorological 448 

variability may modulate surface O3 through dry deposition. 449 

 450 

5. Impact of Dry Deposition Parameterization Choice on Trends and Interannual Variability  451 

Here we explore the impact that different dry deposition parameterizations may have on predictions of IAV and trends in vd 452 

and on the inferred surface O3 concentrations. We use the Theil-Sen method (Sen, 1968), which is less susceptible to outliers 453 

than least-square methods, to estimate trends in July daytime vd (and any underlying meteorological variables), and use p-value 454 

< 0.05 to estimate significance. 455 

  456 
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Figure 8 shows the trend in July mean daytime vd from 1982-2011 predicted by each of the parameterizations and scenarios 457 

([Clim], [Clim + LAI], and [Clim + LAI + CO2]). Figure 9 shows the potential impact of these trends in vd on July daytime 458 

surface ozone, which we estimate to a first order using the following equation: 459 

ΔO330y,i
≈β ×(Annual % change in vd,i) mvd,i

 × 30 years (4) 460 

where ∆O3 30y,i is and mvd,i are the absolute change in ozone inferred to a first order as a result of the trend of vd and the 461 

normalized Theil-Sen slope (% yr-1) of vd, for parameterization i over the 30-years (1982-2011). 462 

 463 

In [Clim] simulations (where LAI is held constant), the trend of July daytime vd is either small or non-significant over the vast 464 

majority of the NHsignificant decreasing trends in July daytime vd are simulated by the Z03, W98_BB and Z03_BB . An 465 

exception is observed in the region of Mongolia, where significant increasing trend in T (warming) and decreasing trend in RH 466 

(drying) detected in the MERRA-2 surface meteorological field in July daytime results in significant decreasing trends using 467 

the Z03, W98_BB and Z03_BB parameterizations. This trend is not present in the W98 parameterization as this formulation 468 

does not respond to the long-term drying. We find some decreasing trends in vd across parts of central Europe and the 469 

Mediterranean to varying degrees across the parameterizations. In the SH, we find consistent decreasing trends across all four 470 

parameterizations in southern Amazonia and southern African savannah due to warming and drying, which we estimate could 471 

produce a concomitant increase in July mean surface ozone of between 1 to 3 ppbv (Figure 9).  472 

 473 

In [Clim+LAI] scenario, all four parameterizations simulate a significant increasing trend of vd over high latitudes, which is 474 

consistent with the observed greening trend over the region (Zhu et al., 2016). We estimate this could produce a concomitant 475 

increase decrease in July mean surface ozone of between 1 to 3 ppbv. The parameterizations generally agree in terms of the 476 

spatial distribution of these trends in O3. Exceptions include a steeper decreasing trend in most of Siberia predicted by W98, 477 

while the trend is more confined in the eastern and western Siberia in the other three parameterizations. Including the effect of 478 

CO2-induced stomatal closure ([Clim+LAI+CO2] runs) partially offset the increase of vd in high latitudes, but does not lead to 479 

large changes in both the magnitudes and spatial patterns of vd trend. We find negligible trends in daytime vd for December in 480 

all cases. These results show that across all dry deposition model parameterizations, LAI and climate, more than increasing 481 

CO2, can potentially drive significant long-term changes in vd and should not be neglected when analyzing the long-term 482 

change in air quality over 1982-2011. We note that the importance of the CO2 effect could grow as period of study further 483 

extend to allow larger range of atmospheric CO2 concentration (Hollaway et al., 2017; Sanderson et al., 2007). in the coming 484 

decades, since the sensitivity of stomatal conductance to atmospheric CO2 may increase (Franks et al., 2013). 485 

 486 

We go on to explore the impact of parameterization choice in calculations of IAV in vd.  Figure 10 shows the coefficient of 487 

variation of linearly detrended July daytime vd (CVvd). Figure 11 shows the potential impact this has on IAV in surface ozone, 488 

which we estimate to a first order by the following equation:  489 
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σO3,i
≈β×𝐶𝑉𝑣𝑑,𝑖

  (5) 490 

where σO3,i is the estimated interannual standard deviation in surface ozone resulting from IAV in vd given predicted by dry 491 

deposition parameterization i. In both cases, we show only the [Clim] and [Clim+LAI] runs, since IAV in CO2 has negligible 492 

impact on interannual variability in vd. 493 

 494 

Using the W98 parameterization, IAV in predicted vd and O3 is considerably smaller in the [Clim] run than that for the [Clim 495 

+ LAI] run, since both the stomatal and non-stomatal conductance in W98 are assumed to be strong functions of LAI rather 496 

than meteorological conditions. This implies that long-term simulations with W98 and constant LAI can potentially 497 

underestimate the IAV of vd and surface ozone. In contrast, IAV in vd calculated by the Z03 parameterization is nearly the 498 

same for the [Clim] and [Clim+LAI] runs. In Z03, gs is also directly influenced by VPD in addition to temperature and radiation, 499 

and non-stomatal conductance in Z03 is much more dependent on meteorology than W98, leading to high sensitivity to climate. 500 

Though the Ball-Berry model also responds to meteorological conditions, it considers relatively complicated complex An-gs 501 

regulation and includes temperature acclimation, which could dampen its sensitivity to meteorological variability compared to 502 

the direct functional dependence on meteorology in the Z03 multiplicative algorithm. Thus, the climate sensitivity of W98_BB 503 

and Z03_BB is in between Z03 and W98, as is indicated by more moderate difference between σO3,i from [Clim] and [Clim+LAI] 504 

runs in Figure 11. 505 

 506 

For regional patterns of CVvd and σO3, we focus on the [Clim+LAI] runs (Fig. 10e to 10h and Fig. 11e to 11h) as it they allows 507 

allow for a comparison of all 4 parameterizations and contain all the important factors of controlling vd. In North America, we 508 

estimate modest IAV in vd across all 4 parameterizations (CVvd < 15%) in most places. We find this results in relatively low 509 

σO3 in northeastern US, and larger σO3 in central and southeast US (in the range of 0.3 to 2 ppbv). These results are of a similar 510 

magnitude to the standard deviation of summer mean background ozone suggested by Fiore et al. (2014) over similar time 511 

period, confirming sugggesting that IAV of dry deposition can be a potentially important component of the natural IAV of 512 

surface ozone in summer over North America.  513 

 514 

All parameterizations produce larger CVvd (and therefore larger σO3) in southern Amazonia compared to northern and central 515 

Amazonia, but we find substantial discrepancies across parameterizations. The estimated impact on IAV in O3 (σO3) in southern 516 

Amazonia ranges from less than 1 ppbv predicted by the W98 and W98_BB parameterizations, to exceeding 1.5 - 2.5 ppbv 517 

predicted by the Z03 parameterization. IAV is also relatively large in central Africa. We find that the parameterizations which 518 

include a Ball-Berry formulation (W98_BB and Z03_BB) estimate higher IAV in this region (with σO3 varying between 1 to 519 

4 ppbv), compared to the W98 and Z03 parameterizations (σO3 up to 2ppbv). We also note that the Ball-Berry formulations 520 

show more spatial discontinuities heterogeneity compared to W98 and Z03. In our implementation of the Ball-Berry model, 521 

impact of soil moisture on gs is parameterized as a function of root-zone soil matric potential, which makes gs very sensitive 522 

to variation in soil wetness when the its climatology is near the point that triggers limitation on An and gs. Given the large 523 
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uncertainty in soil data (Folberth et al., 2016)global soil property map (Dai et al., 2019), such sensitivity could be potentially 524 

artificial, which should be taken into consideration when implementing Ball-Berry parameterizations in large-scale models 525 

despite their relatively good performance in site-level evaluation (Wu et al., 2011).  526 

 527 

Across Europe, the magnitude of IAV predicted by all four parameterizations show relatively good spatial consistency. 528 

Simulated CVvd is relatively low in western and northern Europe (<10%), which we estimate translates to less than 1 ppbv of 529 

σO3. We find larger CVvd (and therefore large σO3) over parts of southern Russia and Siberia (σO3 up to 2.5 ppbv) from all 530 

parameterizations except W98. The local geographic distribution of CVvd and σO3 also significantly differs among the 531 

parameterizations. Z03 and Z03_BB simulate larger CVvd in eastern Siberia than W98_BB, while W98 BB and Z03_BB predict 532 

larger CVvd over the southern Russian steppe then Z03. Finally, all four parameterizations estimate relatively low CVvd and σO3 533 

in India, China and Southeast Asia.  534 

 535 

We compare the simulated IAV of July CVvd from all four deposition parameterizations with those recorded by publicly 536 

available long-term observations. Hourly vd is calculated using eq. (1) from raw data. We filter out the data points with extreme 537 

(> 2 cm s-1) or negative vd, and without enough turbulence (u* < 0.25 m s-1). As vd in each daytime hours are not uniformly 538 

sampled in the observational datasets, we calculate the mean diurnal cycle, and then calculate the daytime average July of vd 539 

for each year from the mean diurnal cycle, from which CVvd can be calculated.  540 

The IAV predicted by all four parameterizations at Harvard Forest is between 3% to 7.9%, which is 2 to 6 times lower than 541 

that presented in the observations (1918%). by Clifton et al. (2017). We find similar underestimates by all four 542 

parameterizations compared to the long-term observation from Hyytiala (Junninen et al., 2009; Keronen et al., 2003; 543 

https://avaa.tdata.fi/web/smart/smear/download), where observed CVvd (1116%) is significantly higher than that predicted by 544 

the deposition parameterizations (3.5% - 7.1%). In Blodgett Forest, where O3 uptake is more controlled by gas-phase reactions 545 

(Fares et al., 2010; Wolfe et al., 2011), we find that the models underestimate the observed annual CVvd  more seriously (~1% 546 

– 3%  compared to 1218% in the observations). This suggest suggests that the IAV of vd may be underestimated across all 547 

deposition parameterizations we investigated (and routinely used in simulations of chemical transport). (Clifton et al. (, 548 

2019)Clifton et al. (2017)  attribute this to the IAV in deposition to wet soil and dew-wet leaves, and in-canopy chemistry 549 

under stressed condition for forests over northeastern U.S. Some of these processes (e.g. in-canopy chemistry, wetness slowing 550 

soil ozone uptake) are not represented by existing parameterizations, contributing to their in non-stomatal deposition, while 551 

acknowledging the obscurity of the mechanisms driving such variability, implying the difficulty in reproducing the observed 552 

IAV by existing parameterizations. The scarcity of long-term ozone flux measurements (Fares et al., 2010, 2017; Munger et 553 

al., 1996; Rannik et al., 2012) limits our ability to benchmark the IAV in our model simulations with observational datasets.  554 

 555 

In summary, when both the variability in LAI and climate are considered, the IAV in simulated vd translates to IAV in surface 556 

O3 of 0.5 – 2ppbv in July for most region. Such variability is predicted to be particularly strong in southern Amazonian and 557 
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central African rainforest, where the predicted IAV in July surface O3 due to dry deposition can be as high as 4 ppbv. This 558 

suggests that IAV of vd can be an important part of the natural variability of surface O3. The estimated magnitude of IAV is 559 

also dependent of the choice of vd parameterization, which highlights the importance of vd parameterization choice on 560 

modelling IAV of surface O3.  561 

6 Discussion and Conclusion 562 

We present the results of multidecadal global modelling of ozone dry deposition using four different ozone deposition 563 

parameterizations that are representative of the major types of approaches of gaseous dry deposition modelling used in global 564 

chemical transport models. The parameterizations are driven by the same assimilated meteorology and satellite-derived LAI, 565 

which minimizes the uncertainty of model input across parameterization and simplifies interpretation of inter-model 566 

differences. The output is evaluated against field observations and shows satisfactory performance. One of our main goals was 567 

to investigate the impact of dry deposition parameterization choice on long-term averages, trends, and IAV in vd over a 568 

multidecadal timescale, and estimate the potential concomitant impact on surface ozone concentrations to a first order using a 569 

sensitivity simulation approach driven by the GEOS-Chem chemical transport model. 570 

 571 

We find that the performance of the four dry deposition parameterizations against field observations varies considerably over 572 

land types, and these results are consistent with other evaluations, reflecting the potential issue that dry deposition 573 

parameterizations can often be overfit to a particular set of available observations, requiring caution in their application at 574 

global scales. We also find that using more ecophysiologically realistic output gs predicted by the Ball-Berry model can 575 

generally improve model performance, but at the cost of high sensitivity to relatively unreliable soil data. However, the number 576 

of available datasets of ozone dry deposition observation are still small and concentrated in North America and Europe. We 577 

know of only one multi-season direct observational record in Asia (Matsuda et al., 2005) and none in Africa, where air quality 578 

can be an important issue. To better constraint regional O3 dry deposition, effort must be made in making new observations of 579 

gaseous dry deposition (Fares et al., 2017) especially in the under-sampled regions. We also find that many existing ozone 580 

flux measurements are not usable for our evaluation purposes, since only FO3 is reported in detail instead of vd. Evaluation and 581 

development of ozone dry deposition parameterizations will continue to benefit from publicly available ozone flux 582 

measurements and related micrometeorological variables that allow for partitioning measured flux into individual deposition 583 

pathways (e.g. Clifton et al., 2017, 2019; Fares et al., 2010; Wu et al., 2011, 2018).Evaluation and development of ozone dry 584 

deposition parameterizations would be greatly benefited if result of ozone flux measurements is reported in both FO3 and vd, 585 

or even have publically available ozone flux and other related micrometeorological variables, which allows both direct 586 

evaluation of vd and solves the mismatch between coarse model grids and the site (e.g. Wu et al., 2011, 2018).  587 

 588 
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We find substantial disagreement in the spatial distribution between the mean daytime vd predicted by the different 589 

parameterizations we tested. We find that these discrepancies are in general a function of both location and season. In NH 590 

summer, vd simulated by the 4 parameterizations are considerably different in many vegetation-dominated regions over the 591 

world. We estimate that this could lead to around 2 to 5 ppbv in uncertainty of surface ozone concentration simulations over a 592 

vast majority of land in the NH. In tropical rainforests, where leaf wetness is prevalent and the dry-wet season dynamics can 593 

have large impact on vd (Rummel et al., 2007),  we estimate the uncertainty due to dry deposition model choice could even 594 

lead to an uncertainty in surface ozone of up to 8 ppbv. We also find noticeable impacts in parameterization choice during SH 595 

summer, but we note that due to the unreliability of β at low vd, we have not assessed its impact on surface ozone in many 596 

high-latitude regions of the NH. In general, we find hydroclimate to be an important driver of the uncertainty. This 597 

demonstrates that the potential impact of parameterization choice (or, process uncertainty) of vd is neither spatiotemporally 598 

uniform nor negligible in most vegetatedmany regions over the world. More multi-seasonal observations are especially needed 599 

over seasonally dry ecosystems where the role of hydroclimate in deposition parameterizations need to be evaluated. Recently, 600 

standard micrometeorological measurements have been used to derive gs and stomatal deposition of O3 over North America 601 

and Europe (Ducker et al., 2018), highlighting the potential of using global networks of micrometeorological observation (e.g. 602 

FLUXNET (Baldocchi et al., 2001)) to benchmark and calibrate gs of dry deposition parameterizations, which could at least 603 

increase the spatiotemporal representativeness, if not the absolute accuracy, of dry deposition parameterizations, since it would 604 

be difficult to constrain non-stomatal sinks with this method. Further research is required to more directly verify whether better 605 

constrained gs leads to improved vd simulation..  606 

 607 

Over the majority of vegetated regions in the NH, we estimate the IAV of mean daytime vd is generally on the order of 5 to 608 

15% and may contribute between 0.5 to 2 ppbv of IAV in July surface O3 over the thirty-year period considered here, with 609 

each parameterization simulating different geographic distribution of where IAV is highest. The predicted IAV from all four 610 

models is smaller than what long-term observations suggest, but its potential contribution to IAV in O3 is still comparable to 611 

the long-term variability of background ozone over similar timescales in U.S. summer (Brown-Steiner et al., 2018; Fiore et al., 612 

2014). This would seem to confirm that vd may be a substantial contributor to natural IAV of O3 in summer, at least in U.S. In 613 

the southern Hemisphere, the IAV mainly concentrates in the drier part of tropical rainforests. The Ball-Berry 614 

parameterizations simulate large and spatially discontinuous CVvd and σO3 due to their sensitivity to soil wetness. Globally, we 615 

find that IAV of vd in W98 is mostly driven by LAI, while in other parameterizations climate generally plays a more important 616 

role. We therefore emphasize that temporal matching of LAI is important for consistency when W98 is used in long-term 617 

simulations. While our results show notable impacts across the globe, in many regions there are no available long-term 618 

observation to evaluate the model predictions over interannual timescales. The scarcity of long-term ozone deposition 619 

measurement poses significant difficulty in evaluating the model predictions over interannual (and in particular multidecadal) 620 

timescales. This information is helpful in designing and identifying sources of error in model experiments that involve 621 

variability of vd. 622 
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 623 

We are also able to detect statistically significant trends in July daytime vd over several regions. The magnitudes of trend trends 624 

are up to 1% per year and both climate and LAI contribute to the trend. All four deposition parameterizations identify three 625 

main hotspots of decreasing July daytime vd (southern Amazonia, southern African savannah, Mongolia), which we link mainly 626 

to increasing surface air temperature and decreasing relative humidity. Meanwhile, extensive areas at high latitudes experience 627 

LAI-driven increasing July daytime vd, consistent with the greening trend in the region (Zhu et al., 2016). We don’t find a 628 

strong influence of CO2-induced stomatal closure in the trend over this time period. Over the 30-years we estimate the trend 629 

in July daytime vd could translate approximately to 1 to 3 ppbv of ozone changes in the areas of impact, indicating the potential 630 

effect of long-term changes in vd on surface ozone. This estimate should be considered conservative, since we are unable to 631 

reliably test the sensitivity of ozone to regions with low vd with our approach.  632 

 633 

While the approach we have presented here allows us to explore the role of dry deposition parameterization choice on 634 

simulations of long-term means, trends, and IAV in ozone dry deposition velocity, there remain some limitations and 635 

opportunities for development. First, we only used one LAI and assimilated meteorological product. The geographic 636 

distribution of trend and IAV of vd may vary considerably as the LAI and meteorological products used due to their inherent 637 

uncertainty (e.g. Jiang et al., 2017). While we expect the qualitative conclusions about how LAI and climate controls the 638 

modelled trend and IAV of vd to be robust to the choice of data set, the magnitude and spatial variability could be affected. 639 

Second, the estimated effects on surface O3 are a first-order inference based on a linear approximation of the impact that vd 640 

has directly on O3. We have not applied our analysis to regions with low baseline GEOS-Chem vd, where other components of 641 

parameterization (e.g. definition and treatment of snow cover, difference in ground resistance) may have major impact on vd 642 

prediction (Silva and Heald, 2018), nor accounted for the role that vd variability can have on other chemical species which 643 

would have feedbacks on O3. Moreover, the sensitivity of surface ozone to dry deposition velocityvd may be dependent on the 644 

choice of chemical transport model (here, the GEOS-Chem model has been used), and possibly the choice of simulation year 645 

for the sensitivity simulation. Finally, we have neglected the effect of land use and land cover change on global PFT 646 

composition at this stage, which can be another source of variability for vd, and even long-term LAI retrieval (Fang et al., 647 

2013). Nevertheless, the relatively high NMAEF of simulated vd and the inherent uncertainty in input data (land cover, soil 648 

property, assimilated meteorology and LAI) are considered as the major source of uncertainty in our predictions of vd.  649 

 650 

The impact of dry deposition parameterization choice may also have impacts which we have not explored in this study on 651 

other trace gases may be generalizable to other trace gases with deposition velocity controlled by surface resistance, and for 652 

which stomatal resistance is an important control of surface resistance (e.g. NO2). As vd has already been recognized as a major 653 

source of uncertainty in deriving global dry deposition flux of NO2 and SO2 (Nowlan et al., 2014), systematic investigation on 654 

the variability and uncertainty of vd for other relevant chemical species does not only contribute to understanding the role of 655 

gaseous dry deposition role on air quality, but also to biogeochemical cyclecycling. Particularly, gaseous dry deposition has 656 
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been shown to be a major component in nitrogen deposition (Geddes and Martin, 2017; Zhang et al., 2012), highlighting the 657 

potential importance of understanding the role of vd parameterization in modelling regional and global nitrogen cyclecycles. 658 

 659 

Here we have built on  the recent investigations of modelled global mean (Hardacre et al., 2015; Silva and Heald, 2018) and 660 

observed long-term variability (Clifton et al., 2017) of O3 vd. We are able to demonstrate the substantial impact of vd 661 

parameterization on modelling the global mean and IAV of vd, and their non-trivial potential impact on simulated seasonal 662 

mean and IAV of surface ozone. We demonstrate that the parameterizations with explicit dependence on hydroclimatic 663 

variables have higher sensitivity to climate variability than those without. Difficulties in evaluating predictions of vd for many 664 

regions of the world (e.g. most of Asia and Africa) persist due to the scarcity of measurementmeasurements. This makes a 665 

strong case for additional measurements (e.g. Kammer et al., 2019; Li et al., 2018; Stella et al., 2011a), empirical studies (e.g. 666 

Ducker et al., 2018) and model-observation integrations (e.g. Silva et al., 2019) of ozone dry deposition at different timescales, 667 

which would be greatly facilitated by an open data sharing infrastructure This makes a strong case for additional measurement 668 

and model studies of ozone dry deposition across different timescales, which would be greatly facilitated by an open data 669 

sharing infrastructure (e.g. Baldocchi et al., 2001; Junninen et al., 2009).  670 

Code Availability 671 

The source code and output of the dry deposition parameterizations can be obtained by contacting the corresponding author 672 

(jgeddes@bu.edu).  673 
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Cuticular 

Resistance (Rcut) 
𝑅𝑐𝑢𝑡 =

𝑅𝑐𝑢𝑡0

𝐿𝐴𝐼
 

For dry surface, 

𝑅𝑐𝑢𝑡 =
𝑅𝑐𝑢𝑡𝑑0

𝑒0.03𝑅𝐻𝐿𝐴𝐼0.25𝑢∗
 

For wet surface, 

𝑅𝑐𝑢𝑡 =
𝑅𝑐𝑢𝑡𝑤0

𝐿𝐴𝐼0.5𝑢∗
 

Same as W98 Same as Z03 

In-canopy 

aerodynamic 

resistance (Rac) 

Prescribed 𝑅𝑎𝑐 = 𝑅𝑎𝑐0

𝐿𝐴𝐼0.25

𝑢∗
 

Ground 

Resistance (Rg) 
Prescribed 

Lower-canopy 

aerodynamic 

resistance (Ralc) 

𝑅𝑎𝑙𝑐

= 100(1 +
1000

𝑅 + 10
) 

- 

Lower-canopy 

surface 

resistance (Rclc) 

Prescribed -   

Table A1: Brief description of the four dry deposition parameterizations. κ = von Karman constant, u* = friction velocity, z = 675 

reference height, z0 = roughness length, L = Obukhov length, Sc = Schmidt’s number, Pr = Prandtl number for air, LAI = leaf 676 

area index, PAR = photosynthetically active radiation, Dx = Diffusivity of species x in air, fT = temperature (T) stress function, 677 

fvpd = vapour pressure deficit (VPD) stress function, fψ = leaf water potential (ψ) stress function, wst = stomatal blocking fraction, 678 

An = Net photosynthetic rate, g0 = minimum stomatal conductance, m = Ball-Berry slope, Cs = CO2 concentration on leaf 679 

surface, hs = relative humidity on leaf surface, RH = relative humidity, h = canopy height, R = downward shortwave radiation 680 

 681 

CLM PFT Z03 surface type 

Needleleaf evergreen tree - temperate 
Evergreen needleleaf trees 

Needleleaf evergreen tree - boreal 

Needleleaf deciduous tree - boreal Deciduous needleleaf trees 

Broadleaf evergreen tree - tropical Tropical broadleaf trees 

Broadleaf deciduous tree - tropical 

Deciduous broadleaf trees Broadleaf deciduous tree - temperate 

Broadleaf deciduous tree - boreal 

Broadleaf evergreen shrub - temperate Thorn shrubs 
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Broadleaf deciduous shrub - temperate 
Deciduous shrubs 

Broadleaf deciduous shrub - boreal 

C3 arctic grass Tundra 

C3 grass Short grass 

C4 grass Corn* 

C3 crop Crops 

Table A2: Mapping between CLM PFT and Z03 surface type.  682 

*C4 grasses are mapped to corn due to the similarity in photosynthetic pathway, and hence stomatal control 683 

 684 

Land Type Longitude Latitude Season Mean daytime vd (cm s-1) Citation 

Deciduous 

Forest 

-80.9° 44.3° Summer 0.92 Padro et al., 1991 

Winter 0.28 

99.7° 18.3° Spring 0.38 Matsuda et al., 2005 

Summer 0.65 

-72.2° 42.7° Summer 0.61 Munger et al., 1996 

Winter 0.28 

-78.8° 41.6° Summer 0.83 Finkelstein et al., 2000 

-75.2° 43.6° Summer 0.82 

Coniferous 

Forest 

-3.4° 55.3° Spring 0.58 Coe et al., 1995 

-79.1° 36.0° Spring 0.79 Finkelstein et al., 2000 

-120.6° 38.9° Spring 0.58 Kurpius et al., 2002 

Summer 0.59 

Autumn 0.43 

Winter 0.45 

-0.7° 44.2° Summer 0.48 Lamaud et al., 1994 

105.5° 40.0° Summer 0.39 Turnipseed et al., 2009 

-66.7° 54.8° Summer 0.26 Munger et al., 1996 

11.1° 60.4° Spring 0.31 Hole et al., 2004 

Summer 0.48 

Autumn 0.20 

Winter 0.074 

8.4° 56.3° Spring 0.68 Mikkelsen et al., 2004 

Summer 0.80 
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Autumn 0.83 

Tropical 

Rainforest 

117.9° 4.9° Wet 0.5 Fowler et al., 2011# 

Wet 1.0 

-61.8° -10.1° Wet 1.1 Rummel et al., 2007 

Dry 0.5 

-60.0° 3.0° Wet 1.8 Song-Miao et al., 1990 

Grass -88.2° 40.0° Summer 0.56 Droppo, 1985 

-3.2° 57.8° Spring 0.59 Fowler et al., 2001 

Summer 0.56 

Autumn 0.42 

-119.8° 37.0° Summer 0.15 Padro et al., 1994 

-8.6° 40.7° Summer 0.22 Pio et al., 2000 

Winter 0.38 

-104.8° 40.5° Spring 0.22 Stocker et al., 1993 

10.5° 52.4° Spring 0.44 Ḿesźaros et al., 2009 

-96.4° 39.5° Summer 0.62 Gao and Wesely, 1995 

Crops -2.8° 55.9° 

Not applicable* 

0.69 Coyle et al., 2009 

-88.4° 40.1° 0.53 Meyers et al., 1998 

0.12 

-87.0° 36.7° 0.85 

0.39 

-86.0° 34.3° 0.40 

-120.7° 36.8° 0.76 Padro et al., 1994 

8.0° 48.7° 0.41 Pilegaard et al., 1998 

2.0° 48.9° 0.60 Stella et al., 2011 

0.6° 44.4° 0.47 

1.4° 43.8° 0.37 

Table A3: Information of all the measurement sites included in model evaluation 685 

*Crops are heavily influenced by management practices rather than natural seasonality. Thus, two data sets in the same location 686 

generally represent before and after certain a crop phenology or human management event. 687 

#The two measurements are taken at a rainforest and an oil palm plantation nearby.  688 

 689 
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719 

 720 

Figure 1: Fractional coverage of each major land type at each grid cell. Blue dots indicate the locations of the observational 721 

sites. 722 
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 723 

Figure 2: 1982-2011 July mean daytime vd (solar elevation angle > 20°) over vegetated land surface simulated by W98.  724 

 725 

 726 

Figure 3: Differences of 1982-2011 July mean daytime vd (Δvd̅) between three other parameterizations (Z03, W98_BB and 727 

Z03_BB) and W98 over vegetated land surface. 728 

 729 

 730 

Figure 4: Estimated difference in July mean surface ozone (∆O3) due to the discrepancy of simulated July mean daytime vd 731 

among the parameterizations. 732 
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 733 

 734 

 735 

 736 

 737 

Figure 5: 1982-2011 December mean daytime vd (solar elevation angle > 20°) over vegetated land surface simulated by 738 

W98. The data over high latitudes over Northern Hemisphere is invalid due to insufficient daytime hours over the month (< 739 

100 hours month-1)  740 

 741 

 742 

Figure 6: Differences of 1982-2011 December mean daytime vd (Δvd̅) between three other parameterizations (Z03, W98_BB 743 

and Z03_BB) and W98 over vegetated land surface. 744 

 745 

 746 
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 747 

Figure 7: Estimated difference in December mean surface ozone (∆O3) due to the discrepancy of simulated December mean 748 

daytime vd among the parameterizations. 749 

 750 
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 751 

752 

 753 

Figure 8: Trends of July mean daytime vd during 1982-2011 over vegetated land surface. Black dots indicate statistically 754 

significant trends (p < 0.05) 755 
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756 

 757 

Figure 9: Estimated impact of trends of July mean daytime vd on July mean surface ozone during (∆O3 30y) 1982-2011 over 758 

vegetated land surface. Only grid points with statistically significant trends (p < 0.05) in July mean daytime vd are 759 

considered.  760 

 761 
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 762 

Figure 10: Interannual coefficient of variation of linearly detrended July mean daytime vd (CVvd) during 1982-2011 over 763 

vegetated land surface. 764 

 765 

Figure 11: Estimated contribution of IAV in July mean daytime vd to IAV of July mean surface ozone (σO3) during 1982-766 

2011 over vegetated land surface. 767 

 768 

 769 

 770 

 771 

 772 

 773 
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 775 

vd simulation Meteorology LAI Atmospheric CO2 concentration 

[Clim] 
MERRA-2 

meteorology 

LAI3g monthly climatology 
390 ppm 

[Clim+LAI] 
LAI3g monthly time series 

[Clim+LAI+CO2] Manoa Loa time series 

Table 1: List of vd simulations with input data 776 

 777 

Land 

types 
Metrics Static LAI Dynamic LAI 

  W98 Z03 W89-BB Z03_BB W98 Z03 W89-BB Z03_BB 

Dec 

(N=8) 

NMBF 0.134 -0.367 -0.287 -0.142 0.119 -0.376 -0.299 -0.153 

NMAEF 0.322 0.369 0.305 0.215 0.319 0.376 0.321 0.226 

Con 

(N=16) 

NMBF -0.362 -0.217 -0.252 -0.025 -0.355 -0.209 -0.248 -0.023 

NMAEF 0.448 0.455 0.483 0.399 0.427 0.458 0.470 0.394 

Tro 

(N=5) 

NMBF 0.080 -0.808 -0.086 -0.438 0.075 -0.813 -0.090 -0.441 

NMAEF 0.423 0.831 0.404 0.569 0.422 0.832 0.399 0.567 

Gra 

(N=10) 

NMBF 0.276 0.015 0.175 0.097 0.294 0.011 0.186 0.110 

NMAEF 0.392 0.479 0.307 0.318 0.396 0.467 0.302 0.311 

Cro 

(N=11) 

NMBF 0.297 0.360 0.241 0.282 0.318 0.371 0.255 0.292 

NMAEF 0.473 0.541 0.474 0.570 0.485 0.550 0.480 0.576 

Table 2: Performance metrics (NMBF and NMAEF) for daytime average vd simulated by the four dry deposition 778 

parameterizations. , with N referring to number of data points (1 data points = 1 seasonal mean). “Static LAI” is the result 779 

from [Clim] run, which uses 1982-2011 AVHRR monthly climatological LAI, while “Dynamic LAI” is the result from 780 

[Clim+LAI], which uses 1982-2011 AVHRR LAI time series. Dec = deciduous forest, Con = coniferous forest, Tro = 781 

tropical rainforest, Gra = grassland, Cro = cropland. N indicates the number of observational datasets involved in that 782 

particular land type. The best performing parameterization for each land type has its performance metrics bolded.  783 

 784 
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1. Mathematical analysis for sensitivity of O3 to Δvd/vd: 

Assume that Δ𝑂3 is due to changes in dry deposition flux (with proportionality constant kd) and other 

first-order processes (e.g. NO titration, loss to HO2 and OH, having total reaction rate kc): 

𝑑𝑂3 = 𝑑(−𝑘𝑐𝑂3 − 𝑘𝑑𝑣𝑑𝑂3) (𝑆1) 

Here, kc and kd (which are related to meteorology and concentration of other relevant chemical species), 

are assumed to be relatively constant, so that that the perturbation in vd does not trigger significant non-

linearity. Expanding the differential and rearranging the terms yields: 

𝑑𝑂3

𝑂3
=

−𝑘𝑑 𝑑𝑣𝑑

1 + 𝑘𝑐 + 𝑘𝑑
 (𝑆2) 

Integrating S2 between perturbed (O3 + ΔO3, v + Δvd) and unperturbed (O3 and vd) values yields: 

ln (1 +
Δ𝑂3

𝑂3
) = − ln (1 +

𝑘𝑑𝛥𝑣𝑑

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑  
) (𝑆3) 

Since ΔO3 is small compared to O3,0, first-order expansion is valid. When Δvd is small enough relative to 

vd for first-order approximation, Taylor’s expansion of S4 yield: 

Δ𝑂3

𝑂3
= −

𝑘𝑑

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑
𝛥𝑣𝑑 (𝑆4) 

S5 can be rearranged to yield: 

Δ𝑂3 = −
𝑘𝑑𝑣𝑑𝑂3

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑

𝛥𝑣𝑑

𝑣𝑑
= 𝛽

𝛥𝑣𝑑

𝑣𝑑
, 𝑤ℎ𝑒𝑟𝑒 𝛽 = −

𝑘𝑑𝑣𝑑𝑂3

1 + 𝑘𝑐 + 𝑘𝑑𝑣𝑑
< 0 (𝑆5) 

This shows that when the Δvd/vd is small enough (ln(1+x) ≈ x) and does not cause non-linearity (kc and kd 

= constant) in chemistry, ΔO3 is linearly proportional to Δvd/vd. The error of linearizing the natural 

logarithms equals to the difference between ln(1+x) and x. This analysis gives the conditions for when the 

first-order approximation is reasonable, and allowing us to estimate the error when deviating from these 

condition. Assuming β is correctly estimated by chemical transport model, the error of linearization at 

Δvd/vd = ± 50% (the upper bound of Δvd/vd consistent with our analysis), is on the order of 25%. For more 

typical value of Δvd/vd (20%), the error is around 10%.  

As Δvd/vd gets larger, we can expand R.H.S of S3 to the second order and investigate sensitivity of ΔO3 to 

Δvd/vd: 

Δ𝑂3 = 𝛽
𝛥𝑣𝑑

𝑣𝑑
−

𝛽2

2𝑂3
(

𝛥𝑣𝑑

𝑣𝑑
)

2

= (𝛽 −
𝛽2

2𝑂3

𝛥𝑣𝑑

𝑣𝑑
) (

𝛥𝑣𝑑

𝑣𝑑
) = 𝛽′ 𝛥𝑣𝑑

𝑣𝑑
 (𝑆6) 

Where β’ is the “corrected β”, which is a function of Δvd/vd.  

To illustrate the potential impact of such non-linearity on ΔO3, we compare July ΔO3,Z03_BB estimated 

using first-order estimation with β derived from Δvd/vd = +15% (fig. S1b) and +30% (fig. S1a), and 

second-order approximation (fig. S1c), and the result is shown in figure S1. The three different methods 

produce very similar ΔO3, and their differences have little impact on our conclusion. For simplicity, we 

only show the result using β derived from Δvd/vd = +30% in the main manuscript.  



As noted above and in the main manuscript, our approach is limited by the assumption that chemistry and 

transport do not introduce non-linear terms which may not be realistic. Rather, our approach is intended to 

identify hotspots of impact, and quantify these potential impacts to a first order. More rigorous modeling 

efforts could then be targeted in future work.  

 

Figure S1. July ΔO3,Z03_BB calculated using a) first-order method where β is derived from Δvd/vd = 

+30% GC sensitivity run, b) first order method where β is derived from Δvd/vd = +15% GC 

sensitivity run, and c) second-order method with β derived from Δvd/vd = +15%. 

 

 

2. A brief description of photosynthesis-stomatal conductance (An-gs) module in TEMIR (a 

manuscript is in prep) 

TEMIR largely follows Oleson et al. (2013), where net photosynthetic rate (An, μmol CO2 m
-2 s-1), 

stomatal conductance for water (gsw, μmol m-2 s-1) and CO2 concentration in leaf mesophyll (ci, mol mol-1) 

are solved simultaneously by the following coupled set of equations: 

𝐴𝑛 =
𝑔𝑠𝑤

1.6
(𝑐𝑎 − 𝑐𝑖) (𝑆7) 

𝑔𝑠𝑤 = 𝛽𝑡𝑔0 + 𝑔1

𝐴𝑛

𝑐𝑠
𝑅𝐻𝑠 (𝑆8) 

𝐴𝑛 = 𝐴 − 𝑅𝑑  (𝑆9) 

Here, ca is CO2 concentration (mol mol-1), βt is soil moisture stress factor (unitless), g0 is minimum 

stomatal conductance (μmol m-2 s-1), An is net photosynthetic rate (μmol CO2 m
-2 s-1), A is gross 

photosynthetic rate (μmol CO2 m
-2 s-1) and Rd is dark respiration rate (μmol CO2 m

-2 s-1). Furthermore, cs 

and RHs are the CO2 concentration (mol mol-1) and relative humidity (unitless) at leaf surface. A is 

calculated following Bonan et al. (2011), which is based on Farquhar et al. (1980) and Collatz et al. 

(1992): 

Θ𝑐𝑗𝐴𝑖
2 − (𝐴𝑐 + 𝐴𝑗)𝐴𝑖 + 𝐴𝑐𝐴𝑗 = 0 (𝑆10) 

Θ𝑖𝑝𝐴2 − (𝐴𝑖 + 𝐴𝑝)𝐴 + 𝐴𝑖𝐴𝑝 = 0 (𝑆11) 

For C3 plants, Θcj = 0.98 and Θip = 0.95. For C4 plants, Θcj = 0.80 and Θip = 0.95. Rubisco-limited rate 

(Ac, μmol CO2 m
-2 s-1), light-limited rate (Aj, μmol CO2 m

-2 s-1), product-limited rate (Ap, μmol CO2 m
-2 s-

1) and Rd are calculated as: 



𝐴𝑐 = {

𝑉𝑐 𝑚𝑎𝑥(𝑐𝑖 − Γ∗)

𝑐𝑖 + 𝐾𝑐(1 +
0.21𝑃𝑎𝑡𝑚

𝐾𝑜
)

 𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

𝑉𝑐 𝑚𝑎𝑥   𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆12) 

𝐴𝑗 = {

𝐽(𝑐𝑖 − Γ∗)

4𝑐𝑖 + 8Γ∗
 𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

0.23𝜙  𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆13) 

𝐴𝑐 = {

3𝑇𝑝 𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

𝑘𝑝

𝑐𝑖

𝑃𝑎𝑡𝑚
  𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆14) 

𝑅𝑑 = {
0.015𝑉𝑐 𝑚𝑎𝑥  𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠
0.025𝑉𝑐 𝑚𝑎𝑥   𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (𝑆15) 

Here, Vcmax, Γ*, Patm, J, φ, Tp and kp are the maximum rate of carboxylation (μmol m-2 s-1), CO2 

compensation point (mol mol-1), atmospheric pressure (Pa), electron transport rate (μmol m-2 s-1), 

absorbed photosynthetically active radiation (PAR) (W m-2), triose phosphate utilization rate (μmol m-2 s-

1) and initial slope of C4 CO2 response curve (μmol Pa-1 m-2 s-1). Kc and Ko are the Michaelis-Menten 

constants for CO2 and O2 (Pa). Furthermore, J is calculated as the smaller root of the following equation: 

0.7𝐽2 + (1.955𝜙 + 𝐽𝑚𝑎𝑥)𝐽 + 1.955𝜙 = 0 (𝑆16) 

Where Jmax is the maximum potential rate of electron transport (μmol m-2 s-1). As Jmax, φ, Vcmax and the 

variables related to Vcmax (Γ*, Jmax, Tp, Rd) differ between sunlit and shaded leaves, the above set of 

equations are solved separately for sunlit and shaded leaves. 

The parameters (Vcmax, Γ*, Kc, Ko, Jmax, Tp, Rd) are functions of vegetation temperature (Tv), and the 

temperature scaling formulae are given at eq. 8.9 to eq. 8.14, while the effect of temperature acclimation 

(Kattge and Knorr, 2007) on Jmax and Vcmax are given at eq. 8.15 and 8.16 in Oleson et al. (2013). Other 

details of the model formalism (e.g. canopy scaling and effect of βt on Vcmax) also follow Chapter 8 in 

Oleson et al. (2013), therefore we will focus on describing the main differences between CLM 4.5 and 

TEMIR. 

First, TEMIR is driven entirely by assimilated meteorology. Instead of solving the whole surface energy 

balance equation, TEMIR consistently calculates Tv from 2-meter air temperature (T2, K) and sensible 

heat flux (H, W m-2) using Monin-Obukhov similarity theory (Monin and Obukhov, 1954): 

𝑇𝑣 = 𝑇2 +
𝐻

𝜌𝑐𝑝
(𝑟𝑎,ℎ + 𝑟𝑏,ℎ) (𝑆16) 

Where ρ, cp, ra,h and rb,h are air density (kg m-3), specific heat of air at constant pressure (J kg-1 K-1), 

aerodynamic and laminar boundary-layer resistance (s m-1) of heat, respectively. 

Secondly, MERRA-2 only provides soil moisture output at two levels (surface and root zone), which is 

not compatible with the multi-layer soil module in CLM. Therefore, instead of aggregating βt from 

multiple soil layers, TEMIR calculates βt from the root-zone soil wetness of MERRA-2. Soil wetness (s) 

is first converted into soil matric potential (ψ, mm) using the following equation: 

𝜓 = 𝜓𝑠𝑎𝑡𝑠−𝐵 (𝑆17) 



Where ψsat and B are the soil matric potential (mm) at saturation and Clapp-Hornberger exponent (Clapp 

and Hornberger, 1978), which are related to soil property. Then βt is calculated as: 

𝛽𝑡 =
𝜓𝑐 − 𝜓

𝜓𝑐 − 𝜓0
 (

𝜃𝑠𝑎𝑡 − 𝜃𝑖𝑐𝑒

𝜃𝑠𝑎𝑡
) , 0 ≤ 𝛽𝑡 ≤ 1 (𝑆18) 

Where ψc and ψ0 are the soil matric potential (mm) at which stomata are full close or fully open, and the 

term in the bracket account for the fact that frozen water are not available for plants. 

 

 

Figure S2. July average soil moisture stress factor (βt). βt = 1 represents no soil moisture stress, 

while smaller βt means stronger soil moisture stress and more stomatal closure. βt = 0 signifies that 

soil moisture stress is so strong that it completely shuts down stomatal activity. 

 

 

 

 

 

 

 

 

 

 

  



3. Table A1 to Table A3 

 

 W98 Z03 W98_BB Z03_BB 

Ra 

𝑅𝑎 =
1

𝜅𝑢∗
[ln(

𝑧

𝑧0
) − Ψ (

𝑧

𝐿
) + Ψ(

𝑧0

𝐿
)] 

When 𝜍 ≥ 0, Ψ(𝜍) = −5𝜍 

When 𝜍 < 0, Ψ(𝜍) = 2 ln(
1+√1−16𝜍

2
)  

Rb 𝑅𝑏 =  
2

𝜅𝑢∗
(

𝑆𝑐

𝑃𝑟
)2/3  

Rs 

𝑅𝑠

= 𝑟𝑠(𝑃𝐴𝑅, 𝐿𝐴𝐼)𝑓𝑇

𝐷H2O

𝐷O3

 

𝑅𝑠

=
𝑟𝑠(𝑃𝐴𝑅, 𝐿𝐴𝐼)

(1 − 𝑤𝑠𝑡)𝑓𝑇𝑓𝑣𝑝𝑑𝑓𝜓

𝐷H2O

𝐷O3

 

𝑔𝑠 = 𝑔0 + 𝑚
𝐴𝑛

𝐶𝑠
ℎ𝑠 

𝑅𝑠 =
1

𝑔𝑠

𝐷H2O

𝐷O3

 

𝑔𝑠 = 𝑔0 + 𝑚
𝐴𝑛

𝐶𝑠
ℎ𝑠 

𝑅𝑠 =
1

(1 − 𝑤𝑠𝑡)𝑔𝑠

𝐷H2O

𝐷O3

 

Cuticular 

Resistance (Rcut) 
𝑅𝑐𝑢𝑡 =

𝑅𝑐𝑢𝑡0

𝐿𝐴𝐼
 

For dry surface, 

𝑅𝑐𝑢𝑡 =
𝑅𝑐𝑢𝑡𝑑0

𝑒0.03𝑅𝐻𝐿𝐴𝐼0.25𝑢∗
 

For wet surface, 

𝑅𝑐𝑢𝑡 =
𝑅𝑐𝑢𝑡𝑤0

𝐿𝐴𝐼0.5𝑢∗
 

Same as W98 Same as Z03 In-canopy 

aerodynamic 

resistance (Rac) 

Prescribed 𝑅𝑎𝑐 = 𝑅𝑎𝑐0

𝐿𝐴𝐼0.25

𝑢∗
 

Ground 

Resistance (Rg) 
Prescribed 

Lower-canopy 

aerodynamic 

resistance (Ralc) 

𝑅𝑎𝑙𝑐

= 100(1 +
1000

𝑅 + 10
) 

- 

Lower-canopy 

surface 

resistance (Rclc) 

Prescribed -   

Table A1: Brief description of the four dry deposition parameterizations. κ = von Karman constant, u* = 

friction velocity, z = reference height, z0 = roughness length, L = Obukhov length, Sc = Schmidt’s 

number, Pr = Prandtl number for air, LAI = leaf area index, PAR = photosynthetically active radiation, Dx 

= Diffusivity of species x in air, fT = temperature (T) stress function, fvpd = vapour pressure deficit (VPD) 

stress function, fψ = leaf water potential (ψ) stress function, wst = stomatal blocking fraction, An = Net 

photosynthetic rate, g0 = minimum stomatal conductance, m = Ball-Berry slope, Cs = CO2 concentration 

on leaf surface, hs = relative humidity on leaf surface, RH = relative humidity, h = canopy height, R = 

downward shortwave radiation 

  



CLM PFT Z03 surface type 

Needleleaf evergreen tree - temperate 
Evergreen needleleaf trees 

Needleleaf evergreen tree - boreal 

Needleleaf deciduous tree - boreal Deciduous needleleaf trees 

Broadleaf evergreen tree - tropical Tropical broadleaf trees 

Broadleaf deciduous tree - tropical 

Deciduous broadleaf trees Broadleaf deciduous tree - temperate 

Broadleaf deciduous tree - boreal 

Broadleaf evergreen shrub - temperate Thorn shrubs 

Broadleaf deciduous shrub - temperate 
Deciduous shrubs 

Broadleaf deciduous shrub - boreal 

C3 arctic grass Tundra 

C3 grass Short grass 

C4 grass Corn* 

C3 crop Crops 

Table A2: Mapping between CLM PFT and Z03 surface type.  

*C4 grasses are mapped to corn due to the similarity in photosynthetic pathway, and hence stomatal 

control 

 

Land Type Longitude Latitude Season Mean daytime vd (cm 

s-1) 

Citation 

Deciduous 

Forest 

-80.9° 44.3° Summer 0.92 Padro et al., 1991 

Winter 0.28 

99.7° 18.3° Spring 0.38 Matsuda et al., 2005 

Summer 0.65 

-72.2° 42.7° Summer 0.61 Munger et al., 1996 

Winter 0.28 

-78.8° 41.6° Summer 0.83 Finkelstein et al., 2000 

-75.2° 43.6° Summer 0.82 

Coniferous 

Forest 

-3.4° 55.3° Spring 0.58 Coe et al., 1995 

-79.1° 36.0° Spring 0.79 Finkelstein et al., 2000 

-120.6° 38.9° Spring 0.58 Kurpius et al., 2002 

Summer 0.59 

Autumn 0.43 

Winter 0.45 

-0.7° 44.2° Summer 0.48 Lamaud et al., 1994 

105.5° 40.0° Summer 0.39 Turnipseed et al., 2009 

-66.7° 54.8° Summer 0.26 Munger et al., 1996 

11.1° 60.4° Spring 0.31 Hole et al., 2004 

Summer 0.48 

Autumn 0.20 

Winter 0.074 

8.4° 56.3° Spring 0.68 Mikkelsen et al., 2004 

Summer 0.80 

Autumn 0.83 

Tropical 

Rainforest 

117.9° 4.9° Wet 0.5 Fowler et al., 2011# 

Wet 1.0 

-61.8° -10.1° Wet 1.1 Rummel et al., 2007 

Dry 0.5 

-60.0° 3.0° Wet 1.8 Song-Miao et al., 1990 

Grass -88.2° 40.0° Summer 0.56 Droppo, 1985 



-3.2° 57.8° Spring 0.59 Fowler et al., 2001 

Summer 0.56 

Autumn 0.42 

-119.8° 37.0° Summer 0.15 Padro et al., 1994 

-8.6° 40.7° Summer 0.22 Pio et al., 2000 

Winter 0.38 

-104.8° 40.5° Spring 0.22 Stocker et al., 1993 

10.5° 52.4° Spring 0.44 Ḿesźaros et al., 2009 

-96.4° 39.5° Summer 0.62 Gao and Wesely, 1995 

Crops -2.8° 55.9° 

Not 

applicable* 

0.69 Coyle et al., 2009 

-88.4° 40.1° 0.53 Meyers et al., 1998 

0.12 

-87.0° 36.7° 0.85 

0.39 

-86.0° 34.3° 0.40 

-120.7° 36.8° 0.76 Padro et al., 1994 

8.0° 48.7° 0.41 Pilegaard et al., 1998 

2.0° 48.9° 0.60 Stella et al., 2011 

0.6° 44.4° 0.47 

1.4° 43.8° 0.37 

Table A3: Information on all the measurement sites included in model evaluation 

*Crops are heavily influenced by management practices rather than natural seasonality. Thus, two data 

sets in the same location generally represent before and after certain a crop phenology or human 

management event. 

#The two measurements are taken at a rainforest and an oil palm plantation nearby.  
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