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S1 Analytical solution to evaporation differential equation and curve-fitting procedure

To make the fitting procedure less computationally expensive, rather than repeatedly numerically integrating the differential
equation we developed an analytical expression that approximates a closed-form solution to Maxwellian flux under certain
simplifying assumptions. In particular, we assumed three quantities were time-invariant:

First, the droplet radius did not vary with time because the butenedial reflects only a fraction of the total droplet composition.
For our experiments, the full numerical integration calculation showed particle radius decreased by less than 10% with
complete butenedial evaporation and has a negligible effect on the vapor pressure calculation compared to overall
uncertainty in our experiments.

Second, the mole fraction of water in the droplet did not vary with time. This approximation is true to the extent that the RH
in the EDB remains constant and the change in composition over the droplet’s residence of the EDB does not lead to a
change in the activity coefficient of water.

Third, all components in the droplet that are not butenedial or water (i.e., PEG-6, NaCl and Na,SQ.) did not evaporate over
the timescale of the experiment.

Using these assumptions, it can be shown that the Maxwell flux expression can be simplified to
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and N; is the time-dependent number of molecules of compound i.

This form of differential equation has an analytical solution in the form:
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where W is the Lambert W function and C, is an integration constant. From this solution it further can be shown that

Co = bln(NBD,(tzo)) + ¢Npgp,(t=0) (S6)

The data was fit to Eq. S5 with the values of b, ¢, and C, constrained as input parameters and a as the free parameter whose
value was determined via non-linear curve fitting. The fitting procedure used the Trust Region Reflective algorithm, which
allows for fitting to an arbitrary function with parameters constrained to only take on physically meaningful positive values

(Branch et al., 1999), as implemented in the SciPy scientific computing package (Jones et al., 2001-).

S2 Validation of analytical solution

The agreement between Eqg. S5 and numerical integration was verified for our experimental conditions using the dry
experiment because that is the experiment for which the largest change in droplet radius is expected to have taken place.

To confirm that the assumptions made in deriving the closed form solution to the Maxwell flux differential equation do not
substantially affect the shape of the evaporation curve or the extracted vapor pressure, the closed form solution was
compared to the best fit forward run of the Maxwell flux equation. Minimizing the root mean squared deviation (RMSD) of
the forward model run from the observed butenedial evaporation was used as the metric to determine the forward run of best
fit. As shown in Fig. S1 and Fig. S2, the best fit forward run was compared to the closed form solution for both the dry and
humid measurements without inorganics present. In both cases, the vapor pressures converged to the same value within the
uncertainty range, verifying that assuming constant radius, mole fraction of water, and nonvolatility of hexaethylene glycol

does not alter the vapor pressure estimate significantly for the instrumental setup.
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Figure S1: Validation of closed-form approximation, dry BD + PEG-6 experiment.
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5 Figure S2: Validation of closed-form approximation, humid BD + PEG-6 experiment.
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S3 Monte Carlo uncertainty analysis

The overall strategy of the Monte Carlo uncertainty analysis was to obtain a distribution of extracted butenedial vapor
pressures was obtained by repeating the fitting procedure in Sect. S1 10000 times, each time using a set of parameter values
sampled at random from the set of distributions describing their uncertainties. The mean of the extracted butenedial vapor
pressures provides a central value for the butenedial effective vapor pressure. The standard deviation describes the
uncertainty due to uncertainties in the other model input parameters as well as the standard error in the model fit coefficient.
The source of the uncertainty in diameter arises from a combination of inherent uncertainty in the measurement and droplet-
to-droplet variability, though the characteristics of each droplet were kept as consistent as possible. The uncertainties in gas-
phase diffusivity and scaling factor reflect uncertainties in the underlying parameters, rather than reflecting any variability in
the values from particle to particle. The uncertainty in temperature does reflect the extent to which the EDB temperature
drifted with time, though it should be noted the effect of temperature on the evaporation model over this range is limited.
Each input parameter was represented by a Gaussian distribution centered at the mean value and with standard deviation
based upon the variability or uncertainty in its measurements. The Monte Carlo approach assumes independence between
each of the model input parameters, which is a reasonable assumption for this set of parameters. The distribution of each
input parameter was treated separately for each experiment type (i.e., dry, humid, NaCl #1, NaCl #2, Na;SO.).

To calculate P,y o for each iteration of the Monte Carlo technique, a value of a was used that accounted for the standard
error in the value of a extracted from the curve-fitting procedure. A single value of a was sampled from a standard
distribution centered at the optimal estimate of a, arising from the current iteration of curve-fitting procedure, and with
standard deviation equal to the square root of the variance of the a estimate, again from the current iteration of the curve-

fitting procedure. Using this sampled value of a in Eq. S2, the value of R,,, was calculated for a single iteration of the Monte

Carlo technique.
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