Supplement of: Implication of extreme atmospheric methane concentration for chemistry-climate connections

Franziska Winterstein¹, Fabian Tanalski^{1,2}, Patrick Jöckel¹, Martin Dameris¹, and Michael Ponater¹

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany ²now at MERPH-IP Patentanwälte PartG mbB, München, Germany

Correspondence to: Franziska Winterstein (franziska.frank@dlr.de)

Contents

1	Evaluation of reference with observations	2
2	Difference in the annual cycle of O ₃	5
3	Adjusted temperature	8

North-South gradient CH₄ mixing ratio

Figure S1. Comparison of observations on the research vessel *Polarstern* Klappenbach et al. (2015) (black) to annual zonal mean methane (CH₄) columns of the reference simulation (blue) in [parts per million volume (ppmv)]. The solid line represents the original column derived from the reference simulations and the dash dotted line are the columns moved by +0.055 ppmv (see text for explanation).

Figure S2. Comparison of vertical global mean CH₄ profile of simulation with balloon borne observations provided by Röckmann et al. (2011). The balloon launch sites are Hyderabad, India (HYD, 17.5° N, 78.60° E), Kiruna, Sweden (KIR, 67.9° N, 21.10° E), Aire sur l'Adour, France (ASA, 43.70° N, -0.30° E) and Gap, France (GAP, 44.44° N, 56.14 E) (see text for explanation).

Figure S3. Seasonal differences in ozone (O_3) between S1 and REF. Non-stippled areas are significant on a 95% confidence level according to a two sided Welch's test.

Figure S4. Seasonal differences in O₃ between S2 and REF. Non-stippled areas are significant on a 95% confidence level according to a two sided Welch's test.

Figure S5. Stratospheric adjusted temperature based on chemical changes in simulation S1* ($2xCH_4$) in (a) CH₄, water vapour (H₂O) and O₃ together, (b) CH₄, (c) H₂O, (d) tropospheric H₂O only, (e) stratospheric H₂O only, (f) O₃, (g) tropospheric O₃ only, (h) stratospheric O₃ only. Note the different color bars in panels (a), (b), (d), and (g). **8**

Figure S6. Stratospheric adjusted temperature based on chemical changes in simulation $S2^*$ (5xCH₄) in (a) CH₄, H₂O and O₃ together, (b) CH₄, (c) H₂O, (d) tropospheric H₂O only, (e) stratospheric H₂O only, (f) O₃, (g) tropospheric O₃ only, (h) stratospheric O₃ only. Note the different color bars in panels (a), (b), (d), and (g).

References

- Klappenbach, F., Bertleff, M., Kostinek, J., Hase, F., Blumenstock, T., Agusti-Panareda, A., Razinger, M., and Butz, A.: Accurate mobile remote sensing of XCO₂ and XCH₄ latitudinal transects from aboard a research vessel, Atmos. Meas. Tech., 8, 5023–5038, https://doi.org/10.5194/amt-8-5023-2015, https://www.atmos-meas-tech.net/8/5023/2015/, 2015.
- 5 Röckmann, T., Brass, M., Borchers, R., and Engel, A.: The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements, Atmos. Chem. Phys., 11, 13 287–13 304, https://doi.org/10.5194/acp-11-13287-2011, 2011.