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Abstract 37 

Multi-year observations of aerosol microphysical and optical properties 38 

obtained through ground-based remote sensing at 50 China Aerosol Remote 39 

Sensing Network (CARSNET) sites were used to characterize the aerosol 40 

climatology for representative remote, rural, and urban areas over China to 41 

assess effects on climate. The annual mean effective radii for total particles 42 

(Refft) decreased from north to south and from rural to urban sites, and high 43 

total particle volumes were found at the urban sites. The aerosol optical depth 44 

at 440 nm (AOD440nm) increased from remote/rural sites (0.12) to urban sites 45 

(0.79), and the extinction Ångström exponent (EAE440-870nm) increased from 46 

0.71 at the arid/semi-arid sites to 1.15 at the urban sites, presumably due to 47 

anthropogenic emissions. Single scattering albedos (SSA440 nm) ranged from 48 

0.88 to 0.92 indicating slightly to strongly absorbing aerosols. Absorption 49 

AOD440nm’s were 0.01 at the remote sites versus 0.07 at the urban sites. The 50 

average direct aerosol radiative effect (DARE) at the bottom of atmosphere 51 

increased from the sites in the remote (-24.40 W/m2) to the urban area 52 

(-103.28 W/m2) indicating increased cooling at the latter. The DARE for the top 53 

of the atmosphere increased from -4.79 W/m2 at the remote sites to -30.05 54 

W/m2 at the urban sites, indicating overall cooling effects for the 55 

earth-atmosphere system. A classification method based on SSA440 nm, fine 56 

mode fraction (FMF), and EAE440-870 nm showed that coarse mode particles 57 

(mainly dust) were dominant at the rural sites near the northwestern deserts, 58 

while light-absorbing, fine-mode particles were important at most urban sites. 59 

This study will be important for understanding aerosol climate effects and 60 

regional environmental pollution, and the results will provide useful information 61 

for satellite validation and the improvement of climate modelings. 62 

Keywords: aerosol optical properties; direct aerosol radiative effect; aerosol 63 

type; climatology; China Aerosol Remote Sensing Network 64 
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1. Introduction 66 

Atmospheric aerosols have important direct effects on climate because 67 

they can scatter and absorb radiant energy and in so doing affect the Earth’s 68 

energy balance (Charlson et al., 1992; Yang et al., 2016). Meanwhile, the 69 

aerosols can be served as cloud condensation nuclei or ice nuclei to affect the 70 

climate indirectly through aerosol–cloud interactions (Twomey et al., 1984; 71 

Garrett et al., 2006; Zhao et al., 2015; Xie et al., 2013). The optical properties 72 

of the aerosol determine the particles’ direct effects on the Earth’s radiative 73 

balance and weather-climate change (Ramanathan et al., 2001; Eck et al., 74 

2005; Myhre, 2009; Zhao et al., 2018). Aerosol optical depth (AOD) is one of 75 

the key measures of the total aerosol extinction effects on climate (Breon et al., 76 

2002), and the extinction Ångström exponent (EAE) with spectral dependence 77 

can be used to obtain the information about aerosol size distributions (Gobbi et 78 

al., 2007; Eck et al., 1999; Zheng et al., 2017). The aerosols’ absorptivity 79 

depends on particle composition is a key determinant to calculate the direct 80 

aerosol radiative effect (Haywood and Shine, 1995; Li et al., 2016; Zheng et al., 81 

2018), and the single scattering albedo (SSA) is the parameter has spectral 82 

dependence to distinguish major aerosol particle types (Jacobson et al., 2000; 83 

Dubovik et al., 2002; Gelencser et al., 2004; Russell et al., 2010; Giles et al., 84 

2012). 85 

With the recognition of the importance for climate, the aerosol optical 86 

properties have been obtained from ground-based monitoring networks 87 

worldwide; some of the major networks include AERONET-Aerosol Robotic 88 

Network) (Holben et al., 1998) and its sub-networks of 89 

PHOTONS-PHOtométrie pour le Traitement Opérationnel de Normalisation 90 

Satellitaire, AEROCAN-Canadian Sun-Photometer Network, and RIMA-Iberian 91 

Network for aerosol measurements ((Goloub et al., 2007; Bokoye et al., 2001;  92 

Prats et al., 2011), SKYNET-SKYrad Network (Takamura and Nakajima, 2004; 93 

Che et al., 2008), EARLINET-European aerosol Lidar network (Pappalardo et 94 

al., 2014), the GAW-PFR Network-Global Atmosphere Watch 95 
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Programmer-Precision Filter Radiometers (Wehrli, 2002; Estellés et al., 2012),. 96 

The CARSNET-China Aerosol Remote Sensing NETwork, the 97 

CSHNET-Chinese Sun Hazemeter Network and the SONET-Sun–Sky 98 

Radiometer Observation Network have been established to measure aerosol 99 

optical properties in China (Che et al., 2009a, 2015; Xin et al., 2007; Li et al., 100 

2018). Furthermore, the aerosol optical properties have also been used in 101 

comprehensive studies of aerosol physical characteristics and chemical 102 

composition in many regions of China (Che et al., 2009c, 2018; Zhao et al., 103 

2018). 104 

China has become one of the largest aerosol sources in the world 105 

associated with its rapid economic development, and this has caused 106 

significant effects on local environments and regional climate (Che et al., 2005; 107 

Xia, 2010; Li et al., 2016; Yang et al., 2018, 2019; Zhao et al., 2019). There 108 

have been numerous studies that have focused on aerosol optical properties 109 

obtained though ground-based remote sensing methods in China (Luo et al., 110 

2002; Li et al., 2003; Duan and Mao, 2007). A few researches have paid more 111 

attention to the aerosol optical properties and its radiative effects over the 112 

urban-industrial areas as well as at coastal sites in northeastern and eastern 113 

China (Wang et al., 2010; Xin et al., 2011; Xia et al., 2007; Zhao et al., 2016; 114 

Wu et al. 2012; Shen et al., 2019). Many studies of aerosol optical properties 115 

were conducted in northern China with high aerosol loadings, such as the 116 

Beijing-Tianjin-Hebei region (Che et al. 2014; Xia et al., 2013; Fan et al., 2006; 117 

Xie et al., 2008; Zhang et al., 2019; Yang et al., 2019; Zhao et al., 2018). 118 

Aerosol optical properties also have been investigated at Hefei, Shouxian, 119 

Nanjing, Taihu, Shanghai and other sites in eastern China (Lee et al., 2010; He 120 

et al., 2012; Zhuang et al., 2014; Wang Z et al., 2015; Che et al., 2018). Some 121 

studies of aerosol optical properties have been made in southern China (Wang 122 

et al., 2015; Tao et al., 2014), and those at remote and rural sites in China 123 

provide information on regional background conditions (Che et al., 2009b; 124 

Wang et al., 2010; Xue et al., 2011; Zhu et al., 2014; Yuan et al., 2014).  125 
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China’s vast size, varied terrain, and heterogeneity of aerosol sources, 126 

has led to strong temporal and spatial variability in aerosol optical and physical 127 

properties. The mixtures of aerosol types at most sites are complex, and 128 

aerosol populations’ size and composition are affected by their sources, 129 

transformations that occurring during transportation and removing processes 130 

(Cao et al., 2007; Wang et al., 2007; Zhang et al., 2013; Wan et al., 2015). 131 

National scale, ground-based measurements of aerosol microphysical and its 132 

optical properties obtained from the sunphotometer provide for a better 133 

understanding of the aerosols’ climate effects over the different regions of 134 

China. The measurements of greatest interest include aerosol size 135 

distributions (volume and aerosol effective radii), optical properties (AOD, AE, 136 

SSA, absorption AOD) because those data can at least be used to evaluate 137 

direct radiative effect.  138 

The aim of this study was focused on the investigation of the 139 

climatological spatial distribution of aerosol microphysical and optical 140 

properties over regional-scales using spatial distribution data from the national 141 

CARSNET network. The data were collected at CARSNET sites, which include 142 

sites in the remote, rural and urban area, with the same calibration procedures 143 

and calculation algorithms were used at all sites. As a result, the data are 144 

directly comparable among sites (Che et al., 2009a), and the results can be 145 

provided to characterize the regional distribution and temporal variation of 146 

aerosol optical properties. This research focused on aerosol climate effects 147 

and regional environmental pollution, and the results should be useful for 148 

satellite validations and for the improvement of models in the future. The 149 

remainder of this paper is organized as following: Section 2 firstly describes 150 

the sites in detail, and then introduced the methods in data processing of the 151 

aerosol optical properties as well as the direct aerosol radiative effect 152 

calculation through the retrieved aerosol optical parameters. Section 3 153 

illustrates the aerosol microphysical and optical properties, as well as its direct 154 

aerosol radiative effect. An aerosol type classification method is proposed 155 
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according to the aerosol optical parameters. Section 4 presents the 156 

conclusions of the study.  157 

2 Site description, instruments, and data 158 

2.1 Site description 159 

Sunphotometers (CE-318, Cimel Electronique, Paris, France, see 160 

Appendix A,) were installed at 50 CARSNET sites (Fig. 1) from 2010 to 2017. 161 

The stations were classified as remote, rural, or urban sites based on 162 

administrative division (Appendix Table 1). Three of the remote stations were 163 

about more than 3000 m above the sea level on the Tibetan Plateau far from 164 

the anthropogenic influences, and one of them was a northwestern regional 165 

background site in China. The 23 rural sites represent (a) five sites of desert 166 

regions affected by most of dust aerosols rather than anthropogenic particles, 167 

(b) two sites affected by both dust and anthropogenic activities on the Loess 168 

Plateau, and (c) 16 sites located near or surrounding the large cities relatively 169 

strong to the impacts of anthropogenic activities in the central and eastern 170 

China. The last category is 24 urban sites located in provincial capitals or 171 

heavily populated cities. 172 

2.2 Instruments and calibration 173 

The CE-318 sunphotometers used in this study were calibrated annually, 174 

using the CARSNET calibration protocol, to verify the accuracy and reliability 175 

of the sky irradiance measurements (Holben et al., 1998; Che et al., 2009; Tao 176 

et al., 2014). The reference instruments for CARSNET were periodically 177 

calibrated at Izaña, Tenerife, Spain located at 28.31°N, 16.50°W (2391.0 m 178 

a.s.l.) in conjunction with the AERONET program. There are several different 179 

types of the Cimel instruments that have been used at the 50 sites in this 180 

network as follows: (1) logical type CE-318 sunphotometers (440 nm, 675 nm, 181 

870 nm, 940 nm, 1020 nm and three 870 nm at the polarization band), (2) 182 

numerical type CE-318 sunphotometers (440 nm, 675 nm, 870 nm, 940 nm, 183 

1020 nm and three polarization bands at 870 nm), (3) numerical type CE-318 184 

sunphotometers at eight wavelengths (340 nm, 380 nm, 440 nm, 500 nm, 675 185 
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nm, 870 nm, 940 nm, and 1020 nm), (4) and numerical type CE-318 186 

sunphotometers at nine wavelengths (340 nm, 380 nm, 440 nm, 500 nm, 675 187 

nm, 870 nm, 940 nm, 1020 nm and 1640 nm).  188 

Measurements used to retrieve AODs were at 340 nm, 380 nm, 440 nm, 189 

500 nm, 675 nm, 870 nm, 1020 nm, and 1640 nm, while the total precipitable 190 

water content was obtained by using those measurements at 940 nm (Holben 191 

et al., 1998; Dubovik and King, 2000). The cloud-screened AOD data were 192 

calculated by using the ASTPwin software, and extinction Ångström exponents 193 

(EAE) were calculated from the instantaneous AODs for wavelengths of 440 194 

nm and 870 nm (Che et al., 2009, 2015). Sites with more than three daily AOD 195 

observations and more than 10 monthly AOD observation days were used to 196 

calculate the daily and monthly mean AODs and extinction Ångström 197 

exponents. The FMF is described as the fraction of fine mode particles of total 198 

AOD440nm (AODfine440 nm/AOD440 nm).  199 

 200 

2.3. Data processing 201 

The aerosol microphysical and optical properties, including volume size 202 

distributions (dV(r)/dln(r), the total, fine, and coarse mode aerosol effective 203 

radii (ReffT, ReffF, and ReffC, respectively) single-scattering albedo (SSA), 204 

complex refractive indices, absorption AODs (AAODs), and absorption 205 

Ångström exponents (AAEs), were retrieved from the observational data from 206 

the sky scattering channel of the sunphotometers at 440 nm, 670 nm, 870 nm, 207 

1020 nm using the algorithms of Dubovik et al. (2002, 2006). In the process of 208 

retrieval, the data of surface albedo (SA) was interpolated or extrapolated to 209 

440 nm, 670 nm, 870 nm, and 1020 nm based on the daily MCD43C3 data, a 210 

product from the MODIS-Moderate Resolution Imaging Spectroradiometer 211 

surface reflectance (https://ladsweb.modaps.eosdis.nasa.gov/). The algorithm 212 

used to calculate aerosol volume size distributions (dV/lnr) was under the 213 

assumption of a homogeneous distribution of non-spherical particles following 214 

the approach of Dubovik (2006). The sphericity fraction retrieved from the 215 

https://ladsweb.modaps.eosdis.nasa.gov/
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inversions is defined as: spherical particles/(spheroidal particles + spherical 216 

particles) (Giles et al., 2011). 217 

As Dubovik et al. (2002, 2006) defined that all the particles with effective 218 

radii < 0.992 μm were considered as fine mode particles; and those > 0.992 219 

μm were considered as coarse mode particles. For the total (ReffT), fine (ReffF) 220 

and coarse (ReffC) mode aerosols, the effective radii are calculated by the 221 

equation as follows: 222 

Reff =
∫ r3dN(r)

dlnr
dlnr

rmax
rmin

∫ r2dN(r)

dlnr
dlnr

rmax
rmin

                                          (1) 223 

Where rmin denotes 0.05, 0.05, 0.992 μm and rmax denotes 15, 0.992, 15 224 

μm of the total, fine and coarse mode particles, respectively. 225 

The coarse (PVC) and fine aerosol particle volumes distributions (PVF) are 226 

calculated according to a bimodal lognormal function descript by Whitby 227 

(1978), Shettle and Fenn (1979) and Remer and Kaufman (1998): 228 

𝑑𝑉(r)

𝑑lnr
= ∑

Cv,𝑖

√2𝜋𝜎𝑖
𝑒𝑥𝑝 [−

(𝑙𝑛𝑟−𝑙𝑛𝑟𝑉,𝑖)
2

2𝜎𝑖
2 ]2

𝑖=1                               (2) 229 

where Cv,𝑖 means for the volume concentration; 𝑟𝑉,𝑖 means the median 230 

radius, and 𝜎𝑖 means the standard deviation. 231 

The volume median radius is computed by fine and coarse modes 232 

particles as follows: 233 

ln𝑟V =
∫ ln𝑟

dV(r)

dlnr
dlnr

rmax
rmin

∫  
dV(r)

dlnr
dlnr

rmax
rmin

                                          (3) 234 

Then the standard deviation is calculated from the volume median radius: 235 

σ𝑉 = √
∫ (𝑙𝑛𝑟−𝑙𝑛𝑟𝑉)2𝑑𝑉(𝑟)

𝑑 𝑙𝑛𝑟
𝑑 𝑙𝑛𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

∫
𝑑𝑉(𝑟)

𝑑 𝑙𝑛𝑟
𝑑 𝑙𝑛𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

                                    (4) 236 
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The volume concentration (μm3/μm2) is speculated by the following 237 

equation: 238 

C𝑉 = ∫
𝑑𝑉(𝑟)

𝑑 𝑙𝑛𝑟
𝑑 𝑙𝑛𝑟

𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛
                                           (5) 239 

The SSA was retrieved only for AOD440nm > 0.40; this was done to avoid 240 

the larger uncertainty inherent in the lower AOD retrieval according to Dubovik 241 

et al. (2002, 2006). The AAOD and AAE for wavelength λ were calculated as 242 

follows: 243 

 AAOD(λ) = [1 −  SSA(λ)] × AOD(λ)            (6) 244 

AAE =
−dln[AAOD(λ)]

dln(λ)
                                            (7) 245 

The total AODs’ uncertainty was 0.01 to 0.02 according to Eck et al. 246 

(1999). The accuracy of SSA retrieved from AOD440nm > 0.50 with solar zenith 247 

angles > 50 was 0.03 (Dubovik et al., 2002). The accuracy of the particle 248 

volume size distribution was 15–25% between 0.1 μm  r  7.0 μm and 25–100% 249 

in conditions of r < 0.1 μm and r >7μm.  250 

Direct aerosol radiative effect (DARE in W/m2) was calculated by the 251 

radiative transfer module under cloud-free conditions, which is similar to the 252 

inversion of AERONET (García et al., 2008; 2012). The DARE at the bottom of 253 

the atmosphere (BOA) and the top of the atmosphere (TOA) was defined as 254 

the difference in the shortwave radiative fluxes with and without aerosol effects 255 

as follows: 256 

 257 

DARE 𝑇𝑂𝐴 = 𝐹𝑇𝑂𝐴
↑0 − 𝐹𝑇𝑂𝐴

↑                                          (8)   258 

 259 

    DARE 𝐵𝑂𝐴 = 𝐹𝐵𝑂𝐴
↓ − 𝐹𝐵𝑂𝐴

↓0
                                                             (9) 260 

 261 

Where F and F0 denoted the broadband fluxes including and excluding 262 
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aerosols, respectively at the BOA and TOA. The “↑” and “↓”mean the upward 263 

fluxes and downward fluxes, respectively.  264 

In the radiative transfer module, the absorption and multiple scattering 265 

effects are taken into account during flux calculations by the Discrete 266 

Ordinates (DISORT) approach (Nakajima and Tanaka, 1988; Stamnes et al., 267 

1988). The gaseous distributions and single fixed aerosol vertical distribution 268 

(exponential to 1 km) from the multi-layered US standard 1976 atmosphere 269 

were used in the radiative flux calculations (García et al., 2008). García et al. 270 

(2008) pointed out that the error for the observed solar radiation at the surface 271 

in global was +2.1 ± 3.0% for an overestimation of about +9 ± 12 Wm-2. The 272 

data used in preparing the figures for the present paper have been made 273 

available as an Appendix. 274 

 275 

3. Results and discussion 276 

3.1 Spatial distribution of aerosol microphysical properties 277 

A map showing the 50 CARSNET sampling sites and plots of the aerosol 278 

volume size distributions (dV/dlnr) at each of the sites is shown in Fig. 1. 279 

Generally, the annual mean effective radius of total particles (ReffT) decreased 280 

from the inland northwest to the southeastern coastal areas. Furthermore, the 281 

volume concentration of total particles was found substantially higher at the 282 

urban sites. The volume of the coarse mode particles was considerably larger 283 

than that of the fine mode particles at the remotes, arid/semi-arid sites and at 284 

those sites on the CLP-Chinese Loess Plateau or nearby, indicating that those 285 

areas were most strongly affected by larger particles, most likely mineral dust 286 

as discussed below. 287 

The average (arithmetic mean) ReffT at the remote sites was about 0.47 288 

μm with the volume about 0.05 μm3/μm2 (Table 1). A large ReffT (0.64 μm) was 289 

found at Lhasa, and the total aerosol volume there was 0.05 μm3/μm2. These 290 

results are consistent with those reports by Li et al. (2018) who found high 291 

levels of coarse mode particles at Lhasa due to the presence of mineral dust. 292 
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The two other remote sites, Akedala and Shangri-La, had smaller average ReffT 293 

values than Lhasa (0.36 and 0.39 μm, respectively), and corresponding 294 

volumes were 0.06 and 0.03 μm3/μm2. The average fine-mode effective radius 295 

(ReffF) was 0.14 μm at the remote sites, and fine-mode particle fractional 296 

volume (PVF) was 0.01 μm3/μm2, while the average coarse-mode effective 297 

radii (ReffC) was 2.35 μm and the coarse-mode fractional volume (PVC) was 298 

0.03 μm3/μm2. These findings indicated that the contribution of coarse-mode 299 

particles to the total volume of aerosol was larger at the remote sites. A study 300 

by Cong et al. (2009) at the remote Nam Co site on the Tibetan Plateau 301 

showed that dust particles mainly affected the site in spring, while 302 

anthropogenic aerosols were prevalent in the summer. 303 

The average ReffT at the arid and semi-arid sites (0.55 μm) was larger than 304 

at the remote sites, and the total volume of aerosols at the arid/semi-arid sites 305 

also was large (0.14 μm3/μm2), nearly three times that at the remote sites. 306 

Large ReffT values (0.71 μm) were found at Tazhong, which is near the 307 

northwestern deserts, and the aerosol volume there also was high to 0.30 308 

μm3/μm2. Large PVC’s were found at the arid/semi-arid sites (0.05–0.27 309 

μm3/μm2). The arithmetic mean ReffT (0.49 μm) at the rural sites on or near the 310 

CLP had total aerosol volumes (0.15 μm3/μm2) similar to those at the 311 

arid/semi-arid sites. These results also show a major contribution to the 312 

aerosol volumes by coarse-mode particles at the sites in or near the mineral 313 

dust source regions. Bi et al. (2011) similarly found that coarse particles 314 

dominated the volume-size distribution at the Semi-Arid Climate and 315 

Environment Observatory of Lanzhou University (SACOL) on the CLP.  316 

Small ReffT values (0.33 μm) were found at the rural sites in eastern China, 317 

and relatively high aerosol volumes were observed there (0.18 μm3/μm2). In 318 

the Yangtze River Delta (YRD) region, the ReffF was large range for 0.16–0.17 319 

μm, and the PVF’s were 0.12–0.13 μm3/μm2. At the Mt. Longfeng background 320 

site in northeastern China, the total particle volume was low (0.08 μm3/μm2), 321 

which is consistent with minimal anthropogenic influences and low aerosol 322 
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loadings. Compared with the other sites, the urban areas had relatively low 323 

coarse mode aerosol concentrations, but small particles were plentiful—the 324 

average ReffT was 0.37 μm and total volume was high at 0.21 μm3/μm2. The 325 

average ReffF of fine-mode particles at the urban sites was 0.16 μm with a PVF 326 

of 0.10 μm3/μm2 while the ReffC was 2.22 μm and PVC was 0.11 μm3/μm2. 327 

The effective radii and PVF values showed strong relationships with 328 

population density and vehicle emissions at the urban sites. High volumes of 329 

fine mode particles occurred at the northeastern urban site of Shenyang (ReffT 330 

= 0.16 μm, PVF = 0.12 μm3/μm2); at major cities in northern China, including 331 

Shijiazhuang (ReffT = 0.16 μm, PVF = 0.12 μm3/μm2) and Zhengzhou (ReffT = 332 

0.18 μm, PVF = 0.12 μm3/μm2); at Chengdu, a city in the Sichuan Basin of 333 

(ReffT = 0.21 μm, PVF = 0.16 μm3/μm2); and at the urban regions of Nanning 334 

(ReffT = 0.18 μm, PVF = 0.13 μm3/μm2) and Panyu (ReffT = 0.16 μm, PVF = 0.10 335 

μm3/μm2) in southern China. Overall, these results show that the volumes of 336 

fine-mode particles increased at the urban sites where anthropogenic 337 

influences were most apparent. 338 

Cheng et al. (2015) found different aerosol volume size distributions for 339 

dust and sea salt at Shanghai in the eastern China, and they showed that their 340 

relative abundances varied with season and in response to local or long-range 341 

transport. Zhao et al. (2018) also reported the effect of sea salt aerosol on the 342 

aerosol absorption and radiative effects in the coastal region over northeastern 343 

China. Especially the particles hygroscopic growth with different composition 344 

observed in special climatic conditions could affect aerosol microphysical 345 

properties by geographically variable effects (Zhang et al., 2015; Sun et al., 346 

2010). Like in the YRD region, hygroscopic growth of fine-mode particles could 347 

lead to larger AOD and scattering enhancing reported by Sun et al. (2018) and 348 

Che et al. (2018). Xia et al. (2019) observed the aerosol hygroscopic growth on 349 

fine particle scattering coefficient in Beijing. 350 

 351 

3.2 Spatial distributions of AOD and EAE 352 
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The spatial distributions of AOD440 nm and EAE440-870 nm are shown in Fig. 2. 353 

The AOD440nm increased from the remote/rural sites to the urban sites, and as 354 

one might expect, the remote sites were the least affected by particle 355 

emissions and had the lowest aerosol loadings. For example, the AOD440nm at 356 

the remote stations was low and had an average value of 0.12. The Lhasa and 357 

Shangri-La sites on the Tibetan Plateau had similar average AOD440nm values 358 

of 0.10. These phenomenons are similar to the study of Li et al. (2018), who 359 

showed clean air conditions at Lhasa with AOD < 0.1. Cong et al. (2007, 2009) 360 

also found a low AOD (0.05) at Nam Co, which was comparable to the 361 

background levels at other remote sites.  362 

The AOD440nm’s at the arid/semi-arid sites and those on or near the Loess 363 

Plateau ranged from 0.32–0.42, which is higher than at the remote sites. The 364 

high AOD440nm at Tazhong (0.60), which is near the deserts in northwestern 365 

China was likely due to the large aerosol volume of 0.30 μm3/μm2 (section 3.1) 366 

caused by mineral dust. Indeed, arid and semi-arid regions in northwestern 367 

China are important sources of aeolian dust on a global scale (Bi et al., 2011). 368 

Li et al. (2012) showed that the contribution of dust to the average AOD at 369 

SACOL near Lanzhou was 28.4%. Other sites that showed large AOD440nm 370 

include regions with strong anthropogenic influences, such as Dengfeng (0.79) 371 

on the North China Plain, Huimin (0.83) in the YRD (0.83 to 0.87) and Huainan 372 

( 0.91) in the Guanzhong Plain.  373 

Compared with the sites just discussed, lower AOD440nm’s were found at 374 

the Mt. Longfeng background station of the Northeast China Plain (0.34), the 375 

semi-arid rural site as Tongyu in northeastern China (0.23), and the clean 376 

Xiyong site in southern China (0.41). Zhu et al. (2014) found a low AOD of 0.28 377 

at the North China Plain regional background site. Che et al. (2009c) have 378 

pointed out that the large AOD at Lin’an was likely affected by the high aerosol 379 

loadings in YRD Region. Among the urban sites in China, large AOD440nm’s 380 

were found in the cities with strong influences of anthropogenic activities, such 381 

as the Northeastern Plain (Shenyang 0.89), North China Plain (Zhengzhou 382 
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0.99), Central China (Wuhan 1.00) and Sichuan Basin (Chengdu 1.17); the 383 

average value for these sites was 0.79. Lower AOD440nm’s, that is < 0.50, 384 

occurred at remote sites in northwestern China, including Urumqi (0.42), 385 

Yinchuan (0.37); those sites are affected less by industrial activities and the 386 

population densities are lower compared with the sites in northern or eastern 387 

China.  388 

It is worth noting that the particle emissions in or around the urban sites 389 

could lead to large optical extinctions due to hygroscopic aerosol growth, 390 

especially in summer when the relative humidity is often high. In a related 391 

study, Zhang et al. (2018) found a large AOD of 1.10 at Wuhan in central China 392 

and that was linked to secondary aerosol formation under the high 393 

summertime temperatures. Li et al. (2015) similarly concluded that high 394 

temperature and humidity promoted the formation of fine particles and led to 395 

hygroscopic aerosol growth at Nanjing. Qin et al. (2017) observed a high 396 

AOD500 nm of 1.04 at Shijiazhuang and related this to the hygroscopic growth of 397 

aerosol fine-mode particles during polluted days. 398 

Clear spatial variability in EAE values over China is evident in Fig. 3, and 399 

at the remote sites, the average EAEs were 1.03. The EAE at Lhasa (0.77) 400 

was lower than at Akedala (EAE = 1.13), which is in an arid region of central 401 

Asia, or at Shangri-La (EAE = 1.19) in Tibet. The average coarse-mode 402 

average effective radii (ReffC) at Lhasa was 2.26 μm and the fractional volume 403 

was 0.04 μm3/μm2, this result suggests the major components of the large 404 

mineral dust particles in aerosol populations over that region. The smaller 405 

sphericity fraction (~42.70) and lower FMF (0.66) at Lhasa indications the 406 

presence of non-spherical aerosol coarse particles compared with the 407 

spherical fine particles in the urban sites. 408 

At the arid and semi-arid sites in China, the average EAE value (0.71) was 409 

relatively low and the FMF also was low (0.58). The EAE was extremely low at 410 

Tazhong (0.25), which is in the Takliman Desert in the Xinjiang Uygur 411 

Autonomous Region of northwestern China and the sphericity fraction (12.87) 412 
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and FMF (0.35) there were lower compared with most of the other sites. This 413 

finding indicates a strong contribution of large particles in this desert region 414 

consistent with large volume of the coarse-mode particles (0.27 μm3/μm2) 415 

noted in section 3.1. The average EAE reached 0.93 at the rural sites near the 416 

CLP, and the average value of FMF for those sites was 0.73. Eck et al. (2005) 417 

found especially low EAE values in March and April (0.3 and 0.4, respectively) 418 

at Yulin, China, where the dust aerosol dominated the optical column. 419 

Large EAEs (1.23) were found at the sites in eastern China, and the FMFs 420 

also were large (0.89) at those sites. This result can be attributed to the strong 421 

impacts of anthropogenic in the more urbanized eastern part of the country. On 422 

the other hand, large EAE values also occurred at the clean sites in 423 

northeastern China, including Mt. Longfeng (1.38), where the sphericity 424 

fraction was 58.5 and the FMF 0.90. This shows that small particles can have 425 

stronger effects in these areas relative to some other regions of China. The 426 

EAE at Lin’an was larger than that at Shangdianzi in the Northern Plain or 427 

Longfengshan in Northeastern China for most months according to data from 428 

Che et al. (2009c). At the urban sites, large EAEs were found at sites in 429 

southern China, including Nanning (EAE = 1.36, sphericity fraction = 70.12, 430 

FMF = 0.95), Panyu (EAE = 1.43, sphericity fraction = 75.55, FMF = 0.93) and 431 

Zhuzilin (EAE = 1.45, sphericity fraction = 55.51, FMF = 0.94). This is likely 432 

because the large populations and widespread vehicle ownership in those 433 

cities led to the dominance of fine-mode particles throughout the year. Cheng 434 

et al. (2015) found a uni-modal distribution of EAE centered in 1.1–1.6 with the 435 

occurrence frequency about 72%, which indicated an abundance of fine 436 

primary particles at Shanghai in eastern China. At the urban Nanjing site, 437 

which is in east-central China, small particles were dominant, and the annual 438 

average EAE was 1.21 ± 0.28 (Li et al., 2015).  439 

 440 

3.3 Spatial distribution of aerosol single-scattering albedo 441 

The spatial distribution of SSA at 440 nm of the 50 CARSNET stations is 442 
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shown in Fig. 4. As a frame of reference, Eck et al. (2005) reported that that 443 

SSA440nm from the AERONET retrievals were 0.82 to 0.98 globally. We note 444 

that SSA440nm values in this range reflect slightly to strongly absorbing aerosols, 445 

and these particles originate from multitude sources (Che et al., 2018). The 446 

SSA440nm’s decreased from remote/rural to the urban sites and from west to 447 

east, which means that there were higher percentages of absorbing particles 448 

at the urban and eastern stations. The average SSA440nm at the remote sites 449 

was about 0.91, which is indicative of particles with moderate absorption. The 450 

absorbing aerosols at the remote sites were more likely mineral dust particles 451 

because those sites are less likely to be affected by carbonaceous particles, 452 

which also are absorbing, but mainly produced by anthropogenic activities. 453 

The SSA440nm’s for the arid and semi-arid sites were 0.89. The relatively high 454 

SSA at Tazhong (0.92) was probably due to slightly absorbing, coarse mode 455 

dust particles (EAE = 0.25).  456 

A study by Bi et al. (2011) showed that SSAs increased slightly with 457 

wavelength when dust was present at the SACOL site. Moderately absorbing 458 

particles were found in our study on or near the Chinese Loess Plateau where 459 

the SSA440nm’s were typically 0.88 to 0.89. Eck et al. (2005) concluded that the 460 

spectral SSA demonstrated effects of dust at Yulin because the SSA increased 461 

for wavelengths from 440 to 675 nm. At the rural sites in eastern China, large 462 

SSA440nm’s mainly occurred at sites in the YRD affected anthropogenic 463 

influences; these include Tonglu (0.93), Xiaoshan (0.93), Xiyong (0.94). Che et 464 

al. (2018) found the slightly absorbing particles came from industrial activity 465 

and anthropogenic sources at YRD region with the SSA440 nm between 0.91 to 466 

0.94.  467 

The average value of SSA440nm at the urban sites was 0.90, which 468 

indicates that particles with moderate absorption dominated the aerosol 469 

populations. Cheng et al. (2015) reported a seasonal range of SSA from 0.88 470 

to 0.91 at Shanghai, with higher values in autumn and winter compared with 471 

spring and summer. Lower SSA440nm’s occurred at the urban sites and 472 
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industrial regions in northeastern China, such as Shenyang (0.84), Anshan 473 

(0.89), Fuhsun (0.84), which indicates that the particles were more strongly 474 

absorbing in that region. On the other hand, higher SSA440nm’s were found at 475 

urban sites in southern China, including Nanning (0.92), Panyu (0.90) and 476 

Zhuzilin (0.96), and this indicates that the particles at those sites were slightly 477 

or weakly absorbing.  478 

Moreover, we found that the SSA440nm spatial distribution reflected the 479 

percentages of absorbing aerosols at the urban sites both in northern and 480 

eastern China. The reports of Dubovik et al. (2000, 2002, 2006) showed that 481 

SSA values vary with both particle size and composition, and Su et al. (2017) 482 

used the variations in SSA with wavelength to indicate the presence of brown 483 

carbon aerosols at Tianjin, a coastal megacity in China. Qin et al. (2017) 484 

suggested that the small SSAs found at Shijiazhuang indicated the presence 485 

of fine-mode absorbing particles, such as brown carbon. Zhuang et al. (2014) 486 

reported that the SSA at the Nanjing urban site ranged from 0.90 to 0.95, and 487 

the aerosol was more absorbing in autumn, possibly due to the biomass 488 

burning emission in the YRD. As evident in the results presented in section 3.1, 489 

one can see that the ReffT, ReffF and ReffC between northeastern and southern 490 

China was very similar. For example, at Shenyang, a megacity in northeastern 491 

China, the effective radii of total, fine- and coarse-mode particles were 0.31, 492 

0.16, 2.23 μm and the corresponding volumes were 0.22, 0.12, 0.10 μm3/μm2, 493 

respectively. At Hangzhou in the YRD region, the ReffT, ReffF and ReffC were 0.30, 494 

0.17, 2.21 μm with the volumes about 0.22, 0.12, 0.10 μm3/μm2, respectively. 495 

Therefore, the different SSA440nm distributions in the two regions may be 496 

attributed by the special aerosol composition related to the urban-industrial 497 

background of northeastern China (lower SSA440nm) and more 498 

anthropogenic sources in the eastern China environmental (higher 499 

SSA440nm).  500 

Dust aerosols with light-absorbing occur more frequently in spring in 501 

northeastern China than in more southern regions (Zhao et al., 2018). 502 
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Anthropogenic emissions from seasonal biomass burning and residential 503 

heating are two other main factors that affect aerosol composition between the 504 

two regions (Che et al., 2018). Especially in winter, there was high percentage 505 

of absorbing aerosols at the northeastern sites, and that was more than likely 506 

caused by emissions of carbonaceous aerosol from residential heating (Zhao 507 

et al., 2015). Climatic conditions are also the main factors affecting the 508 

absorption characteristics of aerosols in different regions of north and south 509 

China. The increased light scattering could well be due to the particles 510 

hygroscopic growth demonstrated in other studies. For example, Mai et al. 511 

(2018) found that AODs and SSAs both increased with relative humidity at 512 

Guangdong in the PRD region, which suggests that condensational growth 513 

can affect the aerosol optical properties.  514 

 515 

3.4 Spatial distributions of absorption aerosol optical depth (AAOD) 516 

The spatial distribution of AAOD at 440 nm shown as Fig. 5 indicates that 517 

overall, the AAOD440nm’s increased from north to south and from remote/rural 518 

to urban sites. Lower AAOD440nm’s were found at the remote stations, where 519 

the average value was 0.01. The AAOD440nm at Akedala, a remote site in 520 

northwestern China, was 0.02, and that was higher than at Shangri-La or 521 

Lhasa (0.01), both of which are on the Tibetan Plateau. The low AAOD440nm’s 522 

throughout that region indicates that the aerosol population was not strongly 523 

absorbing. Compared with these three sites, the average AAOD440nm’s at the 524 

arid and semi-arid sites were higher (0.03); for example, an AAOD440nm of 525 

0.05was found at Tazhong, which is adjacent to the desert, and that indicates 526 

that the aerosol particles were more absorbing. As discussed in sections 3.2 527 

and 3.3, dust aerosols likely make a significant contribution to aerosol light 528 

absorption in the areas impacted by the deserts. 529 

The low AAOD440nm found at Xilinhot (0.02) was probably due to the low 530 

aerosol loadings (AOD440nm = 0.21) in this region. The AAOD440nm’s at the Mt. 531 

Gaolan and Yulin rural sites which on or around the CLP were about 0.04 and 532 
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0.03, respectively, and the particles were moderately absorbing (SSA = 0.89). 533 

The large AAOD440nm at Datong (0.09) can be explained by the high AOD440nm 534 

(0.58) there. Indeed, large AAOD440nm’s were found at rural sites in eastern 535 

China, where there were high AODs and low SSAs as noted in sections 3.2 536 

and 3.3. Of these sites, Dengfeng (AOD440nm = 0.08) and Huimin (AOD440nm = 537 

0.08) are located on the North China Plain, while Huainan (AOD440nm = 0.10) is 538 

on the Guanzhong Plain. Lower AAOD440nm’s, from 0.02–0.03, occurred at 539 

Tongyu (0.03), which is at a semi-arid region in northeastern China, at the Mt. 540 

Longfeng (0.03) regional background site on the Northeast China Plain, at the 541 

Yushe rural site in northern China (0.03), and at the clean Xiyong site in the 542 

PRD (0.02). 543 

Several urban sites showed AAOD440nm values greater than 0.10; these 544 

include Fushun (0.11) and Shenyang (0.14) in the northeastern China, 545 

Lanzhou (0.10) in the northwestern China, and Nanjing (0.10) and Wuhan 546 

(0.11) in the eastern and central China. Lower AAOD440nm’s occurred in other 547 

urban areas, such as Yinchuan (AAOD440nm = 0.02, AOD440nm = 0.37) in the 548 

northwest and Zhuzilin (AAOD440nm = 0.03, AOD440nm = 0.66) in the PRD; both 549 

of these sites had relatively low AOD440’s indicating weaker anthropogenic 550 

influences compared with metropolitan regions of some other areas. We note 551 

that there are significant uncertainties in relating aerosol absorbing properties 552 

to particle types, such as black carbon, organic matter, as well as mineral dust 553 

(Russell et al., 2010; Giles et al., 2012). Nonetheless, the information 554 

presented here on the spatial distribution of AAODs over China may be useful 555 

for the further investigations into the relationships between light absorption and 556 

particle type (Liu et al., 2017; Schuster et al., 2016a, 2016b). 557 

 558 

3.5 Spatial distribution of direct aerosol radiative effect at the Earth’s 559 

surface and top of the atmosphere 560 

The spatial distributions of the DAREs calculated for both the bottom and 561 

top of the atmosphere are shown in Fig. 6. Overall, the DARE-BOAs increased 562 
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from northwest to southeast and from rural to urban sites, consistent with 563 

impacts from the densely populated regions around the sites. The average 564 

DARE-BOA at the remote sites was -24.40 W/m2, and in comparison, a higher 565 

DARE-BOA (-33.65 W/m2) occurred at Akedala, which occurred on a remote 566 

region of northwestern China. The AOD440nm at Akedala was relatively low 567 

(0.17) and the SSA moderate (0.90). The moderate absorption of aerosol could 568 

lead to more strong surface cooling effects with little higher DARE-BOA than 569 

the other remote sites. The DARE-BOAs for Lhasa and Shangri-La were 570 

-22.13 and -17.43 W/m2, respectively. These results indicate weaker surface 571 

cooling effects at the remote sites relative to other regions because the aerosol 572 

loadings were relatively low, as indicated by AOD440nm’s < 0.20. 573 

The average DARE-BOTs at the arid and semi-arid sites of China were 574 

about -56.43 W/m2, and those high DARE-BOAs can be explained by the 575 

moderately absorbing particles (SSA = 0.89) and large AOD440nm’s (0.32) 576 

compared with the remote sites. A large DARE-BOA (-91.20 W/m2) occurred at 577 

the Tazhong site near the northwestern deserts, and there, the high AOD (0.60) 578 

and the slight absorption of mineral dust (SSA = 0.92) imply substantial surface 579 

cooling. The average DARE-BOA for rural sites on the Chinese Loess Plateau 580 

or surrounding was -74.67 W/m2, and that also implies cooling at the surface. 581 

Several rural sites in northern and eastern China had large DARE-BOA 582 

values; these include Huimin (-111.58 W/m2), Dengfeng (-104.78 W/m2) and 583 

Huainan (-129.17 W/m2), and at those sites the AODs were high, from 0.80–584 

0.90, and the SSAs were ~0.89. These results show stronger surface cooling 585 

effects at sites influenced by anthropogenic emissions compared with the 586 

remote sites or those near the deserts. The large negative DARE-BOA values 587 

(-103.28 W/m2) at the urban sites indicate that the combination of high 588 

AOD440nm’s (0.79) and moderate SSAs (0.90) can cause significant surface 589 

cooling. Indeed, anthropogenic emissions presumably led to the high 590 

DARE-BOAs at urban sites, including Shenyang (-144.88 W/m2) and Fushun 591 

(-116.91 W/m2) in the Northeastern Plain, Xian in the Guanzhong Plain 592 
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(-132.55 W/m2), Chengdu in the Sichuan Basin (-110.42 W/m2), Lanzhou in the 593 

western region (-126.17 W/m2), and Nanjing (-143.38 W/m2) and Wuhan 594 

(-171.80 W/m2) in the Central China. These results indicate that anthropogenic 595 

aerosols can cause significant direct radiative effects at urban sites. 596 

The DARE-TOAs increased from north to south and from rural to urban 597 

sites, and the average DARE-TOA for the remote stations was low, about -4.79 598 

W/m2 (Fig. 7). The DARE-TOAs at Lhasa and Shangri-La were -5.04 W/m2 599 

and -8.93 W/m2, respectively. A notably small DARE-TOA was found at 600 

Akedala (-0.42 W/m2), indicating that the effects of the aerosol on the 601 

temperature of earth-atmosphere system there would be weak. The average 602 

DARE-TOA at the arid and semi-arid sites was -10.17 W/m2. The large 603 

DARE-TOA found at Tazhong (-23.49 W/m2) could represent the larger 604 

contribution of slightly absorbing mineral aerosols (SSA = 0.92) and a large 605 

AOD (0.60); this indicates more cooling at surface through the absorption and 606 

scattering solar radiation compared with the less impacted sites. This is 607 

consistent with the results for Tazhong discussed in section 3.1 which showed 608 

high volumes of coarse mode particles with large radii. 609 

The average DARE-TOA at rural sites on the Chinese Loess Plateau or 610 

nearby was about -14.56 W/m2. Although the SSA440nm were close to Gaolan 611 

and Yulin about 0.89, the TOAs were quite different (Mt. Gaolan -20.87 W/m2; 612 

Yulin -9.09 W/m2) which could be due to the different AOD440nm about 0.36 and 613 

0.32, respectively. In rural eastern China, the DARE-TOA was about -32.40 614 

W/m2, and to put this in context, Che et al. (2018) found that DARE-TOAs of 615 

−40 W/m2 at rural sites in the YRD region, which is indicative of a relatively 616 

strong cooling effect. Low DARE-TOAs were found at the Mt. Longfeng rural 617 

site in northeastern China (DARE-TOA = -11.34, AOD440nm = 0.34, SSA = 0.89) 618 

and at the Tongyu semi-arid site in northeastern China as (DARE-TOA = -8.87, 619 

AOD440nm = 0.23, SSA = 0.88 ) where the aerosol loadings were relatively low 620 

and the absorption was moderate. 621 

In the urban sites at central and eastern China, the average DARE-TOA 622 
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values were about -30.05 W/m2. Higher DARE-TOAs occurred at Anshan in 623 

the Northeastern Plain (-39.66 W/m2), Chengdu in the Sichuan Basin (-52.21 624 

W/m2), Hangzhou in the YRD (-40.16 W/m2), Jiaozuo (-39.35 W/m2) and 625 

Zhengzhou (-46.18 W/m2) in the North China Plain, and Zhuzilin (-40.15 W/m2) 626 

in the PRD region. The high DARE-TOA values at these urban sites imply 627 

relatively strong cooling effects due to higher aerosol loadings in the 628 

atmosphere. 629 

 630 

3.6 Spatial distributions of aerosol mixing properties 631 

The spatial distribution of aerosol mixing properties (Figure 8) was 632 

obtained by using the SSA440nm, FMF, and EAE results to classify the particles 633 

based on size and absorbing properties. In previous studies by Zheng et al. 634 

(2017) and Che et al. (2018), the particles in this study were grouped into eight 635 

types as Table 2 show. Moreover, the FMF has been provided to give the 636 

particle size information in the group of the particles. 637 

At the remote Akedala and Lhasa sites (FMF = 0.70–0.78 and SSA440nm = 638 

0.85), the percentages of mixed absorbing particles (Type V) were 35-40%, 639 

while at Shangri-la (FMF = 0.76, SSA440nm = 0.84), the percentage was slightly 640 

lower, 24.62%. The characteristics of the particles at these remote, 641 

high-altitude sites were probably affected by the rugged topography which 642 

would promote particle mixing. The proportion of coarse mode, mainly dust, 643 

particles with moderate to strong absorption (Group VII) was highest at the arid 644 

and semi-arid sites. The percent abundances of Group VII particles were 57.90% 645 

at Dunhuang (AE = 0.26, SSA440nm = 0.85, FMF = 0.43) and 58.52% at 646 

Tazhong (AE = 0.20, SSA 440nm= 0.87, FMF = 0.37), respectively. Mixed 647 

absorbing particles (Type V) and strongly absorbing dust particles (Group VII) 648 

accounted for 30 to 70% of the aerosol in the rural sites on or near the CLP. 649 

The percentages of mixed absorbing particles (Type V) at Gaolan, Yulin, and 650 

Datong were 31.98%, 45.22% and 29.04%, respectively, and the average 651 

FMFs at those sites ranged from 0.70–0.76.  652 
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The proportions of the coarse-mode aerosols with strongly absorbing in 653 

Group VII  were about 35.23% at Gaolan and 21.21% at Yulin, which was 654 

mainly dust particles with the FMFs at those sites were 0.43 and 0.48, 655 

respectively. The proportion of coarse-mode particles with strongly absorbing 656 

in Group VII and coarse-mode particles with weakly-absorbing in Group VIII at 657 

the rural sites in eastern China were < 11%. These patterns indicated that the 658 

differences in the eastern region from northwestern China because in the east, 659 

coarse-mode particles have only a minor contribution to aerosol absorption. 660 

The percentage of fine-mode particles with weakly-absorbing in Type IV and 661 

mixed absorbing particles in Type V combined about ~50% at the eastern sites. 662 

This result suggests that mixed aerosols originated from a variety of sources 663 

and that many of the sites were affected by anthropogenic emissions from 664 

megacities upwind.  665 

The fine-mode particles with absorbing in Types I, II, III and V accounted 666 

for 50 to 90% at most of the urban sites. The percentages of these four particle 667 

types combined were especially large in eastern China; for example, at Panyu, 668 

particle Types I—IV composed 90.83% of the total, and the FMF there was 669 

0.90–0.94, while at Zhuzilin, the percentage of Types I–IV was 92.55%, and 670 

the FMF was 0.92–0.94. These results are another indication that fine-mode 671 

particles are important for light absorption in urban areas. In contrast, the 672 

Lanzhou and Urumqi urban sites were less affected by absorbing fine-particles 673 

because the percentages of Type I–IV particles were only 19.73% and 18.36%, 674 

respectively. The mixed absorbing Type V particles accounted for large 675 

percentages of the total at Lanzhou (48.80%, EAE = 0.88, SSA = 0.82, FMF = 676 

0.73) and at Urumqi (59.39%, EAE = 0.94, SSA = 0.84, FMF = 0.75). Different 677 

from the other urban sites, these patterns show that larger particles had 678 

significant contributions to the aerosol absorption at these two northwestern 679 

sites. 680 

 681 

4. Conclusions 682 
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Aerosol microphysical and its optical properties obtained from the 683 

ground-based sunphotometer deployed at 50 CARSNET stations were used to 684 

begin the development of their climatology characteristics and to investigate 685 

potential aerosol-climate effects over vast area of China. Direct aerosol 686 

radiative effects (DAREs) at the bottom and at the top of the atmosphere were 687 

calculated, and eight types of aerosols were classified based on the particle 688 

size and absorbing properties. The annual mean values of the ReffT 689 

decreased from the arid and semi-arid sites (0.55 μm) to the urban sites (0.37 690 

μm). The aerosol volumes increased from the remote sites (0.05 μm3/μm2) to 691 

the urban sites (0.21 μm3/μm2). The volumes of coarse-mode particle were 692 

larger than those for the fine mode at the remote and arid/semi-arid sites—this 693 

can be explained by the greater relative abundances of mineral dust compared 694 

with pollution-derived particles at those sites. At the urban sites, where 695 

anthropogenic influences were relatively strong, the proportion of fine mode 696 

particles increased gradually with aerosol volume. 697 

The AOD440nm progressively increased from the remote sites (0.12) to the 698 

arid and semi-arid sites (0.32) to rural sites in eastern China (0.70) and finally 699 

to the urban sites (0.79), which were the ones most strongly affected by 700 

anthropogenic activities. The average EAE440-870 nm’s at the arid and semi-arid 701 

sites were relatively low (0.71), which indicates an important contribution of 702 

larger particles to the aerosol extinction in those regions. The consistently 703 

large EAE440-870 nm’s at the urban sites (> 1.20) and the high FMFs that those 704 

site (0.88) are the evidence that fine mode particles are prevalent throughout 705 

year. The average SSA440nm’s at the remote, rural, and urban sites were 706 

relatively similar, averaging about 0.89, and this indicates the particles were 707 

moderately absorbing. 708 

Overall, dust aerosols with light-absorbing in spring and emissions came 709 

from biomass burning and residential heating during the colder months were 710 

the main factors that led to spatial differences in the percentages of absorbing 711 

aerosols over China. The AAOD440nm’s increased from the remote sites (0.01) 712 
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to the arid and semi-arid sites (0.03) to the rural sites of eastern China (0.05) 713 

and finally to the urban sites (0.07). High AAOD440nm’s were caused by 714 

light-absorbing dust aerosols at the rural sites and by the strong anthropogenic 715 

emissions in the metropolitan areas. The spatial patterns in the absorbing 716 

aerosols were not only affected by the chemical composition of aerosol, but 717 

also by physical effects imposed by topography, weather, and climate. 718 

The average DARE-BOA values were -24.40 W/m2 at the remote sites; 719 

-56.43 W/m2 at the arid and semi-arid sites; -74.67 W/m2 at the sites on the 720 

CLP or nearby; -85.25 W/m2 at the rural sites in eastern China; and -103.28 721 

W/m2 at the urban sites. The larger DARE-BOA values at the urban sites imply 722 

stronger cooling effects from anthropogenic emissions compared with those 723 

from mineral dust at the remote sites or those near the desert. Moreover, larger 724 

DARE-TOA’s also occurred at the urban sites (-30.05 W/m2), which indicates 725 

strong cooling effects due to the large aerosol extinctions between the 726 

earth-atmosphere system displayed the moderate to strong light absorption. 727 

Mixed-absorbing particles were the most abundant aerosol type in the remote 728 

and rural sites on or near the Chinese Loess Plateau and in eastern China. 729 

Mineral dust particles with moderate to strong absorbing were dominant in the 730 

arid and semi-arid sites while absorbing fine-mode particles accounted for 50 731 

to 90% of the aerosol at the most urban sites.  732 

The results of the study have considerable value for ground truthing 733 

satellite observations and for validating aerosol models. Moreover, the results 734 

also have provided significant information on aerosol optical and radiative 735 

properties for different types of sites covering a broad expanse of China. 736 

These results also are a major step towards developing a climatology for 737 

aerosol microphysical and optical properties for China and even East Asia. 738 
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Figure captions  1193 

Figure 1. Annual spatial distribution of aerosol volume-size distributions 1194 

at the CARSNET sites  1195 

Figure 2. Annual spatial distribution of aerosol optical depth (AOD) at 440 1196 

nm at the CARSNET sites  1197 

Figure 3. Annual spatial distribution of extinction Ångström exponent 1198 

(AE) 440-870 nm at the CARSNET sites 1199 

Figure 4. Annual spatial distribution of fine mode fraction at the 1200 

CARSNET sites 1201 

Figure 5. Annual spatial distribution of the single scattering albedo (SSA) 1202 

at 440 nm at the CARSNET sites 1203 

Figure 6. Annual spatial distribution of absorption aerosol optical depth 1204 

(AAOD) at 440 nm at the CARSNET sites  1205 

Figure 7. Annual spatial distribution of direct aerosol radiative effect at 1206 

the bottom of the atmosphere at the CARSNET sites 1207 

Figure 8. Annual spatial distribution of direct aerosol radiative effect at 1208 

the top of the atmosphere at the CARSNET sites 1209 

Figure 9. Annual spatial distribution of the aerosol type classification of 1210 

types I–VII at the CARSNET sites 1211 

Table 1 The aerosol type classification based on the optical properties 1212 
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Figure 1. Annual spatial distribution of aerosol volume-size distributions 1214 

at the CARSNET sites  1215 
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Figure 2. Annual spatial distribution of aerosol optical depth (AOD) at 440 1219 

nm at the CARSNET sites 1220 
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Figure 3. Annual spatial distribution of extinction Ångström exponent 1224 

(AE) 440-870 nm at the CARSNET sites 1225 
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Figure 4. Annual spatial distribution of fine mode fraction at the 1229 

CARSNET sites 1230 
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Figure 5. Annual spatial distribution of the single scattering albedo (SSA) 1234 

at 440 nm at the CARSNET sites 1235 
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Figure 6. Annual spatial distribution of absorption aerosol optical depth 1241 

(AAOD) at 440 nm at the CARSNET sites 1242 
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Figure 7. Annual spatial distribution of direct aerosol radiative effect at 1246 

the bottom of the atmosphere at the CARSNET sites 1247 
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Figure 8. Annual spatial distribution of direct aerosol radiative effect at 1251 

the top of the atmosphere at the CARSNET sites 1252 
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Figure 9. Annual spatial distribution of the aerosol type classification of 1256 

types I–VII at the CARSNET sites 1257 

 1258 

 1259 
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Table 1. The aerosol type classification based on the optical properties. 1261 

 1262 

Type EAE SSA absorbing properties and particle size 

I EAE > 1.20 SSA440nm ≤ 0.85 fine-mode particles with highly-absorbing 

II EAE > 1.20 0.85 ≤ SSA440nm < 0.90 fine-mode particles with moderately-absorbing 

III EAE > 1.20 0.90 ≤ SSA440nm < 0.95 fine-mode particles with slightly-absorbing 

IV EAE > 1.20 SSA440nm > 0.95 fine-mode particles with weakly-absorbing 

V 0.60 ≤ EAE < 1.20 SSA440nm ≤ 0.95 mixed-absorbing particles 

VI 0.60 ≤ EAE < 1.20 SSA440nm > 0.95 mixed-slightly absorbing particles 

VII EAE≤ 0.60 SSA440nm ≤ 0.95 
coarse mode particles with strongly absorbing 

(mainly dust) 

VIII AE ≤ 0.60 SSA440nm > 0.95 coarse-mode particles with weakly-absorbing 
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Appendix 1280 

Table 1. Site information for the 50 CARSNET sites used in this study 1281 

 1282 

No. Site Name Long. Lat. Alt. Site information Obs. Num Period 

Remote sites (three sites) 

1 Akedala 47.12  87.97  562.0  55 km west of Fuhai county, Xinjiang province, and 250–300 km southeast of Kazakestan. 947 2010-2017 

2 Lhasa 29.67  91.13  3663.0  In the center of Lhasa city, Qinghai-Xizang Plateau. 437 2012-2017 

3 Shangri-La 28.02  99.73  3583.0  12 km northeast of Shangri-La county, Diqing area, Yunnan province 325 2013-2017 

Arid and semi-arid sites (six sites) 

4 Dunhuang 40.15  94.68  1139.0  1.5 km northeast of Dunhuang city, Gansu province; near Kumutage Desert of China 2030 2012-2017 

5 Ejina 41.95  101.07  940.5  West ofIner-Mongolia Province, near Mongolia and Badanjilin desert 1970 2013-2017 

6 Minqin 38.63  103.08  1367.0  In Minqin county, east to Tenggeli desert and north to Badanjilin Desert, Gansu Province 481 2013-2017 

7 Tazhong 39.00  83.67  1099.4  In the middle of Takilamakan Desert, Xinjiang Province 1279 2013-2017 

8 Xilinhot 43.95  116.12  1003.0  5 km southeast of Xilinhot City, near Hunshandake sand-land, Inner-Mongolia Province, 1464 2013-2017 

9 Tongyu 44.42 122.87 151.0  In Tonyu city, west of Jilin Province 817 2010-2011 

Rural sites on the Chinese Loess Plateau or nearby (three sites) 

10 Mt.Gaolan 36.00  103.85  2161.6  5 km north of Lanzhou city in Gansu province 769 2015-2016 

11 Yulin 38.43  109.20  1135.0  10 km north of Yulin city in Shaanxi province 716 2010-2016 

12 Datong 40.10  113.33  1067.3  9 km of Datong City, but within area of rapid urbanization, Shanxi Province 914 2014-2017 

Rural sites in eastern China (15 sites) 

13 Changde 29.17  111.70  565.0  18 km northwest from Changde city, Hunan province. 344 2013-2016 

14 Dongtan 31.52  121.96  10.0  In the Chongmin Island, 30km east of Shanghai city 986 2012-2016 

15 ChunAn 29.61 119.05 171.4 151 km southwest from Hangzhou city, Zhejiang province. 1286 2011-2015 

16 Huimin 37.48  117.53  11.7  100 km Northeast of Jinan City, Shandong Province 2243 2009-2017 

17 Lin'an 30.30  119.73  138.6  150 km northeast of Shanghai, and 50 km west of Hangzhou city, Zhejiang province 1834 2011-2015 

18 Mt.Longfeng 44.73  127.60  330.5  In Wuchang county, 175 km northeast of Harbin city, Heilongjiang Province 1515 2012-2016 

19 Fuyang 30.07 119.95 17.0 44.1 km southwest from Hangzhou city, Zhejiang province. 710 2014-2015 

20 Shangdianzi 40.65  117.12  293.0  In Miyun county, 150 km northeast to Beijing city. 1520 2014-2017 

21 Yushe 37.07  112.98  1041.5  1.5 km east of Yushe city in Shanxi Province 1479 2013-2017 

22 Dengfeng 34.46 113.02 350.0 75 km Southwest of Zhengzhou City, Henan Province 712 2013 

23 Huainan 32.65 117.02 52.0 In the central of Hefei City, Anhui Province 794 2014-2015 

24 Jiande 29.45 119.28 89.0 In the southwest from Hangzhou city, Zhejiang province. 1550 2011-2015 

25 Tonglu 29.80 119.64 46.1 100 km northwest from Hangzhou city, Zhejiang province. 1717 2011-2015 

26 Xiaoshan 30.16 120.25 14.0 In the south of Hangzhou city, Zhejiang province. 600 2014-2015 

27 Xiyong 22.28 114.33 155.2 In the eastern of Shenzhen city, Guangdong province. 189 2016 

Urban sites (23 sites) 

28 Anshan 41.08  123.00  23.0  In Anshan city, central Liaoning province 193 2009-2013 

29 Beijing-Nanjiao 39.80  116.47  31.3  In the southeast Beijing at city margin 1732 2014-2017 

30 Beijing-CAMS 39.93 116.32 106.0 Chinese Academy of Meteorological Sciences in Beijing 1113 2012-2018 

31 Chengdu 30.65  104.03  496.0  In Chengdu city, Sichuan province. 55 2014-2015 

32 Dalian 38.90  121.63  91.5  Southeast coastal city in Liaoning Province 736 2012-2015 

33 Fushun 41.88  123.95  80.0  In Fushun city, central Liaoning province. 231 2009-2013 

34 Hangzhou 30.23  120.17  42.0  In Hangzhou city, Zhengjiang province. 1663 2011-2015 
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35 Hefei 31.98 116.38 92.0  In Hefei city, Anhui province. 197 2016 

36 Jiaozuo 35.18 113.25 113.0 In the center of Jiaozuo city, Henan province. 981 2016-2017 

37 Lanzhou 36.05  103.88  1517.3  In Lanzhou city, Gansu province. 1493 2013-2017 

38 Nanjing 32.05 118.77 99.3  In Nanjing city, Jiangsu province 1258 2007-2015 

39 Nanning 22.82  108.35  172.0  In Nanning city, Guangxi province 286 2013-2017 

40 Panyu 23 113.35 145.0  In district of Guangzhou city, Guangdong Province 436 2012-2016 

41 Shanghai 31.22 121.55 14.0  In Pudong district of Shanghai city 144 2016 

42 Shenyang 41.77  123.50  60.0  In Shenyang city, central Liaoning province. 541 2009-2013 

43 Tianjin 39.10  117.17  3.3  Northern coastal city in North China Plain 1705 2013-2017 

44 Urumqi 43.78  87.62  935.0  In Urumuqi city, Xijiang province 1411 2012-2017 

45 Xi'an 34.43  108.97  363.0  20 km north of center of Xian city,  but within Jing RiverIndustrial District, Shaanxi province 652 2012-2016 

46 Yinchuan 38.48  106.22  1111.5  In Yinchuan city, Ningxia province. 124 2017 

47 Zhengzhou 34.78  113.68  99.0  In Zhengzhou city, Henan province. 1485 2013-2017 

48 Shijiazhuang 38.03 114.53 75.0 In the center of Shijiazhuang city, Hebei province. 1178 2015-2017 

49 Wuhan 30.32 114.21 30 In the center of Wuhan city, Hubei province 220 2008 

50 Zhuzilin 22.32 114.00 63.0 In the central of Shenzhen city, Guangdong province. 915 2010-2017 
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Table 2. Annual data for aerosol microphysical properties, optical and direct radiative parameters 1306 

No. Site aReffT aReffF aReffC aVolT aVolF aVolC aAODt bAlpha aFMF aSSAT aImage aReal aAAOD aBOA aTOA 

Remote sites (3 sites) 

1 Akedala 0.36 0.14 2.45 0.06 0.02 0.04 0.17 1.13 0.81 0.90 0.0117 1.4540 0.02 -33.65 -0.42 

2 Lhasa 0.64 0.13 2.26 0.05 0.01 0.04 0.10 0.77 0.66 0.90 0.0106 1.5541 0.01 -22.13 -5.04 

3 Shangri-La 0.39 0.14 2.33 0.03 0.01 0.02 0.10 1.19 0.85 0.93 0.0086 1.4626 0.01 -17.43 -8.93 

 Average 0.47 0.14 2.35 0.05 0.01 0.03 0.12 1.03 0.77 0.91 0.0103 1.4902 0.01 -24.40 -4.79 

Arid and semi-arid sites (6 sites)  

4 Dunhuang 0.62 0.14 1.52 0.15 0.02 0.13 0.33 0.48 0.44 0.88 0.0103 1.5491 0.04 -63.61 -8.96 

5 Ejina 0.56 0.14 1.78 0.11 0.02 0.09 0.24 0.64 0.52 0.89 0.0116 1.5265 0.03 -47.66 -7.20 

6 Minqin 0.56 0.13 1.87 0.13 0.02 0.11 0.30 0.68 0.59 0.86 0.0145 1.5430 0.04 -59.83 -5.01 

7 Tazhong 0.71 0.14 1.38 0.30 0.03 0.27 0.60 0.25 0.35 0.92 0.0054 1.5257 0.05 -91.20 -23.49 

8 Xilinhot 0.48 0.13 2.45 0.08 0.02 0.05 0.21 1.03 0.78 0.89 0.0139 1.5183 0.02 -37.14 -7.47 

9 Tongyu 0.39 0.13 2.36 0.07 0.02 0.05 0.23 1.16 0.82 0.88 0.0179 1.5377 0.03 -39.13 -8.87 

 Average 0.55 0.14 1.89 0.14 0.02 0.12 0.32 0.71 0.58 0.89 0.0123 1.5334 0.03 -56.43 -10.17 

Rural sites on the Chinese Loess Plateau or nearby (3 sites) 

10 Mt.Gaolan 0.58 0.14 2.03 0.16 0.03 0.13 0.36 0.81 0.64 0.89 0.0108 1.5154 0.04 -59.36 -20.87 

11 Yulin 0.53 0.15 2.05 0.11 0.03 0.08 0.32 0.84 0.72 0.89 0.0122 1.5070 0.03 -56.81 -9.09 

12 Datong 0.35 0.13 2.15 0.19 0.09 0.10 0.58 1.15 0.83 0.86 0.0171 1.4905 0.09 -107.86 -13.71 

 Average 0.49 0.14 2.08 0.15 0.05 0.10 0.42 0.93 0.73 0.88 0.0134 1.5043 0.05 -74.67 -14.56 

Rural sites in eastern China (15 sites) 

13 Changde 0.32 0.16 2.18 0.14 0.07 0.07 0.58 1.15 0.88 0.93 0.0101 1.4619 0.04 -75.33 -31.44 

14 Dongtan 0.37 0.16 2.12 0.17 0.08 0.09 0.62 1.21 0.86 0.93 0.0080 1.4624 0.04 -79.41 -33.18 

15 ChunAn 0.30 0.18 2.30 0.19 0.12 0.08 0.81 1.22 0.92 0.94 0.0066 1.4095 0.04 -86.49 -46.48 

16 Huimin 0.36 0.15 2.07 0.22 0.10 0.12 0.83 1.14 0.86 0.89 0.0147 1.4852 0.08 -111.58 -25.49 
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17 Lin'an 0.29 0.17 2.24 0.21 0.12 0.09 0.87 1.29 0.91 0.93 0.0089 1.4172 0.06 -93.09 -41.73 

18 Mt.Longfeng 0.28 0.15 2.44 0.08 0.04 0.04 0.34 1.38 0.90 0.89 0.0165 1.4647 0.03 -51.17 -11.34 

19 Fuyang 0.29 0.17 2.28 0.21 0.13 0.09 0.89 1.31 0.92 0.94 0.0070 1.4147 0.05 -91.69 -42.29 

20 Shangdianzi 0.40 0.15 2.33 0.12 0.05 0.07 0.43 1.17 0.86 0.89 0.0148 1.4840 0.04 -59.99 -20.58 

21 Yushe 0.41 0.15 2.18 0.14 0.06 0.08 0.50 1.07 0.84 0.92 0.0090 1.4878 0.03 -66.72 -25.99 

22 Dengfeng 0.39 0.15 2.03 0.23 0.09 0.13 0.79 1.02 0.83 0.89 0.0131 1.4782 0.08 -104.78 -35.84 

23 Huainan 0.30 0.17 2.25 0.21 0.13 0.08 0.91 1.17 0.92 0.88 0.0166 1.4308 0.10 -129.17 -24.44 

24 Jiande 0.29 0.17 2.18 0.20 0.12 0.08 0.84 1.34 0.91 0.92 0.0099 1.4085 0.06 -91.06 -40.07 

25 Tonglu 0.29 0.17 2.20 0.20 0.12 0.08 0.83 1.31 0.91 0.93 0.0091 1.4269 0.06 -89.82 -41.28 

26 Xiaoshan 0.28 0.17 2.24 0.22 0.13 0.09 0.87 1.35 0.91 0.93 0.0082 1.4134 0.06 -95.23 -40.39 

27 Xiyong 0.33 0.16 2.43 0.11 0.06 0.05 0.41 1.32 0.89 0.94 0.0074 1.4072 0.02 -53.18 -25.45 

 Average 0.33 0.16 2.23 0.18 0.09 0.08 0.70 1.23 0.89 0.92 0.0107 1.4435 0.05 -85.25 -32.40 

Urban sites (23 sites) 

28 Anshan 0.36 0.17 2.24 0.26 0.12 0.14 0.94 1.12 0.86 0.89 0.0158 1.4759 0.10 -117.99 -39.66 

29 Beijing-Nanjiao 0.45 0.15 2.33 0.19 0.07 0.12 0.65 1.12 0.84 0.92 0.0100 1.4939 0.05 -82.06 -29.43 

30 Beijing-CAMS 0.50 0.16 2.37 0.19 0.07 0.12 0.65 1.12 0.79 0.90 0.0115 1.5108 0.05 -72.66 -29.10 

31 Chengdu 0.34 0.21 2.26 0.26 0.16 0.10 1.17 1.12 0.92 0.97 0.0033 1.4116 0.04 -110.42 -52.21 

32 Dalian 0.35 0.16 2.24 0.16 0.08 0.09 0.62 1.22 0.87 0.93 0.0095 1.4584 0.04 -75.50 -37.42 

33 Fushun 0.38 0.17 2.34 0.22 0.09 0.12 0.80 1.12 0.87 0.84 0.0244 1.4954 0.11 -116.91 -19.59 

34 Hangzhou 0.30 0.17 2.21 0.22 0.12 0.10 0.87 1.30 0.90 0.91 0.0109 1.4337 0.07 -31.57 -40.16 

35 Hefei 0.29 0.15 2.37 0.18 0.10 0.08 0.69 1.28 0.90 0.85 0.0195 1.4253 0.10 -105.83 -19.22 

36 Jiaozuo 0.35 0.16 2.17 0.20 0.10 0.10 0.76 1.14 0.88 0.91 0.0105 1.4722 0.05 -92.29 -39.35 

37 Lanzhou 0.54 0.14 2.04 0.28 0.06 0.22 0.66 0.81 0.66 0.83 0.0197 1.5193 0.10 -126.17 -13.81 

38 Nanjing 0.33 0.16 2.16 0.25 0.12 0.12 0.94 1.13 0.88 0.88 0.0154 1.4446 0.10 -143.38 -28.29 

39 Nanning 0.30 0.18 2.53 0.20 0.13 0.06 0.97 1.36 0.95 0.92 0.0107 1.4272 0.07 -121.92 -33.35 

40 Panyu 0.26 0.16 2.29 0.16 0.10 0.06 0.69 1.43 0.93 0.90 0.0137 1.4155 0.07 -96.03 -26.56 
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41 Shanghai 0.40 0.15 1.93 0.19 0.08 0.11 0.68 1.10 0.84 0.88 0.0142 1.4814 0.07 -106.89 -24.34 

42 Shenyang 0.31 0.16 2.23 0.22 0.12 0.10 0.89 1.20 0.90 0.84 0.0253 1.4589 0.14 -144.88 -15.02 

43 Tianjin 0.42 0.16 2.26 0.23 0.10 0.13 0.83 1.11 0.86 0.89 0.0134 1.4957 0.07 -108.09 -33.26 

44 Urumqi 0.48 0.14 2.14 0.15 0.04 0.10 0.42 0.93 0.75 0.85 0.0192 1.5371 0.05 -70.55 -11.74 

45 Xi'an 0.37 0.16 1.85 0.26 0.11 0.15 0.98 0.98 0.82 0.88 0.0150 1.4888 0.10 -132.55 -35.93 

46 Yinchuan 0.38 0.14 2.02 0.11 0.04 0.07 0.37 1.12 0.81 0.94 0.0054 1.4930 0.02 -48.67 -21.89 

47 Zhengzhou 0.43 0.18 2.22 0.28 0.12 0.16 0.99 1.10 0.86 0.95 0.0045 1.4626 0.04 -101.10 -46.18 

48 Shijiazhuang 0.40 0.16 2.28 0.26 0.12 0.14 0.95 1.09 0.87 0.88 0.0154 1.4754 0.09 -125.05 -33.66 

49 Wuhan 0.34 0.17 2.22 0.22 0.12 0.10 1.00 1.16 0.91 0.88 0.0196 1.4779 0.11 -171.80 -20.40 

50 Zhuzilin 0.27 0.17 2.45 0.15 0.09 0.05 0.66 1.45 0.94 0.96 0.0049 1.4438 0.03 -73.16 -40.65 

 Average 0.37 0.16 2.22 0.21 0.10 0.11 0.79 1.15 0.86 0.90 0.0136 1.4695 0.07 -103.28 -30.05 

Table 1 (Continued) 1307 
a
 Optical parameters at a wavelength of 440 nm. 1308 

b 
Angstrӧm exponents between 440 and 870 nm. 1309 


