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Abstract.

Delhi, India, is the second most populated city in the world and routinely experiences some of the highest particulate matter

concentrations of any megacity on the planet, posing acute challenges to public health (World Health Organization, 2018).

However, the current understanding of the sources and dynamics of PM pollution in Delhi is limited. Measurements at the

Delhi Aerosol Supersite (DAS) provide long-term chemical characterization of ambient submicron aerosol in Delhi, with near-5

continuous online measurements of aerosol composition. Here we report on source apportionment based on positive matrix

factorization (PMF), conducted on 15 months of highly time-resolved speciated submicron non-refractory PM1 (NR-PM1) be-

tween January 2017 and March 2018. We report on seasonal variability across four seasons of 2017 and interannual variability

using data from the two winters and springs of 2017 and 2018. We show that a modified tracer-based organic component anal-

ysis provides an opportunity for a real-time source apportionment approach for organics in Delhi. Phase equilibrium modeling10

of aerosols using the extended aerosol inorganics model (E-AIM) predicts equilibrium gas-phase concentrations and allows

evaluation of the importance of ventilation coefficient (VC) and temperature in controlling primary and secondary organic

aerosol. We also find that primary aerosol dominates severe air pollution episodes.

1 Introduction

Exposure to fine particulate matter (PM) poses significant health risks, especially in densely populated areas (Pope and Dock-15

ery, 2006; Apte et al., 2015). The Indian National Capital Region (Delhi NCR, India) is a rapidly growing urban agglomeration

and encompasses the second-most populated city in the world with extremely high winter PM concentrations and frequent

severe pollution episodes. According to a recent estimate, Delhi is the world's most polluted megacity, on track to also become

the world's most populated megacity by 2028 (World Health Organization, 2018; United Nations, 2018). However, the current

understanding of the sources and dynamics of PM pollution in Delhi is limited (Pant et al., 2016b).20

Delhi has a long history of studies focused on the quantity and composition of suspended particulate matter (Mitra and

Sharma, 2002). Several studies have found extremely high PM10 concentrations (particulate matter smaller than 10 µm in di-

ameter, PM10~250–800 µg m−3) and detected tracer compounds for vehicular emissions, biomass burning, and plastic burning.
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Large domestic use of fossil fuels and biofuels was found to correlate with especially high mass and number concentrations

of PM observed in the evening and at night. These studies captured various aspects of air quality patterns including diurnal

variation, weekday–weekend effect, seasonal variation, interannual variation as well as correlations of total particle number

and mass concentrations with gas phase species such as SO2 and NO2 (Sharma et al., 2003; Mönkkönen et al., 2004, 2005a, b).

Other studies have discussed the speciation of mass in smaller particles (Chowdhury et al., 2007; Srivastava et al., 2008; Tiwari5

et al., 2009). Recent studies such as Pant et al. (2015) have emphasized PM2.5, and consistently report high winter concentra-

tions of particulate chloride and nitrate, and high sulfate concentrations across both winter and summer seasons. They attribute

chloride to sources such as coal combustion and biomass and waste burning using molecular markers. For example, hopanes

such as S and R homohopane isomers are tracers for coal combustion, PAHs such as phenanthrene and benzo(a)anthracene

are tracers for coal and biomass burning, and sugar anhydrosaccharides such as levoglucosan and mannosan are tracers for10

wood/biomass combustion (Pant et al., 2015). They also attribute higher winter concentrations to condensation of semivolatile

ammonium nitrate and ammonium chloride during low-temperature conditions, weaker wind speeds, and shallow atmospheric

boundary layer in the winter season (Pant et al., 2015, 2016a). In recent years, detailed source-specific profiles of combustion

and non-combustion sources in the Southeast Asian region have been developed as a part of studies such as the Nepal Am-

bient Monitoring and Source Testing Experiment (NAMaSTE) campaign; for example, to discern between garbage burning15

and dung burning, tracers such as 1,3,5-Trimethylbenzene and coprostanol have been identified (IIT Bombay, 2008; Stockwell

et al., 2016; Goetz et al., 2018; Jayarathne et al., 2018).

A recent review of receptor modeling studies with a focus on Delhi shows that most PM-based source apportionment studies

have attributed Delhi's pollution to vehicular traffic, fossil fuel combustion, and road dust (Pant and Harrison, 2012). However,

the differences in particle size cutoff in different studies and techniques used made it difficult to compare results (Pant and20

Harrison, 2012). Most receptor modeling studies have principally relied on a small number of daily or multi-day filter-based

samples collected over temporally restricted sampling periods, thereby limiting the possible application of factor analysis

techniques such as positive matrix factorization (PMF) to quantify source contributions for entire seasons at the site. Further,

despite Delhi being a continental site, multiple studies attribute significant portions of finer fractions of PM to a sea-salt origin

(Sharma et al., 2014; Sharma and Mandal, 2017). Recent studies have also developed bottom-up emissions inventories for25

the National Capital Territory (NCT) region encompassing the city of Delhi (Guttikunda and Calori, 2013), and conducted

multi-season multiple-site PM2.5 source apportionment using bottom-up approaches (IIT Kanpur, 2016; ARAI and TERI,

2018). In these bottom-up studies, as well as similar studies across South Asia, emissions sources such as transport, industry,

dust, household solid fuel use, and biomass and waste burning are shown to contribute substantially to PM2.5 (Conibear et al.,

2018; GBD MAPS Working Group, 2018; Guo et al., 2018; Apte and Pant, 2019). Although these studies accounted for30

primary organic carbon and secondary inorganic species such as sulfate and nitrate, they often provide limited information

regarding secondary organics. Comparatively fewer studies have reported on PM1 composition. One such study attributes

winter (December) and spring (March) chloride peaks to be of non-sea-salt origin (Jaiprakash et al., 2017). They also focus

on PM1 composition and source apportionment in Delhi and use HYSPLIT to point to potential chloride sources northwest of

the Indian Institute of Technology (IIT) Delhi, such as industries of salt and metal processing and thermal power plants. As35
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for organics, previous studies are mostly limited to the quantification of organic carbon, elemental carbon, polycyclic aromatic

hydrocarbons, and water-soluble organic compounds (Singh et al., 2011; Pant et al., 2015; Sharma and Mandal, 2017).

The Delhi Aerosol Supersite (DAS) campaign provides long-term chemical characterization of ambient submicron aerosol in

Delhi, with near-continuous online measurements of aerosol composition. Here we report on source apportionment conducted

on 15 months of highly time-resolved speciated non-refractory submicron aerosols (NR-PM1), including organics (Org), chlo-5

ride (Chl), ammonium (NH4), sulfate (SO4), and nitrate (NO3). We use mass spectrometer data from an Aerosol Chemical

Speciation Monitor (ACSM) in the PMF receptor model at a time resolution of 5–6 minutes. This work improves upon the low

time resolution of source apportionment utilizing time-integrated filter-based measurements previously employed in Delhi.

Over the campaign, organics accounted for 53% of the submicron mass, followed by inorganics (36%, of which sulfate, nitrate,

ammonium, and chloride contributed 13%, 8%, 9%, and 6% respectively) and black carbon (BC) (10%) (Gani et al., 2019,10

Fig. 3). Table 1 provides a summary of key DAS bulk measurements.

In this manuscript, we focus on organic aerosol and report seasonal variability for four seasons and interannual variability

using data from the two winters and springs of 2017 and 2018.

2 Methods

As a part of the DAS campaign, an Aerosol Chemical Speciation Monitor (ACSM, Aerodyne Research, Billerica, MA) was15

operated at ~0.1 liters per minute (LPM) at ~1-minute time resolution in a temperature-controlled laboratory on the top floor

of a four-story building at IIT Delhi. Additionally, BC, ultraviolet absorbing particulate matter (UVPM) and their difference

∆C were measured using a seven-wavelength aethalometer operated at 1 LPM flowrate and 1-minute time resolution (Magee

Scientific Model AE33, Berkeley, CA) (Drinovec et al., 2015). These instruments were on separate sampling lines, both of

which had a PM2.5 cyclone followed by a water trap and a Nafion membrane diffusion dryer (Magee Scientific sample stream20

dryer, Berkeley, CA). For the ACSM, the scan speed was set at 200 ms amu−1 and pause setting at 125 for a sampling time of

64 s. The ACSM measured mass from mass-to-charge ratio (m/z) m/z 10 to m/z 140. However, all analysis was restricted to

m/z 120 due to smaller mass and large uncertainties associated with data collected at the higher m/zs (Ng et al., 2011b). All

essential calibrations such as flow rate calibration, ionizer tuning, quadrupole resolution adjustment, adjustment of multiplier

voltage, m/z calibration, calibrations for measuring the response factor of nitrate, and relative ionization efficiencies of ammo-25

nium and sulfate were performed as recommended. Based on identified issues in the usual jump mode ionization efficiency

calibrations, additional single scan mode calibrations for estimating ionization efficiencies were also conducted. For data pro-

cessing, airbeam corrections and the default relative ion transmission corrections were applied. Full details on the sampling

site, instrument setup, operating procedures, and calibrations are described in a separate publication (Gani et al., 2019).

2.1 Study design30

We collected the data used in this manuscript from January 2017 to March 2018. We conducted separate PMF analysis for each

season, with our data categorized into six seasons over these 15 months, as defined by the Indian National Science Academy
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(2018) (Table 2). We used the dataset obtained by averaging every five consecutive measurements for the seasonal PMF runs.

Autumn (mid-September to November) is not included in our core analysis due to the unavailability of ACSM data for that

period.

PMF2 has been identified as an appropriate receptor modeling technique that can be deployed for quantifying source con-

tributions for air quality management (Belis et al., 2015). Since the ACSM measures mass spectra at every time point, we5

obtained two-dimensional matrices of time points (rows) and mass spectral contributions (columns). We deployed the PMF2

program to resolve factors from the 2D matrices (Paatero and Tapper, 1994). The Igor PMF Evaluation Tool (PET) was used to

conduct PMF2 analysis on this dataset and interpret its results (Ulbrich et al., 2009). Further details on the statistical basis of

this method are available elsewhere (Ulbrich et al., 2009; Zhang et al., 2011, and references therein). Briefly, PMF is a bilinear

unmixing model that performs deconvolution of mass spectra (MS) into the summation of products of positively constrained10

mass spectral profiles and their corresponding time series, under the assumption that the mass spectral profiles remain constant

in time. The iterative PMF technique does not make any assumptions for source or time profiles. In the process, the model min-

imizes the weighted least squares error (sum of squares of model error normalized to measurement error), or the summation of

squares of scaled residuals of the fit at each data point.

We used two alternative approaches for conducting PMF. In one approach, only organic spectral data at a specific set of15

m/zs between m/z 12 and m/z 120 were selected. This approach is the most commonly used approach, and the reasons for the

selection of the specific set of m/zs have been described previously (Zhang et al., 2005). In this approach, the concentrations

of inorganic species measured by the ACSM were used only as external tracers for interpreting organic PMF factors. However,

this technique provides limited information on the relationship between organic and inorganic species (Sun et al., 2012). We

pursued a second approach in which we conducted PMF analysis for organic plus inorganic MS. The inorganic m/zs selected20

represent the underived m/zs for each species such that spectral contributions at other m/zs can be explained completely by

data at these m/zs (Sun et al., 2012; Jimenez group, 2018). Thus, we have conducted 12 PMF runs in total (six seasons, organic

only and organic-inorganic combined). We refer to the organic MS–based PMF analysis results as “organic-only PMF” and

combined organic-inorganic MS–based PMF analysis results as “combined organic-inorganic PMF” results in the manuscript.

Within the PET tool, we removed spikes (Zhang et al., 2005) from the dataset, down-weighted selected weak (Signal to25

noise ratio, SNR<2) m/zs by a factor of 2, and removed bad m/zs with SNR<0.2. Further, we used the default fragmentation

table, and as a result, higher weight was given to mass spectral contribution at m/z 44 with which data at m/zs 16, 17, and 18 are

proportionally related. Accordingly, we down-weighted contributions at these m/zs by a factor of 2. We readjusted the results

from PMF analysis to account for underestimation of factor mass based on the selected m/zs only. To account for particle

losses, we applied transmission and collection efficiencies after conducting PMF analysis (Gani et al., 2019).30

2.2 Factor selection

We conducted PMF runs for one to six factors and explored the solution space using the tools FPEAK and SEED. We selected

an initial number of p factors based on uncentered correlation coefficients with the factors at the selection p−1. Other criteria

employed to select the number of factors include improvement in the solution's ability to explain residual structure with the
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addition of a factor and ensuring the 25–75th percentiles of scaled residuals for all m/zs are between ±3. Changing the SEED

value initializes the PMF algorithm with different pseudorandom starts. Changing the FPEAK value allows exploring rotations

of solutions of a given number of factors. Primarily, we gauged the effect of the changing FPEAK and SEED using changes

in the fraction of variance explained by different factors, correlations of factors' MS with reference MS, and correlations of

factors' time series with the time series of external tracers. Differences between plausible factor solutions in the FPEAK-SEED5

2D space are also representative of the uncertainty of the final selected solution for each scenario in Table 2 (Ulbrich et al.,

2009). We observed unreasonable MS, weak time series correlations, or rotational ambiguity on changing FPEAK and/or SEED

from the default selection of FPEAK=0 and SEED=0. We, therefore, used these default parameter values in our core analysis.

Details on factor selection for each PMF run can be found in Supplementary Information (Sect. S1). We use as reference mass

spectra the average mass spectral profiles developed by Ng et al. (2011a) and cooking (COA) and coal combustion organic10

aerosol (CCOA) profiles in the AMS spectral databases (Ulbrich et al., 2017, 2018), and the one with the highest correlation

with the mass spectrum of the PMF generated factor (generally, Pearson R ≥0.9) is used for naming the obtained factor (Ng

et al., 2011a). This comparison enables the separation of factors based on their sources since MS of different factors are

characterized by different spectral signature peaks (Zhang et al., 2011). For example, hydrocarbon-like organic aerosol (HOA)

is a proxy for fresh traffic and combustion emissions and shows prominent peaks at m/zs 55 and 57 and a higher fractional15

organic signal at m/z 43 than m/z 44. In this study, carbon monoxide (CO) was not measured. When available, we used CO

measured about 11 km (~7 miles) from our site at a fixed monitoring location RK Puram maintained by the Central Pollution

Control Board (CPCB), Government of India as an external traffic and combustion tracer. Further, we also utilized the co-

located aethalometer measurements of BC (880 nm) as a traffic tracer. For biomass burning, we used two tracers: (i) ∆C,

defined as the difference between UVPM (370 nm) and BC detected by the aethalometer (Wang et al., 2011; Olson et al., 2015;20

Tian et al., 2019) and (ii) the biomass burning component of black carbon, BCBB, estimated using the model of Sandradewi

et al. (2008).

3 Results and discussion

In this manuscript, we focus on the components of organic aerosol obtained using organic-only PMF and combined organic-

inorganic PMF. We report average seasonal concentrations of organic-only PMF factors in Table 3 and the organic component25

of the organic-inorganic combined PMF factors in Table 4. Our results show that the mass spectral profiles of organic-only

PMF factors are consistent with reference profiles. In five of the six seasonal organic-only PMF runs, we obtained only two

factors—a mixed hydrocarbon-like organic aerosol (HOA)-biomass burning organic aerosol (BBOA) factor, hereafter referred

to as primary organic aerosol (POA), and an oxygenated organic aerosol (OOA) factor. PMF separated HOA and BBOA factors

only in spring 2018, and POA MS for this season was calculated by adding these two factors, weighted by their respective time30

series contributions. Combined organic-inorganic PMF runs further separated the OOA factor but not the POA factor. Advanced

factor analysis including ME-2 will be explored in a forthcoming publication to separate the POA factor. Source apportionment

conducted in this work was limited to separating primary and secondary OA in all seasons (and further, primary into BBOA and
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HOA in Spring 2018). Further separation of the factors may be possible with high-resolution data combined with application

of factor constraints (Aiken et al., 2009; Elser et al., 2016; Al-Naiema et al., 2018) and source-specific measurements such as

metals/metal ions for combustion or biomass burning emissions (Jaiprakash et al., 2017), or α-methylglyceric acid for biogenic

secondary OA (Srivastava et al., 2019).

Figure 1a presents the mean of the seasonal organic-only PMF POA MS averaged over the entire campaign and the reference5

profile for HOA. The behavior of this POA factor is in line with the reference HOA factor (also, Figs. S1a–f, S2a–g, R>0.9), as

suggested by the dominance of hydrocarbon signatures in the spectrum in the series CnH2n−1
+ and CnH2n+1

+ (Ng et al., 2010).

At the same time, the fractional contributions of the POA factor at m/zs 29, 60, 73, and 115 are higher compared to the reference

HOA factor. These m/zs have higher contributions from biomass burning emissions than traffic-related and other combustion

emissions (He et al., 2010; Crippa et al., 2014; Bertrand et al., 2017)—comparison with the reference BBOA profile in Fig.10

S3 points to the influence of biomass burning on the primary organic aerosol factor. As expected, POA tracers, CO and BC,

correlate more strongly with the POA factor than with the OOA factor (Fig. S4a–f).

Figure 1b presents the mean of the seasonal organic-only PMF OOA MS averaged over the entire campaign and the reference

profile for OOA. OOA is principally associated with secondary organic aerosol (SOA) (Zhang et al., 2011). Mass spectra of

the OOA factors in organic-only PMF correlate strongly with the reference OOA factor (R>0.95) (Figs. S1a–f, S5a–f). Time15

series of the OOA factors correlate stronger with secondary inorganic species, such as nitrate and sulfate, compared to their

correlations with the POA factor time series (Fig. S4a–f). Figure 2 shows the time series of the organic-only POA and OOA

factors for the measurement period. The interplay of sources, meteorology, and photochemistry results in a sharp variation of

PMF factor concentrations across seasons. While POA and OOA concentrations are similar in the colder months, OOA is the

more abundant component in the warmer months.20

The combined organic-inorganic PMF analysis yielded three or four factors. One factor is predominantly composed of

primary organics (accounting for 80–95% of the total factor mass)—we refer to the organic fraction of that factor as POA. An

additional two or three factors emerge as a combination of inorganics and oxygenated organics—namely, ammonium sulfate

(AS) mixed with OOA (ASOOA), ammonium nitrate (AN) mixed with OOA (ANOOA) and ammonium chloride (AC) mixed

with OOA (ACOOA). The time series correlations of the organic-inorganic combined PMF factors with external tracers are25

shown in Fig. S6a–f. We refer to the organic mass in these mixed factors as AS-OOA, AN-OOA, and AC-OOA, respectively.

This organic mass accounts for 19–59% (avg. 41%), 21–56% (avg. 45%), and 17–23% (avg. 20%) of the total mass of these

mixed factors, respectively. The mass spectrum of the POA from organic-inorganic combined PMF analysis correlates most

strongly with the reference HOA and/or BBOA (R>0.9). AS-OOA and AN-OOA correlate most strongly with the reference

LVOOA profile (R>0.95, Fig. S7a–f). It is therefore not surprising, as shown in Fig. S8a–c, that the behavior of POA and OOA30

in combined organic-inorganic PMF is very similar to that of organic-only POA and OOA respectively (POA: Slope~1.08,

Intercept~1.6, R2~0.96, OOA: Slope~0.88, Intercept~-0.4, R2~0.88). Based on the slope of the time series correlations, the

combined organic-inorganic PMF estimates ~8% more POA and about 12% less OOA than organic-only PMF, with higher

disagreement in warmer months. These differences may be due to a relatively higher m/z 44 fraction in the POA from combined

organic-inorganic PMF analysis than the POA from organic-only PMF analysis (Figs. S9–S14a). Overall, the MS and time35
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series obtained by combining AS-OOA, AN-OOA, and AC-OOA are very similar to the organic-only PMF OOA MS and time

series. The mass spectra and time series of the POA and OOA components obtained using combined organic-inorganic PMF

factors and organic-only factors are consistently strongly correlated in each season, as shown in Figs. S9–S14a–c.

In Sect. 3.1, we discuss the mass spectral profiles and diurnal time series patterns of POA across seasons. In Sect. 3.2, we

discuss the mass spectral profiles and diurnal time series patterns of oxygenated organic aerosol from the seasonal organic-5

only PMF analysis as well as the combined organic-inorganic PMF analysis. In Sect. 3.3, we contrast the importance of

primary versus secondary organic aerosol. We also compare the full PMF results with the tracer-based organic component

results. In Sect. 3.4, we investigate interannual variability between the winters and springs of 2017 and 2018 and shed light on

the association of PMF factor concentrations with ventilation-related variables—wind speed, planetary boundary layer height

(PBLH), and ventilation coefficient (VC = PBLH × wind speed).10

3.1 Primary organic aerosol (POA)

The analysis in this section focuses on PMF factors from the organic-only PMF analysis; as suggested by the mass spectral

and time series correlations, the behavior of POA in combined organic-inorganic PMF is very similar to the organic-only POA

in each season (Figs. S9–S14a–c) and is therefore not discussed here. The factors representing primary organic aerosol have

consistently high correlations with hydrocarbon-like organic aerosol and show a varying influence of biomass burning organic15

aerosol (Fig. S1a–f). To assess the seasonal variability of this biomass burning influence on the mass spectra, Fig. S2a–g

compares the mass spectra of the POA factors with reference HOA and BBOA profiles. The mixed POA profiles observed in

Delhi have fragments at m/zs 60 and 73, tracers of biomass burning, several times the HOA reference profile average and within

15% of the reference BBOA profile average in winter 2017 and 2018 (Fig. S2a,e). Even in the other three seasons with a mixed

POA factor, m/z 60 and 73 have contributions higher than the reference HOA profile average by more than a standard deviation20

(Fig. S2b–d). This behavior points to the mixing of biomass burning in the POA factor. In spring 2018, the separated HOA and

BBOA are in line with their respective reference profiles (Fig. S2f–g). The mixing of HOA and BBOA factors in PMF has been

observed in previous studies as well (Aiken et al., 2009; Elser et al., 2016; Al-Naiema et al., 2018). The deployment of other

factorization techniques including the Multilinear Engine (ME-2) algorithm for constraining the presence of POA sources such

as cooking and biomass burning is the subject of ongoing work and a forthcoming publication.25

The organic-only PMF–based POA diurnal time series patterns exhibit high diurnal, interseasonal, and interannual variability

between the winters and springs of 2017 and 2018 and are influenced by episodic pollution events (Table 3, Fig. 3). Peaks

in the POA diurnal pattern occur early in the morning and late at night, corresponding to periods of higher traffic. Winter

peak POA diurnal concentrations are ~2× diurnal peak in spring, ~3–5× diurnal peak in summer, and ~6–7× diurnal peak in

monsoon. Additionally, winter peak POA diurnal concentrations are ~8–10× winter diurnal minima, and this peak-to-minimum30

ratio dampens in warmer months—decreasing to ~5–6× in summer. We observed larger nighttime (1800–2200 hours) and

smaller daytime (0600–0900 hours) POA peaks. As the sun sets, radiative cooling of the ground surface flips the ambient

temperature profile in the surface layer, with ambient temperature increasing with altitude. This inversion layer is thermally

stable and traps pollutants at nighttime. As the sun rises, radiative heating warms up the ground surface and the ambient
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temperature profile returns to a decreasing trend with altitude, which is thermally unstable. Thus, the nighttime and daytime

periods encounter similar thermal transition phases, albeit in opposite directions (Figs. 3, S15) (Seinfeld and Pandis, 2016).

However, the nighttime period is accompanied by minimal photochemical conversion of POA to SOA in the evening, confirmed

by the lower OOA, AN-OOA, and AS-OOA concentrations in the evening (Sect. 3.2). These dynamics could explain the larger

nighttime and the smaller daytime POA peaks. Despite decreasing PBLH and ventilation coefficient at night (2100–0300 hours)5

(Fig. S15), POA concentrations are decreasing at night (Fig. 3), likely a consequence of decreasing emissions at nighttime and

into the early morning of the next day.

Additionally, the lower temperatures in the mornings and evenings of winter and spring seasons (Figs. 3, S15) also appear

to play a role in generating POA peaks at these times. For example, the mean POA concentrations for the coolest 20% of the

dataset (mean temperature 12.5°C) were ~53 µg m−3, approximately 3× as high as the POA concentration for all other hours10

(mean temperature 28°C, mean POA ~19 µg m−3) (Fig. S16c). Finally, the differences in POA diurnal minima across seasons

is much smaller than the differences in diurnal peaks—the POA diurnal minimum decreases from ~10–12 µg m−3 in winter

to ~4 µg m−3 in monsoon, and all seasons seem to approach similar baseline concentrations in the afternoon. According to

our analysis using the volatility basis set (VBS) (Donahue et al., 2006), differences in observed concentrations in summer and

winter can be explained by thermodynamics (equilibrium partitioning) and meteorology (PBLH, VC) alone, suggesting that15

sources of POA in Delhi may be similar in all seasons. The detailed methodology and results of the VBS analysis are presented

in Supplementary Information (Fig. S17, Sect. S2-VBS Application).

With regard to interannual variability, we observe notable consistency between daytime POA profiles in winter and spring

of 2017 and 2018 (0900–1700 hours). However, at nighttime and in early morning, POA concentrations have increased in both

seasons in 2018 by as much as ~30 µg m−3. It is well known that the median is robust against extremes and the arithmetic20

mean (AM) is not. Thus, the relative difference between seasonally averaged mean and median is a qualitative measure of

the influence of pollution episodes. Additionally, the magnitude of standard deviation (SD) relative to the arithmetic mean

and the magnitude of geometric standard deviation (GSD) relative to the geometric mean (GM) are also evidence of episodic

behavior. Indeed, based on these metrics of gauging the influence of episodes, POA is influenced by episodic events in the

early morning hours in all seasons (Table 3, Fig. 3). These episodes increase mean POA concentrations over the corresponding25

median by as much as 20 µg m−3, with the largest episodic events occurring in winters. In relative terms, the largest difference

is in summer, when mean POA exceeds the median by as much as 55%. Similarly, though seasonal AM and GM for POA

are generally smaller than AM and GM for OOA, their corresponding GSD and SD are larger. This difference is particularly

stark in colder months, with POA SD almost twice the OOA SD, despite similar AM. While ubiquitous temporally varying

sources such as traffic and cooking are important contributors to the overall POA diurnal patterns, they have stable patterns30

within seasons associated with working hours and meal consumption. The occurrence of pollution episodes in POA could be

a consequence of temperature-related biomass and trash burning (colder periods of day/year), agricultural burning (related to

the Rabi [winter planting and summer harvesting] and Kharif [monsoon planting and autumn harvesting] crop harvesting),

fireworks, and bonfires (festivals, e.g., Lohri). POA is the largest contributor to PM during these episodes at our site—e.g., for
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extreme conditions where NR-PM1 exceeded 200 µg m−3, POA accounted for, on an average, 34% of the NR-PM1 mass (Fig.

S18).

It is also important to point out the differences in the HOA and BBOA factors identified in Spring 2018 (Figs. 3, S2f–g).

Both HOA and BBOA exhibit episodes in the early morning hours of the day, with higher BBOA concentrations than HOA,

and BBOA contribution to total organic mass as high as 38%. In the evening and at night, however, HOA is the larger of the5

two, contributing as much as 42% to total organic mass. Both components display strong diurnal behavior.

3.2 Oxygenated organic aerosol (OOA)

3.2.1 Organic-only PMF mass spectra and diurnal patterns

Here, we discuss the mass spectral profiles of oxygenated organic aerosol from the seasonal organic-only PMF analysis as well

as the combined organic-inorganic PMF analysis. As shown in Fig. 1b, the observed OOA MS profile averaged across seasons10

is in line with the reference OOA profile. In every season, mass spectra of the OOA factors in organic-only PMF correlate

strongly with the reference OOA factor (R>0.95) (Fig. S1a–f). The mass spectral profiles for each factor are provided in Fig.

S5a–f. A large fractional contribution at m/z 44 is a signature of the OOA factor. The fragment CO2
+ dominates contributions

at m/z 44 compared to other fragments and is produced by the thermal decarboxylation and ionization-induced fragmentation

of carboxylic acids (Takegawa et al., 2007). The large fractional contribution at m/z 44 is beyond +1 standard deviation from15

the mean of the reference spectrum for most seasons (Fig. S5a-f). This higher contribution at m/z 44 could be a result of rapid

photochemical processing of fresh emissions, and/or regional transport of aerosol to the receptor site. The vicinity of the site

to local sources suggests that rapid photochemical processing may be more important in causing the high m/z 44.

The organic-only PMF–based OOA diurnal time series patterns exhibit high interseasonal, limited diurnal, and minimal

interannual variability between the winters and springs of 2017 and 2018 and are not influenced by episodic pollution events20

(Table 3, Fig. 4). Mean and median OOA concentrations, similar in magnitude at most times of the day in every season,

increase during the morning, dip midday, and then increase again at nighttime. At nighttime, OOA concentrations remain

stable for several hours into the next day and then increase in the early morning. OOA concentrations increase in the morning

hours (~0500–0900 hours) despite increasing atmospheric mixing, pointing to photochemical formation related to primary

emissions from traffic and other sources. The midday dip is likely associated with increasing atmospheric mixing and perhaps25

a reduction in daytime primary emissions. In contrast, nocturnal OOA concentrations are considerably less variable up to about

0400–0500 hours, perhaps representing a lower production rate in the absence of photochemistry. Overall, the timing of local

primary emissions, meteorology, and boundary layer dynamics are likely responsible for differing behavior at different times

of the day.

The diurnal variations of the OOA concentrations are stronger in winter (peak concentration ~1.9–2.3× midday concentra-30

tion) than in the summer and monsoon (peak concentration ~1.6–1.7× midday concentration). Also, there is a strong seasonality

of the factor with diurnal peak OOA concentrations in winter nearly 1.7× those in spring and ~2.9–3.6× those during the sum-

mer. Nevertheless, diurnal variations in OOA are weaker than their POA counterparts across seasons. Apart from a weaker
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diurnal variation, the daytime peaks in OOA are larger than nighttime peaks, and diurnal minima in OOA concentrations vary

substantially across seasons. As Fig. 4 shows, absolute OOA concentrations have large differences between winters and other

seasons. In winters, the mean and median OOA concentrations never dip below 30 µg m−3, whereas in other seasons they do

not increase above 30 µg m−3 except for early morning and at night in the spring and monsoon. As for interannual variability,

winter and spring 2018 exhibit variations similar to the respective seasons in 2017.5

Except for a brief period in the summer morning, we observe small differences between median and mean OOA concen-

trations at different hours of the day across seasons (Fig. 4). Similar conclusions can be drawn from the magnitude of SD

compared to AM and GSD compared to GM (Table 3); while seasonal AM and GM for OOA are generally larger than AM

and GM for POA, their corresponding SD and GSD are smaller. Concentrations of OOA do not increase substantially during

pollution episodes, thereby showing different behavior than POA (Sect. 3.1).10

3.2.2 Combined organic-inorganic PMF mass spectra and diurnal variation

Incorporating mass spectral data for inorganics in PMF allows further separation of OOA into AS-OOA, AN-OOA, and AC-

OOA—a result likely arising from similar volatility of the organic and inorganic components. In this section, we show that

chloride, nitrate, and sulfate measured at the site are largely inorganic—as indicated by combined organic-inorganic PMF

analysis which groups these species into factors with ammonium. In previous work, OOA associated with ammonium nitrate15

usually has a mass spectrum showing higher fractional contribution at m/z 43 (mostly C2H3O+), than m/z 44 (CO2
+), where

m/z 43 is believed to be associated with non-acid oxygenates (Ng et al., 2010). Additionally, these organic aerosols generally

have time series reflecting semi-volatile behavior and are labeled semi-volatile oxygenated organic aerosol (SVOOA) (Zhang

et al., 2011). In this study, while AN-OOA exhibits semi-volatile behavior (Fig. 5a), the distribution of AN-OOA profiles and

reference SVOOA are different (R<0.8, all seasons, Fig. S7a–f). Instead, the relative mass spectral contributions are in line with20

the reference OOA and the LVOOA profiles (R>0.95) (Figs. S7a–f, S19–S20a–f). The strong mass spectral correlation of AN-

OOA with reference LVOOA hints at rapid photochemical aging of aerosols in Delhi so that freshly formed oxidized aerosols

have a high oxidation state. The mass spectrum of AS-OOA also compares well to the reference OOA and LVOOA profiles

(R>0.95, all seasons) (Figs. S7a–f, S21-22a–f). AN-OOA has higher mean mass spectral contribution at m/z 43 compared to

AS-OOA; however, the mass spectral contribution at m/z 44 is higher in AS-OOA. Additionally, at most high m/zs between25

70–120, AN-OOA displays higher contributions than AS-OOA, which is likely a result of less processing (Fig. S23a–b) (Ng

et al., 2010). AS-OOA profiles have a higher contribution at other prominent lower m/zs, such as 17, 24, 41, and 55, as well.

The combined organic-inorganic PMF–based AN-OOA and AS-OOA show different time series patterns which change both

diurnally and seasonally, pointing to the semi-volatile behavior of AN-OOA and suggesting potential influence of aqueous

phase chemistry in the formation of AS-OOA at high relative humidity (RH) (Fig. 5a–b). Based on the peak-to-minimum30

ratio in diurnal variations, AN-OOA shows stronger variations than OOA and AS-OOA (Fig. 5a–b). Like OOA from organic-

only PMF analysis, the smaller nighttime increase in AN-OOA compared to the daytime peak is likely due to the minimal

photochemical formation at night. Also like OOA, concentrations of AN-OOA are higher in winter than in other seasons, with

concentrations never dipping below 12.5 µg m−3 in winters. Among other seasons, AN-OOA concentrations exceed this value
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only in spring mornings. Within 2017, the diurnal patterns and the absolute AN-OOA concentrations change dramatically. In

winters, summer, and monsoon, diurnal peak AN-OOA concentrations are ~2–5× the diurnal minima; in springs, this ratio

increases to ~6–8× . In terms of absolute variations in meteorological variables such as temperature, RH, wind speed, and VC,

spring shows the most variability (Fig. S15). These variations might be causing the large peak-to-minimum ratio and the sudden

drop in AN-OOA concentrations from winter to spring. The two winters and springs show very similar AN-OOA concentration5

variations. The mean-median difference, GSD versus GM, and SD versus AM point to episodic behavior in all seasons except

winters, possibly due to the semi-volatile behavior of AN-OOA leading to its evaporation at higher temperatures each day

(Table 4).

On the other hand, AS-OOA exhibits more flat profiles, especially in the warmer months, with no prominent troughs and

a single morning crest only in the colder seasons (winters and springs) (Fig. 5b). Concentrations in winters and springs peak10

diurnally between 0900–1000 hours, at ~2.0–2.5× the diurnal minima in both winters and ~1.5–1.8× in springs. Warmer

seasons have similar peak-to-minima ratios of ~1.5–1.7× in summer and ~1.7–2.0× in monsoon but exhibit more flat profiles in

terms of absolute AS-OOA concentrations with mean and median always less than 8 µg m−3. Additionally, high RH conditions

generally occur during winter, spring, and monsoon (Fig. S15). Very humid conditions are associated with especially high

AS-OOA concentrations. For example, for the highest decile of RH (RH ~90-100%), the mean AS-OOA concentration (~6.415

µg m−3) exceeds the mean of the corresponding AS-OOA concentrations for conditions where RH<90% (~4.6 µg m−3) by

~50% (Fig. S24d). Similar behavior has been observed for the ammonium sulfate aerosols previously measured in Delhi and

elsewhere, particularly in the presence of high organic concentrations, and has been attributed to aqueous phase chemistry (Hu

et al., 2011; Wang et al., 2016; Jaiprakash et al., 2017; Sarangi et al., 2018; Wang et al., 2018). Nevertheless, such a correlation

does not imply causation; meteorological variables are confounded with each other and with other temporal cycles. The flat20

and lower AS-OOA concentrations during the rest of the day are likely an indicator of the contribution of regional sources to

AS-OOA. AS-OOA diurnal profiles capture important processes such as nighttime secondary formation that is perhaps related

to biomass burning emissions (winter 2017), morning peaks hinting at the possibility of rapid secondary formation from traffic

and biomass burning emissions (winters and springs of 2017 and 2018), and prominent nighttime episodes (winter 2018).

Interannual behavior of AS-OOA shows a decrease in winter median throughout the day in 2018 compared to 2017 (lower25

by as much as 9 µg m−3), and an increase in spring 2018 median AS-OOA concentrations compared to the median in spring

2017 (higher by as much as ~4 µg m−3). The mean-median difference also suggests some midday episodes in spring 2017;

these episodes are not observed in spring 2018. Overall, AS-OOA is less volatile than AN-OOA and shows weaker episodic

behavior based on AM versus GM, SD versus AM, and GSD versus GM (Table 4).

Broadly speaking, springs have a larger AS-OOA to AN-OOA ratio relative to the winters and summer. This behavior is likely30

associated with the transitional meteorology of the spring period, where relatively low temperatures and weak atmospheric

mixing coincide with higher photochemistry and relative humidity. Also, GM and median AN-OOA levels in Delhi are higher

than AS-OOA only in winters, pointing to the strong influence of temperature on PM formation (the evaporation of semi-

volatile compounds in warmer periods), and the importance of less photochemistry in winters. To summarize, despite overall
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consistency across seasons for OOA, its components AN-OOA and AS-OOA show very different behavior which changes both

diurnally and seasonally.

Akin to the associations with ammonium nitrate and ammonium sulfate, some organic components also associate with

ammonium chloride (Fig. S7a–f). These organics (AC-OOA) account for 17–23% mass of this factor. The median fraction

of organics associated with this factor does not exceed 4%. The mass spectra of these organics resemble oxidized biomass5

burning aerosol (higher fraction of organics at m/zs 60 and 73 than reference SVOOA profile) (Figs. S7a–f, S25a–h). These

organics may be associated with the AC factor due to their semi-volatile behavior. Indeed, chloride has been used as a tracer

for semi-volatile OOA (Zhang et al., 2011). Additionally, chloride has been used as a tracer for biomass burning, specifically

agricultural burning, and more recently has also been detected in plastic burning (Li et al., 2014a, b; Kumar et al., 2015;

Fourtziou et al., 2017). However, as Fig. S6a–b and Fig. S6e–f show, for the four seasons (Winters 2017 and 2018, Springs10

2017 and 2018), when significant chloride mass is detected in the particulate phase, the time series of the biomass burning

tracers, aethalometer-derived biomass burning component of black carbon, BCBB, and the difference between UVPM and

BC, ∆C, do not correlate with this AC factor. Also, the highest 10% of concentrations of this AC factor (>87 µg m−3) are

associated with a strong N-NW wind component—this directionality behavior is strongest among all PMF components (Fig.

S26a–e). Other OOA components also show similar directionality with weaker strength in the N-NW direction (Fig. S26b,15

d). In contrast to the OOA components, extreme POA concentrations are associated with a relatively broad range of wind

directions (Fig. S26c). This observation suggests that long-range transport from the prevailing N-NW wind direction may be

more important for OOA-associated–components than for POA. Since Delhi is in an especially ammonia-rich environment

(Warner et al., 2017; Van Damme et al., 2018), these observations also suggests that ammonium chloride is forming from

the interaction of upwind chloride sources and fertilizer emissions. One logical source of chloride emissions would be the20

industrial use of hydrochloric acid (Jaiprakash et al., 2017).

Considering that the combined organic-inorganic PMF results cluster nitrate, chloride, and sulfate with ammonium, our

findings suggest that nitrates, chlorides, and sulfates measured by the ACSM in New Delhi are dominated by inorganics,

particularly at higher concentrations. This finding is consistent with results from analysis based on tracer ratios. The ONNOx

method, developed by Farmer et al. (2010), estimates organic nitrate (ON) contribution in the NO3 detected by online mass25

spectrometers such as the AMS based on the ratio of NO3 fragments at m/z 30 to m/z 46. The higher the value relative to the

pure ammonium nitrate calibration, the greater the importance of organonitrates. The m/z 30 to m/z 46 ratio increases from

winter to monsoon and does not exceed the calibration ratio (3.6) in winters, pointing to a negligible fraction of organonitrates

in winters. Similarly, Wang and Hildebrandt Ruiz (2017) use the correlation of chloride mass at m/z 36 to organic mass for

evaluating the presence of organochlorides. We observe that chloride m/z 36 is very weakly correlated to organics, pointing to30

the dominance of inorganic chlorides. Finally, Hu et al. (2017) suggest use of the SO+ to SO3
+ ratio to estimate the presence of

organosulfur species. The range of seasonally representative diurnal median across seasons is 2.4–4.1, agreeing very well with

the median values obtained with pure ammonium sulfate calibrations (3.0). This result points to the dominance of inorganic

sulfate over organosulfates across seasons. Although the diurnal patterns are stable across seasons, there is a slight upward shift

in the median ratio from winter 2017 to spring 2018, pointing to a possible change in the importance of organosulfates.35
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To summarize, our findings indicate that AN-OOA shows stronger diurnal variability than AS-OOA, and the ratio of AS-

OOA to AN-OOA is high in spring likely due to transitional meteorology. Compared to other factors, AS-OOA concentrations

show a strong association with high RH, possibly a consequence of aqueous phase chemistry. While chloride has been used

as a tracer for biomass burning, we do not see any correlation with the aethalometer-derived biomass burning tracers, and

suspect chloride to be of industrial origin. Finally, based on PMF results and tracer ratios and correlations for organic nitrates,5

chlorides, and sulfates, these species are principally inorganic.

3.3 Primary versus secondary organics

In this section, we summarize the contributions of organics as either primary or secondary using the PMF results. We show

that (i) primary emissions are more important in high PM pollution periods, (ii) secondary organic aerosols dominate average

concentrations year-round, and (iii) a modified tracer-based organic component evaluation could provide real-time source10

apportionment of POA and SOA for Delhi (Figs. 6a–b, S27–28).

For fractional POA contributions, the nighttime peak between 1800–2200 hours is larger than the daytime peak between

0500–0800 hours, likely due to reduced photochemistry (Fig. 6a). The diurnal minima in the variations occur between 1200–1500

hours in all seasons, likely due to a combination of reduced sources, increased ventilation, and higher temperatures (Fig. 6a).

For winter 2017, although the fraction of POA is generally less than 50%, it nears or exceeds the halfway mark during the15

early morning traffic hours (0600–0800 hours) and for most hours in the evening and at night (1700–0100 hours), with similar

behavior persisting across seasons. These time windows also correspond to periods with the highest POA and highest total

concentrations, pointing to the importance of local, primary emissions in the high pollution periods, within a day, within each

season, and across seasons (Fig. S18). Relative to colder seasons of winter and spring, warmer months exhibit similar midday

POA fractions but diverging lower nighttime fractions. The spring 2018 POA fraction varies between 34–75%, higher than the20

winters of 2017 and 2018 and spring 2017 (20–68%), and summer 2017 and monsoon 2017 (23–53%). Fractional contributions

of OOA to total NR-PM1 exhibit very similar timing of crests and troughs across seasons (Fig. 6b). However, OOA fractions

for different seasons converge in the middle of the day and diverge in the early morning and at night, with nighttime fractions

in colder months generally lower than the warmer months. This result likely reflects the generally greater influence of primary

emissions at night and during colder months. The diurnal OOA fractions peak between 1400–1600 hours at ~66–80%. The25

profiles rapidly descend to diurnal minima between 25–51% between 1900–2000 hours, likely due to lowered photochemistry

and enhanced primary source strength. As for interannual variability between the winters of 2017 and 2018, winter 2018 has

lower OOA fractions, particularly at nighttime, by as much as 14%. Further, springs of 2017 and 2018 show large differences

in the early morning and at night with OOA in 2018 always contributing less (up to 26% less around midnight). This difference

could, in part, be due to the separation of a BBOA factor in spring 2018 that allows deconvolution of the biomass burning30

component. Despite the changes, the diurnal patterns remain consistent interannually.

We have also compared full PMF results for organic mass with a modified tracer-based organic component evaluation

(Ng et al., 2011a). The previously deployed tracer approach utilizes linear scaling of mass at specific m/zs to estimate the

total mass of each of the three factors—HOA, BBOA, and OOA. Since full PMF mostly yields two factors—proxies for
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primary and secondary aerosols, we compare primary organic aerosols (POA=HOA+BBOA in our analysis) and secondary

organic aerosols (OOA) only. However, for our measurements, this results in the total mass estimated using the tracer-based

approach substantially different from the actual organic mass (POA: slope~0.29, intercept~5.4, R2~0.76; OOA: slope~0.41,

intercept~17.3, R2~0.30) (Fig. S27). When we enforce a mass closure on the factors, the tracer-based factors are strongly

linearly correlated with results from the full PMF with slopes close to 1 (POA: slope~0.91, intercept~−3.7, R2~0.96; OOA:5

slope~1.09, intercept~3.9, R2~0.94) (Fig. S28). Given that the tracer-based approach can be conducted almost instantly, this

approach has the potential as an effective real-time source apportionment approach to separate primary from secondary organic

aerosol in Delhi.

3.4 Factors influencing organic aerosol concentrations and composition

3.4.1 Effect of meteorological variables on interannual variability10

In this section, we test the association of the interannual increase in concentrations in the winters and springs of 2018 compared

to 2017 with meteorological variables. Apart from source effects, the changes can be a consequence of changing wind direction,

wind speed, temperature, RH, and boundary layer height. Here, we compare the seasonally averaged diurnal patterns of these

variables (Fig. S29a–d). RH averaged over 2017 winter is up to 10% higher compared to winter 2018 (Fig. S29a). However,

RH is not strongly correlated with changes in pollutant concentrations (Fig. S24). At the same time, the temperature between15

the two winters is within 2°C of each other (Fig. S29b). In spring, RH is within 6%, and temperature within 4°C at all

hours. Diurnal patterns of wind direction are similar in 2017 and 2018, except in the middle of the day when there is a

significant shift of about 28° from N-NW to N-NE in winter (Fig. S29c). Between springs, there is a slight shift of about 14°

towards N-NE late in the evening and night between 2000–2400 hours. Ventilation coefficients are consistent across the two

years, except at nighttime—nighttime median VCs are lower by as much as 80% in winter and spring of 2018 (Fig. S29d).20

Thus, a lower VC for hours of the day when HOA and BBOA are most important could be a key reason behind their higher

concentrations. The increase could also be due to an enhancement of sources. In winters, it could also be attributed to the extra

period sampled—winter 2018 samples between December 21 and January 14, a period missed in winter 2017.

3.4.2 Effect of ventilation-related variables on factor concentrations

The association of ventilation-related variables with combined organic-inorganic PMF factors shows that (i) wind speed is not25

strongly correlated with pollution loading, and (ii) boundary layer dynamics seem to regulate all components, but to different

extents (Fig. S30–32a–e). For all PMF factors, concentrations associated with the lower eight deciles of wind speed (up to ~3.5

ms−1) (~80% of the dataset) show either minimal or no decrease (Fig. S30a–e), while total NR-PM1 shows a subtle decreasing

trend with higher WS. This observation is important and points to the limited importance of winds in providing“ventilation”. At

higher speeds, winds seem to decrease concentrations of the primary components—POA and AC—stronger than the oxidized30

components. The factors respond contrastingly to the other component important for “ventilation”, the planetary boundary

layer height (PBLH) (Fig. S31a–e). Going from the lowest to the highest deciles in PBLH, concentrations of all PMF factors
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decrease, with especially sharp drops in the first few deciles of PBLH (<100 m), where inversion conditions exert a strong

control on concentrations of all species. The anticorrelations with wind speed and PBLH have been observed previously, albeit

for PM2.5 and BC concentrations (Guttikunda and Gurjar, 2012; Tiwari et al., 2013). Temperature and ventilation coefficient

are correlated (R~0.6), which implies that the association with boundary layer height is likely convoluted with an association

with temperature. Finally, concentrations of PMF factors decrease with increasing ventilation coefficient, with somewhat larger5

drops in the concentrations of primary components in comparison to secondary components (Fig. S32a–e).

4 Conclusions

This study provides long-term source apportionment results for a receptor site in New Delhi, the most polluted megacity in the

world. For the first time, high time resolution data is available for understanding diurnal patterns and seasonal and interannual

changes between the winters and springs of 2017 and 2018 of submicron primary and secondary aerosols. Organic-only PMF10

analysis yields 2–3 factors—POA (HOA+BBOA) and OOA in every season and HOA and BBOA separating as factors only

in spring 2018. Among factors occurring in every season, POA exhibits the strongest diurnal patterns, with the nighttime

peak much larger than the daytime peak. The combined organic-inorganic PMF analysis allows separation of oxygenated

organic aerosols into components based on association with ammonium nitrate and ammonium sulfate. The two components

display different diurnal patterns, with AN-OOA showing relatively stronger diurnal patterns and AS-OOA displaying more15

flat profiles with a sharp rise and descent in the middle of the day, likely associated with photochemical formation. AS-OOA

shows a sharp increase in concentrations, especially at high RH, in line with formation influenced by aqueous phase chemistry.

AN-OOA mass spectral profiles are very similar to reference LVOOA profiles, despite vicinity to local sources, pointing to the

rapid processing of aerosols in Delhi. Chloride, nitrate, and sulfate are mostly inorganic. Analysis using the volatility basis set

suggests that differences in temperature and, therefore, equilibrium partitioning, can explain differences in observed winter and20

summer concentrations. While temperature and ventilation coefficient play a crucial role in determining the organic presence

in gas or aerosol phase, the N-NW direction is associated with a significant fraction of >90th percentile events for all OOA-

associated–components. In contrast to other variables that control atmospheric ventilation (e.g., PBLH), variation of wind

speeds had at most a minimal effect on factor concentrations. Observations indicate that regional OA and ammonium chloride

contribute substantially to air pollution in Delhi. Further, primary aerosols such as POA and AC increase whereas secondary25

aerosols such as AN-OOA and AS-OOA stabilize in the high pollution periods. Thus, primary species are more important

contributors to the high pollution episodes in Delhi and secondary organics dominate year-round fractional contributions to

total organics.

The current Indian legislative and legal framework tasks the responsibility of managing air pollution in Delhi to the Envi-

ronmental Pollution (Prevention & Control) Authority. The Graded Action Response Plan (GRAP) currently in place accounts30

for a multitude of local and regional sources contributing to air pollution in Delhi (Ministry of Environment, Forest & Climate

Change, Government of India, 2018). Because many bottom-up source apportionment efforts for Delhi are based on local

(<50–100 km) scale inventories of primary emissions, they may neglect the important contributions of regionally transported
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primary and secondary aerosol from upwind regions. Here, we demonstrate the importance of secondary aerosol formed via

atmospheric processing. Nevertheless, our results are in broad agreement with these inventories: 1) colder seasons are accom-

panied by higher concentrations and more diverse sources, including higher biomass burning emissions, 2) a significant aerosol

mass fraction in Delhi is attributable to non-local sources, and 3) industries are a significant source of fine particulate matter

(Guttikunda and Calori, 2013; IIT Kanpur, 2016; ARAI and TERI, 2018). However, the lack of consistent emission inventories5

limits the feasibility of action plans like GRAP, given that their implementation restricts economic activity (CEEW, 2019).

The results presented here capture the complexity of aerosols in Delhi by speciating them into different chemical categories

and identifying associations of those components with each other and meteorological variables and evaluating their behavior

at different times of the day and the year. Because the data presented is highly time-resolved, it can provide critical insight

into the diverse sources that contribute to pollution loadings, and similar techniques could be used to measure the efficacy of10

air pollution regulatory actions. Results from this work address several pressing requirements for air quality management in

Delhi including a real-time source apportionment approach for organics, evidence for extremely high chloride concentrations

associated with industrial sources, and evidence for primary components dominating high pollution episodes and secondary

components dominating seasonal averages. Future work could utilize these speciated measurements to delve into the identifi-

cation of potential source locations using back-trajectory analysis.15

Data availability. Data published in this manuscript’s figures and tables are available via the Texas Data Repository. Underlying research

data are also available by request to Lea Hildebrandt Ruiz: lhr@che.utexas.edu

.

Appendix A: Abbreviations

AC: Ammonium Chloride; AC-OOA: Oxygenated Organic Aerosol associated with Ammonium Chloride; ACSM: Aerosol20

Chemical Speciation Monitor; AMS: Aerosol Mass Spectrometer; AN: Ammonium Nitrate; AN-OOA: Oxygenated Organic

Aerosol associated with Ammonium Nitrate; AS: Ammonium Sulfate; AS-OOA: Oxygenated Organic Aerosol associated with

Ammonium Sulfate; BBOA: Biomass Burning Organic Aerosol; BC: Black Carbon; CO: Carbon Monoxide; CPCB: Central

Pollution Control Board; DAS: Delhi Aerosol Supersite; GRAP: Graded Action Response Plan; HOA: Hydrocarbon-like Or-

ganic Aerosol; HYSPLIT: NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model; IIT: Indian Institute of25

Technology; MS: Mass Spectra; NCR: National Capital Region; N-NW: North-Northwest; N-NE: North-Northeast; NR-PM1:

Non-refractory Submicron Particulate Matter; ON: Organic Nitrate; ONNOx : Method to estimate organonitrate fraction using

fragment ratio of NO3 30 to 46; OOA: Oxygenated Organic Aerosol; PBLH: Planetary Boundary Layer Height; PET: PMF

Evaluation Tool; PM1: Submicron Particulate Matter; PM10: Particulate matter smaller than 10 µm in diameter; PMF: Positive

Matrix Factorization; POA: Mixed HOA BBOA; RH: Relative Humidity; SOA: Secondary Organic Aerosol; UVPM: Ultra-30

Violet absorbing Particulate Matter; VBS: Volatility Basis Set; VC: Ventilation Coefficient; WHO: World Health Organization;
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Table 1. Seasonal summary of PM1 species—the arithmetic mean (AM) for hourly mass concentrations (µg m−3). Adapted from Gani et al.

(2019).

Winter Spring Summer Monsoon

Org 112 61 35 23

NH4 20 10 5.2 4.6

Chl 23 9.5 1.5 0.4

NO3 24 9 3.8 3.6

SO4 16 10 10 10

BC 15 11 9 11

NR-PM1 195 100 55 41
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Table 2. Periods for seasonal PMF analysis.

Season Dates

Winter 2017 Dec 1–Feb 14

Spring 2017 Feb 15–Mar 31

Summer 2017 Apr 1–Jun 30

Monsoon 2017 Jul 1–Sep 15

Winter 2018 Dec 1–Feb 14

Spring 2018 Feb 15–Mar 31
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Table 3. Organic-only PMF factor concentrations (µg m−3) split into POA and OOA.

Arithmetic Mean (SD) Median Geometric Mean (GSD)

POA OOA POA OOA POA OOA

Winter 2017 52 (48) 56 (21) 35 56 36 (2.5) 51 (1.5)

Spring 2017 30 (30) 30 (16) 20 27 20 (2.5) 26 (1.8)

Summer 2017 15 (16) 19 (15) 8 16 9 (2.5) 15 (2.1)

Monsoon 2017 9 (8) 15 (9) 6 13 7 (2.3) 12 (1.9)

Winter 2018 61 (56) 56 (24) 41 54 39 (2.7) 51 (1.6)

Spring 2018a 20 (19); 21 (18) 24 (12) 12; 23 17 13 (2.6); 15 (2.6) 21 (1.7)

aFor spring 2018, we were able to separate POA further into HOA and BBOA factors.
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Table 4. Organic component of the organic-inorganic combined PMF factor concentrations (µg m−3) split into POA and OOA. We were able

to separate OOA into AN-OOA, AS-OOA, and AC-OOA.

Arithmetic Mean (SD) Median Geometric Mean (GSD)

POA OOA POA OOA POA OOA

Winter 2017 60 (57) 23 (12); 19 (10); 6 (7) 38 22; 18; 4 38 (3.3) 19 (2.5); 15 (2.2); 3 (5.1)

Spring 2017 31(33) 9 (9); 14 (6); 4 (6) 20 6; 13 ; 2 19 (2.9) 5 (3.5); 12 (1.7); 1 (5.6)

Summer 2017a 16 (18) 8 (8); 6 (4) 9 5; 5 10 (2.7) 4 (4.1); 5 (2.2)

Monsoon 2017a 11 (9) 2 (2); 4 (3) 8 1; 3 8 (2.5) 1 (3.4); 3 (2.0)

Winter 2018 68(62) 22 (12); 15 (11); 12 (13) 42 20; 12; 6 44 (2.7) 19 (1.9); 12 (2.4); 6 (3.4)

Spring 2018 38(36) 7 (7); 16 (7); 5 (8) 24 4; 15; 1 24 (2.9) 4 (3.4); 14 (2.1); 1 (6.9)

aFor summer and monsoon, OOA was separated only into AN-OOA and AS-OOA as there was no AC-OOA factor.
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Figure 1. a) The average mass spectrum of organic-only PMF primary organic aerosol (POA) factor shows influence of both hydrocarbon-

like organic aerosols (HOA) and biomass burning organic aerosols (BBOA). b) The average mass spectrum of organic-only PMF oxygenated

organic aerosol (OOA) factor is similar to the reference OOA factor. The whiskers in the graphs represent ±1 standard deviation from the

mean spectra.
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Figure 2. The 12 h averaged concentration time series (TS) of organic-only PMF oxygenated organic aerosol (OOA) factor and primary

organic aerosol (POA) factor (µg m−3). Factor concentrations show strong seasonal variations.
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Figure 3. Seasonally representative diurnal mean (+) and median concentrations (lines) of POA from organic-only PMF analysis. This figure

shows that POA exhibits extreme diurnal variations and displays two peaks corresponding to the early morning and late evening traffic hours.
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Figure 4. Seasonally representative diurnal mean (+) and median concentrations (lines) of OOA from organic-only PMF analysis. This figure

shows the higher concentrations of OOA in winters compared to other months and the relatively stronger diurnal variations in winters and

springs compared to other seasons.
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Figure 5. Seasonally representative diurnal mean (+) and median (lines) concentrations of (a) AN-OOA (b) AS-OOA from organic-inorganic

combined PMF analysis. Compared to AN-OOA, AS-OOA concentrations remain relatively stable throughout the day, particularly in warmer

months.
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Figure 6. a) Diurnal mean and median composition of POA from organic-only PMF analysis. Spring 2018 has a relatively higher POA

fraction, due to the unmixing of a separate BBOA profile. b) Diurnal mean (+) and median (lines) fraction of OOA from organic-only PMF

analysis in different seasons. Fractional contributions vary between 32–80%, except spring 2018. This is likely due to the separation of

BBOA mixed into the oxidized organics in other seasons.
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