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We thank the referees for their comments and suggestions on the manuscript. Below,
we have included the referee’s point-by-point suggestions and the associated changes
we have made to the manuscript.

• “Throughout the text, the authors use the expression "robust constraint", but what
is it? If for instance all OCO-2 L4 products had no better quality than the latest
biosphere models at any scale, it could be found useless for land vegetation
carbon accounting and therefore not robust for that application. I do not think that
the chosen method can conclude to robustness. The authors need to qualify their
conclusion better: they demonstrate improvement in the retrievals on the basis of
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a specific indicator, but what does this mean in practice?”
We have removed the word “robust” throughout the text when it is used to refer to
the flux constraint. The methods section of the article describes, in detail, how the
experiments are set up and what they do and do not indicate about the CO2 flux
constraint. Elsewhere in the article, we often use shorter, more concise language
to refer to these experiments. Where possible, we have tried to use more specific
wording throughout the entire article. Specifically, we have replaced the word
“robust” in the following instances throughout the text:
Pg. 2, line 22: replaced with “reliability or accuracy”
Pg. 2, line 23: deleted “and robustness”
Pg. 2, line 25: replaced “robustness” with “detectability”
Pg. 2, line 26: replaced “can be used to robustly constrain fluxes across” with
“can be used to identify variations in biospheric fluxes within”
Pg. 2, line 27: deleted “robustly”
Pg. 3, line 10: We have removed this sentence in response to another review
comment.
Pg. 5, line 6: replaced “robustness” with “strength”
Pg. 5, line 12: replaced “robustly constrain” with “detect and constrain variations
in”
Pg. 5, line 15: replaced “provide a robust constraint” with “can be used to detect
variations in”
Pg. 5, line 24: replaced “robustly constraint monthly biospheric fluxes” with “de-
tect spatiotemporal variations in biospheric fluxes”
Pg. 6, line 11: deleted “or robustness”
Pg. 6, line 15: We have edited this sentence in response to another reviewer
suggestion.
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Pg. 7, line 18: replaced “as these observations rarely yield a robust constraint
for smaller regions” with “as these observations can rarely be used to detect or
constrain variations in CO2 fluxes across smaller regions”.

Fig. 3 caption: deplaced “more robust” with “stronger”

• “Crowell et al. (2017) should be updated to Crowell et al. (2019,
http://dx.doi.org/10.5194/acp-2019-87)”

We have updated this reference in the revised manuscript.

• “P. 3, l.9: the authors actually do not use more than 7 biome regions and therefore
do not necessarily reach the point when they are no longer able to detect any
variations in biospheric CO2 sources and sinks.”

We have clarified the text here. We use very large regions in the first two sets
of experiments and then shrink those regions down to biome-sized regions in the
final set of experiments. This final set of experiments is both a challenging test
of current observations and would be an ambitious, ecologically-relevant goal for
future inverse modeling studies.

• “P. 3, l. 19: the choice of a year with a strong El Nino episode is surprising. How
would the results change with a “normal” year?”

We began working on the preceding companion paper in 2016, and at that time,
there was only a single year of OCO-2 observations available to analyze. Hence,
both that paper and the current manuscript focus on OCO-2 observations from
2015. In the current manuscript, we have examined the same time period as
in the preceding companion paper – to ensure that we can make an apples-to-
apples comparison between the two studies. We suspect that results for 2016
would be similar to the analysis for 2015. Environmental conditions in some
regions were different in 2015 relative to 2016 due to El Nino, but those differing
conditions should not interfere with the regression analysis used in this study;
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many of the predictor variables used in the analysis would differ in 2015 and 2016
to reflect these differing environmental conditions (e.g., EVI, NDVI, and SIF).

• “P. 3, l. 32: the authors need to give details about the seven models so that
the reader can get convinced about their realism. For instance, I understand
that Miller et al. (2018) used climatological model averages for technical reasons
(lack of model availability for the target year): now that model outputs for 2015
are widely available, has this issue been sorted out?”

We have added an SI to the manuscript that describes each of these seven mod-
els. This information is also described in the preceding companion paper, and the
information in this SI is a duplicate of the information in the preceding companion
paper.

Model outputs for 2015 were not available at the time that we began work on the
preceding companion paper, and we want to compare apples-to-apples with that
paper. There are now biospheric model outputs available for 2015. However, we
require a relatively large number of flux model estimates for the statistical model,
and there are not a sufficient number of biospheric model outputs that are readily
available at a 3-hourly time resolution for 2015. The creation of a new flux model
inter-comparison was beyond the scope of the current project. With that said,
we have incorporated numerous vegetation indices for 2015 within the statistical
model, including SIF, EVI, and NDVI.

• “P. 6, l. 14: I have not seen that the community has deployed significant effort to
improve their transport models or their error models in the past years. In compar-
ison, the effort on retrievals, in particular in the OCO-2 team, has been huge. It
is not fair to compare them to the rest.”

We have clarified this statement in the revised version of the manuscript, and we
have deleted the phrase about retrieval improvements being more attainable than
improvements in transport modeling. Our intent here is not to compare improve-
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ments in the retrievals against improvements in meteorology or in biospheric flux
modeling. Rather, we wanted to point out that the retrievals, while important, are
one factor among many that affect the CO2 flux constraint.

• “Legends of Figs. 3 and 4: what are target mode retrievals doing here?”

We did not see any reason to exclude target mode observations from the anal-
ysis. For example, O’Dell et al. (2018) describe the version 8 ACOS retrieval,
and they do not present any evidence to indicate anomalous errors or biases
in the target mode observations. We also included target mode observations
in the analysis in the preceding companion manuscript, and we want to com-
pare apples-to-apples with the results of that study. The objective of the present
manuscript is to compare how the flux constraint has improved as the retrievals
have evolved from version 7 to versions 8 and 9. We feel it would be difficult to
make that comparison if we used a different approach to analyze versions 8 and
9 than we used to analyze version 7 in the preceding manuscript.
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6539-2018, 2018.

C5

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-382,
2019.

C6



Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2019-382-AC2, 2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interactive comment on “The impact of improved
satellite retrievals on estimates of biospheric
carbon balance” by S. M. Miller and A. M. Michalak
S. M. Miller and A. M. Michalak

scot.m.miller@gmail.com

Received and published: 12 September 2019

We thank the referees for their comments and suggestions on the manuscript. Below,
we have included the referee’s point-by-point suggestions and the associated changes
we have made to the manuscript.

• “It is interesting that the retrieval bias reductions from Version 7 to 8 helped so
much with the biospheric flux constraint at the biome-scale. It would be nice for
the authors to comment a little more on subtle differences between versions 8
and 9. Looks like the constraint went down in some regions, e.g. the drylands
and dry monsoon areas. Why is that?”
We have added text to the revised manuscript to clarify these differences. These
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small differences are due to the stochastic nature of the statistical model. The
regression model used in this manuscript requires an estimate of error variances
and estimates of the error correlation length and correlation time. We estimate
these variances and covariances using a randomized sub-selection of the ob-
servations, described in the preceding companion paper; there are too many
OCO-2 observations over a year to use all of the observations in that estimation
process. Hence, the results of the regression analysis exhibit a small amount
of stochasticity depending upon precisely which observations were randomly se-
lected for the variance and covariance estimation. For example, for the simula-
tions shown in the manuscript, we obtained a slightly higher error variance for
version 9 ((0.90 ppm)2) than version 8 ((0.87)2 ppm2) and a slightly longer decor-
relation length. This resulted in model selection results for version 9 in which
slightly fewer months were selected relative to version 8. We subsequently re-
ran the analysis and then obtained a slightly lower error variance for version 9
relative to version 8 ((0.83 ppm)2 versus (0.87)2 ppm2). This resulted in model
selection results for version 9 in which slightly more months were selected rela-
tive to version 8. We have added a brief description of this point in the revised
manuscript.

• “Did you try estimating any sub-biome scale regions? Given that the biomes tend
to be multi-continental, it would be interesting to see the results using smaller
regions that are (mostly) spatially contiguous within a given continent, especially
with Versions 8 9.”

It could be interesting to examine sub-biome scale regions. However, the overall
motivation of this study was to compare apples-to-apples with the preceding com-
panion paper. In that study, we did not examine smaller regions because we had
limited success in constraining fluxes across biome-sized regions. In the present
manuscript, by contrast, we were able to detect spatiotemporal variations in CO2

fluxes within many of these biome-sized regions, a large improvement over re-
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sults using version 7 of the observations.

• “The statement on p. 3, lines 8-10 sounds somewhat misleading: ‘We begin
with large, hemispheric regions and then decrease the size of those regions until
we are no longer able to detect any variations in biospheric CO2 sources and
sinks.’ It looks like you could potentially go to even finer spatial scales in the
tropical grasslands/ forests and drylands/ dry monsoon biomes with Version 8 9
retrievals.”

The reviewer raises a good point, and reviewer #1 made a similar suggestion.
We have revised this statement in the manuscript accordingly.

• “This may not be the focus of your study, but I was very curious to see the re-
sults of your model selection and estimated betas from the regression with the
selected bio models (and anthro/ biomass burning/ ocean fluxes). Which bio-
spheric models were selected in different region/ month combinations? When
was just one model selected vs. multiple models? Can these results help to in-
form which models are performing best in which regions? Does the ‘best’ model
for a given month change as a function of spatial scale? This could be potentially
useful information for biospheric model developers. Also, I don’t see a supple-
mental material, but do you list anywhere which bio models went into the model
selection algorithm?”

We agree; model selection can be a useful tool to help identify patterns in CO2

fluxes that are or are not consistent with atmospheric observations. A number
of studies have used model selection to explore which flux patterns and which
biosphere models are best able to reproduce atmospheric observations. For ex-
ample, Fang et al. (2014) and Fang and Michalak (2015) explore these questions
using in situ CO2 observations. We agree that these are interesting questions but
feel that these questions are beyond the scope of the current study and would be
better answered in a separate future, study. Adding that analysis to the present
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study would arguably complicate or distract from the framing and messaging of
the current manuscript.

• “Not clear why you would include or exclude glint observations. It looks like in
Miller et al, 2018, you exclude glint observations from results shown in the main
manuscript. Why? How has the quality of these observations improved in Ver-
sions 8 and 9? And why are glint observations helping especially in tropical
regions? Are they able to improve the density of observations in cloud-covered
areas, or is a single glint measurement more informative than a single nadir or
target measurement in these regions? Please don’t assume too much satellite-
based knowledge on the part of the reader!”

The reviewer makes a really good point about not assuming too much satellite-
based knowledge on the part of the reader. We have added more explanation on
this topic in the revised manuscript. In brief, glint observations have historically
had much higher error variances and larger biases relative to nadir observations.
For example, land glint observations in version 7 had a ⇠0.5ppm offset com-
pared to land nadir observations (e.g., O’Dell et al. 2018). Until recently, it was
arguably very challenging to include both types of observations in an inverse
model because one type had a fundamentally different magnitude relative to the
other. In the preceding companion paper (Miller et al. 2018), we included results
using glint observations within the SI, but we did not put great emphasis on these
results with glint observations because of their known biases.

By contrast, the accuracy of the glint observations greatly improved markedly
with version 8 of the observations. In fact, the largest improvements between
versions 7 and 8 of the observations was to the glint observations, and these
improvements greatly reduced the bias between land nadir and land glint obser-
vations (O’Dell et al. 2018). These improvements arguably make it feasible to
assimilate land nadir and land glint observations in the same top-down frame-
work or inverse model.
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We have also included more explanation in the revised manuscript about the
improvements tropical biomes versus mid- and high-latitude biomes. The results
using versions 7 and 8 show the greatest differences across tropical biomes.
This feature is most likely because there is a large signal-to-noise ratio in many
tropical biomes throughout the year, whereas the signal-to-noise ratio in mid-
and high-latitudes is only large during northern hemisphere summer. Phrased
differently, there is a consistent flux signal from many tropical regions throughout
the year, and hence we are able to detect variations in fluxes from tropical regions
across different seasons using version 8 of the observations. By contrast, net
ecosystem exchange (NEE) in northern mid- and high-latitudes has the largest
absolute magnitude during northern hemisphere summer. As a result, we see a
large improvement in the flux constraint in mid-latitudes in northern hemisphere
summer but not in other times of year when the absolute magnitude of NEE is
smaller. Furthermore, there are far fewer land nadir and land glint observations
in northern mid- and high-latitudes in northern hemisphere winter.

• “* P. 3, lines 31-33: it might be nice to put an equation or diagram or even ta-
ble here showing the potential inputs that go into the model selection and your
regressions. Do you run model selection on all months simultaneously? That’s
what it sounds like, but please make that more clear.”
We have added text to the revised manuscript to clarify. We do run all months
simultaneously. We have also added an equation to the manuscript to summarize
the regression:
z = h(X)� + b + ✏

where z are the OCO-2 observations, X the different predictor variables, h() an
atmospheric transport model (in this case PCTM), � the coefficients estimated in
the regression, b the model spinup or CO2 mixing ratios at the beginning of the ex-
periments, and ✏ the model–data residuals. Note that there are different columns
of X corresponding to each biospheric flux model in each different month and
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each different biome. Model selection will determine which columns of X can
best reproduce the OCO-2 observations without overfitting those observations.

This equation and the associated explanation is also included in the preceding
companion paper.

• “* P. 4, lines 4 and 8: please replace the terms ‘former’ and ‘latter’ with something
more descriptive, e.g. biospheric model output and constant fluxes.”

We have edited the text accordingly. We have replaced the word “former” with
“some of the model outputs that use a flux model or vegetation index,” and we
have removed the word “latter.”

• “* P. 4, line 19: ‘to avoid potentially biasing the results’. This is true, but please
make clear that XCO2 reflects the contributions of all these different types of
fluxes (ocean/ FF/ BB/ terrestrial bio), so you need to account for the non-bio
fluxes in order to isolate the signal of the bio in the regression. Can also comment
that the uncertainty on the FF/ ocean/ BB fluxes is thought to be much smaller
than that on the terrestrial bio fluxes (with reference).”

The reviewer makes a great point, and we have edited the text accordingly.

We have also added text to the manuscript explaining that biospheric fluxes are
thought to be more uncertain than other CO2 source types. For example, we have
cited the National Academy of Science Report on fossil fuel CO2 emissions (NAS
2010) and have cited a biosphere flux model intercomparison paper (Huntzinger
et al. 2012) and a Global Carbon Project assessment (Le Quéré et al. 2018) as
evidence of these differing uncertainties.

• “* P. 5, line 13: ‘in about half of all months in the tropics’, but didn’t you say on
line 10 that ‘variations in CO2 fluxes are detectable across tropical biomes much
of the year?’ In Version 9, it looks like you can constrain bio fluxes in the tropical
grasslands and forests for 8 and 9 months of the year, respectively”
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The reviewer is correct – the number cited in the manuscript should be two thirds,
not one half. That is an error on our part. We have updated the text accordingly.

• “P. 6, line 17: please add references for the ACOS retrievals and bias correction,
and also for OCO-3 and GeoCarb.”

We have added references to this line accordingly. We have added citations to
O’Dell et al. (2012) and O’Dell et al. (2018) for the ACOS retrieval, Eldering et al.
(2019) for OCO-3, and Polonsky et al. (2014) for GEOCarb.
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Abstract. The Orbiting Carbon Observatory 2 (OCO-2) is NASA’s first satellite dedicated to monitoring CO2 from space and

could provide novel insight into CO2 fluxes across the globe. However, one continuing challenge is the development of a robust

retrieval algorithm: an estimate of atmospheric CO2 from satellite observations of near infrared radiation. The OCO-2 retrievals

have undergone multiple updates since the satellite’s launch, and the retrieval algorithm is now on its ninth version. Some of

these retrieval updates, particularly version 8, led to marked changes in the CO2 observations, changes of 0.5 ppm or more. In5

this study, we evaluate the extent to which current OCO-2 observations can constrain monthly CO2 sources and sinks from the

biosphere, and we particularly focus on how this constraint has evolved with improvements to the OCO-2 retrieval algorithm.

We find that improvements in the CO2 retrieval are having a potentially transformative effect on satellite-based estimates

of the global biospheric carbon balance. The version 7 OCO-2 retrievals formed the basis of early inverse modeling studies

using OCO-2 data; these observations are best-equipped to constrain the biospheric carbon balance across only continental or10

hemispheric regions. By contrast, newer versions of the retrieval algorithm yield a far more detailed constraint, and we are

able to constrain CO2 budgets for seven global biome-based regions, particularly during the Northern Hemisphere summer

when biospheric CO2 uptake is greatest. Improvements to the OCO-2 observations have had the largest impact on glint mode

observations, and we also find the largest improvements in the terrestrial CO2 flux constraint when we include both nadir and

glint data.15

1 Introduction

Over the past five years, the field of CO2 remote sensing has evolved rapidly. The sheer number of satellites has increased with

the launch of TanSat in 2016 (Yang et al., 2018), GOSAT-2 in 2018 (e.g., Nakajima et al., 2012), and OCO-3 in 2019 (e.g., El-

dering et al., 2019). Several additional satellites have also been funded or proposed (e.g., Polonsky et al., 2014; Tollefson, 2016).

In addition, the actual CO2 observations or satellite retrievals have also been changing. Roughly once per year, the NASA At-20

mospheric CO2 Observations from Space (ACOS) science team releases a new version of the OCO-2 and GOSAT observations

that incorporates the most recent advances in the retrieval algorithm and addresses observational errors that have been identified

by the scientific community (e.g., O’Dell et al., 2012). Early top-down studies of CO2 fluxes using OCO-2 employed version 7
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of the observations (e.g., Chatterjee et al., 2017; ?; Liu et al., 2017; Nassar et al., 2017)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Chatterjee et al., 2017; Crowell et al., 2019; Liu et al., 2017; Nassar et al., 2017)

, but the ACOS team has subsequently updated the observations through version 9 (at the time of writing).

The OCO-2 observations have changed markedly through this process. One of the largest changes occurred with the release

of version 8 of the OCO-2 observations in September 2017 (Fig. 1). This update incorporated a multitude of changes to the

quality control prescreening process, the forward spectroscopy model, the retrieval algorithm, and the bias correction (O’Dell5

et al., 2018b). These changes led to widespread improvements in the observations; version 8 has smaller random errors when

compared to ground-based observations, a smaller bias between land nadir and land glint observations, and less bias across

many northern high-latitude terrestrial regions (Wunch et al., 2017; O’Dell et al., 2018b). Several specific improvements are

particularly notable
::::
These

::::::::::::
improvements

::::
had

:
a
::::::::::
particularly

::::
large

::::::
impact

:::
on

::::
glint

:::::
mode

::::::::::
observations. For example,

:
a
:::::::::
correction

::
to

::
the

:::::::::
averaging

:::::
kernel

:::::::
reduced

:
a
:::::::
0.3ppm

:::
bias

::
in
::::
land

::::
glint

::::
data

:::::::
relative

::
to

:::
land

:::::
nadir

::::::::::::::::::
(O’Dell et al., 2018b).

::::::::::
Previously,

::::::
inverse10

::::::::
modeling

::::::
studies

::::
using

:
version 7

::
of

:::
the

::::::
OCO-2

:::::::
retrieval

:::
did

:::
not

::::::::
assimilate

::::
land

::::
glint

:::
and

::::
land

:::::
nadir

::::::::::
observations

:::::::::::::
simultaneously

:::
due

::
to

:::
this

::::
bias

::::::::::::::::::::::
(e.g., Crowell et al., 2019).

:::::::::::
Furthermore,

:::::::
version

:
7
::::
glint

:::::::::::
observations

:
had biases greater than 1ppm across the

southern ocean that have been remedied in version 8. These errors appeared to be due to high altitude aerosols, so the version

8 algorithm includes a new aerosol layer in the upper troposphere and lower stratosphere that has remedied many of these

biases. Furthermore, a correction to the averaging kernel reduced the 0.3ppm bias between land nadir and land glint data15

(O’Dell et al., 2018b). Overall, the observations rated as good quality in version 8 are very different from those in version 7;

24% of the observations that were marked as high quality in version 7 have been marked as low quality in version 8, and 34%

of the observations marked as high quality in version 8 were marked as low quality in version 7.

More recently, version 9 of the OCO-2 observations has been released in October 2018. Improvements in version 9 of

the retrieval algorithm yielded smaller changes in the observations (O’Dell et al., 2018a). In particular, this version includes20

a correction for small-scale biases over land due to topography. Furthermore, the ACOS team relaxed a filter that discards

observations collected over dark surfaces, and this change yields more observations over tropical forests (O’Dell et al., 2018a).

In spite of these advances, there are still many opportunities for further improving the retrievals. For example, OCO-2 retrievals

appear to show biases across most of the northern tropical oceans (O’Dell et al., 2018b).

These improvements to the observations should also improve the robustness
::::::::
reliability

::
or

::::::::
accuracy

:
of CO2 fluxes esti-25

mated using the observations. Several studies indicate that errors in the retrieval can have a substantial impact on strength

and robustness
::
the

:::::::
strength

:
of the CO2 flux constraint (e.g., Chevallier et al., 2007; Baker et al., 2010; ?; Miller et al., 2018)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Chevallier et al., 2007; Baker et al., 2010; Crowell et al., 2019; Miller et al., 2018). For example, Miller et al. (2018) ex-

plored the robustness of the
::::::::::
detectability

::
of biospheric CO2 flux constraint

:::::
fluxes

:
using version 7 of the OCO-2 observations.

They found that OCO-2 observations can be used to robustly constrain fluxes across
:::::::
identify

::::::::
variations

::
in
:::::::::

biospheric
::::::
fluxes30

:::::
within

:
continental or hemispheric regions but that the observations have limited ability to robustly estimate

::::::::
constrain

:
bio-

spheric CO2 fluxes across smaller regions. The authors constructed a series of synthetic data experiments to understand the

most important factors driving these results
::::::
limiting

:::
the

:::::
CO2 :::

flux
:::::::::
constraint; they concluded that atmospheric transport errors

and prior flux errors play a role, but retrieval errors are a particularly salient factor. The OCO-2 science team is also developing

an ensemble of inverse modeling estimates of CO2 fluxes, and recent comparisons show results that are broadly parallel to35
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Miller et al. (2018): inverse models provide consistent CO2 flux totals for continents or hemispheres but diverge for smaller

regions (e.g., ?)
:::::::::::::::::::::
(e.g., Crowell et al., 2019).

The present study is a follow-up to Miller et al. (2018). We re-examine the conclusions of that study in light of recent

improvements in OCO-2 observations of CO2. We also identify opportunities for future improvements to the retrievals.

2 Methods5

2.1 Overview

We
:::::::::::
Uncertainties

::
in

::::::::
biospheric

:::::
fluxes

:::
are

:::::::
thought

::
to

::
be

::::::
greater

::::
than

::
in

::::
other

::::
CO2::::::

source
::::
types

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., National Research Council, 2010; Huntzinger et al., 2012; Le Quéré et al., 2018)

:
,
:::
and

:::
the

::::
CO2::::::

signal
::::
from

:::::::::
biospheric

:::::
fluxes

::
is

:::::
often

:::::
larger

::::
than

::::
from

:::::
other

::::::
source

:::::
types.

::::::
Hence,

:::
we

:
design a set of top-down

experiments to examine whether we can detect variations in biospheric CO2 sources and sinks within different regions of the

globe and different months of the year using OCO-2 observations. In the present study, these variations are defined as any10

spatial or temporal patterns in CO2 fluxes that have been gridded to the resolution of a global atmospheric model – one degree

latitude by one degree
::
1�

:::::::
latitude

::
by

:::::
1.25�

:
longitude and a 3-hourly time interval.

Detecting variations in CO2 fluxes is a pre-requisite for constraining CO2 budgets or flux totals; we must be able to detect

variations in CO2 sources and sinks across a region if we are to constrain budgets across any region of smaller size. We begin

with large,
:::
two

:::::
large hemispheric regions and then decrease the size of those regions until we are no longer able to detect any15

variations in biospheric CO2 sources and sinks
::
to

:::::
create

::::::::::
increasingly

::::::::::
challenging

::::
tests

::
of

:::
the

::::::
OCO-2

:::::::::::
observations (Fig. 2). That

limit is the smallest region for which we could robustly estimate CO2 fluxes using currently-available OCO-2 observations
:
;
:::
we

:::
use

:::
four

::::
and

:::::
seven

:::::
global

:::::::
regions,

:::::::::::
respectively,

::
in

::::
each

::
of

::::
these

:::::::::::
experiments. All of these regions are based on a map of global

biomes presented in Olson et al. (2001). The seven-region map contains broad global biomes aggregated from those in Olson

et al. (2001) while the two- and four-region maps have been aggregated from Olson et al. (2001) to form even larger regions.20

We use a biome-based map because inverse modeling studies often estimate CO2 flux totals for biome-based regions, and these

regions have clear ecological significance.

We construct this set of experiments for each of the last three versions of the OCO-2 observations and examine how the

results change with the retrieval version. These experiments are identical except for the retrieval version used. Therefore, this

setup provides a means to understand how improvements in the observations are improving the constraint on biospheric CO225

fluxes. We examine these questions for each month within the year 2015 – to understand how these results vary by season and

by region or biome.

2.2 Implementation of the top-down experiments

We design a regression framework to determine whether we can detect variations in CO2 fluxes using OCO-2 observations.

This section provides an overview of the approach, but Miller et al. (2018) provides full descriptive and mathematical detail.30

This regression will try to match CO2 observations from OCO-2 using numerous atmospheric model outputs. Each model

3



output estimates the enhancement in total column CO2 (XCO2) from fluxes in a particular region and a particular month. We

generate all of these model outputs of CO2 using the Parameterized Chemistry and Transport Model (PCTM) (Kawa et al.,

2004). The model setup used here has a spatial resolution of one degree latitude by one degree
::
1�

:::::::
latitude

::
by

:::::
1.25�

:
longitude,

and we incorporate CO2 fluxes at a 3-hourly time resolution. The wind fields used to drive PCTM are from the Modern Era

Retrospective-Analysis for Research and Applications (MERRA) product (Rienecker et al., 2011). This setup is identical to5

Miller et al. (2018).

We run many atmospheric model simulations using numerous different biospheric CO2 flux estimates. The regression will

try to reproduce OCO-2 observations using a linear combination of these model outputs
:::::::::
simulations. For example, in the seven

region experiments, we use seven different geographic regions, seven biospheric CO2 flux estimates, and 16 different months

(September 2014-December 2015). We discard results from the first four months as model spin-up. These combinations equate10

to 784 total atmospheric model outputs. We further run atmospheric model simulations using a spatially and temporally

constant flux in each region and each month, and we allow the regression to use these model outputs as well.
:::
The

::
SI

::::
and

::::::::::::::::
Miller et al. (2018)

::::::
describe

:::
the

:::::
CO2 :::

flux
::::::::
estimates

:::
and

:::::::::
regression

::
in

::::::
greater

::::::
detail.

This approach provides a means to evaluate when and where current satellite observations can constrain variations in CO2

fluxes. At least some of the former model outputs
::::::::::
atmospheric

:::::
model

:::::::
outputs

:::
that

:::
are

::::::
driven

::
by

:::::::::
biospheric

::::
CO2::::

flux
::::::::
estimates15

should help reproduce the OCO-2 observations better than the model outputs that are driven by spatially and temporally

constant fluxes. If so, a model with spatially and temporally variable fluxes is better able to reproduce OCO-2 observations than

a model with constant fluxes. This result would imply that OCO-2 observations can be used to detect variations in biospheric

CO2 sources and sinks within a given region for a given month. By contrast, suppose that the former model outputs
::::::::::
atmospheric

:::::
model

:::::::
outputs

:::::
driven

:::
by

:::::::::
biospheric

::::
CO2::::

flux
::::::::
estimates

:
do not reproduce the OCO-2 observations any better than the latter20

model outputs with constant CO2 fluxes. This result would imply one of several conclusions. First, the observations may not

be sensitive to fluxes from the region or month in question. This outcome may occur if the magnitude of fluxes is small in a

given region or if there are no OCO-2 observations near that region. Second, errors in the atmospheric model or in the OCO-2

observations may obscure variations in XCO2 that are due to CO2 fluxes. Lastly, the biospheric CO2 flux estimates used in the

atmospheric model may not be skilled and may not reflect real-world biospheric CO2 fluxes. However, in this study, we offer25

up seven biospheric CO2 flux estimates for each region and each month, and at least one of these estimates should correlate

with real-world CO2 fluxes to a reasonable extent. Hence, it is unlikely that this explanation would drive the results. Rather, it

is more likely that the observations are not sensitive to fluxes from a given region or that errors in the model–data system are

too large.

Note that we also account for the contribution of non-biospheric fluxes within the regression. Anthropogenic
:::::::::::
anthropogenic,30

biomass burning, and oceanfluxes are not the focus of this study. However, we include these fluxes within the regression

nonetheless to avoid potentially biasing the results
:::::
ocean,

::::
and

:::::::::
biospheric

:::::
fluxes

:::
all

::::::::
contribute

:::
to

:::::
XCO2::::::::

observed
:::
by

:::::::
OCO-2,

:::
and

:::
we

::::
need

::
to

:::::::
account

:::
for

:::::::::::::
non-biospheric

::::
CO2:::::

fluxes
::
in
:::::
order

::
to

::::::
isolate

:::
the

::::::
signal

::::
from

:::::::::
biospheric

:::::
fluxes

::
in
:::

the
:::::::::

regression.

We model atmospheric enhancements of XCO2 from anthropogenic emissions using EDGAR v4.2 FT2010 (European Com-

mission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), 2013; Olivier et al., 2014), cli-35
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matological ocean fluxes using Takahashi et al. (2016), and biomass burning fluxes using the Global Fire Emissions Database

(GFED), version 4.1 (van der Werf et al., 2010; Giglio et al., 2013);
::::
each

:::
of

::::
these

::::::
model

::::::
outputs

::
is

:::::::::
considered

::
in

:::
the

::::::::
regression.

We
::::::
further implement model selection to evaluate when and where current satellite observations can constrain variations

in biospheric CO2 fluxes. Model selection will determine which combination of atmospheric model outputs to include in the

regression based upon which best reproduces the OCO-2 observations. If this combination includes at least one biospheric5

CO2 flux model for a given region and season, we conclude that the observations likely can be used to constrain variations in

CO2 fluxes. However, if this combination does not include any biospheric CO2 flux model for a given region and season, we

conclude that the observations likely cannot be used to constrain flux variations for that region and season.

We specifically employ a form of model selection known as the Bayesian Information Criterion (BIC), an approach com-

monly used in regression modeling (e.g., Ramsey and Schafer, 2012, chap. 12) and more recently in atmospheric inverse10

modeling (e.g., Gourdji et al., 2012; Miller et al., 2013; Shiga et al., 2014; Fang et al., 2014; Fang and Michalak, 2015). To this

end, we create different combinations of model outputs and use each combination in the regression. We score each combination

based upon how well it reproduces the OCO-2 observations; combinations with a lower weighted sum of squares error receive

a better score. Each combination is also scored based upon the total number of model outputs in that combination. Specifically,

combinations with a greater number of model outputs receive a larger penalty for complexity, and this penalty prevents com-15

binations that overfit the data from receiving an anomalously good score. The best combination of atmospheric model outputs

is the one with the lowest score. We subsequently examine this combination and tally whether at least one atmospheric model

output using a biospheric flux estimate was selected for each region and each month of the year. Miller et al. (2018) describes

:::
and

:::
the

::
SI

:::::::
describe

:
this approach in greater detail, including the specific equations for the BIC.

3 Results & discussion20

3.1 Robustness
:::::::
Strength

:
of the biospheric CO2 flux constraint

The constraint on CO2 fluxes using recent versions of the OCO-2 observations is a step-change improvement relative to

previous versions. Overall, there was only a limited ability to detect variations in monthly CO2 fluxes across individual biomes

using version 7 of the retrievals (Miller et al., 2018, Fig. 3a-c)
:::::::::::::::::::::::::
(Fig. 3a-c, Miller et al., 2018). However, these capabilities have

changed using versions 8 and 9 of the observations (Fig. 3d-i). Variations in CO2 fluxes are detectable across tropical biomes25

much of the year and across temperate biomes in northern hemisphere summer when fluxes from these regions are most

variable. These results imply that the updated OCO-2 observations can be used to robustly constrain
:::::
detect

::::
and

::::::::
constrain

::::::::
variations

::
in

:
monthly CO2 fluxes from seven biome-based regions in certain circumstances – in about half

:::
two

:::::
thirds of all

months in the tropics and during northern hemisphere summer in the extra-tropics.

The improvement in the flux constraint is particularly evident in the four- and seven-region experiments (Figs. 3b-c and30

3e-f). In the four-region model selection experiments, the OCO-2 observations provide a robust constraint on
:::
can

::
be

:::::
used

::
to

:::::
detect

::::::::
variations

::
in

:
tropical fluxes for most months of the year (Fig. 3e). In other words, at least one biosphere flux model is

found to explain a sufficiently large fraction of the observed variability in XCO2 as to be selected via the BIC model selection
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procedure for the tropical regions for most months. This result indicates that spatiotemporal variability in CO2 fluxes from

within each of these regions is preserved in the OCO-2 observations. This represents a marked improvement over results when

using observations from version 7 of the OCO-2 retrieval algorithm (Figs. 3b and 3e, Miller et al., 2018). The results using

the newer versions 8 and 9 also show substantial improvements in other regions, including dryland and dry monsoon regions,

temperate regions, and high-latitude regions (Figs. 3e and 3h).5

The seven-region model selection experiments are an even more challenging test of current observations. These experiments

examine whether we can robustly constraint monthly
:::::
detect

::::::::::::
spatiotemporal

::::::::
variations

:::
in biospheric fluxes across seven broad,

aggregated global biomes. These experiments produce much better results using versions 8 and 9 of the observations. Specif-

ically, biospheric flux models are selected across tropical and subtropical biomes for at least one month of every season. The

same is true across all temperate and high-latitude biomes for a minimum of one month during northern hemisphere summer.10

:::::
These

::::::::::::
improvements

::::::
appear

:::::::
greatest

:::::
across

:::::::
tropical

:::::::
biomes.

:::::
There

::
is
::

a
:::::::::
consistent

:::
flux

::::::
signal

::::
from

:::::
many

:::::::
tropical

:::::::
regions

:::::::::
throughout

:::
the

::::
year,

::::
and

:::::
hence

:::
we

:::
are

::::
able

::
to

:::::
detect

:::::::::
variations

::
in

:::::
fluxes

:::::
from

:::::::
tropical

::::::
regions

::::::
across

:::::::
different

:::::::
seasons

:::::
using

:::::::
versions

:
8
::::
and

:
9
:::
of

:::
the

:::::::::::
observations.

:::
By

:::::::
contrast,

:::
the

:::::::::::
atmospheric

:::::
signal

::::
due

::
to

:::::::::
biospheric

::::
CO2:::::

fluxes
::
in
::::::::

northern
::::
mid-

::::
and

:::::::::::
high-latitudes

:::
has

:::
the

::::::
largest

:::::::
absolute

:::::::::
magnitude

:::::
during

::::::::
northern

:::::::::
hemisphere

::::::::
summer.

::
As

::
a
:::::
result,

:::
we

:::
see

:
a
:::::
large

:::::::::::
improvement

::
in

:::
the

::::
flux

:::::::::
constraint

::
in

:::::::::::
mid-latitudes

:::
in

:::::::
northern

::::::::::
hemisphere

::::::::
summer

:::
but

:::
not

:::
in

:::::
other

:::::
times

::
of
:::::

year
:::::
when

:::
the

::::::::
absolute15

::::::::
magnitude

:::
of

::::
CO2:::::

fluxes
::
is
:::::::
smaller.

:::::::::::
Furthermore,

:::::
there

:::
are

:::
far

:::::
fewer

::::
land

::::
nadir

::::
and

::::
land

::::
glint

:::::::::::
observations

::
in

:::::::
northern

:::::
mid-

:::
and

:::::::::::
high-latitudes

::
in
::::::::
northern

:::::::::
hemisphere

::::::
winter

::::::
relative

:::
to

:::::::
summer.

One notable feature of all model selection experiments is the result for dryland and dry monsoon regions (Fig. 2c). At first

glance, it may appear surprising that biospheric flux models are selected for so many months in this region, given that some

parts of this region are very dry and presumably have small CO2 fluxes. Several semiarid regions within this classification have20

a very distinct monsoon that can bring over 500mm of precipitation per month (e.g., northeastern Brazil, western India, and

Pakistan). As a result, there is a large spatial contrast in CO2 fluxes across these regions during northern hemisphere spring

and summer – large CO2 uptake in places with a spring and summer monsoon and little to no fluxes in places like the Sahara

or the Arabian Peninsula.

Note that the results using version 9 of the observations are not very different from those using version 8. The change in25

the observations between versions 8 and 9 is only incremental (e.g., Fig. 1b). Version 9 has a lower quality control threshold

for surfaces with low albedo, resulting in more observations across tropical rainforests (O’Dell et al., 2018a), and this version

includes a topography correction that mostly manifests at small spatial scales. The latter change could be very important for

studies that estimate point sources or urban emissions using OCO-2. However, these changes are unlikely to make a large

difference in this study both given the large size of the regions examined and the 1� ⇥ 1� spatial resolution of the atmospheric30

model simulations.
:::
The

::
SI

::::::::
includes

:
a
:::::::
detailed

:::::::::
discussion

::
of

:::
the

::::::
subtle

:::::::::
differences

::::::::
between

:::
the

:::::
model

::::::::
selection

::::::
results

:::::
using

:::::::
versions

:
8
::::
and

:
9
::
of

:::
the

:::::::::::
observations.

:
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3.2 Drivers of the results

Numerous factors affect the accuracy or robustness of CO2 fluxes estimated from satellite data. These factors include the accu-

racy
:::
and

::::::::
precision of the observations, the atmospheric transport model, and the prior flux estimate used in the inverse model.

Arguably, improvements
:::::::::::
Improvements

:
in any of these inverse modeling inputs could improve the constraint on biospheric

CO2 fluxes. However, improvements in the observations have arguably been more attainable than these other factors, and we5

find that these improvements
:::
We

:::
find

::::
that

::::::
recent

::::::::::::
improvements

::
to

:::
the

:::::::
retrieval

:
are having a

:::::::::
particularly

:
large impact on the

robustness
:::::::
strength of the CO2 flux constraint. Furthermore, these improvements are not restricted to a single satellite like

OCO-2. Rather, the ACOS retrievals and bias correction
:::::::::::::::::::::::
(O’Dell et al., 2012, 2018b) will be directly applicable to other NASA

carbon monitoring missions, including the recently-launched OCO-3 mission
::::::::::::::::::
(Eldering et al., 2019) and the planned GeoCarb

mission
::::::::::::::::::
(Polonsky et al., 2014).10

These improvements to the retrieval algorithm have had an effect on both glint and nadir observations from OCO-2 collected

in almost every region of the globe. The sheer number of different changes makes it challenging to pinpoint exactly which

have had the largest impact on the CO2 flux constraint; there have been numerous updates to the quality control prescreening,

the forward spectroscopy model, the retrieval algorithm, and the bias correction. Furthermore, these updates have had multiple

effects on the reported CO2 observations, reducing white noise, reducing bias, and changing which observations do or do not15

pass quality control. O’Dell et al. (2018b) detail these changes in much greater detail.

With that said, a few of these improvements appear to have a particularly salient impact on the results of this study. For

example, the largest improvements have generally been to the glint mode observations. A 0.2 to 0.3 ppm bias between land

nadir and land glint observations in version 7 has been remedied in version 8, and version 8 glint observations show smaller

biases across many ocean regions. Furthermore, version 8 exhibits less random noise in all types of observations, but that noise20

reduction is largest in glint observations, both over land and over the oceans (O’Dell et al., 2018b).

Indeed, we also see the largest improvement in the flux experiments conducted in this study when we include glint mode ob-

servations. Figure 4 displays the results of the model selection experiments when the glint data are excluded. The figure shows

results using version 7, and 8, and 9 of the observations. The improvement between versions 7 and 8 is much smaller when the

glint observations are excluded than when they are included (Fig. 3). Even in terrestrial regions, these glint observations may25

play a key role in the overall flux constraint. For example, the absolute number of nadir and glint observations over land are

roughly equal; there are 4.3⇥106 land nadir observations with a positive quality control flag for 2015 and 4.3⇥106 land glint

observations during the same time period.

Note that this study focuses on detecting variations in CO2 fluxes from terrestrial regions in individual months. To that end,

certain types of flux estimation problems are beyond the scope of the current study. For example, there is strong evidence30

that OCO-2 observations are still biased across northern tropical oceans, and reductions in these biases could improve ocean

flux estimates derived from OCO-2 (Baker, 2018; O’Dell et al., 2018b). Furthermore, there is always a possibility that the

observations have a bias that is correlated across regions larger than those examined in this study. For example, the observations
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show a small, time-dependent drift from one year to another (O’Dell et al., 2018b). The approach used in this study would be

unlikely to detect the impact of those biases.

4 Conclusions

CO2 observations from the OCO-2 satellite have changed enormously with recent improvements to the retrieval algorithm.

New observations are more self-consistent (e.g., better agreement between glint and nadir data) and compare better against5

ground-based observations. In some regions, these changes are comparable in magnitude to the atmospheric CO2 enhancement

due to biospheric CO2 sources and sinks.

In this study, we specifically examine how these changes to the retrieval algorithm have improved the constraint on biospheric

CO2 fluxes, and we find that the improvement is large. Using observations based on version 7 of the retrieval algorithm, we find

that biospheric fluxes can only be constrained across continental or hemisphere-size regions, as these observations rarely yield10

a robust constraint for
:::
can

:::::
rarely

::
be

::::
used

::
to

::::::
detect

::
or

::::::::
constrain

::::::::
variations

::
in

::::
CO2:::::

fluxes
::::::
across smaller regions. By contrast, we

find a step-change improvement in the biospheric CO2 flux constraint using updated versions of the OCO-2 observations, based

on versions 8 and 9 of the retrieval algorithm. Specifically, these improvements make it possible to robustly constrain
:::::
detect

::::::::
variations

::
in CO2 fluxes across

:::::
within seven global biome-based regions during many seasons of the year. This improvement

is particularly large when both nadir and glint data are included.15

This study indicates that improvements to space-based CO2 observations are yielding large improvements in global mon-

itoring of biospheric carbon fluxes. As new CO2 monitoring missions like OCO-3 and GeoCarb launch into orbit, these im-

provements will have a lasting impact on space-based monitoring of CO2.
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Figure 1. Differences between versions 7 and 8 of the OCO-2 observations (a) and between versions 8 and 9 of the observations (b). Version

8 was a much larger update to the observations than version 9. We average all of the differences between observations onto a grid to make

the differences more visually apparent. The results shown here are for observations collected in 2015, the time period analyzed in this study.

In addition, this map only displays grid boxes with more than 250 total observations in 2015.
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Figure 2. The two hemispheric regions (a), four continental regions (b), and seven biome-based regions (c) used in this study. These regions

are based upon the world biome map by Olson et al. (2001). The two- and four-region maps are constructed by aggregating individual biomes

into larger regions.
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Figure 3. Results of the model selection experiments using versions 7, 8, and 9 of the OCO-2 observations. Versions 8 and 9 provide a much

more robust
::::::
stronger constraint on biospheric CO2 fluxes than version 7. The top row displays the results of the experiments with two global

regions, the second row with four global regions, and the third row with seven global regions. Each box is color-coded based upon the number

of months in which at least one biospheric flux model is chosen using model selection. Dark colors indicate a robust
:::::
strong constraint on

monthly CO2 fluxes while light colors indicate a weak constraint. Note that these experiments include nadir, target, glint mode observations.

In addition, version 7 results are the same as those in Miller et al. (2018).
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Figure 4. Results of the model selection experiments using only nadir and target mode observations. The improvement between versions 7

and 8 is less pronounced when we exclude glint observations and include only nadir and target mode data. Version 7 results here are the same

as those in Miller et al. (2018).
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S1
:::::
The

:::::::::::::::
regression

:::::::
and

:::::::::
model

::::::::::::::
selection

::::::::::::::::
framework

:::
We

::::::::::
construct

::
a

:::::
series

:::
of

::::::::::
statistical

::::::::::::
experiments

:::
to

:::::::::
evaluate

::::::::
whether

:::
we

::::
can

:::::::
detect

:::::::
spatial

::::
and

:::::::::
temporal

:::::::::
variations

:::
in

::::::::::
biospheric

:::::
CO2 ::::::

fluxes
::::::
within

:::::::::
di↵erent

::::::
global

:::::::
regions

::::::
using

:::::::
current

:::::::
OCO-2

::::::::::::
observations.

::::::
This

:::::::
section

::
of

::::
the

::
SI

:::::::::
describes

::::::
these

::::::::::::
experiments

::
in

:::::::
greater

:::::::
detail.

:::::
This

:::::::::
approach

:
is
:::::::::
identical

:::
to

:::::::::::::::::::
Miller et al. (2018),

:::::
and

::::
that

::::::
study

:::::::::
provides

::::::::::
additional

:::::::
detail.

:

::::::
These

::::::::::::
experiments

::::
are

::::::
based

:::::
upon

::
a
::::::::::
regression

:::::::::::
framework,

:::
as

::::::::::
described

::
in

::::
the

:::::
main

:::::::
article.

::::
The

::::::::::
regression

::::
has

::::
the

:::::::::
following

::::::
form:

:

z = h(X)� + b+ ✏
:::::::::::::::::::

(S1)

::::::
where

::
z

::::::::::::
(dimensions

:::::::
n⇥ 1)

:::
are

::::
the

::::::::
OCO-2

:::::::::::::
observations,

:::
X

::::::::
(m⇥ p)

:::::::::
contains

::
p

::::::::
di↵erent

:::::
CO2

::::
flux

:::::::
tracers.

:::::::
These

:::::::
tracers

::::::::
include

::::::::::
terrestrial

::::::::::
biosphere

::::::
model

::::::::
(TBM)

::::::::::
estimates

::
of

:::::
CO2::::::

fluxes

::::
and

:::::::
remote

:::::::
sensing

:::::::::::
vegetation

:::::::
indices

:::::
that

:::
are

:::::::
known

:::
to

:::::::::
correlate

:::::
with

:::::::::
patterns

::
in

:::::
CO2::::::

fluxes

:::::
(Sect.

:::::::
S2).

:::::::
There

::::
are

::::::::::
di↵erent

::::::::
columns

:::
of

:::
X

:::::::::::::::
corresponding

:::
to

:::::
each

::::::
CO2:::::

flux
::::::
tracer

:::
in

::::
each

:::::::::
di↵erent

:::::::
month

:::::
and

:::::
each

:::::::::
di↵erent

:::::::
global

:::::::
region;

::::
we

::::
run

::::
the

:::::::::::
regression

:::
on

:::
all

::::::::
months

:::::::::::::::
simultaneously.

:::::::
These

:::::::
tracers

::::::
(both

::::
the

:::::::
TBMs

::::
and

:::::::::::
vegetation

::::::::
indices)

::::
are

:::::::::::::
subsequently

::::
run

::::::::
through

:::
an

::::::::::::
atmospheric

::::::::::
transport

:::::::
model

::::
h(),

:::
in

:::::
this

::::
case

::::
the

:::::::::::::::
Parameterized

:::::::::::
Chemistry

::::
and

::::::::::
Transport

::::::::
(PCTM)

:::::::
model

::::::::::::::::::
(Kawa et al., 2004)

:
.
:::::
The

:::::::::::
coe�cients

:::::::::
estimated

:::
as

::::
part

:::
of

:::
the

::::::::::
regression

:::
(b,

::::::
n⇥ 1)

:::::
scale

::::::
these

::::::
model

::::::::
outputs

::
to

:::::
best

:::::::
match

:::
the

:::::::::::::
observations

::::
(z).

:::::::::::::
Furthermore,

::
b
:::::::
(n⇥ 1)

:
is
::::
the

:::::::
model

:::::::
spinup

:::
or

:::::
CO2:::::::

mixing
::::::
ratios

:::
at

::::
the

::::::::::
beginning

:::
of

::::
the

::::::::::::
experiments,

:::::
and

::
✏

:::::::
(n⇥ 1)

:::
are

::::
the

::::::::::::
model–data

:::::::::
residuals.

:

:::
We

:::::
pair

::::
this

::::::::::
regression

::::
with

:::::::
model

:::::::::
selection;

::::::
model

:::::::::
selection

::::
will

::::::::::
determine

::::::
which

::::::::::::
combination

::
of

::::::
model

::::::::
outputs

:::::
(i.e.,

::::::::
columns

::
of

::::::
h(X))

:::::
best

::::::::
describe

::::::::::
variability

:::
in

:::::::
current

:::::::
OCO-2

:::::::::::::
observations.

::
It

::::
will

::::::::
identify

::::
the

::::
set

:::
of

:::::::
model

::::::::
outputs

:::::
with

::::
the

:::::::::
greatest

:::::::
power

:::
to

::::::::
describe

::::
the

::::::
data

::::
and

:::::::
ensures

:::::
that

::::
the

::::::::::
regression

::::::
does

::::
not

:::::::
overfit

::::
the

:::::
data

:::::::::::::::::::::
(e.g., Zucchini, 2000)

:
.
:::::
We

:::::::::::
specifically

::::::::::
implement

::::::
model

:::::::::
selection

::::::
based

:::
on

::::
the

:::::::::
Bayesian

::::::::::::
Information

:::::::::
Criterion

:::::::
(BIC),

::::
one

::
of

::::
the

:::::
most

:::::::::::::::
commonly-used

::::::
forms

::
of

::::::
model

:::::::::
selection

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schwarz, 1978; Mueller et al., 2010; Gourdji et al., 2012)

:
.
:::::
We

:::::::::
calculate

:::
a

:::::
BIC

::::::
score

:::
for

:::::::
many

:::::::::
di↵erent

:::::::::::::
combinations

:::
of

:::::::
model

:::::::::
outputs,

:::::
and

:::::
each

::::::::::::
combination

::::
has

::
a

::::::::
di↵erent

::::
set

::
of

:::::::::
columns

::::::::
(h(X)).

:::::
The

:::::
best

::::::::::::
combination

::::
has

::::
the

:::::::
lowest

::::
BIC

:::::
score:

:

BIC = L+ p ln(n⇤)
::::::::::::::::::::

(S2)

::::::
where

::
L

::
is

:::
the

:::
log

::::::::::
likelihood

:::
of

:
a
::::::::
specific

::::::::::::
combination

::
of

::::::
model

:::::::::
outputs,

:
p
::
is
::::
the

::::::::
number

::
of

::::::
model

:::::::
outputs

:::
in

:::::
that

:::::::::::::
combination,

::::
and

:::
n⇤

::
is
::::
the

:::::::::
e↵ective

::::::::
number

::
of

:::::::::::::
independent

::::::::::::
observations

:::::
from

:::::::
OCO-2

:::::::
during

::::
the

::::::
study

:::::::
period.

::::::
The

:::
log

::::::::::
likelihood

:::::::::
equation

:::::::::
rewards

:::::::::::::
combinations

:::
of

::::::
model

:::::::
outputs

:::::
that

::::::::
improve

:::::::::::
model-data

::::
fit,

:::::::::
described

:::
in

::::::
detail

::
in

:::::::::::::::::::
Miller et al. (2018).

::::
By

:::::::::
contrast,

:::
the

::::::
second

::::::
term

::
in

::::
the

:::::::::
equation

:::::::::
(p lnn⇤)

:::::::::
penalizes

::::::::::::::
combinations

:::::
with

::
a

:::::::
greater

::::::::
number

:::
of

::::::
model

::::::::
outputs,

::::
and

::
it
::::::::
ensures

:::::
that

::::
the

::::::::
selected

:::::::::::::
combination

::
is

::::
not

:::
an

::::::::
over-fit.

:::::
This

::::::::
penalty

:::::
and

:::
the

:::
log

::::::::::
likelihood

::::
(L)

::::
not

:::::
only

::::::::
depend

:::::
upon

::::
the

:::::::::
number

::
of

:::::::
model

::::::::
outputs

::::
but

:::::
also

::::
the

::::::::
e↵ective

:::::::
number

:::
of

::::::::::::
independent

::::::::::::
observations

:::::
(n⇤).

:::::
This

::::::::
number

::::::::
reflects

:::
the

:::::
level

::
of

:::::::
spatial

::::
and

:::::::::
temporal

::::::::::
correlation

:::
in

:::
the

::::::::::::::
observational

::::
and

::::::
model

:::::::
errors.

::
If
::::
the

:::::::
spatial

::::
and

:::::::::
temporal

::::::
error

:::::::::::
correlations

:::
are

:::::
large

:::::
(i.e.,

:::::::::
bias-type

::::::::
errors),

:::::
then

:::
the

:::
n⇤

::::
will

:::
be

::::::
small

:::::::
relative

:::
to

::::
the

:::::
total

::::::::
number

::
of

:::::::
OCO-2

::::::::::::
observations.

::::
By

:::::::::
contrast,

::
if
::::
the

::::::
errors

::::
are

:::::::::::::
uncorrelated

::::
and

:::::::::::
completely

:::::::::::::
independent,

:::::
then

:::
n⇤

:::
will

::::::
equal

::::
the

:::::
total

::::::::
number

::
of

::::::::
OCO-2

:::::::::::::
observations.

:::::
The

:::::::::::
companion

::::::
paper

:::::::::::::::::::
Miller et al. (2018)

:::::::::
describes

::
in

::::::
detail

:::::
how

:::
we

:::::::::
estimate

::::
this

:::::::::
quantity.

:

S2
:::::::::::::::
Additional

:::::::::
detail

::::
on

::::::
the

:::::::::::
tracers

:::::::
used

::::
in

:::::::::
model

::::::::::::::
selection
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::::
This

::::::::
section

:::::::::
provides

::::::::::
additional

::::::
detail

:::
on

::::
the

:::::::
TBMs

:::::
and

::::::::::
vegetation

::::::::
indices

:::::
that

:::
are

::::::
used

::
in

:::
the

:::::::
model

:::::::::
selection

:::::::::::::
experiments.

:::::::
These

:::::::
TBMs

::::
and

:::::::::::
vegetation

:::::::
indices

::::
are

:::::
used

:::
as

::::
the

::::::
input

::::::
tracers

:::
in

:::::::::
PCTM.

::::
We

:::::
then

::::::::::
generate

::::::::
forward

:::::::::::::
atmospheric

:::::::
model

:::::::::::
simulations

:::::::
using

:::::::
PCTM

::::
and

:::::::::::
interpolate

::::::
these

:::::::
model

::::::::
outputs

:::
to

::::
the

:::::::::
locations

:::::
and

::::::
times

:::
of

::::
the

::::::::
OCO-2

::::::::::::
observations

::
to

:::::::::
generate

:::::::::
modeled

:::::::
XCO2 :::::

total
::::::::::
columns.

:::::::
These

:::::::::
modeled

:::::::::
columns

::::::::
become

::::
the

:::::::::
columns

::
of

:::::
h(X)

::
in

::::
the

:::::::
model

:::::::::
selection

::::::::::::
experiments

:::::
(Eq.

::::
S1).

::::::
Note

:::::
that

:::
the

:::::::::
multiple

::::::::::
regression

::::
will

:::::
scale

:::
the

:::::::::::
magnitude

:::
of

::::
the

:::::::
TBMs

::::
and

:::::::::::
vegetation

::::::::
indices

:::
in

:::::
each

:::::::
region

::::
and

:::::
each

:::::::
month

:::
to

:::::
best

::::::
match

::::
the

::::::::::::
observations

:::::
(Eq.

:::::
S1).

:::
As

::
a

::::::
result

::
of

::::
this

:::::::
setup,

::::
the

::::::
overall

:::::::::::
magnitude

:::
of

:::::
each

:::::
TBM

::::
and

::
of

:::::
each

:::::::::::
vegetation

::::::
index

:::::
does

::::
not

::::::
a↵ect

::::
the

:::::::
model

:::::::::
selection

::::::::
results.

:::::::::
Rather,

::::
this

::::::
study

:::::::
assesses

::::
the

:::::::
degree

:::
to

:::::::
which

::::
the

:::::::
spatial

::::
and

::::::::::
temporal

:::::::::
patterns

::
in

::::
the

:::::::
TBMs

:::::
and

::::::::::
vegetation

:::::::
indices,

:::::
after

::::::
being

::::::::::::
transported

:::::::::
through

::::
the

::::::::::::
atmosphere

::
to

::::
the

::::::
times

:::::
and

::::::::
location

:::
of

:::::::
OCO-2

::::::::::::
observations,

::::
can

::::::::
explain

::::
the

:::::::
spatial

::::
and

:::::::::
temporal

:::::::::
patterns

:::
in

:::::::
OCO-2

:::::::::::::
observations.

:

:::
We

::::::::
include

:::::
four

:::::::
TBMs

:::::
from

::::
the

::::::
recent

::::::::::
MsTMIP

:::::::
project

:::::::::::::::::::::::::
(Huntzinger et al., 2013).

:::::::
These

::::::
TBMs

:::::
have

:::::
very

::::::::
di↵erent

:::::::::::
space-time

:::::::::
patterns

::::
and

:::::::::
therefore

:::::::::
represent

::
a
:::::
wide

::::::
range

::
of

:::::::::
plausible

::::
flux

:::::::::
patterns.

::::
The

:::::::
TBMs

:::::::
include

::::
the

:::::::::
Dynamic

:::::
Land

:::::::::::
Ecosystem

::::::
Model

:::::::::::::::::::::::::::::::
(DLEM; e.g., Tian et al., 2011)

:
,
:::
the

::::::::::::::::::::
Lund-Potsdam-Jena

::::::
Model

::::::
Wald

:::::::
Schnee

::::
und

:::::::::::
Landschaft

:::::::
version

::::::::::::::::::::::::::::
(LPJ; e.g., Sitch et al., 2003)

:
,
::::
the

:::::::
Global

:::::::::::
Terrestrial

::::::::::::
Ecosystem

::::::::
Carbon

:::::::
Model

:::::::::::::::::::::::::::::::
(GTEC; e.g., King et al., 1997),

:::::
and

::::
the

::::::
Simple

::::::::::
Biosphere

:::::::
Model

::::
with

::::
the

::::::::::::::::::::::::
Carnegie-Ames-Stanford

::::::::::
Approach

:::::::::::::::::::::::::::::::::::::
(SIBCASA; e.g., Schaefer et al., 2008)

:
.
::::
The

::::::::
original

:::::::::
MsTMIP

:::::::::
products

:::::
have

::
a

:::::::
spatial

:::::::::
resolution

:::
of

::::
0.5�

::::::::
latitude

:::
by

::::
0.5�

::::::::::
longitude,

::::
and

::
we

:::::::
regrid

:::::
these

:::::::::
products

::
to

::::
the

:::::::
PCTM

::::::
model

:::::
grid

:::
(1�

::::::::
latitude

:::
by

:::::
1.25�

:::::::::::
longitude).

:::::::::::::
Furthermore,

:::::::::::::::::::
Fisher et al. (2016)

:::::::::::
downscaled

::::
the

:::::::::
MsTMIP

::::::::::
products

:::
to

::
a

::::::::
3-hourly

::::::::::
temporal

:::::::::::
resolution;

:::
we

:::
use

::::
this

::::::::
version

::
of

::::
the

::::::::::
MsTMIP

:::::::::
products

::
in

::::
the

::::::::
present

::::::
study.

:

::::
The

::::::::::
MsTMIP

:::::::::
estimates

::::
are

:::::::::
available

:::::::::
through

::::
year

::::::
2010.

:::::::::
Because

::::::
these

::::::::::
estimates

:::
are

::::
not

::::::::
available

::::
for

::::
the

:::::
years

:::
of

::::
this

::::::
study

:::::::::::::
(2014-2015),

:::
we

::::
use

::
a

::::::::::
multi-year

::::::::
average

:::
as

:::::::
inputs

:::
in

:::
the

:::::::
PCTM

:::::::
model.

::::::::::::
Specifically,

:::::::::::
downscaled

:::::::::
MsTMIP

:::::::::
products

:::
are

:::::::::
available

:::::
from

::::::::::::::::::::
Fisher et al. (2016)

:::
for

:::::
years

:::::::::::
2004-2010,

::::
and

:::
we

::::::::
average

::::
the

:::::::::
MsTMIP

:::::::
models

:::::
over

::::::
those

:::::
years

:::::::
within

:::::
each

::::::::
separate

::::::
model

::::
grid

:::::
box

::::
and

::::
for

:::::
each

:::::::::
separate

:::::::::
3-hourly

:::::
time

:::::::
period

:::
to

:::::::::
produce

::
a

::::::::::
multi-year

::::::::
average

:::
for

:::::
each

::::::::::
MsTMIP

:::::::::
estimate.

::::::
The

:::::::::
resulting

::::::
CO2 ::::

flux
::::::::::
estimates

:::::
vary

::::::
hour

:::
to

:::::
hour

:::::
and

::::
day

::
to

::::
day

:::::
but

::::
not

:::::
year

:::
to

:::::
year.

::::::
Note

:::::
that

::::::
some

:::::::
recent

:::::::
inverse

::::::::::
modeling

::::::::
studies

::::::
using

:::::::
OCO-2

::::::::::::
observations

::::::::::::
incorporate

::
a

:::::
prior

::::
flux

:::::::::
estimate

:::::
that

::::
has

::::::
been

::::::::::
generated

:::
for

::::::
more

:::::::
recent

:::::
years

:::::::::::::::::::::::::
(e.g., Crowell et al., 2019).

::::::::
Unlike

::::::::
inverse

:::::::::
modeling

::::::::
studies

:::::
that

::::::
often

:::::::
require

::
a
:::::::
single

:::::
prior

::::
flux

:::::::::
estimate,

::::
we

:::::::
require

::::::::::
numerous

:::::::::
3-hourly

:::::
CO2:::::

flux
:::::::
tracers

:::::
that

:::::::::
represent

::
a
::::::
wide

::::::
range

::
of

::::::::
plausible

:::::::::
patterns

:::
for

::::
the

::::::::::
statistical

:::::::
model

:::::
used

::
in

:::::
this

::::::
study.

:::::
The

::::::::
creation

:::
of

::
a

:::::
new,

::::::::
updated

:::::
TBM

:::::::::::::::::
inter-comparison

::
is
::::::::
beyond

::::
the

::::::
scope

:::
of

::::
this

:::::::
study.

::::::::::::::
Furthermore,

::::
the

:::::::::
objective

:::
of

::::
this

:::::
study

:::
is

::
to

:::::::::
compare

:::::
how

::::
the

:::::
CO2 ::::

flux
:::::::::::
constraint

::::
has

:::::::::
improved

:::
as

::::
the

:::::::::
retrievals

:::::
have

::::::::
evolved

::::
from

::::::::
version

::
7

::
to

:::::::::
versions

:
8
:::::
and

::
9.

::::
To

:::::::::
facilitate

::::
this

::::::::::::
comparison,

:::
we

:::::
have

:::::
used

::::
the

:::::
same

::::
set

::
of

::::
flux

:::::::
models

:::::
from

::::::::::
MsTMIP

::
as

:::
in

::::
the

:::::::::
preceding

::::::::::::
companion

::::::
paper

:::::::::::::::::::
(Miller et al., 2018)

:
.
:

::
In

:::::::::
addition

:::
to

::::::
these

:::::::
TBMs,

:::
we

:::::
also

::::::
utilize

::::::::
several

::::::::::
vegetation

:::::::
indices

:::
as

:::::::::
possible

:::::::
tracers

::
of

::::
CO2::::::

fluxes
:::::::
within

::::
the

::::::::::
regression

::::
(X

::
in

::::
Eq.

:::::
S1).

:::::::
These

:::::::
include

::::
the

::::::::::
enhanced

::::::::::
vegetation

::::::
index

::::::
(EVI),

::::::::::::
normalized

::::::::::
di↵erence

::::::::::
vegetation

::::::
index

:::::::::
(NDVI),

:::::
and

:::::::::::::
solar-induced

:::::::::::::
fluorescence

::::::
(SIF).

::::::::::
Numerous

:::::::
studies

::::::::
indicate

:::::
that

::::::::::
biospheric

:::::
CO2::::::

fluxes
:::::::::
correlate

:::::
with

::::::
these

::::::::::
vegetation

::::::::
indices

:
–

::::
with

:::::
EVI

::::::::::::::::::::::::::::::::::::::
(e.g., Sims et al., 2008; Wu et al., 2011)

:
,
::::::
NDVI

::::::::::::::::::::::::::::::::::::::::::
(e.g., Cihlar et al., 1992; Wylie et al., 2003)

:
,
::::
and

::::
SIF

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Guanter et al., 2014; Yang et al., 2015; Shiga et al., 2018)

:
.
:::::::
These

:::::::
indices

::::
are

::::::::
therefore

::::::
good

::::::::::
candidate

:::::
CO2 ::::

flux
:::::::
tracers

:::
to

::::
use

:::::::
within

:::
the

:::::::
model

:::::::::
selection

:::::::::::::
experiments.

:

:::
We

:::::::::::
specifically

::::
use

::::
EVI

::::
and

::::::
NDVI

::::::::::
estimates

:::::
from

:::
the

::::::::::
Moderate

:::::::::::
Resolution

::::::::
Imaging

::::::::::::::::::
Spectroradiometer

:::::::::
(MODIS)

::::::
Aqua

::::::::
product

:::::::::::
MYD13C1

::::::::::::::::
(Didan, 2015a)

:::
and

::::
the

::::::::
MODIS

::::::
Terra

::::::::
product

:::::::::::
MOD13C1

::::::::::::::
(Didan, 2015b)

:
.
:::::::
These

:::::::::
products

::::
are

::::::::::::
collectively

:::::::::
available

:::
at

::::::
8-day

::::::::::
intervals.

:::::
The

::::::::::
individual

:::::
Aqua

:::::
and

::::::
Terra

:::::::::
products

::::
are

:::::
each

:::::::::
available

:::
at

:::::::
16-day

::::::::::
intervals.

::::::::::
However,

::::
the

::::
two

:::::::::
products

:::
are

::::::::::
staggered,

:::
so

::::::
Aqua

::::
and

::::::
Terra

::::
can

:::
be

::::::::::
combined

::
to

:::::::::
produce

::::
EVI

:::::
and

::::::
NDVI

::::::::::
estimates

:::::
every
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:
8
::::::
days.

:::::::
These

:::::::::
products

:::::
have

::
a
::::::
0.05�

::::::::
latitude

:::
by

::::::
0.05�

:::::::::::
longitude,

::::
and

:::
we

:::::::
regrid

::::::
them

::
to

::::
the

:::::::
PCTM

::::::
model

:::::
grid

::::
(1�

::::::::
latitude

:::
by

::::::
1.25�

:::::::::::
longitude).

::::::
Both

:::
of

::::::
these

:::::::::
products

::::
are

:::::::::
available

:::
for

::::
2014

:::::
and

:::::
2015,

::::
the

:::::
time

:::::::
period

::
of

:::::
this

::::::
study.

:

:::
We

:::::
also

:::
use

:::::
level

:
2
::::
SIF

::::::::::
retrievals

:::::
from

:::
the

:::::::
Global

::::::
Ozone

:::::::::::
Monitoring

::::::::::::::
Experiment-2

:::::::::::
(GOME-2)

:::::::::::::
(Joiner, 2014)

:
.
::::
We

::::::::
convert

:::
the

:::::
level

::
2
:::::::::
retrievals

:::
to

::
a

::::::::
gridded

::::
SIF

::::::::
product

::::::
using

:
a
::::::
block

:::::::
kriging

:::::::
method

::::::::::
described

:::
by

::::::::::::::::::
Tadić et al. (2017)

:
.
:::::
This

::::::::
gridded

::::::::
product

::::
has

::
a

:::::
daily

:::::::::
temporal

::::::::::
resolution

::::
and

:::
the

::::::
same

:::::::
spatial

::::::::::
resolution

:::
as

::::::::
PCTM.

::::
We

:::
use

:::::
this

::::::::
product

:::
an

::::::
input

:::
to

:::
the

::::::::
PCTM

::::::
model

::::
and

:::::::::::
incorporate

::::
the

:::::::::
resulting

::::::
model

:::::::::
outputs

::
as

::::::::::
candidate

:::::::::
variables

:::
in

::::
the

:::::
h(X)

::::::::
matrix.

:

S3
:::::::::::::::
Di↵erences

::::
in

:::::
the

::::::::::
model

:::::::::::::
selection

::::::::::
results

:::::
for

:::::::::::::
versions

::
8

::::::
and

::
9

:::
of

::::::
the

::::::::::::::::::
observations

::::
The

::::::
model

:::::::::
selection

::::::
results

::::::
using

::::::::
versions

::
8

::::
and

:
9
:::
of

:::
the

::::::::::::
observations

::::
are

::::
very

:::::::
similar

::::
but

:::::::
exhibit

:
a
::::
few

:::::::
subtle

::::::::::
di↵erences

::::::
(Fig.

::
3
:::::
and

:::
4).

::::::::::::
Specifically,

::::
we

::::::
select

::::::::
slightly

::::::
fewer

:::::
CO2 ::::

flux
:::::::
tracers

:::::
using

::::::::
version

::
9

:::::
than

::::::::
version

::
8

:::
in

::::
Fig.

::::
3.

:::::::
These

::::::
small

:::::::::::
di↵erences

::::
are

::::
due

:::
to

::::
the

::::::::::
stochastic

::::::
nature

:::
of

::::
the

::::::::::
statistical

::::::::
model.

::::::
The

::::::::::
regression

:::::::
model

:::::
used

:::
in

:::::
this

:::::::::::
manuscript

:::::::::
requires

:::
an

::::::::
estimate

:::
of

:::::
error

::::::::::
variances

::::
and

::::::::::
estimates

::
of

::::
the

:::::
error

::::::::::::
correlation

::::::
length

:::::
and

:::::::::::
correlation

:::::
time.

::::::
These

::::::::::
estimates

:::
are

::::::
used

:::
to

:::::::::
calculate

:::
n⇤

:::::
(Eq.

::::::
S2).

:::::
We

:::::::::
estimate

::::::
these

:::::::::::
parameters

::::::
using

::
a

:::::::::::
randomized

:::::::::::::
sub-selection

:::
of

:::
the

:::::::::::::
observations

::::
due

:::
to

::::
the

::::
very

::::::
large

::::
size

:::
of

:::
the

::::::::
OCO-2

::::::::
dataset,

:
a
::::::::::
procedure

::::::::::
described

:::
in

:::::::::::::::::::
Miller et al. (2018).

::::::
The

:::::::
results

::
of

::::
the

:::::::::::
regression

::::::::
analysis

:::::::::
therefore

:::::::
exhibit

::
a

::::::
subtle

:::::::::::::
stochasticity

:::::::::::
depending

:::::
upon

:::::::
which

::::::::::::
observations

::::::
were

::::::::::
randomly

::::::::
selected

:::
for

:::
the

:::::::::
variance

::::
and

:::::::::::
covariance

:::::::::::
estimation.

:::::
For

:::::::::
example,

::::::
when

:::
we

:::::::
re-run

::::
the

::::::::
analysis

:::
in

::::
Fig.

:::
3,

::
we

:::::::::::
sometimes

::::::
select

::
a

::::
flux

::::::
model

:::
in

::::
one

:::
or

::::
two

:::::
more

::::::::
months

:::::
using

::::::::
version

::
9

:::::::
relative

:::
to

:::::::
version

:
8
::::
and

:::::::::::
sometimes

:::::::
obtain

:::::::::
identical

:::::::
results

:::::
using

:::::::::
versions

:
8
:::::
and

::
9.

:

3
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