
Dear Editor,  
 
Thank you for your efforts in evaluating our paper. Please find our responses to both 
referees embedded below in blue italics and our attached revised manuscript with 
tracked changes. Please also note the addition of a DOI number for the sector 
partitioned CO flux estimates in the Data availability section (this was not available at 
the time of our first submission). 
 
Best regards,  
Helen Worden & co-authors 
 
 

Reviews of New Constraints on Biogenic Emissions using Satellite-Based 
Estimates of Carbon Monoxide Fluxes by Worden et al. 
 
Anonymous Referee #1 
 
This paper deals with the top down estimate of biogenic CO emissions based on the 
GEOS-Chem model constrained with MOPITT observations. The paper brings inter- 
esting results about biogenic CO sources and their seasonal variability. The method 
provides improved estimation of these emissions. The paper is well structured, clear 
and well written. It should therefore be published in ACP. Nevertheless, the method- 
ology and results that looks solid are often described too briefly. Some more detailed 
explanations should be given for some specific points that are detailed below. 
 
We thank the reviewer for their effort and useful comments and questions. We think that 
addressing these concerns will improve the manuscript.  
 

1) P3: it is mentioned that 3 different MOPITT products are used (columns, full 
profiles 

and tropospheric profiles) to empirically evaluate errors due to transport. How is this 
error estimate integrated in the total error of the posterior fuxes? What are the error 
values? 
Please see response to #4 below 
 
 

2) P4: could you provide details about prior BB uncertainties? Some values? 
Please see response to #4 below 
 

3) P4: why 50% is assumed for BIO and FF prior flux estimates Is this value coming 
from sensitivity tests with varying uncertainties? Is this the value that provides the 
best fit between model and observations? This choice should be discussed as well as 
the metrics and methodology used to evaluate the improvement of the modeled CO 
distributions relative to the MOPITT observations. And the criteria used to decide that 
convergence is reached. 



These uncertainties were chosen based on previous experience with error constraints 
and the objective of allowing the sector emissions to vary sufficiently to test new 
probability distributions within each grid cell. While a more complete sensitivity test 
would be desirable for future top-down inventory partitioning, our main goal for this 
manuscript was to demonstrate that this technique has skill in terms of reproducing the 
seasonal and spatial variability as found independently in top-down isoprene estimates 
using OMI HCHO observations. We will add the following to the text (section 3) where 
we state the use of ± 50%. 
 
"This choice of uncertainty for the BIO and FF sectors is based on previous experience with 
error constraints and allows sufficient variability in the sector emissions for testing new 
probability distributions within each grid cell".  
 

4) P5: the average posterior errors ar given. The different contributions to the error 
have been mentioned previously (such as the empirical transport error) but we do 
not have a clear idea about the complete budget. An equation indicating the 
different contributions to the posterior error and the contribution of each error 
source to the total error given here would be of interest. 

 
P.4 Eq. 1 shows how the probability distribution is re-partitioned based on the errors 
assumed in each sector, and we have added equations 3-5 to show how the 
probabilities and cost function are computed with the associated apriori uncertainties. 
The posterior errors (1-sigma) are obtained from the sampling the MCMC probability 
distributions that are unique for each grid cell and month. We now include the following 
new table and text in section 4 to help the reader understand the error sources and 
average outcomes for the tropical regions of interest in this study. 
 
Table 1. Uncertainties applied in the Bayesian source attribution (Eq. 1). Values are monthly 
averages for single grid boxes (5° x 4° longitude x latitude) in the tropical study regions.  
 

CO sector distribution A priori source A priori uncertainty 
 

Average Posterior 
Uncertainty  
(tropics grid boxes)  

Total flux  
top-down estimate 

GEOS-Chem 
Inversion based on 
MOPITT V7J CO 
data 
(Jiang et al., 2017) 
 

!" 
± 50% (assumed) 

± 12% average 
constrainta, with 11% 1-
sigma standard 
deviation for tropical 
grid cellsb,c 

BIO 
direct + biogenic NMVOC 
oxidation 

MEGAN v2.0 
(Guenther et al., 
2006) 

!#$%&' 

± 50% (assumed) 

± 24% 

BB 
biomass burning 

GFED4s  
(van der Werf et al., 
2017) 

!##&' 

± 24%  
(Akagi et al., 2011) 

± 22% 

FF  
fossil fuels 

EDGAR 3.2 
(Olivier and 
Berdowski, 2001) 

!""&' 

± 50% (assumed) 

± 45% 



a  The total flux posterior error is estimated from 3 flux inversion types (see text for description) to 
approximately account for model transport errors. 
b Average and standard deviation are computed for tropics (20°S to 20°N) using grid boxes with with 
emissions > 0.1 gCO/m2/month. 
c The variance in tropical grid cell flux errors includes both spatial and temporal variability, however, these 
errors have not been weighted to account for sampling effects, such as inflated errors due to fewer 
MOPITT observations during rainy seasons. 
 
 
 “Uncertainties are available by 5° x 4° grid cell, month and source sector (BB, FF or BIO) and 
represent the 1-sigma width of the posterior distributions; these distributions are critically 
dependent on the a priori uncertainties and therefore subject to change when different a priori 
distributions and covariances are assumed in the Bayesian attribution approach. Table 1 lists the 
sources of a priori data and uncertainties and gives average monthly values representative of the 
individual grid cells used in this study. For the remote tropical regions considered here, FF 
contributions to total CO fluxes are small and we find the most improvement over prior errors in 
BIO CO posterior flux uncertainties, especially in months with little or no BB emissions. This 
can be seen in Fig. 2, where monthly grid box posterior errors were averaged spatially for the 
region of interest and over years 2005-2012. One of the assumptions in this study is the prior 
uncertainty in BB, which only considers emission factor uncertainties (Akagi et al., 2011) and 
does not explicitly account for other factors in BB CO fluxes such as combustion completeness 
and biomass (fuel) amount (e.g. Bloom et al. 2015). Future work will examine the effects of 
using a wider range of prior uncertainties that reflect multiple inventories.”  
 
 

5) P5: it is unclear to me why posterior error for FF is twice larger than for BIO and 
BB. I would have expected that this source is better constrained in the prior 
inventory. And why MOPITT constrain this source much less than the 2 others? 
Could the authors elaborate on this point? 

The FF component is very small in the tropical regions we consider so there is little 
information to improve on the FF error compared to the prior. This was already stated in 
the text, but revisions to address the comment above (e.g., error table) make this more 
explicit. 
 
 

6) P6: the present study finds BB emissions (290 Tg/yr) of about 1/3 of those from 
Folberth et al. 2006 (811 Tg/yr). It is a large difference that is briefly justified by 
the fact that tropical fires have declined during the 2005-2012 period relative to 
the one used in Folberth et al. 2006 according to Andela et al. (2017). Could you 
give more details to convince the reader ? 

 
This could also be an overestimation in the BB CO emissions considered by Folberth et 
al (2006). Recent estimates using GFED4 (van der Werf et al., 2017) report annual 
mean emissions for the 1997-2016 period for CO as 357 Tg/yr, while Granier et al., 
2011 reported a range of 414 to 509 Tg/yr for 6 inventories in the 1997-2000 period, a 
period with significant interannual variability due to the strong 1997-1998 ENSO 
episode. We will modify the text to state:   
 



This contribution from BIO CO represents a larger percentage (~41%) of the sum of BB, FF and 
BIO CO sources than expected (~27%) based on Folberth et al. (2006) which has 811 Tg(CO)/yr 
for BB and 672 Tg (CO)/yr for FF). However, there is a wide range in reported biomass burning 
emission estimates, with large interannual variability. Stavrakou et al., (2006) used 467 Tg(CO) 
for the year 2000 as the BB CO a priori from GFEDv1; van der Werf et al., (2017) reported 357 
Tg/yr mean emissions for BB CO over 1997-2016 while Granier et al., (2011) reported a range 
of 414 to 509 Tg/yr for 6 emission inventories in the 1997-2000 period. Because our 2005-2012 
study period did not include the significant ENSO episodes in 1997 and 2015, we would expect 
lower average values for BB CO emissions than these other annual averages. Furthermore, in 
recent decades, there is a decreasing contribution of BB CO associated with a decline in tropical 
fires (e.g., Andela et al., 2017), as well as declining FF CO emissions (Yin et al., 2015; Strode et 
al., 2016; Jiang et al., 2017; Zheng et al., 2018).  
 

7) P7: how is the posterior estimate affected by the change in forcing fields (GEOS 
FP versus GEOS-5? Is the top down method more robust to such changes than 
MEGAN? 

 
Although there does appear to be less dependence on the version of the meteorological 
fields in the posterior results compared to the MEGAN apriori (see Response Figure 1 
below for the N. African savannas region), we did not want to draw conclusions, 
especially about trends in biogenic fluxes, without more consistent meteorological fields. 
Also, the dependence on the prior can still vary from region to region depending on the 
errors in the other emission terms (BB and FF). This is more obvious in Response 
Figure 2 for the Equatorial Africa region where there is more interference from BB 
emissions, and the time dependence of the prior is more clearly affecting the posterior 
result. Therefore, we chose the 2005-2012 period for the analysis in this paper. 
 

8) P7: the results concerning the seasonality of the biogenic emissions are very 
interesting. The coincidence of isoprene and CO bimodal variability gives 
confidence in these results. Nevertheles, it is a bit desappointing not to have 
more explanations about the discrepancy between biogenic emissions and LAI 
variabilities! Are there some possible explanations? Why temperature plays a 
controling role in this N African Savannahs? 

 
Marais et al., (2014) originally found that surface layer temperature dominates over LAI 
for controlling isoprene emissions in the N. African savannas region. Cooler 
temperatures during the monsoon (July-August) due to cloudy conditions induce a 
minimum in isoprene emissions that coincides with peak LAI, so LAI and isoprene 
emissions appear decoupled. At the same time, MODIS observations could 
underestimate LAI during the rainy season due to cloud contamination, but since LAI is 
not the main driving factor for isoprene emissions, especially in tropical regions, we do 
not expect this to explain the discrepancies of top-down observations with MEGAN. The 
Marais et al., (2014) reference is already cited, so we have not modified the text in 
response to this comment. Furthermore, the study presented here is meant to 
demonstrate the methods that we will build on in future work to test the processes and 



potential changes needed in MEGAN to reproduce top-down estimates of biogenic 
emissions.  
 
 
 
 

 
Response figure 1. Timeseries of apriori (dashed blue) and estimated CO flux (solid black, with 
error bars) for the N. African savannas region. Green arrows indicate the different time periods 
for the GEOS-4, GEOS-5 and GEOS-FP meteorological fields used to calculate the apriori with 
the MEGAN model and for the inverse analysis for total CO flux.  

__   MCMC/MOPITT BIO CO estimate
_ _  MEGAN BIO CO apriori

GEOS-4
GEOS-5 GEOS-FP



 
Response figure 2. Timeseries of apriori (dashed blue) and estimated CO flux (solid black, with 
error bars) for the Equatorial Africa region. Green arrows indicate the different time periods for 
the GEOS-4, GEOS-5 and GEOS-FP meteorological fields used to calculate the apriori with the 
MEGAN model and for the inverse analysis for total CO flux.  
 
 
 
References to be added: 
 
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., 
Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: 
Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697-720, 
https://doi.org/10.5194/essd-9-697-2017, 2017.  

Granier, C., Bessagnet, B., Bond, T. et al.: Evolution of anthropogenic and biomass burning 
emissions of air pollutants at global and regional scales during the 1980–2010 period, Climatic 
Change (2011) 109: 163. https://doi.org/10.1007/s10584-011-0154-1 
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Anonymous Referee #2 
 
The paper “New Constraints on Biogenic Emissions using Satellite-Based Estimates of 
Carbon Monoxide Fluxes” provides an improved estimation of the biogenic emission, 
comparing model simulation based on Bottom up inventories with a satellite based 
“Top Down” emission estimation for CO. The CO production from biogenic emissions 
(BIO), together with Biomas Burning (BB) and Fossil Fuel (FF) consumption is one of 
the three most important parts of the CO budget and Flux (F). The “Top down” esti- 
mate provides an estimate of the Total CO2 Flux (F) without the ability to distinguish 
the individual sources and sectors, but in this work the information of the total flux is 
used to improve the estimate of the biogenic emissions, just using the Bayes probabil- 
ities approach. The new approach is realized individually for each grid cells of 4°x5° 
and month. A systematic pattern and spatial distribution is obtained and compared to 
other measurements. 1) Biogenic emissions of the isoprene retrieved from the OMI 
instrument shows a very similar distribution. 2) The temporal pattern which shows 
a significant difference between apriori and posteriori biogenic CO flux for the north 
African Savanna is studied and compared to the surface temperature. 
 
General comment: 
The Work is well written, interesting and matches the scope of ACP, it should be 
published after minor correction and after including a bit more information about the 
methodology. At the moment the paper is quite compact with just one example (re- 
gion), but the supplement provides more examples, which is adequate and a good 
idea. 
 
We thank the reviewer for their effort and useful comments and questions. We think that 
addressing these concerns will improve the manuscript.  
 

1) The new of the paper is that it somehow combines a model study and therefore a 
detailed “Bottom up” estimation, which contain a detailed distribution of different 
sectors (BIO,BB,FF) together with a satellite based “Top Down” approach which, 
just report the total flux “F”, latter is somehow a measurement, while the prior is 
the apriori information. Unfortunately the description is very short and the 
approach cannot be easily be reproduced. I imagine that the implementation of 
the Baysian approach ends up in a least square fitting equation and looking 
finally for the minimum of something like the following cost function will help to 
find the posterior solution: 1/σ2 (F(BIO,BB,FF)-A)ˆ2 + (([BIO,BB,FF]-xapr)ˆT 
(S_(BIO,BB,FF))ˆ(-1)([BIO,BB,FF]-xapr) with σ the uncertainty in the “Top down” 
approach A, F= the total Flux or Forward Modell F= CH4 related part + 
BIO+BB+FF. S_(BIO,BB,FF) might be the more or less diagonal covariance 
matrix which describe the uncertainty. If it is some how different, it would be nice 
to get an more easily insight in the criteria which equation is used to determine 
the vector BIO,BB,FF.  

 
We have expanded the discussion in section 3 to include explicit details of the 
probability distributions and cost function with added equations 3-5, and a priori 



uncertainties given in the new Table 1. We agree with the reviewer that these additions 
improve the reproducibility of this study. 
 
Specific comments:  

2) 3 Bayesian CO flux attribution approach I think, this a very crucial section for the 
work and unfortunately not very easy to understand. ð̇ISI(BB,BIO,FF|A) âL̇I 
ð̇IṠI(BB,BIO,FF) p(F|A)/p(F) Eq. 1. 

 
I understand that : 
ðISI(BB,BIO,FF|A)ấL̇Ið̇ÍṠI(BB,BIO,FF) p(A|BB,BIO,FF)/P(A) and 
p(F,A)=p(F|A)p(A)=p(A|F) p(F) and probable it is valid that P(A|F)=P(A| 
BB,BIO,FF) as P(F| BB,BIO,FF) =1.0. But here it would be helpful to get a bit 
more info, and define the relation between F and (BIO,BB,FF). 

 
Where I get a bit problems is with the statement p(F) = 50%, does this mean 
p(F)=0.5 As F is a continuous quantity p(F) might be a probability density function 
pdf and it should be something like p(F) dF = 0.5. Or more likely it should say 
p(F) is a Gaussian distribution with a priori Fapriori as most probable, mean 
value and sigma as stdv. p(F)= 1/sqrt(2 Pi sigma**2)  
exp(- ((F-Fapriori)/sigma )**2) and sigma=0.5*Fapriori 
Or is the pdf a more general pdf, which is produced by the (MCMC) algorithm. If 
latter is the case, it would be nice to get somehow the formula of the a posteriori 
estimation, finally it should just be an weighted mean between the three a priori 
informations BIO,BB,FF aprioris and their a priori Stdev and the Top down 
estimation of their sum. Similar might apply for other uncertainties and pdf as 
p(F|A). I would assume that it is assumed to be Gaussian and the standard 
deviation is calculated from the ensemble of three “top down” inversion 
estimates, but up to now this is not described clearly. Same the different between 
F and A, is not be explained. Please include the equations how F is calculated as 
function of BIO,BB,FF and 877 Tg/yr, at least in the supplement. 
 

The explicit probability distributions and cost function are now added as equations 3-
5. Since these apply to each model grid cell, the global 877 Tg/yr of CO from CH4 
destruction is not estimated in the MCMC approach. This is a global constraint 
determined by Jiang et al., (2017).  

 
3) 4 Uncertainty prediction and limitations 

The use of a measured total flux and redistribute the fluxes of the different 
sectors, might produce a very strong dependence between the errors in 
BIO,BB,FF. Is there a way to characterize this ? How could the estimate improve, 
if you could reduce the uncertainty in FF to 0.0. 
 

We have added a new Table 1 in response to Ref. #1 that shows how aposteriori 
uncertainties are reduced compared to the prior assumptions. While there will be a 
dependence on the relative errors in BIO, BB, FF in general, for the tropical regions 
studied here, the FF emissions are small enough (Figure 2) that even reducing the 



prior uncertainty to 0.0 would not make a significant difference in the BIO term. 
Sensitivity to the choice of prior uncertainty will be the subject of future work. 

 
4) One of the main results is the very nice correlation between Surface 

Temperature and BIO-Emission: The CO flux “Top Down” estimation is based on 
the joint near and also mid infrared MOPIIT retrieval product. The result and 
sensitivity of mid infrared nadir sensors might depend on the surface 
temperature. Therefore it would be nice to discuss shortly if such errors could be 
relevant. 

 
Sensitivity in mid-infrared nadir sensor retrievals depends on thermal contrast 
between the surface and atmosphere. In the case of vegetated tropical biomes, 
thermal contrast near the surface is usually close to zero, regardless of surface 
temperature, due to humidity. For the MOPITT joint thermal and near-IR product, 
sensitivity to near surface CO in these regions is mostly driven by NIR surface 
albedo (Worden et al., 2010). Furthermore, variations in the sensitivity of the 
MOPITT retrievals are characterized by the averaging kernels which were included 
when the data were assimilated for the original flux estimates in Jiang et al.(2017). 
Therefore, we don’t expect the dependence of MOPITT vertical sensitivity on surface 
temperature to be relevant to the re-partitioned flux estimates. However, since 
MOPITT retrievals require cloud free observations, there could be inflated errors in 
the flux estimates due to fewer MOPITT samples during the rainy season, which 
corresponds to lower surface temperatures. This effect would need to be included in 
a future study with more comprehensive flux errors. The new Table 1 in section 4 (in 
response to referee #1) now includes the variance of tropical grid cell posterior flux 
errors, and we will add a footnote into the new Table 1: 

 
“The variance in tropical grid cell flux errors includes both spatial and temporal 
variability, however, these errors have not been weighted to account for sampling effects, 
such as inflated errors due to fewer MOPITT observations during rainy seasons”.    

 
5) 6 Global budgets of CO and C5H8 from biogenic emissions 

Maybe it would be nice to see an correlation plot between OMI based C5H8 and 
a) the apriori and b) a posteriori estimated biogenic CO flux. 
 

We looked at spatial and temporal correlations of isoprene with apriori (isoprene and 
CO) and aposteriori CO and could not find conclusive results. This is likely due to 
the high correlation for low-emission grid cells. Overall, MEGAN is usually too high 
for both C5H8 and CO, which is what we are trying to convey in the table. 

 
 

6) 7 Seasonality of biogenic emissions – case study for the North African Savannas 
As mentioned earlier, just for the completeness it would be nice just to discuss if 
the Surface Temperature or other surface properties which might have an impact 
on the CO MOPIIT retrieval. 
 



Please see above response to comment #4. We think the revisions to section 4 now 
give a more comprehensive description of uncertainties that would not benefit from 
further discussion in section 7. 

 
7) Table1: Maybe could you include “F” or “A” in this table. Suggestion: the 

“MEGAN” emission estimate is the apriori and might be included in the same box 
just in brackets together with the apriori uncertainty.  
 

Thank you for this suggestion. This simplified the table and also allowed us to 
include more information, i.e., the apriori values for the BB and FF sectors. We also 
found that the posterior uncertainties in the tropical sub-regions needed to be 
corrected by sqrt(8) to account for the 8-year average. This was already reported 
correctly in the other regions. 

 
 
REFERENCES: 
 
Worden, H. M., M. N. Deeter, D. P. Edwards, J. C. Gille, J. R. Drummond, and P. Nédélec 
(2010), Observations of near-surface carbon monoxide from space using MOPITT multispectral 
retrievals, Journal of Geophysical Research (Atmospheres), 115(d14), 18314, 
doi:10.1029/2010JD014242.  
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Abstract. Biogenic non-methane volatile organic compounds (NMVOCs) emitted from vegetation are a primary source for 

the chemical production of carbon monoxide (CO) in the atmosphere and these biogenic emissions account for about 18% of 

the global CO burden. Partitioning CO fluxes to different source types in top-down inversion methods is challenging and 

typically a simple scaling of the posterior flux to prior flux values for fossil fuel, biogenic and biomass burning sources is used. 15 

Here we show top-down estimates of biogenic CO fluxes using a Bayesian inference approach, which explicitly accounts for 

both posterior and a priori CO flux uncertainties. This approach re-partitions CO fluxes following inversion of Measurements 

Of Pollution In The Troposphere (MOPITT) CO observations with the GEOS-Chem model, a global chemical transport model 

driven by assimilated meteorology from the NASA Goddard Earth Observing System (GEOS). We compare these results to 

the prior information for CO used to represent biogenic NMVOCs from GEOS-Chem, which uses the Model of Emissions of 20 

Gases and Aerosols from Nature (MEGAN) for biogenic emissions. We evaluate the a posteriori biogenic CO fluxes against 

top-down estimates of isoprene fluxes using Ozone Monitoring Instrument (OMI) formaldehyde observations. We find similar 

seasonality and spatial consistency in the posterior CO and top-down isoprene estimates globally. For the African savanna 

region, both top-down CO and isoprene seasonality vary significantly from the MEGAN apriori inventory. This method for 

estimating biogenic sources of CO will provide an independent constraint on modelled biogenic emissions and has the potential 25 

for diagnosing decadal-scale changes in emissions due to land-use change and climate variability. 

1 Introduction 

Carbon monoxide (CO) plays a critical role in tropospheric chemistry and climate as a precursor to greenhouse gases ozone 

(O3) and carbon dioxide (CO2) and through its influence on methane (CH4) lifetime via its destruction by the hydroxyl radical 

(OH) (e.g., IPCC AR5: Myhre et al, 2013; Gaubert et al., 2017). CO is formed in the atmosphere from direct emission during 30 

incomplete combustion of biomass and fossil fuels and from the oxidation of hydrocarbons. Biogenic non-methane volatile 

organic compounds (NMVOCs) emitted from vegetation represent a significant source of precursors that oxidize and produce 
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CO, accounting for around 18% of the global CO budget (e.g., Folberth et al., 2006, Table 8, not including anthropogenic 

VOCs). Duncan et al. (2007) calculated a contribution of photochemically produced CO from biogenic NMVOC sources 

contributes about 15% of total CO sources. Pfister et al. (2008) showed that oxidation from isoprene (C5H8) alone contributes 

to 9 to 16 % of the global CO burden, with a global yield of CO from isoprene of 0.30, calculated on a per carbon basis, where 

CO production is more efficient in polluted environments (i.e. high NOx). Most biogenic NMVOC emissions have relatively 5 

short atmospheric lifetimes, typically < 1 hour, so that transport away from sources is negligible (e.g., Palmer et al., 2003). 

This allows the estimation of primary NMVOC emissions (e.g., isoprene) using secondary products such as formaldehyde 

(HCHO), that can be more easily observed with remote sensing (e.g., Palmer et al., 2003, Stavrakou et al., 2009a,b, Marais et 

al., 2012, Bauwens et al., 2016).  Biogenic CO is then produced from HCHO and other NMVOCs through photolysis and 

reactions with OH, where HCHO lifetime is on the order of hours in tropical daytime (e.g., Miller et al., 2008, Anderson et al., 10 

2017). The chemical production and transport of CO away from sources must be modeled using chemical transport models 

(CTMs) within an inversion framework. Previous efforts to estimate the amount of atmospheric CO that is produced chemically 

from biogenic NMVOC emissions have used MOPITT (Measurements of Pollution in The Troposphere) satellite observations 

as a “top-down” constraint while estimating CO fluxes from different sectors such as fossil fuels, biomass burning and biogenic 

NMVOCs (Fortems-Cheiney et al., 2011; Hooghiemstra et al., 2011, 2012; Yin et al., 2015; Jiang et al., 2017). These estimates 15 

have updated the prior fluxes in these sectors. However, if the prior fluxes relied on inventories with inaccurate assumptions 

about relative partitioning and seasonal variability, these errors are propagated into the posterior emission estimates. 

 

The Model of Emissions of Gases and Aerosols from Nature (MEGAN, Guenther et al., 2006) and other models of biogenic 

emissions such as Organizing Carbon and Hydrology in Dynamic EcosystEms (ORCHIDEE, Krinner et al., 2005) have made 20 

significant strides in allowing a more accurate representation of these emissions in chemical transport models (CTMs). 

However, evaluation and testing of these models is challenging due to limited availability of correlative measurements, 

especially in tropical regions where biogenic emissions are largest. Comparisons of CTMs using MEGAN have been 

performed with surface and airborne in situ observations of isoprene and other biogenic NMVOCs with reasonable agreement 

such as in the Southeast U.S., (e.g., Warneke et al., 2010), but these are only over limited regional scales. Large scale evaluation 25 

of biogenic emission models has relied on satellite observations of HCHO to constrain top-down isoprene emission estimates 

globally (e.g., Shim et al., 2005; Stavrakou et al., 2009b, Bauwens et al., 2016); and regionally for North America (e.g., Palmer 

et al., 2003, 2006; Millet et al., 2008), Southeastern Asia (Fu et al., 2007), South America (Barkley et al., 2008),  Europe 

(Dufour et al., 2009; Curci et al., 2010) and Africa (Marais et al., 2012; 2014).  

 30 

The ability to accurately model and predict biogenic emissions has become increasingly important as trade-offs in land use are 

studied for potential climate change mitigation (e.g., Griscom et al., 2017; Luyssaert et al., 2018). These trade-offs include 

carbon uptake, albedo changes and the emissions of biogenic VOCs. Since biogenic emissions are precursors to both positive 

(ozone and methane) and negative (secondary organic aerosols) climate forcers, there is significant uncertainty in their role 
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(e.g., Unger et al., 2014a,b; Scott et al., 2018; Harper et al., 2018;  Luyssaert et al., 2018). The results presented here for CO 

from biogenic NMVOC sources give additional, independent information from global satellite observations that can be used 

to constrain biogenic emissions in areas that are not well monitored with other measurements. 

2 CO flux estimation 

The basis for estimates of CO flux from biogenic sources is a 15-year inversion analysis (Jiang et al, 2017) that used the adjoint 5 

of the GEOS-Chem model (Henze et al., 2007) and MOPITT Version 6J multispectral CO observations (Deeter et al., 2014). 

This approach used latitude bias-corrected MOPITT data (total CO columns and CO vertical profiles) averaged on the GEOS-

Chem 5° longitude x 4° latitude grid to constrain model estimates of monthly CO fluxes in each grid cell from three primary 

source sectors: anthropogenic fossil fuel and biofuel, biomass burning and oxidation from BVOCs. CO from methane 

oxidation, ~28% of the global CO budget (Folberth et al., 2006), was estimated to be 877 Tg(CO/yr as an aggregated global 10 

source. The Model of Emissions of Gases and Aerosols from Nature (MEGAN), version 2.0 (Guenther et al., 2006) was used 

to formulate the prior CO emissions from BVOCs. Biomass burning prior fluxes are from the Global Fire Emission Database 

(GFED3; van der Werf et al., 2010) and global prior fluxes for fossil fuel are from the Emission Database for Global 

Atmospheric Research (EDGAR 3.2FT2000; Olivier and Berdowski, 2001) with updated inventories for the northern 

hemisphere described in Jiang et al., (2017).   15 

 

Model errors in atmospheric transport and chemistry typically propagate into the largest sources of uncertainty when 

quantifying CO fluxes with satellite observations (Jones et al., 2003; Stavrakou et al. 2006; Kopacz et al., 2010; Jiang et al., 

2013, Müller et al. 2018). The impact of these errors is reduced in Jiang et al, (2017) by applying an initial assimilation of 

MOPITT CO over ocean regions to establish boundary conditions that are consistent with the satellite observations before the 20 

adjoint emission estimation over land source regions. This approach accounts for CO chemistry and transport over the ocean 

and allows continental source regions to be treated more independently (Jiang et al. 2015). To characterize remaining errors 

due to transport in the CO emission estimates, three different inversions are obtained using MOPITT CO total column, full 

profile and lower troposphere profile retrievals and their corresponding averaging kernels (Jiang et al., 2013, Worden, J. et al. 

2013). Since CO total column observations have no vertical information, they are less sensitive to convection and local 25 

emission sources, but they provide information on advection and chemistry with better measurement precision than profile 

data. Vertical profiles of CO, especially when restricted to the lower troposphere contain more information about local sources. 

However, since these vertical distributions have worse precision, the flux estimates are still impacted by model errors in 

convection, advection and chemistry. An ensemble covariance of these three inversion results provides an empirical evaluation 

of the sensitivity in CO fluxes to altitude dependent constraints and their corresponding corrections in the presence of model 30 

transport and chemistry errors (Worden et al. 2017). We find the largest variation in the three emission estimates for CO in 

India and Indonesia where large sources, strong convection and advection from other regions all contribute significantly.  As 
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in the Worden et al. (2017) analysis, we constrain the monthly total CO flux in each 5° longitude x 4° latitude grid box using 

the mean and variance from the three inversion estimates described above. 

 

One particular limitation of using the inversion results of Jiang et al. (2017) for biogenic CO fluxes is the use of different 

meteorological data fields over the 2001-2015 period. Due to availability at the time the inversion analysis was conducted, 5 

different versions of the NASA Goddard Earth Observing System (GEOS) assimilated meteorological fields were applied: 

GEOS-4 (2000-2003), GEOS-5 (2004-2012) and GEOS-FP (2013-2015). Since MEGAN uses the meteorological fields as 

inputs, the different GEOS versions produce non-negligible discontinuities in the a priori for biogenic CO for these time 

periods. For this reason, and to overlap with the availability of OMI (Ozone Monitoring Instrument) formaldehyde data for 

inferring isoprene fluxes, we consider the period from 2005 to 2012 for the analysis presented here.  10 

 

3 Bayesian CO flux attribution approach 

The re-partitioned CO flux data used for this analysis were originally computed for the Worden et al. (2017) study to provide 

improved estimates of biomass burning emissions. Monthly, gridded estimates of biogenic, (BIO), biomass burning, (BB) and 

fossil fuel, (FF) CO fluxes—and their associated uncertainties—were calculated via Bayesian inference, where 15 

 

 !(BIO,BB,FF|A) ∝ '(BIO, BB,FF)'((|A)
'(()	                                           Eq. 1 

 

!(BIO,BB,FF) and !(BIO,BB,FF|A) are the joint prior and posterior distributions of BIO, BB and FF, A represents the 

atmospheric CO measurements, !(+)	 (Eq. 4) and !(+|A) (Eq. 3) are the prior and posterior probability distributions of total 20 

CO flux F within each monthly 5° x 4° grid box. !(+|A)was empirically approximated using the mean and standard deviation 

of three different CO inversion estimates of total flux (+-, +/, +0) from Jiang et al.(2017).  The re-partitioned distribution 

!(BIO,BB,FF|A) (Eq. 1) was sampled using an adaptive Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm 

(Bloom et al., 2015), with probability distributions:    

       25 

!(BIO,BB,FF) =	exp5−0.5 ∗ ;	<
((=((>?
@AA>?	

B
/
+ <

DD=DD>?
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!(+) =	exp5−0.5 ∗ LM
((>?NDD>?NDFG>?O=(

@A	
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/
K                          Eq. 4 

 

while effectively minimizing the cost function: 
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 5 

Prior uncertainties for BB (\DD>?) were estimated using emission factor uncertainties for fire types reported for GFED4 and 

prior uncertainties of ± 50% assumed for BIO and FF. This choice of uncertainty for the BIO and FF sectors is based on 

previous experience with error constraints and allows sufficient variability in the sector emissions for testing new probability 

distributions within each grid cell. While Jiang et al. (2017) also estimated sector contributions by scaling the a priori flux 

ratios, these estimates account for the full characterization of sectoral uncertainties given both prior and posterior uncertainty 10 

estimates. We note that chemical production of CO from methane oxidation (877 Tg(CO/yr from Jiang et al., 2017) is 

considered a fixed term in the Bayesian attribution due to the longer chemical lifetime of methane and consequent global 

influence.  

4 Uncertainty prediction and limitations 

Uncertainties are available by 5° x 4° grid cell, month and source sector (BB, FF or BIO) and represent the 1-sigma width of 15 

the posterior distributions; these distributions are critically dependent on the a priori uncertainties and therefore subject to 

change when different a priori distributions and covariances are assumed in the Bayesian attribution approach. Table 1 lists 

the sources of a priori data and uncertainties and gives average monthly values representative of the individual grid cells used 

in this study. For the remote tropical regions considered here, FF contributions to total CO fluxes are small and we find the 

most improvement over prior errors in BIO CO posterior flux uncertainties, especially in months with little or no BB emissions. 20 

This can be seen in Fig. 2, where monthly grid box posterior errors were averaged spatially for the region of interest and over 

years 2005-2012. One of the assumptions in this study is the prior uncertainty in BB, which only considers emission factor 

uncertainties (Akagi et al., 2011) and does not explicitly account for other factors in BB CO fluxes such as combustion 

completeness and biomass (fuel) amount (e.g. Bloom et al. 2015). Future work will examine the effects of using a wider range 

of prior uncertainties that reflect multiple inventories.  25 

 

We also note that there is an implicit assumption in the re-partitioning for CO fluxes from biogenic emissions that monthly 

time scales and relatively large grid box sizes will account for the chemical production of CO from the primary biogenic 

emissions within the grid box. This assumption relies on the short (< 1 day) chemical lifetime of most biogenic emissions, 

especially isoprene and formaldehyde, the accuracy of CO chemistry in GEOS-Chem, and the relatively smaller uncertainties 30 
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for BB and FF fluxes.  However, the large grid boxes could also be a source of error in GEOS-Chem chemistry for the inversion 

results. Kaiser et al. (2018) showed that finer grid scales (0.25°  × 0.3125°) and accurate representations of NOx emissions in 

GEOS-Chem produced top-down isoprene estimates from HCHO observations that compared better to aircraft in situ 

observations. Furthermore, the GEOS-Chem inversions did not consider chemical non-linearities due to changes in OH caused 

by changing CO emissions (Gaubert et al., 2016). This has led to an overall increase in OH over the decade 2003-2013 and 5 

thus is responsible for an overall increase in secondary CO chemical production (Gaubert et al. 2017). Model intercomparisons 

and scale sensitivity tests would help quantify the uncertainties from these assumptions. 

5 Top-down isoprene estimates 

Since isoprene represents the dominant biogenic NMVOC emission (e.g., Guenther et al., 2006; 2012) and accounts for 66% 

of biogenic NMVOC emissions that react to produce CO (Folberth et al., 2006) we compare our estimated CO fluxes from 10 

biogenic sources with global estimates of isoprene as a way to check their spatial and temporal variability. Here we use the 

biogenic isoprene emission estimates provided by the GlobEmission project at  

http://emissions.aeronomie.be/index.php/omi-based/biogenic. Using OMI satellite observations of tropospheric formaldehyde 

as a constraint (De Smedt et al., 2015), the GlobEmission estimates of biogenic isoprene emission are produced on a global 

0.5° x 0.5° grid using the adjoint of the IMAGESv2 global chemistry-transport model (Stavrakou et al., 2015, Bauwens et al., 15 

2016) with a priori isoprene emissions from MEGAN-MOHYCAN described in Stavrakou et al. (2014).  

 

Model results for biogenic emissions depend on both static and dynamic input from the CTM and the corresponding 

meteorology data or reanalysis driving the CTM. Isoprene emissions using MEGAN (Guenther et al., 2006; 2012) are 

computed as:  20 

 

 EISOP	=	Eo	x	gPAR		x gT	 x gAGE	 x gSM		x  gCE		 	 	 	 Eq. 2	  

 

where Eo  is the emission flux under standard conditions, and the g  parameters are dimensionless scaling factors that account 

for sensitivities to photosynthetically active radiation (PAR), temperature (T), leaf age distribution (AGE), soil moisture (SM) 25 

and the canopy radiative environment (CE). The last term includes the effects of leaf area index (LAI) and the plant sensitivity 

to the above canopy radiance. Values of Eo  are specified in MEGAN using a global database of plant functional types (PFT) 

assuming 5 PFTs (broadleaf trees, needleleaf trees, grasses, crops and shrubs). The other parameters require dynamic input 

such as hourly temperature, wind speed, humidity, solar radiation, soil moisture from the meteorological fields used in the 

CTM and monthly LAI from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS/Terra and EOS/Aqua 30 

satellites. Figure 1 shows 2005-2012 average biogenic CO and isoprene fluxes for 40°S to 40°N as estimated with MEGAN 
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and meteorological data (GEOS-5 for CO and ECMWF for isoprene) as compared to estimated fluxes using top-down 

constraints from satellite observations (MOPITT for CO and OMI HCHO for isoprene).  

 

We find that the distributions for biogenic CO follow similar spatial patterns as the isoprene fluxes (albeit coarser spatial 

resolution) and that the top down estimates are in general lower than the emissions predicted using MEGAN, as found in 5 

previous studies (e.g., Millet et al., 2008; Stavrakou et al., 2009a; Marais et al., 2014). 

6 Global budgets of CO and C5H8 from biogenic emissions 

Table 1 shows the annual average fluxes of CO and C5H8 for the 2005-2012 period for 80°S to 80°N, Northern mid-latitudes 

(20°N to 40°N), Tropics (20°S to 20°N), and the separated tropical regions of South America, Africa, and Maritime Continent. 

Our global estimate for BIO CO from non-methane sources (566 ± 49 Tg(CO)/yr) is in agreement with a previous estimate 10 

(546 Tg(CO)/yr, Folberth et al. (2006)) which was obtained by adding the contributions to CO from isoprene (359 Tg(CO)/yr), 

methanol (110 Tg(CO)/yr), terpenes (49 Tg(CO)/yr) and acetone (28 Tg(CO)/yr).  This contribution from BIO CO represents 

a larger percentage (~41%) of the sum of BB, FF and BIO CO sources than expected (~27%) based on Folberth et al. (2006) 

which has 811 Tg(CO)/yr for BB and 672 Tg (CO)/yr for FF). However, there is a wide range in reported biomass burning 

emission estimates, with large interannual variability. Stavrakou et al., (2006) used 467 Tg(CO) for the year 2000 as the BB 15 

CO a priori from GFEDv1; van der Werf et al., (2017) reported 357 Tg/yr mean emissions for BB CO over 1997-2016 while 

Granier et al., (2011) reported a range of 414 to 509 Tg/yr for 6 emission inventories in the 1997-2000 period. Because our 

2005-2012 study period did not include the significant ENSO episodes in 1997 and 2015, we would expect lower average 

values for BB CO emissions than these other annual averages. Furthermore, in recent decades, there is a decreasing contribution 

of BB CO associated with a decline in tropical fires (e.g., Andela et al., 2017), as well as declining FF CO emissions (Yin et 20 

al., 2015; Strode et al., 2016; Jiang et al., 2017; Zheng et al., 2018).  

7 Seasonality of biogenic emissions – case study for the North African Savannas 

Figure 2 shows the seasonal behavior of posterior sectoral CO flux estimates in the N. Africa savannas (see outlined grid cells 

of Figure 2 inset map) derived by the Bayesian attribution approach described in section 3. While biomass burning (BB) 

dominates in N.H. winter, and fossil fuel fluxes (FF) have little variability, biogenic fluxes show two broad maxima, one in 25 

April and the other in October. We note that these maxima are not likely mis-identified BB fluxes as the BB months are 

relatively well defined in the region for November to February.  

 

Figure 3 shows the time series of apriori (MEGAN with GEOS-5) vs. posterior for the N. Africa Savannas region, with surface 

temperature from the Modern-Era Retrospective analysis for Research and Applications (MERRA, Rienecker et al., 2011) 30 
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overplotted to show the correspondence of the posterior results with temperature variability. We note that using GEOS-FP for 

the 2013-2015 meteorology (not shown) results in a ~27% increase for the peak apriori (MEGAN with GEOS-FP) biogenic 

CO fluxes compared to the years using MEGAN with GEOS-5.  

 

As shown by Marais et al. (2014), the seasonality of isoprene fluxes in the African savannas north of the equator also have a 5 

maximum in April followed by a minimum during the rainy season, June to September (Janicot, et al., 2008). Fluxes for 

December to March were not estimated in Marais et al. (2014) due to interference with biomass burning emissions and 

secondary formation HCHO. The top-down isoprene estimates from Bauwens et al. (2016) and the CO flux estimates from the 

Bayesian attribution approach described here both show 2 minima in biogenic emissions for this region, one in the rainy season 

(June-August) and the other in winter (December-January) similar to the surface temperature (Fig. 4). Marais et al., (2014) 10 

attribute the higher emissions from MEGAN to the model dependence on LAI, which has a broad maximum in August. 

 

Other regions in South America, Southern Africa and Australia that were tested for seasonality of BIO CO fluxes (see 

supplementary material) did not show the same large inconsistency with MEGAN, suggesting that the N. African savannas 

require special treatment and a revised parametrization within MEGAN to account for the enhanced sensitivity to surface 15 

temperature vs. LAI during the rainy season. The tabulated emissions under standard conditions, Eo, could also require revision 

to account for human-driven changes in plant types due to cropland expansion in the N. African savannas region in recent 

decades (e.g., Andela et al., 2014). 

8 Summary and future work 

This paper has presented the first results for estimates of CO from biogenic NMVOCs using a Bayesian re-partitioning of top-20 

down flux estimates. We find that the CO flux estimates based on MOPITT CO observations are spatially consistent with 

biogenic isoprene flux estimates based on OMI HCHO observations. Both top-down estimates for carbon monoxide and 

isoprene suggest that biogenic emissions based on MEGAN are too high in the Tropics by 28% for isoprene and 10% for 

carbon monoxide with the largest discrepancies in South America. As a case study in tropical North Africa, we found that the 

top-down estimates suggest a significant seasonality change compared to MEGAN for both CO and C5H8. The top-down 25 

estimates have seasonal cycles that match well with MERRA surface temperature and that have secondary minima during the 

rainy season that are not predicted well by MEGAN. These discrepancies suggest the potential for regional updates to the 

MEGAN model, a focus of future work. Sensitivity to model grid scales that affect transport and chemistry uncertainties will 

also be investigated.  

 30 

In order to examine climate variability and possible trends in biogenic emissions, the methods described here will also be 

applied to a flux inversion estimate using a consistent meteorological reanalysis. Since MOPITT will soon have a 20-year data 
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record, it will span several ENSO (El Niño Southern Oscillation) cycles and will have the potential for detecting the effects of 

inter-annual and long-term changes in surface temperatures on biogenic CO flux variability. 

 

Data availability. MOPITT data sets used for the CO inverse modeling component of this study are publicly available at 

http://reverb.echo.nasa.gov and at https://eosweb.larc.nasa.gov/datapool. The isoprene emission estimates obtained from 5 

inverse modeling of OMI HCHO observations are available from the GlobEmission project at  

http://emissions.aeronomie.be/index.php/omi-based/biogenic. The sector partitioned CO flux estimates are available at:  

https://dashrepo.ucar.edu/dataset/CO_Flux_Inversion_Attribution.html with can be cited with doi.org/10.26024/r1r2-6620. 
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Tables and Figures 

Table 1. Uncertainties applied in the Bayesian source attribution (Eq. 1). Values are monthly averages for single grid boxes 15 

(5° x 4° longitude x latitude) in the tropical study regions.  

CO sector distribution A priori source A priori uncertainty 

 

Average Posterior 
Uncertainty  
(tropics grid boxes)  

Total flux  
top-down estimate 

GEOS-Chem Inversion 
based on MOPITT V7J 
CO data 
(Jiang et al., 2017) 
 

\( 

± 50% (assumed) 

± 12% average constrainta, 
with 11% 1-sigma 
standard deviation for 
tropical grid cellsb,c 

BIO 
direct + biogenic NMVOC 
oxidation 

MEGAN v2.0 
(Guenther et al., 2006) 

\DFG>? 

± 50% (assumed) 

± 24% 

BB 
biomass burning 

GFED4s  
(van der Werf et al., 
2017) 

\DD>? 

± 24%  

(Akagi et al., 2011) 

± 22% 

FF  
fossil fuels 

EDGAR 3.2 
(Olivier and Berdowski, 
2001) 

\((>? 

± 50% (assumed) 

± 45% 

a  The total flux posterior error is estimated from 3 flux inversion types (see text for description) to approximately account for 
model transport errors. 
b Average and standard deviation are computed for tropics (20°S to 20°N) using grid boxes with with emissions > 0.1 
gCO/m2/month. 20 
c The variance in tropical grid cell flux errors includes both spatial and temporal variability, however, these errors have not 
been weighted to account for sampling effects, such as inflated errors due to fewer MOPITT observations during rainy seasons. 
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Table 2. Annual average isoprene and sector partitioned carbon monoxide fluxes for 2005-2012 5 
Region OMI/BIRA 

Isoprene 
Tg(C5H8)/yr  
 

GEOS-Chem/ 
MOPITT  
BIO CO 
Tg(CO)/yr 
 

GEOS-Chem/ 
MOPITT 
BB CO  
Tg(CO)/yr 

GEOS-Chem/ 
MOPITT 
FF CO  
Tg(CO)/yr 
 

Tropics  
(20S-20N) 

246 (A) 
176 

364 (A) 
326 ± 27 

277 (A) 
231 ± 14 

120 (A) 
120 ± 14 

Tr. S. Amer. 
(90-30W) * 

127 (A) 
  83 

131 (A) 
104 ± 7 

62 (A) 
41 ± 3 

17 (A) 
16 ± 2 

Tr. Africa 
(20W-50E) * 

73 (A) 
56 

166 (A) 
159 ± 13 

159 (A) 
145 ± 8 

31 (A) 
34 ± 5 

Maritime C.  
(90-160E) * 

39 (A) 
32 

57 (A) 
52 ± 6 

55 (A) 
43 ± 3 

46 (A) 
44 ± 4 

N. Midlat 
(20N-40N) 

34 (A) 
28 

99 (A) 
95 ± 11 

16 (A) 
15 ± 1 

295 (A) 
264 ± 18 

Global 
(80S-80N) 

343 (A) 
273 

630 (A) 
566 ± 49 

350 (A) 
290 ± 18 

546 (A) 
535 ± 42 

A = Apriori. Source is ECMWF/MEGAN v2.0 for the OMI/BIRA isoprene flux estimates.  
See Table 1 for CO apriori sources and uncertainties. 
*Latitude range is 20S-20N 
 
 10 
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Figure 1. 2005-2012 average biogenic flux for CO (top) and isoprene (bottom) with model estimates using MEGAN on 
the left and top-down estimates using MOPITT observations for CO (top right) and isoprene inferred from OMI HCHO 
observations (bottom left). 5 

 

g(
CO

)/
m

2 /
m

on
th

°L
at

itu
de

CO from BG NMVOC (MEGAN/GEOS5) CO from BG NMVOC (MCMC estimate)

g(
C5

H8
)/

m
2 /

m
on

th

°L
at

itu
de

°Longitude °Longitude

Isoprene (MEGAN/ECMWF) Isoprene (OMI/BIRA estimate)



18 
 

 
Figure 2. A posteriori (solid lines) and a priori (dotted lines) CO fluxes averaged for each month over 2005-2012 for 
the N. Africa savannas region for biomass burning (BB, red), biogenic (BIO, green) and fossil fuel (FF, blue) sectors. 
The inset map shows average BIO CO fluxes over Africa, with the same color scale as shown in the top panels of Fig. 
1. The N. Africa savannas grid boxes considered for the monthly averages are outlined in gray. Errors on the 8-yr 5 
average fluxes for this region are indicated for each sector and month, with values around 2.3% for BIO, 1.6% for BB 
and 3.4% for FF.  
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Figure 3. Time series of a priori (dashed black) and posterior (solid black) CO fluxes with monthly mean 1-sigma 
errors and MERRA surface air temperature (magenta) for the N. Africa savannas region (see inset map in Fig. 
2). 

 5 

__   MCMC/MOPITT BIO CO estimate
_ _  MEGAN BIO CO apriori
__   MERRA surface T_air
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Figure 4. Average monthly CO (black) and C5H8 (green) fluxes and surface air temperatures (magenta) for 2005-2012 for 
the N. Africa savannas region (see inset map in Fig. 2). Solid black and green lines show the posterior “top-down” fluxes 
while dashed black and green lines show the emissions predicted by MEGAN with associated meteorological fields. 
 5 
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