
We would like to think Drs. Chen, Povey, and two anonymous reviewers for their suggestions on our manuscript. 
We appreciate the level of detail and nuance in the comments. We have prepared a revised version with 
attention to these comments. In the below, text in bold indicates Short Comments or Referee Comments, and 
that in regular type indicates our response.

In addition to responses to these comments, the following other changes have been made to the manuscript:
• Corrected a typographical error in Equations 1 and 2 where the normalisation factor N appeared on both 

the left and right-hand sides of the equations.
• Rearranged contents between the Data Availability and Acknowledgments sections to conform with 

Copernicus style requirements.



Short comment from Adam Povey

I wish to support the publication of this manuscript. As the authors outline, it has long been known that 
aerosol optical depth is not normally distributed, such that an arithmetic mean is not expected to 
represent real-world behaviour. This paper will hopefully remind the community of the implications of 
that fact and encourage greater use of geometric means in analysis and logarithmic scales in figures.

We thank Dr. Povey for his support of our study.

If I may comment on Figs. 2 and 3, it does not seem surprising that the majority of the planet exhibits 
little difference between the daily arithmetic and geometric means. The plot below shows the difference 
between the geometric and arithmetic means if we generate random, lognormally distirbuted data for a 
range of medians and widths. Your threshold of -0.01 is not exceeded for distributions with a range of 
small widths and medians that are common in nature. This begs the question why the difference does 
matter in Fig. 5. When observing complex aerosol environments, such as the Saharan outflow, the 
satellite likely samples a single population of aerosol on any given day, which is lognormally distributed.
Over a month, several populations are sampled, giving a multimodal distribution. Geometric statistics 
are more appropriate for combining these samples and so the lognormal distribution is found to be 
superior. Conversely, over Australia, where MODIS retrieves a very narrow range of AODs, the difference 
is still found to be negligible. Alternatively, the increased data volume highlights the failings of 
arithmetic statistics because too few very low AODs and too many very high AODs are observed for a 
normal distribution. When there are fewer observations, it is harder for the Shapiro-Wilk test to 
discriminate behaviour in the distribution’s wings. In summary, I wonder if a single lognormal 
distribution may not sufficient in many circumstances or if the problem is more that AOD must be 
postive, rather than an intrisic lognormality? I don’t believe these details affect the authors central point 
that geometric statistics should be used to evaluate AOD but am curious of their opinion.

As we posted in the Discussion forum these thoughtful comments are exactly the type of discussion we were 
hoping to provoke. We agree with Dr. Povey’s thinking that we need to have some deeper discussion of what
we intend users to take away when we provide them with aggregates, and how to best provide concise, useful 
information while decreasing the chance of misunderstanding or misuse. Realistically most users want and 
expect only a single number to use in their analysis and are not always equipped to consider that this is a 
summary of a distribution of values. My personal opinion is that the geometric mean (lognormal statistics) is a 
better summary statistic than arithmetic mean (normal statistics) for AOD aggregates, overall, for those cases 
when there is likely only a single mode (due to the skew and nonnegativity). In the case of multimodal 
distributions, the answer is less clear. Perhaps it lies in decreasing aggregation scales so that these become less
frequent (e.g. encourage use of daily rather than longer-term composites). The idea of providing fit statistics for 
multiple modes as outlined in Povey & Grainger (2019) is also a good one, although requires extra thought on 
the user end, as would providing histograms directly (which would also create a data volume issue). So this is in 
an open question, and we (as well as Dr. Povey in the aforementioned paper) have provided steps towards 
possible solutions.

The Figure included in the comment is an interesting one (and essentially a multidimensional version of our 
Figure 1). We have added a similar Figure in our revised manuscript (now Figure 2). Note that since Dr. Povey’s 
example is calculated in natural log while our example was in base 10 log, the geometric standard deviations 
covered in Dr. Povey’s simulations should be decreased by a factor of ln 10 (about 2.3) to be equivalent, i.e. our 
geometric standard deviation of 0.35 would correspond to about 0.8 (off the top of the scale) in his plot. This may



resolve the comment comparing Figures 2, 3, and 5. Choice of logarithmic base (and conversions between 
them) is further discussed in the text between Equations 2 and 4.

I also include some technical comments and corrections. P1L2 means line 2 of page 1.

P2L17 in some cases they have also been
P2L21 a regular grid and so are often more
P2L24 observe every location at all the times.
P2L26 and sometimes is not negligible
P7L10 example application is to AOD
P19L20 are most common in so-called
P22L21 also relevant are the magnitude of the differences
P30L29 The page number is 2.
P31L14 The DOI is 10.1029/1999JD900923.
P32L2 The page numbers are 2276-2295.
P32L18 The page numbers are 4026-4053.
P34L13 The page numbers are 13,404-13,408.
P34L21 The page numbers are 672-676.
P35L14 The page numbers are 13,965-13,989.
P36L21 The page numbers are 429-439

We have checked and corrected the above.



Short comment from Yilun Chen

I enjoyed reading the manuscript. This study presents interesting results on AOD distributions in grid, 
and how to reprocess the data. I was very surprised that bimodal distribution (Figure 5) can also be fit as
Lognormality. This method is really useful for me! We published a paper about cloud optical depth 
distribution patterns recently. Maybe the authors want to consider referencing: Chen YL, Chong KZ, Fu 
YF. 2019. Impacts of distribution patterns of cloud optical depth on the calculation of radiative forcing. 
Atmos. Res. 218: 70-77. doi:10.1016/j.atmosres.2018.11.007

Thank you for the kind words, and the reference. That paper ties into one of the other reviewer comments about 
climate impacts, by showing that distribution shape affects inferred forcing (at least for clouds). For aerosols the 
numerical values will be different, but a similar principle is likely to hold. We’ve cited this paper in the expanded 
discussion in the revised manuscript.



Review by Anonymous Referee #1

The authors discuss the nature of probability distributions of AOD, the aerosol optical depth. The 
authors start by analysing for a diverse collection of datasets (AERONET, MODIS, MISR, GEOS5 Nature 
Run), whether spatially or temporally grouped data is better described by a normal or log-normal 
distribution. They show that at short timescales (day), the normal distribution is appropriate but that at 
longer time-scales, lognormal distributions are more realistic. They then continue to show that means 
derived from such datasets, using either arithmic or geomtric means, can be quite different. In particular,
they show that trend estimate can differ significantly in magnitude (though not in sign). As the data 
mostly exhibit log-normal distributions at longer time-scales, the authors conclude that the common use
of arithmic means in trend analysis is inappropriate. The paper concludes with suggestions for 
improvements in aggregation methods. This is an interesting paper about a fundamental issue in Earth 
sciences and entirely appropriate to AMT.

We are pleased that the referee finds the study interesting and appropriate to the journal.

The statistical analysis in this paper seems sound. However, I feel the authors may be overstating the 
importance of this issue. Often we don’t look at AOD but at differences in AOD (satellite evaluation, 
model evaluation, changes between present day and pre-industrial, model sensitivity studies, etc). The 
resulting distributions are in my experience usually more normally than log-normally distributed.

We partially agree with the reviewer here. Yes, it is likely that differences between estimates will be similar 
whether calculated as arithmetic or geometric mean (i.e. if you compare the differences in two monthly geometric
mean AODs from some products, they are likely to be similar to the differences in monthly arithmetic means), 
and the distribution of differences is likely to be closer to Normal. However, (1) that is not a given, and (2) a large 
number of papers are not about comparing different AOD composites (for example many take AERONET or 
satellite data at a given location and you see statements like “the mean AOD was X+/-Y” without consideration of 
the shape of the distribution. It is in these latter cases where we feel reporting either geometric mean and 
standard deviation, or median and percentiles of the distribution, would be more meaningful. We have added a 
note in the expanded discussion sections of the paper about AOD differences.

Also, any log-normal distribution can be accurately defined by arithmic mean and standard deviation. 
Actually, there is a one-to-one transformation from the arithmic statistics to the geometric statistics, see 
e.g. https://en.wikipedia.org/wiki/Lognormal_distribution. My interpretation is that it is not important 
whether one uses arithmic or geometric statistics, as long as one is aware that their use does not imply 
(!) either a normal or log-normal distribution.

We agree here: in fact, our original manuscript cited the table in O’Neill et al (2000) which provides these 
conversion formulae, to point out the transforms. In the revised manuscript we have changed the wording to 
make it clear why we are citing the table there, and added additional explicit mentions elsewhere. On the latter 
point, our experience is that most users take the summary statistic and do not directly consider the underlying 
distribution (i.e. they are not actively aware of this point). We have also emphasised this point in the revised 
manuscript.

Another issue is physical conservation of the property under study. AOD is not a good example so let’s 
consider column burdens of aerosol or trace gases. These may be expected to have log-normal 
distributions in time and space as well. Describing them with geometric means would cause loss of 



mass conservation! Consider a dataset at 10 km that is aggregated to 100 km: the arithmic mean 
preserves total mass in the 100 km grid-box while the geometric mean does not. It seems one has to 
consider what is causing the log-normality: if it is due to lognormal retrieval errors, geometric means 
seem justifiable as they ameliorate the effect of outliers. If it is due to the nature of the property, 
conservation-laws may be more important and arithmic means are to be used. I am sure much more can 
be said about this.
That said, if arithmic means are used to describe log-normal distributions and then carried forward 
through non-linear analyses under the assumption of normality, significant problems may arise. The 
authors allude to this on p. 23, l 19 when they talk about parametrisations.
It would be great if the authors take the above into consideration when preparing their final manuscript. 
In all this is a worthwhile discussion.

Thanks – we partially agree, and these are important points. Our study is one step towards moving to a better 
treatment of data aggregates. We don’t have all the answers so are trying to raise the important points for 
discussion. The point about mass conservation is an interesting one.

If one needs to estimate total mass and has only one metric to look at, arithmetic mean conserves mass. That is 
something of a corner case (which might be applicable to studies using AOD to estimate particulate matter 
levels). In some of those specific applications, a user is likely to want more finely-resolved (spatial and temporal) 
information, however, so might not even be using data aggregates (and instead go back to level 2 data). 
However if spatial and/or temporal variation of the parameter is important, the distribution shape becomes key. 
Further, going beyond one-metric estimates, the combination of (arithmetic or geometric) mean and standard 
deviation also conserves mass. We mention this in case a reader of the review gets the incorrect impression that
lognormal statistics cannot conserve mass.

We have expanded the discussion in the revised manuscript to highlight some more potential applications for 
which one metric might be more or less useful (previously we had used trends as one and discussed forcing as 
another), as well as to point out that the observed distribution is a convolution of the true distribution with any 
measurement/model error.

Minor comments:
p 3, l 33: it would be good to state the relation between arithmic mean (and stddev) with geometric mean 
(and stddev) for a log-normal distribution. Such relation exists, see 
https://en.wikipedia.org/wiki/Lognormal_distribution

As noted above, we’d cited the table in the O’Neill et al (2000) study which provides these conversions. We did 
not include them in our paper for length reasons. We have made the reason for this reference more explicit in our
revised manuscript.

p 5, l 17: "will overstate the typical level of AOD observed and its variability" . While I understand the 
authors’ intention, it seems to me this sentence suffers from the absence of what is "typical". It would 
appear that "typical" here refers to the geometric mean as a parameter that defines a log-normal 
distribution. However, there is a simple 1-on-1 mathematical relation between arithmic and geometric 
mean of a log-normal distribution. I.e. the arithmic mean defines a log-normal distribution as well as the 
geometric mean. Hence both arithmic and geometric mean can be used to define what is "typical".



This is related to the above comment. We have also clarified the use of the word “typical” here in the revised 
manuscript.

p 6, l 25: "using Normal-appropriate statistics has systematic quantitative implications for the 
interpretation of the data." Only if the arithmic mean and stddev are interpreted as defining a normal 
distribution. It is perfectly possible to calculate both without reference to a normal distribution. Actually, 
they can define a log-normal as well.

We agree; note, however, that due to a lack of statistical training many/most users do (implicitly or explicitly) treat
these numbers through the lens of Normal statistics. We hope we have articulated this better in the revised 
manuscript.

p 6, l3: "these factors may include": I believe turbulence is an important factor in the creation of log-
normal distributions?

Yes (for aerosol size distributions, which will be proportional to AOD if their shape is invariant) – we have 
mentioned this factor explicitly in the revised manuscript, and reordered these paragraphs. Previously it was 
implicit in some of the Kok work and textbooks cited. We have expanded the discussion of distributions in nature 
a bit in the revised manuscript (see also response to a reviewer comment below).

p 8, l 13: "This quadratic formulation is more robust to calibration problems in individual channels" 
more robust than what? Maybe consider dropping "more"?

More robust than the two-channel linear interpolation method which is also used commonly. We have expanded 
the sentence to say this in the revised manuscript.

p 11, l 7: "tail-waited" tail-weighted ?

Thanks; this has been corrected.

p 12, l 3: Shouldn’t arithmic and geometric stddev be compared as well?

We think the means are more relevant to compare than the standard deviations here, as they are both notionally 
summary metrics of the same quantity (the “typical” value of the parameter, with attention to the word “typical” as
noted in a previous comment). The physical utility of comparing standard deviations is, in our view, less clear, 
and as most users are using aggregates to get an idea of the AOD is is the means which are of most direct 
relevance to them. We feel that this four-way categorisation (based on SW test results and differences in the 
means) is intuitive and sufficient for the purpose at hand, i.e. asking (1) which distribution form is a more 
appropriate representation and (2) when is is important?

p 13, l 3: "results for temporal (from AERONET and G5NR) and spatial (from MISR, MODIS, and G5NR) 
frequency distributions of" This confused me as both Figures show spatial distributions of the WS test. 
The test, in all cases, was presumably done on time-series of data. The captions to the figures seem to 
say something different: either data was a temporal aggregate (which suggests G5NR results are at its 
native resolution) or spatially aggregate (which suggests each 30 min of G5NR data was used). Please 
clarify this?



Both Figures 2 and 3 of the original manuscript are spatial distributions. Figure 3 of the original submission is a 
spatial aggregate (from source level 2/G5NR data), not a temporal aggregate. The others are temporal 
aggregates. This was discussed in Section 2.2, and is indicated in the caption as well: “aggregated spatially over 
a day from full resolution to 1°”. We have further expanded the captions to Figures 2 and 3 (now 3 and 4) in case 
of confusion.

p 14, l 5: "calculating an arithmetic mean when the underlying distribution is Lognormal (or vice-versa) 
introduces an error smaller than 0.01." I disagree with the use of the word ’error’. No error is incurred at 
all. It is always possible to calculate arithmic means. Any error is due to limited sample size. See also my
previous comments.

It is an error in the case that what is implied by the statistic is not what is inferred by the data user. We have 
reworded to “offset” to clarify this in the revised manuscript.

p 17, l 7: "Note also that the near-universal choice of aggregating daily on a UTC calendar day basis, 
rather in terms of local solar time, can further complicate matters for locations far from the meridian." 
For another example, see Schutgens, Partridge & Stier ACP 2016, Fig. 13 & 14.

Thanks for this reference – we have included it in the revised manuscript (here and elsewhere).

p 23 , l 11: "Even a small change in reported AOD, if systematic, can have important implications for 
calculations of climate forcing." But changes (differences) in AOD are far more likely to have a normal 
distribution.

We feel that the reviewer here is interpreting “changes” to mean “differences in time” while what we mean is 
“before you were using this number, now you are using that number”. We have reworded this (to “offset”) to be 
clearer in the revised manuscript.

p 23, l 20: "the same argument may apply if forcing parametrisations are developed from model 
simulations aggregated in certain ways" This is a fair point. A lot of studies point out the distorting 
impact of non-linear physics/chemistry when using just the mean to represent a distribution. One 
example from remote sensing is the plane-parallel bias noted in cloud retrievals of LWP. Note however 
that such biases exist not because of an arithmetic mean but the representation of any disribution by a 
single number.

Thanks – we have expanded the discussion here along these lines (and included the reference in the Short 
Comment by Y. Chen, as well as another one about rainfall). And yes, this is an instance where one would ideally
use the full distribution or at minimum both mean, a measure of width, and an assumed form.

p 23, l 6: "This implies that no simple scaling correction can be applied to existing data sets to transform
between arithmetic and geometric estimates" . Assuming a normal or log-normal distribution, exact 
transformations exist between mean and stddev of arithmic and geometric statistics.

We have removed this text (and extended the prior sentence) as we acknowledge it could be misleading. We 
meant that no scaling is possible unless you know or assume the underlying distribution form.



Sect 4.2 The analysis in this section seems sound and I have no problems with it. That arithmic means 
yield different trends than geometric means is no surprise, after all these are different means. However, 
there is the suggestion that geometric means are better simply because the underlying distribution is 
log-normal. Rather, geometric statistics make it easier to interpret changes in a log-normal distribution 
but they do not provide more information (or put differently: the arithmetic statistics are not "wrong").
Note also that trend analysis of changing log-normal distribution really requires geometric stddev to be 
analysed as well but this is seldom done.

We agree that arithmetic means here are not “wrong” in a mathematical sense, but rather cause a scientific 
misinterpretation (because users typically don’t consider the distribution something is drawn from). For example 
if someone reads that AOD changes by X per year then they may expect to go outside on any given day and find 
AOD lower by X than it was a year ago (roughly speaking). This will not be the case if X was calculated as a 
trend in arithmetic mean when the underlying distribution is close to Lognormal (because of the relation between 
arithmetic and geometric mean which the reviewer points out, and because most users do not look at the 
standard deviation so would not consider this transform). We note that our example trend analysis did use the 
geometric standard deviation in the estimate of the uncertainty for the regression fit. In the revised manuscript 
we have added sentences in a few points to clarify that it’s not about being “wrong” but about the implicit 
assumptions an analyst makes.

p 26, l 6: "but quantitatively have a tendency to overestimate their magnitude." It may be good to repeat 
here that at these three sites the log-normal distribution is the more appropriate distribution to use 
(previous analysis, Sect 3). At least that seems to be the suggestion here?

Yes – at all three sites, the data fell most often into the category 4 (difference > 0.01 and most consistent with 
draws from a Lognormal distribution). Apologies for the omission of this in the previous version of the paper; we 
have added the numbers into the revised manuscript.

p 27, l 20: "estimated trends in geometric mean AOD are smaller in magnitude" Trends in satellite data 
are over often calculated over regions, not like the point sources the authors have used in their example.
I wonder how this will affect these conclusions? At some point the central-limit-theorem should kick in 
and turn any log-normal distribution into a normal one?

We believe this is a misinterpretation of the central limit theorem. The central limit theorem implies that when you
make multiple estimates of a quantity, those estimates will tend towards a Normal distribution, even if the source 
data are not Normal (https://en.wikipedia.org/wiki/Central_limit_theorem). In this context, it means that your 
estimates of the geometric (or arithmetic) mean AOD averaged across the region, if you could make those 
estimates multiple times, would tend towards a Normal distribution. It does not mean that the underlying AOD 
field itself becomes closer to a Normal distribution. Indeed, looking at the results in this paper and O’Neill et al 
(2000), on longer scales it looks like AOD becomes further from, not closer to, a Normal distribution.

After initially submitting this paper we presented the analysis at several venues and a similar comment came up 
once. As a result we have added some text about the central limit theorem to the paper, including a reference to 
a review paper dealing in part with this misconception.

p 27, point 2: this point seems to imply it is ok to average AOD in time and compare satellites with 
satellites or models, as long as we use the proper mean. The authors know that different sampling of 
data sources often has a far bigger impact. Maybe it is good to state that here.

https://en.wikipedia.org/wiki/Central_limit_theorem


We agree; we mentioned sampling earlier and in the revised manuscript have mentioned again to re-emphasise 
here. These are all individual pieces of the puzzle.

p 27, l 9: "root mean square error" This is a difference between two AOD and is likely to be normally 
distributed.

It is plausible that RMSE distributions are Normally distributed. What we are saying here is that often in AOD 
validation exercises, people report RMSE at a given AERONET site (or collection of sites). Yet this is not always 
a meaningful description of what the level of error is at that location, since it tends to be driven by the high-AOD 
cases which tend to have higher uncertainty. We have expanded a bullet point here to emphasise for the reader 
our main point (which was: look at the data and not just the metric).



Review by Anonymous Referee #3

This paper looks at an important yet widely neglected issue in selecting the appropriate summary 
statistics to create daily or monthly climatology from instantaneous measurements. AOD is used as an 
example, but the study is applicable to any geophysical variables. The study is well thought out, 
carefully executed, and clearly presented. I have a few comments below.

Thank you for the kind words.

1. It would be appealing to give plausible explanations, from the standpoint of physical mechanisms, to 
the fact that certain geophysical variables, like AOD, follow lognormal distribution (raindrop size is often 
described by Gamma distribution, which has a similar skewed shape to lognormal), while some are 
Gaussian. I find the authors’ attempt at P6L5 unconvincing. Statistically, lognormal distribution arises 
from multiplicative processes while normal distribution is from summation of independent/identically 
distributed (Gaussian or non-Gaussian) processes (central limit theorem). But I feel that it is hard to 
relate this statistical interpretation to the physical processes happening in reality. The reason for the 
skewed distribution of many geophysical variables may be due to the simple fact that they are positively 
defined. This is also supported by the authors’ analysis that in clean conditions (AOD approaching 
positively zero), geometric and arithmetic means are not all that different.

Yes, the point about being positive definite is a good one (also made by Adam Povey). We were not trying to 
convince the reader that AOD must be/is Lognormally distributed, only that there are reasons that it might be (or 
at the least might not be Normally distributed). We have expanded the discussion of distributions in nature in the 
revised manuscript (note the Gamma distribution was mentioned already in the context of clouds in the 
conclusion).

2. Negative or zero AODs are set to a very small positive value. This has to be done in order to calculate 
geometric mean. I wonder in such special cases (even if they are rare), does it incur any arbitrary bias 
that renders use of geometric mean less meaningful compared to arithmetic mean? How would the 
operational L2-to L3 algorithm deal with the negative or zero retrievals?

It makes no practical difference since the lowest AODs found tend to be smaller than relevant for many 
applications. A L2 to L3 algorithm should document if there is any truncation, but ideally L2 algorithms permitting 
the retrieval of negative AOD should be changed, because this is an unphysical retrieval. AOD of 0 is a thornier 
case as it is not unphysical, but we’d argue is highly unrealistic. We’ve added a statement in the revised 
manuscript to mention this and suggest that any enforced lower limit to avoid negative or zero values is 
sufficiently low not to bias things.

3. A possible development for aerosol product is to collate products from different sensors for the 
overlapping domain (such as the MODIS twins from Terra and Aqua). In that case, which mean is more 
appropriate, geometric or arithmetic?

If one believes that the two data sets can be regarded as separate samples from the same population (as might 
be the case for the two MODIS sensors, with the same design, similar performance, and identical L2 retrieval 
algorithms), then it would make sense to treat them as one data set when collating their L2 data to make a L3 
aggregate. In that sense the evidence of the paper supports Lognormality (geometric mean) as, overall, being a 
better representation than Normality (arithmetic mean). We’re not sure that this question needs a modification to 



the manuscript as it is not directly on the main topic of the analysis; in any case, the review and this response will
eventually be public and citable via the ACP web page.

4. The study discussed the impact of geometric vs arithmetic means on trend analysis. How about the 
aerosol climatic impact? Are L3 products used in climate model evaluation or assimilation that the 
choice of aggregation method may have important effects?

We picked trends as one of several possible application areas where it’s easy to provide a quantitative example. 
For evaluating model AOD fields, ideally one should account for sampling differences and (as in the previous 
comment) geometric mean is probably the best thing to compare if one is only looking at one metric. Note that 
sampling differences are very important here as well – we cited some references in the paper to highlight this. Of
course it would be better to examine the full pdf (or at minimum some measure of average tendency and some 
measure of variability) but this is not always practical. We did mention aerosol forcing as another aspect but feel 
that providing too many quantitative examples would lengthen the paper and go out of scope. In response to this 
and other reviewer comments these aspects are addressed under the generally expanded discussion sections of
the paper.
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Abstract. Many applications of geophysical data - whether from surface observations, satellite retrievals, or model simulations

- rely on aggregates produced at coarser spatial (e.g. degrees) and/or temporal (e.g. daily, monthly) resolution than the high-

est available from the technique. Almost all these aggregates report the arithmetic mean and standard deviation as summary

statistics, which are what data users employ in their analyses. These statistics are most meaningful for Normally-distributed

data; however, for some quantities, such as aerosol optical depth (AOD), it is well-known that distributions are on large scales5

closer to Lognormal, for which geometric mean and standard deviation would be more appropriate. This study presents a

method to assess whether a given sample of data are more consistent with an underlying Normal or Lognormal distribution,

using the Shapiro-Wilk test, and tests AOD frequency distributions on spatial scales of 1◦ and daily, monthly, and seasonal

temporal scales. A broadly consistent picture is observed using Aerosol Robotic Network (AERONET), Multiangle Imaging

Spectroradiometer (MISR), Moderate Resolution Imagining Spectroradiometer (MODIS), and Goddard Earth Observing Sys-10

tem Version 5 Nature Run (G5NR) data. These data sets are complementary: AERONET has the highest AOD accuracy but

is sparse; MISR and MODIS represent different satellite retrieval techniques and sampling; as a model simulation, G5NR is

spatiotemporally complete. As time scales increase from days to months to seasons, data become increasingly more consistent

with Lognormal than Normal distributions, and the differences between arithmetic and geometric mean AOD become larger,

with geometric mean becoming systematically smaller. Assuming Normality systematically overstates both the typical level of15

AOD and its variability. There is considerable regional heterogeneity in the results: in low-AOD regions such as the open ocean

and mountains, often the AOD difference is sufficiently small (<0.01) as to be unimportant for many applications, especially on

daily timescales. However, in continental outflow regions and near source regions over land, and on monthly or seasonal time

scales, the difference is frequently larger than the Global Climate Observation System (GCOS) goal uncertainty on a climate

data record (the larger of 0.03 or 10 %). This is important because it shows the sensitivity to averaging method can and often20

does introduce systematic effects larger than the total goal GCOS uncertainty. Using three well-studied AERONET sites, the

magnitude of estimated AOD trends is shown to be sensitive to the choice of arithmetic vs. geometric means, although the

signs are consistent. The main recommendations from the study are that (1) the distribution of a geophysical quantity should

be analysed in order to asses how best to aggregate it; (2) ideally AOD aggregates such as satellite level 3 products (but also

ground-based data and model simulations) should report geometric mean or median rather than (or in addition to) arithmetic25

mean AOD; and (3) as this is unlikely in the short term due to the computational burden involved, users can calculate geomet-

1



ric mean monthly aggregates from widely-available daily mean data as a stopgap, as daily aggregates are less sensitive to the

choice of aggregation scheme than those for monthly or seasonal aggregates. Further, distribution shapes can have implications

for the validity of statistical metrics often used for comparison and evaluation of data sets. The methodology is not restricted

to AOD and can be applied to other quantities.

Copyright statement. TEXT5

1 Introduction

Geophysical data are obtained from a variety of data sources and model simulations across many disciplines in the Earth

Sciences. As one example, aerosol optical depth (AOD) is often measured on the ground by Sun photometry (e.g. Giles et al.,

2019), retrieved from passive (single- or multi- spectral, view, and polarisation state) or active (lidar) satellite observations (e.g.

Kokhanovsky and de Leeuw, 2009; Lenoble et al., 2013; Dubovik et al., 2019), and simulated by global models (e.g. Kinne10

et al., 2006). While each sensor or model has its own distinct spatial and temporal sampling characteristics, for applications in

many research areas it is common to use aggregates represented by daily to seasonal averages and on length scales of order tens

of km to several degrees. These are often somewhat coarser than the highest resolution available from a technique. For satellite

retrievals, these daily or monthly aggregates are known as level 3 (L3) data. Level 2 (L2) data represent an instantaneous

snapshot, often along the orbit track at the native resolution of the sensor (or some multiple of it), and level 1 (L1) data consist15

of the geolocated satellite measured radiances which are used as inputs to L2 algorithms. Daily L3 data are constructed by

aggregating L2 retrievals; monthly L3 data are typically constructed by aggregating daily L3, although in some cases
::::
they have

also been constructed from L2 directly, which gives different results if the contributing days have unequal sampling (Levy

et al., 2009).

Reasons for preferring L3-type (i.e. aggregated) data for some applications over L2-type include the decreased storage20

and computational overhead, the fact that aggregates are typically reprojected onto a regular grid and so
:::
are often more user-

friendly, and a desire to have a data set with fewer gaps. Gaps can be caused by unfavourable retrieval conditions; for example,

algorithms to retrieve atmospheric aerosol or surface reflective/emissive properties often require cloud-free, snow-free, and

daytime scenes. Gaps also arise from the simple fact that surface/satellite observations do not observe every location all the

time. Unfortunately, sampling incompleteness adds an additional representivity error in comparisons; in some fields, such as25

aerosol remote sensing, this can be difficult to quantify and sometimes
::
is not negligible (Levy et al., 2009; Sayer et al., 2010;

Colarco et al., 2014; Geogdzhayev et al., 2014; Schutgens et al., 2017). While global/regional model simulations are typically

already on a fixed grid and spatiotemporally complete, the use of daily or monthly model averages likewise has the appeal of

lower computational requirements and ease-of-use, particularly when comparing to an incomplete ground-based or satellite

product.30
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While the principles of uncertainty propagation in remote sensing are well established (Povey and Grainger, 2015; Merchant

et al., 2017), until recently comparatively little effort (relative to L1 and L2 development) has been put into determining the

most meaningful ways to construct L3 data and assess their uncertainties. This is despite the wide use of these data products in

research. One notable exception is sea surface temperature, for which comprehensive estimates of multiple components of L3

uncertainties have been developed (Kennedy, 2014; Bulgin et al., 2016a, b). Implicit in the calculation of summary statistics5

such as mean and standard deviation in a L3-type data set (or model average) is the assumption that the points aggregated

belong to some local population, such that the calculation of summary statistics is meaningful for describing the state of the

Earth. Use of binned data is another option, although analyses using binned aggregates are generally less common than those

using averages. One fundamental aspect of this is the question of how to average the data, i.e. which distribution’s summary

statistics provide the most useful and meaningful metrics to report. No simple distribution is likely to provide a perfect fit to any10

observational data set, so the relevant problem is in finding an approximate distribution sufficient for a particular application.

Choice of mean (and often additionally standard deviation), as is most common in many fields (including AOD), takes as given

that the Normal distribution (which is described in terms of these two parameters) is an appropriate distribution to summarise

this population. For a given mean τ̄n and standard deviation σn of AOD, the Normal frequency distribution P (τ)∼N (τ̄n,σ
2
n)

is given by15

P (τ) =
1

N

dN

dτ
=

N√
2πσn

exp

[
−1

2

(
τ − τ̄n
σn

)2
]
, (1)

where N is a normalisation constant (the total number of data points). As this is symmetric about τ̄N , this mean value is also

the distribution’s median and mode.

This assumption runs counter to the fact that AOD at a given location tends not to be Normally distributed, which has been

indicated in the literature for at least 50 years. Writing in terms of aerosol-induced turbidity (directly proportional to AOD),20

Flowers et al. (1969) presented measurements at 500 nm, collected through the early 1960s using sun photometers designed

by Volz (1959), as part of an observation network of several dozen sites across the United States of America (USA). Note that

this was but one of several networks observing atmospheric turbidity (sometimes separating aerosols from other contributions,

sometimes not) with various types of instrument through the 20th century. Holben et al. (2001) reviews others, with the earliest

being bolometer measurements in Washington, District of Columbia (DC), USA, beginning in 1902 (Roosen et al., 1973).25

Instrumentation and data processing (e.g.
:
calibration, data collection/reporting, cloud screening) methods limit the accuracy

and use of some of these earlier records; Forgan et al. (1993) provide a thorough discussion. Nevertheless, Flowers et al. (1969)

found (their Figure 4) cumulative distribution functions consistent with Lognormal distributions, i.e., Normal when the data

are represented in log space; analagous to Equation 1, the Lognormal frequency distribution P (log10 τ)∼ L(τ̄l,σ
2
l ) is given

by30

P (log10 τ) =
1

N

dN

dlog10 τ
=

N√
2πσl

exp

[
−1

2

(
log10 τ − log10 τ̄l

σl

)2
]
. (2)

Here τ̄l, σl are the geometric mean and geometric standard deviation of AOD respectively
:
;
::
as

:::
for

:::
the

::::::
Normal

:::::::::::
distribution,

::
the

:::::::::
geometric

:::::
mean

:::::
value

::
is

:::
also

:::
its

::::::
median

::::
and

:::::
mode. Base 10 logarithm is used here for numerical convenience. For easier
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comparison between the two distribution forms, in this study τ̄n (i.e. arithmetic mean) and τ̄l (i.e. geometric mean) are repre-

sented and will be discussed in absolute, rather than logarithmic, units. Note that due to the additive properties of logarithms

τ̄l is equivalent whether calculated as the geometric mean of τ , or the arithmetic mean of log10 τ , i.e. :

τ̄l =

(
N∏
i=1

τi

) 1
N

= 10
1
N

N∑
i=1

(log10 τi)
(3)

Geometric standard deviation σl is the standard deviation of log-transformed data (log10 τ ). Because of this, unlike arithmeric5

standard deviation, it is a multiplicative rather than additive factor (cf. Kirkwood, 1979), i.e. the central one standard deviation

of the data are encompassed by the range 10log10(τ̄l−σl) to 10log10(τ̄l+σl) (multiplicative), implying an asymmetric range when

expressed in absolute (non-logarithmic) units, compared to τ̄n±σn (additive) for an arithmetic mean.

Note that Equation 2 is often expressed in terms of dN/dτ rather than dN/dlog10 τ (i.e. linear rather than logarithmic

ordinate). In this case, using the chain rule and properties of logarithms, the relation between the two formulations is given by10

dN

dτ
=

dN

dlog10 τ

dlog10 τ

dτ
=

dN

dlog10 τ

1

ln(10)τ
(4)

where ln(10) denotes the natural logarithm of 10, ≈ 2.30. Some further relations between Normal and Lognormal distribution

parameters,
::::::::
including

:::::::::::::
transformations

::::::::
between

::::::::
arithmetic

::::
and

::::::::
geometric

:::::
mean

:::
and

:::::::
standard

:::::::::
deviation, are given by Table 1 of

O’Neill et al. (2000)
:::
and

::::::
omitted

::::
here

:::
for

::::::
brevity.

Other studies published around this time (e.g. Ahlquist and Charlson, 1967; Volz, 1970; Volz and Sheehan, 1971; Rangara-15

jan, 1972) reported AOD measurements in other parts of the world. These analyses were more concerned with estimating the

value and distribution (which turned out to be close to Normal) of its wavelength-dependence, via the Ångström exponent α

(Ångström, 1929), than that of AOD. This was of interest both for visibility applications and because α was often used to

estimate one of the parameters in the aerosol particle size distribution model of Junge (1955, 1963), which was used widely at

the time. Intriguingly, one implication of Lognormally-distributed AOD is that α should be Normally distributed (if the data20

belong to a single population). This arises from the definition of α,

α=−dlog(τ(λ))

dlog(λ)
≈−

log
τλ1
τλ2

log λ1

λ2

=− logτλ1
− logτλ2

logλ1− logλ2
, (5)

for AOD (τ ) at some wavelength λ, approximated in these studies using bispectral AOD measurements at wavelengths λ1,

λ2. Due (again) to the additive properties of algorithms, α as the log-ratio of two Lognormal distributions is equivalent to the

difference of two Normally-distributed quantities
:::::::
random

:::::::
variables

:
(even when they are correlated, as is the case for AOD),25

which is itself Normally distributed. If AOD were Normally distributed, then (because it is a positive-definite quantity) in low-

AOD conditions α would exhibit significant skew and possibly multiple modes (in high-AOD conditions α might appear close

to Normal but with incorrect kurtosis). Hence, the close-to-Normality of the α distributions presented in some of those studies,

given the fairly low-AOD conditions, support (although are not alone unambiguous evidence for) Lognormally-distributed

AOD populations. One caveat is that α distributions can exhibit false skew dependent on the magnitude and spectral correlation30

of the uncertainties in τ(λ) (Wagner and Silva, 2008). Note that Equation 5 is insensitive to choice of logarithmic base.
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Daily and monthly averages of extinction at multiple locations presented by Roosen et al. (1973) also show skewed distri-

butions associated with Lognormality, although frequency distributions are not directly shown. Several years later, Malm et al.

(1977) and King et al. (1980) presented spectral AOD measurements from the opposite ends (Page and Tucson, respectively)

of Arizona, USA. They realised that it was most appropriate to represent the resulting frequency distributions with logarith-

mic (geometric), rather than arithmetic, averages and standard deviations. More recent work has taken advantage of the great5

increase in data quality, volume, and coverage possible from better instrumentation and computational power. O’Neill et al.

(2000) showed that AOD derived from sun photometer measurements at a variety of individual Aerosol Robotic Network

(AERONET) sites spread around the world tends to have frequency distributions which statistically resemble a Lognormal

distribution to a much stronger degree than Normal. All these previous studies were of data aggregated over time summarised

at individual locations; around the same time, providing an early satellite example, Ignatov and Stowe (2000) found approx-10

imately Lognormal AOD (and Normal α) in aerosol retrievals over ocean scenes. This indicated that Lognormal tendencies

might be found in AOD data also aggregated spatially, as opposed to just temporally. Similar skewed distributions were reported

by Smirnov et al. (2011) for ship-based Sun photometer AOD observations taken on cruises. Maps of retrieved or simulated

AOD, and scatter density plots in satellite validation studies, show a similar pattern (e.g. Kinne et al., 2006; Remer et al., 2008;

Sayer et al., 2012): a large cluster of points at a comparatively low AOD, with a rapidly-decreasing number of points as AOD15

increases, corresponding to locations and times affected by severe smoke, dust storms, or pollution episodes.
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Figure 1. Synthetic frequency distributions for lognormally-distributed AOD with a mean of 0.2 and geometric standard deviation 0.35,

L(0.2,0.352), shown on (a) linear and (b) logarithmic AOD axes. Vertical red and blue dashed lines represent geometric and arithmetic

mean values, respectively. Horizontal red and blue arrows indicate the range of geometric and arithmetic mean ± one standard deviation.

Due to this asymmetry Normal statistics (i.e. arithmetic mean τ̄n and standard deviation σn) will overstate the typical level

of AOD observed and its variability, implying in some cases unphysical negative AOD.
:::
Here

::::::::
‘typical’

::
is

::::
used

:::
in

:::
the

:::::
sense

::
of

:::::::::
‘common’;

:::
the

:::::::
positive

::::
tail

::
of

::::::::::::::::::::
Lognormally-distributed

:::::
data

:::::
means

::::
that

:::
its

:::::::::
arithmetic

:::::
mean

:::
lies

::::::
above

::
its

:::::::
median,

:::::
such

:::
that

:::
the

:::::::::
arithmetic

:::::
mean

::
is

:::::::::::
‘uncommon’

::
in

:::
the

:::::
sense

::
of

::::::
being

::::::::
somewhat

::::::
larger

::::
than

:::
the

::::::
median

::::::
value. This is illustrated in20

Figure 1, which compares arithmetic and geometric statistics for a synthetic AOD distribution L(0.2,0.352), similar to that

of many locations across the United States and Europe (e.g. O’Neill et al., 2000). The central one standard deviation (1σ)
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about the mean, which corresponds to an AOD range of 0.09-0.45 (i.e. log10(τ̄l)±σl in log space) when calculated using

the geometric mean and standard deviation, correctly encompasses approximately 68.4 % of the data. In contrast calculating

arithmetic mean and standard deviation gives 0.28 (i.e. overstating the typical AOD) and 0.27; the resulting 1σ range (τ̄n±σn,

0.01-0.55) includes 89.2 % of the data (i.e. overstating the variability). Figure 1(b) reveals the symmetry of the distribution when

shown in log space. Thus, representing a Lognormally-distributed quantity using Normal-appropriate statistics has systematic5

quantitative implications for the interpretation of the data.
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Figure 2.
::::::::
Difference

:::::::
between

:::::::
geometric

:::
and

::::::::
arithmetic

:::::
mean

::::
AOD

:::::::
(τ̄l− τ̄n)

::
as

:
a
:::::::
function

::
of

:::::
median

:::::::::
(equivalent

::
to

:::::::
geometric

:::::
mean)

:::::
AOD

:::
and

:::::::
geometric

:::::::
standard

:::::::
deviation

:::
for

::::::::::::::::::
Lognormally-distributed

::::
data.

::::::::
Diamonds

::::::
indicate

:::
the

::::::
median

::::
AOD

:::
and

::::::::
geometric

:::::::
standard

:::::::
deviation

::::::::
(calculated

:::
over

:::
all

::::::::
direct-Sun

::::
data)

::::
found

::
at
::::::
assorted

:::::::::
AERONET

::::
sites

:::::
which

::::
have

:::
been

::::::::
well-used

::
in

::
the

::::::::
literature.

:::::
Figure

::
2
:::::
takes

::
a

::::
more

:::::::
general

::::
look

:::
at

:::
the

:::::::::
difference

:::::::
between

:::::::::
geometric

::::
and

::::::::
arithmetic

::::::
mean

:::::
AOD

::::::::
calculated

:::::
from

:::
an

:::::::::
underlying

:::::::::
Lognormal

:::::::::::
distribution;

:::
this

::::::::
becomes

:::::
more

:::::::
negative

::
as

::::::
either

:::
the

::::::
median

:::::
AOD

:::
or

::::::::
geometric

::::::::
standard

::::::::
deviation

:::::::
increases

::::
(i.e.

:::
as

:::
the

::::::::::
distribution

::::::
moves

::::::::
rightward

:::
or

:::::::::
broadens).

:::::
Also

::::::
shown

:::
are

::::::::
long-term

::::::
values

:::
of

::::
both

::::::::::
parameters

:::
for

::::::
selected

::::::::::
AERONET

::::
sites

::::::
which

::
are

:::::::::
frequently

::::
used

::
in

:::
the

::::::::
literature.

::::
The

:::::::
resulting

::::::::::::::::::
geometric-arithmetic

:::::
mean

::::
AOD

:::::::::
difference10

::
for

:::::
these

::::
sites

:::::
spans

::::
from

::::::
around

:::::
-0.01

::
to

:::::
more

:::::::
negative

::::
than

:::::
-0.10,

:::::
which

:::
are

::::::::::::
non-negligible

::::::
values.

::::
This

:::::::
implies

::::
that,

::
at

::::
least

::
on

::::::::
multiyear

::::::::::
timescales,

:::::::::
knowledge

::
of

:::
the

:::::
shape

::
of

:::
the

::::::::::
underlying

:::::::::
distribution

::::
can

::
be

::::::::
important

:::
for

::::::
choice

:::
and

::::::::::::
interpretation

::
of

::::::::
summary

::::::
metrics.

:

Lognormal distributions are common across quantities in the natural sciences, and tend to arise when the underlying phe-

nomenon is governed partly by multiplicative (rather than additive) factors; Limpert et al. (2001) provide general , and
:::::::
provides15

::::::
general

::::::::
examples

:::
and

::::::::::
discussion. Hinds (1999) and Anderson et al. (2003)

::::::
discuss aerosol-specific , examples and discussion.

For aerosols these factors may include
:::::
factors

:::::
such

::
as, for example, changes in emissions or removal (e.g.

:
onset of fires/soil

fragmentation on the one hand, or precipitation on the other),
::
or

:::::::::
turbulence

::::
and

:::::::::
dispersion

:::::::
affecting

:::::::
different

:::::
parts

::
of

:::
the

::::
size

::::::::::
distribution, which are not linear

::::::
additive

:
in effect. As well as AOD, aerosol

::::::
Aerosol

:
particle size distributions may be repre-

sented sufficiently well by combinations of lognormal modes (Dubovik et al., 2002) that this is common practice in satellite20

retrieval algorithms.
::::
Note

::::
that,

:::
for

::
a

:::::
given

:::
size

:::::::::::
distribution,

:::::
AOD

::
is

::::::::::
proportional

::
to
:::::

total
:::::
mass. Kok (2011a, b) presented a
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theoretical model of dust emission based on fragmentation theory and lognormal size distributions, which agreed with mea-

surements better than existing parametrisations in global models.
:
A

::::::
further

:::::
issue

::::::::
important

:::
to

:::::::
consider

::
is

::::
that

:::
the

::::::::
observed

:::::::::
distribution

::
of

::
a

:::::::
quantity

::
is

:
a
::::::::::
convolution

::
of

:::
the

:::
true

:::::::::::
distribution,

:::
the

:::::::
sampling

::
of

:::
the

::::::
sensor

:::
(or

::::::
model),

::::
and

:::
any

::::::::::::
measurement,

::::::
model,

:::
or

:::::::
retrieval

::::
error.

::::::::::::
Dependendent

:::
on

:::
the

::::
form

::
of

:::::
these

:::::
errors,

:::
the

:::::::::
underlying

:::::
shape

::
of

::
a

:::::::::
distribution

:::::
might

:::
be

:::::::
skewed.

:::
For

:::::::
example

:
if
::

a
:::::::
satellite

::::
AOD

:::::::
retrieval

:::::::::
algorithm

:::::
makes

::
a
:::::
biased

::::::::::
assumption

:::::
about

::::::
aerosol

::::::
single

::::::::
scattering

::::::
albedo

:
it
::::

can
::::
lead

::
to5

:
a
::::::::
fractional

:::::
error

::
in

:::::::
retrieved

:::::
AOD

::::::::::::::::::
(e.g. Eck et al., 2013)

:
,
:::::::::
broadening

::
or

:::::::::
narrowing

:::
the

:::
tail

::
of

:::
the

::::::::
observed

:::::
AOD

::::::::::
distribution

:::::::::
(dependent

::
on

:::::::
whether

::::
SSA

::
is
::::::
under-

::
or

::::::::::::::
over-estimated).

Similar behaviour is found for many other remotely-sensed quantities; for example, Campbell (1995) assessed Lognormality

on large scales for oceanic chlorophyll, water-leaving radiance, and photosynthetic yield, while cloud optical depth (COD)

is also known to be distributed approximately Lognormally (King et al., 2013), and some of the most widely-used cloud10

classification schemes (introduced by Rossow and Schiffer, 1999) are based on joint histograms of (roughly-lognormal) COD

against cloud-top pressure.
::::
Both

::::::
rainfall

:::::
rates

:::
and

:::::
cloud

::::::
particle

::::
size

:::::::::::
distributions

:::
can

:::::::::
sometimes

::
be

::::::::::
represented

::::
well

:::
by

::::
both

:::::::::
Lognormal

:::
and

:::::::
Gamma

::::::::::
distributions

::::::::::::::::::::::::::::::::
(Cho et al., 2004; Platnick et al., 2017)

:
.
:
A
:::::::::::
commonality

:::::
these

::::::::
quantities

:::::
share

::::
with

:::::
AOD

:
is
::::
that

::::
they

:::
are

:::::::::::::
positive-definite

:::::::::
quantities

:::
(i.e.

::::::
cannot

::::
take

::::
zero

::
or

::::::::
negative

::::::
values)

:::
and

:::::
often

::::
have

::
a
::::
long

:::
tail,

::::::
which

:::
are

::::
also

::::::
features

::
of
::::::::::
Lognormal

:::
and

:::::::
Gamma

:::::::::::
distributions.

:
15

Recent efforts by other researchers have helped to understand spatial and temporal scales in AOD variations and their po-

tential effects on data aggregates. Anderson et al. (2003) used surface-level aerosol scattering and column AOD and found

autocorrelation could remain high on scales of tens to several hundreds of km, and time scales of days to weeks. Noting

that study, Kovacs (2006) assessed validation statistics of Moderate Resolution Imaging Spectroradiometer (MODIS) AOD

against AERONET as a function of the distance of satellite retrievals from AERONET sites. The level of agreement showed20

site-specific drop-offs with distance, with generally less variability over ocean sites which were less likely to be influenced

by local sources. Alexandrov et al. (2004) used a network of shadowband radiometers across the Southern Great Plains in

the USA to perform an energy spectrum analysis on AOD variations. They observed a scale break at length scales around

12-15 km (interestingly, slightly larger than many spaceborne L2 AOD products), below which the structure function of AOD

variations showed one exponent, and above which they showed another, corresponding to regimes where variations were dom-25

inated by 3D and 2D turbulence, respectively. Using field campaign observations and satellite retrievals over the southeastern

USA, Kaku et al. (2018) note that correlation lengths can differ for surface-level vs. column aerosol loading. These studies of

correlation structure are important for defining suitable scales for a population to be aggregated, and for describing how the

error characteristics of such aggregates might vary spatially and temporally.

Several studies have sought to assess representation uncertainty in L3-type aggregates; Sayer et al. (2010) examined how30

the completeness of sampling of satellite AOD retrievals within model grid cells affected the level of agreement between data

sets. Li et al. (2016) assessed how representative long-term AERONET sites are on satellite L3 spatial scales and monthly

time scales, as part of a larger body of work to characterise and reduce the uncertainty in multi-sensor monthly mean AOD

records. From a perspective of comparing global model grid cells to point measurements, Schutgens et al. (2016a) assessed to

what extent representativeness errors caused by coarse model grid size could be decreased by temporal averaging. They found35
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that AOD uncertainties could be decreased to a greater extent than other aerosol properties, but that such errors were often still

larger than desirable. Schutgens et al. (2017) then attempted to estimate representation uncertainties on ground- or satellite-type

aerosol data aggregates on different spatiotemporal scales. They found that spatiotemporal collocation was important and, as

in the prior study, representation errors could still be significant in some cases, such as when near aerosol point sources or in

complex terrain. Alexandrov et al. (2016) proposed describing the logarithm of AOD in terms of Gaussian structure functions5

(accounting for aerosol loading, variance, and autocorrelation), and presented a comparison between MODIS retrievals with

global circulation model simulations represented in this way. Povey and Grainger (2019) aggregated satellite AOD retrievals

on a monthly basis (i.e. L2 to monthly L3 directly) and represented the results in terms of sums of lognormal modes. They

found that doing so both highlighted regions of significant variability, and aided in identifying systematic differences between

data sets.10

This analysis aims to complement these other recent studies, building most directly on O’Neill et al. (2000), as a further

step towards a more robust calculation and use of AOD aggregates in ground-based, satellite, and model-simulation studies.

While the example application is to AOD, the framework introduced is applicable more generally to other (geophysical or not)

data aggregates. The central questions to be addressed are: on commonly-used spatial and temporal scales, does a Normal or

Lognormal distribution better represent AOD frequency distributions? When and where does the choice matter? When and15

where might neither distribution be adequate? And what are the implications for L3 data and related analyses if a Lognormal

representation is used instead? Section 2 describes the data and methodology employed. Section 3 presents the results of the

analysis, and Section 4 discusses the implications of the findings for the creation and use of aggregated AOD data or model

simulations.

2 Definitions, methodology, and data20

2.1 Data and model simulations used

This analysis uses ground-based observations from AERONET, together with satellite retrievals from the Multiangle Imag-

ing Spectroradiometer (MISR) and MODIS instruments, and model simulations from the Goddard Earth Observing System

(GEOS) Version 5 Nature Run (G5NR). All of these have different spatiotemporal sampling techniques and associated uncer-

tainties in their estimates of AOD. Considering a diverse set of data sources such as this provides a more comprehensive picture25

of the frequency distributions of AOD than would be obtained from only a single data type. It allows the strengths of individual

techniques to be used, while helping to avoid erroneous conclusions stemming from limitations of individual techniques. The

data sources are described below.

2.1.1 AERONET

AERONET provides aerosol (and water vapour) data from Sun photometer measurements, obtained with standardised ac-30

quisition, calibration, and processing protocols. This analysis uses the latest version 3 direct-Sun level 2 (cloud-screened,
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post-deployment calibrated, and quality-assured) AERONET AOD data. Note ‘level 2’ in AERONET terminology refers to

quality-assurance level, regardless of temporal aggregation level, as opposed to satellite level 2 which refers to instantaneous

data only. Version 3 includes improvements to sensor characterisation, site geolocation accuracy, and cloud-aerosol discrimina-

tion (Giles et al., 2019), particularly in the detection of stable optically-thin cirrus cloud layers, and rapidly-evolving fine-mode

aerosol plumes. Here, all direct-Sun observations from all sites (1185 at the time of writing) from the start of 1993 to the end5

of 2018 are used. Measurement cadence depends on the instrument model used and can be adjusted dependent on the desired

mix of scan types, but for direct-Sun observations is typically every 5-15 minutes in cloud-free skies during daylight hours.

All instruments deployed as part of AERONET provide AOD at 440, 675, 870, and 1020 nm at a minimum; the majority

include additional channels between 340 and 1600 nm, with 500 nm being a common addition. In this analysis, AERONET

AOD are interpolated spectrally to 550 nm, as this is a common reference wavelength for many satellite data products and10

model simulations, although the conclusions do not change if other wavelengths are used instead. Hereafter, mentions of AOD

without a specified wavelength refer to AOD at 550 nm. This is performed with a least-squares fit of all available AERONET

AODs within the 440-870 nm wavelength range (typically 4, more for some configurations) to a quadratic polynomial,

log(τλ) = a0 + a1 log(λ) + a2 log(λ)2, (6)

where coefficients a0, a1, a2 are calculated on a point-by-point basis. This quadratic formulation is more robust to calibration15

problems in individual channels
::::
than

:
a
:::::
linear

:::::::::::
two-channel

:::::::::::
interpolation. It also reflects the fact that the relationship between

log(τ) and log(λ) is not linear but shows curvature dependent on fine mode particle size (Eck et al., 1999; Schuster et al.,

2006). When more than two wavelengths are available, this is a more realistic description of the spectral derivative of AOD

than the bispectral approximation in Equation 5. The uncertainty on AERONET midvisible AOD is ∼0.01 (Eck et al., 1999),

somewhat smaller than typical uncertainties on satellite retrievals or model simulations.20

2.1.2 MISR

The latest version 23 of MISR L2 data provides AOD at 558 nm, over land and ocean, with a horizontal pixel size of 4.4 km;

use of 558 rather than 550 nm has negligible impact on the analysis here. The instrument includes 9 cameras with a maximum

swath width around 400 km, although the edges of the scan are not covered by all cameras and so retrievals are provided over

a slightly narrower swath. This provides repeat views of a given scene roughly once per week at tropical latitudes and once25

every three days at high latitudes. MISR flies on the Sun-synchronous Terra platform, providing data from early 2000, with a

10:30 a.m. local solar Equatorial crossing time. Separate processing algorithms are applied over land and dark water; version

23 updates and initial evaluation are provided by Garay et al. (2017) and Witek et al. (2018). These have not yet been validated

on a global basis, but are expected to reduce some high biases seen over low-AOD water scenes, and low biases seen over

high-AOD scenes, reported in validation analyses of previous data versions (e.g. Kahn et al., 2010).30

This analysis uses five years (2004-2008) of L2 data, corresponding to around half a million retrievals per day (after ac-

counting for unfavourable retrieval conditions). The choice of record length is a balance between robustness of the analyses

and storage/processing concerns; one year of the MISR L2 product (MIL2ASAE) corresponds to approximately 170 GB. As
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an order-of-magnitude estimate, assuming (on average) a revisit time of five days and half the data being unsuitable for retrieval

due to e.g. cloudiness, approximately 200 views of a given point on the Earth would be expected over a five-year period. While

this would show considerable spatial variation, qualitatively it is expected to be sufficient as it is well-known from observations

and modeling that the main features of the global aerosol system are systematic and repeat year-to-year (e.g. d’Almeida et al.,

1991; Holben et al., 2001; Kinne et al., 2006; Remer et al., 2008). Recently, Lee et al. (2018) used MISR (version 22) and5

MODIS retrievals to assess how many years of data were required (on both an annual and a seasonal basis) for a calculated

climatology to converge to within an AOD of ±0.01. They found that over much of the open ocean and many land regions 5

or fewer years were sufficient, although for some aerosol source regions even the full MISR record (17 years at the time) was

insufficient. This does not directly answer the question of what record length is necessary for the present analysis, although

does suggest that except for near strong source regions the results should sample sufficient interannual variability to be only10

weakly sensitive to the specific time period chosen.

2.1.3 MODIS

The MODIS instruments fly on the Terra and Aqua platforms; L2 data from the latest Collection 6.1 (C61) from Aqua (launched

2002) are used here, for the same five-year period as the MISR analysis. MODIS Aqua is thought to have slightly better

radiometric performance than Terra (e.g. Lyapustin et al., 2014). Additionally, the Aqua orbit has a 1:30 p.m. local solar15

Equatorial crossing time, so this provides a higher degree of sampling independence from the MISR retrievals than if MODIS

Terra were used. The MODIS Atmospheres aerosol product used here (MYD04) includes retrievals from two Dark Target (DT)

algorithms, for pixels identified as water and vegetated land respectively, plus the Deep Blue (DB) algorithm. The C61 DT land

algorithm is similar to that of the previous Collection 6 (C6, Levy et al., 2013), but implements an updated surface reflectance

model, detailed in Gupta et al. (2016), to reduce a systematic positive bias of DT over urban surfaces. The C61 DB data include20

numerous small updates to surface/aerosol models and cloud/quality assurance (QA) tests to reduce known error sources (Hsu

et al., 2019; Sayer et al., 2019). All three algorithms also benefit from sensor calibration updates. Since C6, MODIS retrievals

have included a QA-filtered merged data set combining DB and DT retrievals to increase spatial coverage. The C6 merging

algorithm is described by Sayer et al. (2014), and essentially uses the water DT algorithm for water scenes and picks from or

averages the DB and DT algorithms dependent on surface type over land. The same merging logic is applied in creation of the25

C61 merged product, which is used here. Note that the DT land algorithm permits retrieval of AOD down to -0.05, although

negative AOD is unphysical; here, zero or negative AOD values are set to 0.0001 instead (as logarithms are only defined for

positive values). The results of this analysis are negligbly sensitive to the choice of AOD floor threshold.

MODIS’ 2,330 km swath results in near-global daily observations in the tropics, and once or twice-daily observations at

higher latitudes. Retrievals are provided at 10 km nominal horizontal pixel size at the sub-satellite point. Towards the edge of30

the scan, the scan geometries and Earth’s curvature cause a ‘bow-tie distortion’ where pixels become larger, and consecutive

scans begin to overlap (Xiong et al., 2006). This distortion at the edge of the swath is about a factor of two in the along-track

and five in the across-track direction (i.e. tenfold increase in pixel area), and overlap is close to 100 %, which has consequences
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for AOD retrieval characteristics (Sayer et al., 2015). For about half of the swath, however, the areal expansion is less than a

factor of two compared to the nominal 10 km×10 km pixel size.

2.1.4 GEOS-5 Nature Run

The G5NR is a global 7 km non-hydrostatic mesoscale simulation based on the Ganymed version of GEOS-5 (Putman et al.,

2014). The aerosol component is described and evaluated by Castellanos et al. (2018). This is a two-year (May 2005-2007)5

simulation, and while some factors (e.g. volcanic and biomass burning emission sources) were prescribed, meterology was not.

Hence, the G5NR is not a direct simulation of that specific historical period (and should not be compared one-to-one against

real observations from that period), but designed to provide a realistic and representative simulation of the Earth system from

which synthetic observations could be generated for e.g. observation system development.

Aerosol output fields are provided on a 30 min timestep on a 0.0625◦ regular latitude/longitude grid. This includes column10

AOD contributed by organic carbon, black carbon, dust, sea salt, and sulfate, and following the recommendations of Castellanos

et al. (2018), scaling factors (their Table 3) are applied to these component AODs before summing to get the total AOD. These

scaling factors bring the G5NR component AODs in line with a climatology from the Modern Era Retrospective analysis

for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero was a long-term reanalysis which assimilated

MODIS-based AOD; its aerosol component is evaluted by e.g. Buchard et al. (2015). Data from the simulated year 2006 only15

are used; Castellanos et al. (2018) noted that G5NR aerosol fields were initialised to zero, and so did not use the initial six

months of the simulation to ensure that equilibrium had been reached. The final six months of the simulation are also discarded

here to ensure that each calendar month has equal representation in the analysis. As this leaves only four available seasons,

G5NR output is analysed on only a daily and monthly basis.

2.2 The Shapiro-Wilk test and its application20

Shapiro and Wilk (1965) present a method to test whether a sample of data are consistent with draws from a Normally-

distributed population. Their derivation included some empirical comparisons to other tests, and they found it to have some

advantages over those techniques. Yap and Sim (2011) performed Monte Carlo simulations of various distributions to assess

eight different Normality tests, and found that the Shapiro-Wilk (SW) test has greatest statistical power in most circumstances.

The SW test computes the squared discrepancy between the quantiles of the sample with those expected from random samples25

from a Normally-distributed population. Implementations are available in many software packages and languages. The test

statistic W for a sample x is defined

W =

(
N∑
i=1

aix(i)

)2

N∑
i=1

(xi− x̄)
2

(7)
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where x(i) indicates the ith smallest sample member (known as the ith order statistic of x), and ai are weighting coefficients

calculated from the expected values (m) and covariance (V ) of order statistics from Normally-distributed data:

(a1, . . . ,aN ) =
mTV −1

(mTV −1V −1m)1/2
(8)

The test requiresN ≥3, andW can take values between 0 and 1. Sarhan and Greenberg (1956) (their Table 1), later corrected

in Sarhan and Greenberg (1969), provide V for N ≤20; Shapiro and Wilk (1965) provide approximate calculations to larger5

sample sizes, and Royston (1982, 1992) provide approximate m and V up to N = 5000. Relevant sample sizes in the present

study are up to several hundred points. As the Normal distribution is symmetrical about its mean, the coefficients ai are

symmetrical; e.g. a= (−0.643,−0.281,−0.088,0.088,0.281,0.643) for N = 6. Note the sign of the elements of ai is not

relevant due to the square in the numerator of Equation 7. The coefficients are larger for the outer elements of ai, corresponding

to the tails of the data sample (i.e. the outer order statistics x(i)). The numerator of Equation 7 thus represents a tail-waited10

:::::::::::
tail-weighted sum of squares, while the denominator a sum of squared deviations from the sample mean x̄. For Normally-

distributed samples these increase around the same rate, such that W is close to 1; for non-Normal data the denominator

increases more rapidly such that W becomes closer to 0.

Royston (1992) provide a normalisation for W in order to estimate a p-value for the result, i.e. the probability that a W

score at least as extreme would be observed under the Null hypothesis of the sample being drawn from a Normally-distributed15

population. The Royston (1992) extension for large N and normalisation are used here. Note that the equivalent test for

Lognormality is simply W calculated using the logarithm of the data, i.e. here log10 τ rather than τ . A high p-value indicates

consistency with draws from a Normal (or Lognormal) distribution. One important point to note is that this test only tests

the degree departure from Normality: it does not test the importance of that depature. As with any test like this, the power

(i.e. efficacy at detecting a given departure) is a function of sample size. Thus for large sample sizes it is easier to detect a20

discrepancy from Normally-distributed data, even if the discrepancy is trivial. Both of these points should be borne in mind

when interpreting the results.

The SW test is employed here as follows. First, spatial distributions of AOD are assessed by aggregating the MISR, MODIS,

and G5NR data from their native spatial resolutions to 1◦ (as this is a common spatial scale for L3 AOD products and model

output) and applying the SW test, without any aggregation in time. The resulting aggregates thus have a daily timestep for25

MISR and MODIS (considering all orbits from a given calendar day), and 30 min for G5NR. Next, temporal variations of

AOD within a day are assessed by aggregating the AERONET and (previously spatially-aggregated) G5NR data on a daily

basis and applying the SW test to each site/grid cell. Aggregating G5NR first in space and then in time is more similar to

the way polar-orbiting L3 aggregates sample the global aerosol system (as each L2 product is essentially a near-instantaneous

snapshot), although the results are not significantly different if G5NR is analysed first in time and then in space. Finally,30

the resulting daily aggregates from all data sets are aggregated to monthly and seasonal time steps and the SW test applied

to each site/grid cell. Seasons are defined December-January-February (DJF), March-April-May (MAM), June-July-August

(JJA), September-October-November (SON). Note the monthly/seasonal calculations use daily τ̄l as a basis, although results

differ negligibly if τ̄n is used instead.
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In each case, at least three data points are required for an aggregate to be considered valid; this is the minimum required

for the SW test calculation, and also the minimum number of observations for AERONET or MODIS standard processing to

report a daily average value, and the minimum number of days for MODIS products to report a monthly average value. The

SW p-value is computed for distributions of τ and log10 τ , with resulting p-values denoted p(τ) and p(log10 τ) respectively,

and the results fall into one of four possible categories:5

1. |τ̄l− τ̄n| ≤ τt. In this case the choice of Normal or Lognormal summary statistics may be considered unimportant, as the

resulting arithmetic/geometric averages are similar. The threshold τt is taken as 0.01, which is the typical uncertainty on

AERONET midvisible AOD (Eck et al., 1999), and thus represents a reasonable lower bound on achievable uncertainty

on average AOD from models/observations at the present time. It is also similar to the thresholds for AOD accuracy over

land (±0.016) and ocean (±0.011) estimated by Chylek et al. (2003) to be necessary to be able to constrain the aerosol10

direct radiative effect to ±0.5 Wm−2.

2. |τ̄l− τ̄n|> τt, but both p(τ)< pt and p(log10 τ)< pt. In this case both tests return a smaller p-value than some threshold

pt, indicating evidence of detectable deviation from both Normal and Lognormal distributions at this significance level.

Here pt is taken as 0.001; if the underlying AOD data really were perfectly Normally or Lognormally distributed (and if

the distinction was important) then approximately 0.1 % of data would be expected to fall into this category. However, in15

reality it is expected that the true distributions are neither of these, and additionally measurement/model errors may dis-

tort the observed distributions, leading to more points within this category. Since the p-value is not informative about the

magnitude of a deviation from Normality/Lognormality, the additional criterion |τ̄l− τ̄n|> τt is included as it indicates

that the magnitude of the AOD difference is sufficiently large that it might be important for some scientific applications

(i.e. both statistically and scientifically relevant). Note that the analysis here is only weakly sensitive to the choice of pt.20

3. p(τ)> p(log10 τ), p(τ)> pt, and |τ̄l− τ̄n|> τt. Here the data are more consistent with draws from a Normal than

a Lognormal distribution, the data are reasonably consistent with a Normal distribution, and the difference between

arithmetic and geometric mean AOD is not negligible. In this case use of Normal summary statistics is more appropriate.

4. p(τ)< p(log10 τ), p(log10 τ)> pt, and |τ̄l− τ̄n|> τt. The converse of category 3, here the data are best represented by

Lognormal summary statistics.25

The results will be interpreted in terms of relative frequencies of these four categories, as it is important to realise that the

idiosyncrasies in real-world data complicate the estimation and calculation of p-values. For example, the ideal case of indepen-

dent random samples from the true population cannot be achieved due to correlated errors in observations or simulations, and

non-random sampling in space and/or time. SW (or other tests) cannot say whether or not the data are Normally/Lognormally

distributed for any given instance, but instead only help say to what extent the two distributions are reasonable, useful approx-30

imations on the whole. In cases of small sample sizes the statistical power of the test may remain small; if the test results for a

given area are essentially noise, then similar frequences of Normality and Lognormality might be expected. The best that can

be done is to keep in mind the limitations of the data, and the statistical tests, in the interpretation of the analysis.
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3 SW test categorisation results

3.1 Spatial and temporal variation within a day
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Figure 3. Fraction of data falling into each of the four categories of Shapiro-Wilk test results, for AOD distributions aggregated temporally

over a day. Columns show (left) AERONET and (right) G5NR data
:::
(note

:::
the

::::
latter

::::
were

:::::::::
previously

::::::
spatially

:::::::::
aggregated

::
to

::
1◦). From top-

bottom, rows indicate the fraction where the data are more consistent with a Normal distribution and |τ̄l−τ̄n|> 0.01; fraction more consistent

with a Lognormal distribution and |τ̄l− τ̄n|> 0.01; fraction where |τ̄l− τ̄n| ≤ 0.01; and fraction where |τ̄l− τ̄n|> 0.01 and the data show

large discrepancies from frequencies expected by both Normal and Lognormal distributions. For AERONET, at least 50 days are required

for a site to be considered valid.

Figures 3 and 4 respectively show the categorisation results for temporal (from AERONET and G5NR) and spatial (from

MISR, MODIS, and G5NR) frequency distributions of AOD on daily scales. As a summary, Table 1 shows the global mean

fractions of data in each category; note that these are the mean of each valid AERONET site/grid cell (i.e. all sufficiently-5
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(a) MISR, fraction Normal fits best
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(d) MISR, fraction Lognormal fits best
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Figure 4. As Figure 3, except for AOD distributions aggregated spatially over a day from full resolution to 1◦,
:::::::::
considering

::::
data

::::::
collected

:::
on

:::::::
individual

::::
days. Columns show (left) MISR, (middle) MODIS, and (right) G5NR data. At least 50 contributing days are required for a grid

cell to be valid; grid cells with insufficient data are shaded in grey.

sampled areas are treated equally). Sites/grid cells require at least 50 valid days with data to be included in these statistics. As

the spatial sampling between the data sets is quite different (Figures 3, 4) the results from the different data sets are not expected

to match, but reading the table left-right gives a sense for how the categorisations change on the different scales assessed. The

following general conclusions can be drawn about variability relevant to daily aggregation:

1. Patterns shown between Figures 3 and 4 are similar, i.e. daily AOD frequency distributions tend to have similar shapes5

whether for temporal aggregation over a day (as from AERONET or model output) or spatial aggregation on scales of 1◦

(as from polar-orbiting satellites). This establishes that it is reasonable to aggregate spatial and temporal data on a daily

basis in a similar way.

2. In areas of low to moderate AOD, including the global oceans, mountains, and fairly clean continental regions, for a

strong majority (typically 80 % or more) of days the difference between arithmetic and geometric mean AOD (|τ̄l−τ̄n|) is10

smaller than 0.01. In these circumstances, calculating an arithmetic mean when the underlying distribution is Lognormal

(or vice-versa) introduces an error
::::
offset

:
smaller than 0.01.
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Table 1. Mean fraction of data falling into the four categories of SW test results.

Category/data set Daily spatial Daily temporal Monthly temporal Seasonal temporal

Difference |τ̄l− τ̄n| ≤ 0.01

AERONET - 0.892 0.436 0.315

MISR 0.942 - 0.647 0.503

MODIS 0.843 - 0.335 0.177

G5NR 0.961 0.916 0.679 -

|τ̄l− τ̄n|> 0.01 and more consistent with Normal distribution

AERONET - 0.022 0.094 0.058

MISR 0.015 - 0.113 0.109

MODIS 0.074 - 0.272 0.290

G5NR 0.001 0.013 0.038 -

|τ̄l− τ̄n|> 0.01 and more consistent with Lognormal distribution

AERONET - 0.043 0.465 0.594

MISR 0.022 - 0.239 0.385

MODIS 0.049 - 0.385 0.423

G5NR 0.003 0.025 0.275 -

|τ̄l− τ̄n|> 0.01 and inconsistent with both distributions

AERONET - 0.043 0.006 0.033

MISR 0.021 - 0.0003 0.004

MODIS 0.034 - 0.007 0.111

G5NR 0.034 0.045 0.008 -

3. In southern and eastern Asia and parts of North Africa, where the AOD is often high, the difference between arithmetic

and geometric mean is more frequently (up to around half the time) larger than 0.01. This implies greater sensitivity to

the choice of averaging method. For these cases, Lognormality tends to be a better representation of the distributions

than Normality, although for a non-negligible fraction of the data neither distribution shape provides a good fit.

Figure 5 provides brief examples of AOD distributions falling into three of the SW test categorisations, for AERONET5

AOD data collected within a single day. As will be shown later, differences between Normal and Lognormal distributions

become more pronounced at longer timescales than in these examples. The case for Midway Island (in the Pacific Ocean), a

location dominated by low-AOD maritime conditions (Smirnov et al., 2003), shows a case where the arithmetic and geometric

mean AOD are both around 0.055 and thus choice of summary statistic is likely unimportant for most applications (although

note that p(log10 τ)> p(τ), indicating greater consistency with a Lognormal distribution). The case for Moscow (Russia)10

taken from a period of extreme wildfires during summer 2010, characterised by intense smoke (Chubarova et al., 2012).
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(a) Midway Island, 03 July 2006
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(b) Moscow, 06 August 2010
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(c) Pontianak, 21 October 2015
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Figure 5. Histograms (grey) of 550 nm AOD observed at three AERONET sites on individual dates (given in panel titles), corresponding to

different SW test classification results. Arithmetic and geometric mean AOD (τ̄n, τ̄l respectively), p-values for the SW test for the respective

distributions, number of points, and category are also given for each case. Bin sizes are site-dependent. Normal and Lognormal fits to each

histogram are shown in blue and red, respectively.

Here, the data are more consistent with a Normal distribution than Lognormal, and |τ̄l− τ̄n|= 0.05. This example (N=21)

illustrates some difficulties in purely visual inference about distribution shape when histograms are sparse; the median number

of points contributing to a single day of AERONET data globally was 25. In this case the data are more consistent with a

Normal distribution due to a closer match toward the tails of the distribution, but the data are consistent with both Normal and

Lognormal distributions under most relevant significance levels. The final case is from Pontianak (Borneo, Indonesia) during5

an intense period of biomass burning in 2015, an event analysed in detail by Eck et al. (2019). For this date |τ̄l− τ̄n|= 0.08

and the data show greater consistency with Lognormality, due to the skew of the distribution.

(a) AERONET AOD on July 5, 2011
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Figure 6. (a) Time series and (b) histogram (bin size 0.025) of 550 nm AOD observed at the Essex, Maryland AERONET site on 5 July

2011.

Days where neither Normal nor Lognormal distributions provide a good fit to AOD observations are commonly those where

multiple regimes are present within a grid cell or during a day. Figure 6 presents a case study from the AERONET site in Essex,

Maryland, USA on 5 July 2011. This day was previously analysed by Eck et al. (2014), as a case of rapid AOD enhancement10
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following the development of a cumulus cloud field just after 17:00 Universal Time Coordinated (UTC), near solar noon (Figure

6a). The Sun photometer was operated with a 3 min sampling cadence, with 132 points in total throughout the day. For the day

as a whole p(τ)� pt and p(log10 τ)� pt, i.e. the data are inconsistent with both Normal and Lognormal distributions, revealed

by the bimodality of the histogram in Figure 6b. However, for the 111 points before 17:00 UTC p(τ) = 0.002 and p(log10 τ) =

0.009, and for the 14 after 18:00 UTC p(τ) = 0.38 and p(log10 τ) = 0.54, in both cases indicating stronger evidence for5

Lognormality than Normality. By combining various data sets and lines of evidence, Eck et al. (2014) attribute enhancements

like these to a combination of humidification and new particle formation rather than cloud contamination in the direct-Sun data,

so there is physical reasoning for this bimodality. In situations like this the multimodal-fitting approach of Povey and Grainger

(2019) would give a more complete representation of the aerosol field than presenting single-distribution summary statistics.

:::::::::::::::::
Distribution-agnostic

::::::
metrics

:::::
(such

::
as

::::::::
reporting

:::::::
various

:::::::::
percentiles

::
of

:::
the

:::::
AOD)

:::
are

:::
an

::::::::
alternative

::::::
option.

:
10

Note also that the near-universal choice of aggregating daily on a UTC calendar day basis, rather in terms of local solar time,

can further complicate matters for locations far from the meridian. For example, AERONET sites in eastern Asia, Australasia,

and the western Americas often contain data from midnight to mid-morning UTC, with a long gap, and then late evening to

midnight UTC. The break in the middle is due to local nighttime, during which no data are collected; i.e. observations from

a single UTC day can contain data from two local days. If something happens during this gap to affect the AOD distribution,15

which is often the case due to the diurnal variations or meteorology, this will naturally increase the chances of multimodality.

Thus, something as basic as the definition of the day to aggregate to can affect the inferred AOD distribution shape. This could

be contributing to some of the cases where neither distribution fits (Figures 3, 4) in these parts of the world. This affects all the

data sets.
::::
This

::::
issue

:::
has

::::
also

:::::
been

:::::::
explored

:::
by

::::::::::::::::::::
Schutgens et al. (2016b),

:::::::::
examining

:::
the

::::::::::
correlation

:::::::
between

::::::
hourly

:::
and

:::::
daily

:::::::
modeled

:::::
AOD

::::
fields

:::
for

::::
two

:::::::
different

:::::::::
definitions

::
of

::::
day

:::::
(UTC

:::
vs.

:
a
::::
local

:::::
solar

:::::
time).20

While similar, the patterns in Figures 3 and 4 are not identical between data sets. G5NR is the only data set which enables

both spatial and temporal aggregation on a daily basis. Here, both aggregates show, for example, small differences between τ̄l

and τ̄n over much of the global oceans and a higher frequency of large differences over southern and eastern Asia. However,

the spatial aggregates also show areas of large difference (fit well by neither Normal nor Lognormal distributions) for grid cells

with strong elevation variations such as along the edges of the Himalayas or Andes Mountains, while the temporal aggregates25

do not. If the bulk of the aerosol here is low-lying, then this naturally leads to another case of multiple populations within a

grid cell. This is not seen to the same extent in the satellite retrievals here, although they are known to under-sample (due to

misinterpreting spatial heterogeneity of the scene for cloud cover) and sometimes have retrieval artefacts which could distort

the distributions (Zelazowski et al., 2011; Sayer et al., 2014; Loría-Salazar et al., 2016). In these cases moving to a finer

spatial scale might be useful to provide summary metrics for these populations separately, i.e. 1◦ might be too coarse. The30

aforementioned retrieval artefacts might also explain some of the discrepancies between MODIS and other results in other

mountainous areas such as western North America, Europe, and the Horn of Africa.

G5NR temporal aggregates also show increased incidence of Lognormality and of neither distribution fitting well in the

Southern Ocean, while G5NR spatial aggregates do not; this implies diurnal cycles which affect the aerosol field here coherently

on scales larger than 1◦. A similar feature, with 10-20 % occurrence of Normally-distributed AOD in the Southern Ocean,35
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is seen in the MODIS results. MODIS retrievals are known to report higher AOD here than other data sets (including active

sensors, Sun photometry, and data sets with stricter cloud screening); Toth et al. (2013) attributed much of this to a combination

of cloud contamination and retrieval assumptions of surface wind speed (which affect surface brightness). This latter factor was

addressed in more recent MODIS data versions (Levy et al., 2013) compared to those used by Toth et al. (2013), although the

enhanced AOD remains, implying that cloud contamination is still a factor. A similar enhancement was seen in older version of5

the MISR data product, but largely removed in the latest version used here (Witek et al., 2018). This implies that the occasional

Normality seen in MODIS daily AOD in the Southern Ocean is likely to be an artefact of biases in the AOD retrievals. MODIS

and MISR also report Normal or Lognormal AOD distributions each up to about 30 % of the time over various North African

and Central Asian deserts, while G5NR does not. Unfortunately, the remoteness of many of these areas means that AERONET

has few sites in them. It is therefore hard to resolve the
::::::
reasons

:::
for

:
differences between the various data sets.10

AERONET also provides some opportunities to study the spatial distribution of AOD on horizontal scales of tens to around

100 km, similar to L3/global climate model resolution. These are mostly commonly in so-called Distributed Regional Aerosol

Gridded Observation Networks (DRAGONs) of up to several dozen sites, as detailed by Holben et al. (2018), deployed during

Intensive Operating Period(s) (IOPs) of field campaigns. Some DRAGON deployments have been in areas also containing sev-

eral long-term AERONET sites (e.g. those around Washington, DC, USA), enabling spatial characterisation (to a lesser extent)15

outside these IOPs. Further, a few areas have had 3 or more AERONET sites deployed simultaneously within∼ 100 km of each

other; often (but not always) this overlap was temporary as one site replaced another. Table 2 shows the categorisation resulting

from applying the SW and AOD difference threshold tests on daily geometric mean AOD for each of these field campaign de-

ployments or groups of spatially-clusterd AERONET sites. More details of the DRAGON deployments are available in Holben

et al. (2018), and the AERONET webpage (https://aeronet.gsfc.nasa.gov) provides additional background information and the20

locations of other clustered sites. Categorisation results are broadly in line with Figures 3 and 4, and Table 1, in that typically

the most common finding is that the difference between daily arithmetic and geometric mean AOD is smaller than 0.01. For

the 10 field campaign deployment regions listed in Table 2, Lognormality is more commonly observed than Normality in six of

them for the days when the resulting difference in AOD is at least 0.01. For the seven clusters of sites outside of field campaigns

(which have fewer, i.e. 3-4 sites total), Lognormality is more common in five. While this is consistent with the picture from the25

larger-scale analysis, it is also important to recall that these deployments are typically short in time (often weeks to months)

and tend to be around major metropolitan areas. As a result the frequencies in Table 2 might not be extensible to longer time

periods at these locations, or other environments.

3.2 Temporal variation on monthly and seasonal scales

Maps of categorisation of monthly and seasonal AOD aggregates, in both cases from daily AOD, are shown in Figures 7 and 830

respectively. Global-average fractions are again shown in Table 1. Monthly satellite/AERONET composites require at least 16

contributing months to be considered valid, and seasonal at least 8 contributing seasons; for the satellites, using five years of

data, a maximum of 60 months or 15 seasons are possible. Increasing these thresholds removes some shorter-term AERONET

sites, and satellite retrievals at high latitudes and some tropical locations, where retrieval coverage is limited. As only one year

19
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Table 2. Fractional SW test assigment of spatial AOD variation with a day from selected AERONET DRAGON-like deployments and

clustered sites.

Deployment IOP(s) Maximum Number Fraction in each category

location sites* of days Normal Lognormal Difference ≤0.01 Neither fits

Field campaign and similar deployments

Greater Washington, Jun-Aug 2007, 41 2627 0.057 0.086 0.855 0.004

DC, USA Jul 2011

Osaka, Japan Mar-Jun 2012 8 122 0.197 0.057 0.746 0.00

Seoul, Korea Mar-Jun 2012, 8 565 0.250 0.317 0.432 0.009

May-Jun 2016

Penang, Malaysia Sep 2012 8 66 0.152 0.227 0.621 0.00

Singapore Sep 2012 5 50 0.100 0.260 0.640 0.00

San Joaquin Valley, Jan-Feb 2013 15 81 0.037 0.123 0.840 0.00

California, USA

Houston/Galveston, Aug 2013 16 134 0.090 0.0448 0.858 0.007

Texas, USA

Colorado, USA Jul 2014 15 1888 0.093 0.038 0.868 0.001

Henties Bay, Namibia Aug-Sep 2016 6 32 0.00 0.063 0.938 0.00

Locations with AERONET sites clustered within ∼ 100 km

Abu Dhabi, - 3 35 0.114 0.057 0.829 0.00

United Arab Emirates

Beijing, China - 3 889 0.282 0.334 0.384 0.001

New York, USA - 3 215 0.033 0.065 0.902 0.00

Sierra Nevada, Spain - 3 88 0.091 0.193 0.716 0.00

Taipei, Taiwan - 4 301 0.312 0.329 0.359 0.00

Tenerife - 4 1574 0.370 0.174 0.456 0.001

Western Provence, - 3 380 0.026 0.058 0.916 0.00

France

*Maximum number of sites providing data on a single day; may be less than number of sites deployed in total.
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 (a) AERONET, fraction Normal fits best
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Figure 8. As Figure 3, except for AOD distributions aggregated temporally from daily to seasonal. Columns show (left) AERONET, (middle)

MISR, and (right) MODIS data. At least 8 contributing seasons are required for an AERONET site or grid cell to be valid; grid cells with

insufficient data are shaded in grey.

of G5NR data is used, the monthly analysis is performed but seasonal analysis is not. Moving from daily to monthly aggregates

in Table 1, the overall tendency is for AOD differences to become larger (i.e. the fraction within the category |τ̄l− τ̄n| ≤ 0.01

decreases), and the distributions increasingly favour Lognormality over Normality. Going from monthly to seasonal, the trend

is more pronounced, both in absolute fraction of data (Table 1) and in the spatial distributions (Figure 8). As in the daily data,

some features are broadly consistent between the data sets:5

1. Unlike daily aggregation, for monthly or seasonal aggregation the difference between arithmetic and geometric means

is frequently more than 0.01. Thus, monthly/seasonal aggregates are more sensitive to the choice of averaging method.

This implies generally larger variability on time scales of months/seasons than of spatial variability within a day, which

is consistent with previous work (e.g. Schutgens et al., 2017) that has established that temporal colocation on daily,

rather than monthly, time scales is important to reduce sampling-related differences between AOD data sets.10

2. The exception to the above is very clean areas: parts of the open ocean, Australasia, and mountainous/remote continental

areas, that are outside of aerosol transport paths. Here, a plurality (but not always a majority) of the time the AOD

difference remains less than 0.01.
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3. Downwind of major aerosol source regions, over both and land and ocean, all data sets tend to report higher consistency

more frequently with Lognormal than with Normal distributions.

Some of the differences between the data sets identified in the daily analysis, such as the southern ocean AOD in MODIS,

are still present in the monthly and seasonal analyses. While patterns are often consistent, differences in magnitudes of each

category may be driven in part by sampling differences, which are more pronounced at these scales. Of up to 31 days con-5

tributing to a month and 92 to a season, AERONET/MODIS often sample∼10-25 and 20-70, respectively (dependent on cloud

cover and polar night) while MISR (due to its narrower swath) often samples only 3-7 days per month and 5-15 per season. De-

pendent on the temporal scales of aerosol system change, these differences may be important. This limited sampling accounts

for the sparser MISR coverage at high latitudes in Figure 7. Monthly and seasonal data are not affected by the same potential

‘definition of day’ issues as identified for daily composites. Seasonal aggregates may, however, be influenced by definition of10

seasons, and in some parts of the world (e.g. South and East Asia, due to their Summer monsoons at various points from May to

September; Kang et al., 1999) other definitions than the canonical DJF, MAM, JJA, SON used here may be more appropriate.

4 Implications and recommendations

4.1 Magnitude of arithmetic vs. geometric mean AOD differences
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(b) AOD difference, monthly
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Figure 9. Median (symbols) and central 68 % (lines) of binned difference between geometric and arithmetic mean AOD (τ̄l− τ̄n) on daily

(left) and monthly (right) time scales. Colours indicate AERONET (black), MISR (red), MODIS (blue), or G5NR (green) data. The AOD

bin size is 0.15; data sets are horizontally offset slightly for clarity. The dashed grey lines indicate the GCOS goal AOD uncertainty of the

maximum of 0.03 or 10 %.

The previous portion of the analysis has focused mostly on the occurrence and distinguishability of Normal and Lognormal15

distributions for AOD; also relevant is
:::
are the magnitudes of the differences introduced into the data sets by the choice of

averaging method and summary statistic. Figure 9 shows the difference between geometric and arithmetic mean AOD (τ̄n− τ̄l)
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binned as a function of arithmetic mean AOD, on daily and monthly time scales, from the four data sets. For the daily plots the

G5NR temporal aggregation is shown, although results are similar for the spatial aggregation. Also shown on both panels is the

Global Climate Observing System (GCOS) goal uncertainty in AOD for an aerosol climate data record (CDR), of the greater of

0.03 or 10 % of the AOD (GCOS, 2011). AOD differences approaching or exceeding this level imply that aggregation method

alone causes a sensitivity of similar magnitude to the total desired uncertainty, and therefore that if data are to be aggregated5

then choice of an appropriate technique is crucial.

It is important to realise that AOD difference τ̄l− τ̄n is always zero or negative, as geometric means are always smaller than

or equal to arithmetic means (Cauchy, 1821). This means that the offsets will always be systematic. For daily data (left panel

of Figure 9), the median offset, and its dependence on AOD, are reasonably consistent between all four data sets. The central

68 % of the observed offsets are also somewhat smaller than the GCOS uncertainty requirement, and below a total AOD around10

0.6, generally smaller than 0.02.

Even a small change
::::
offset

:
in reported AOD, if systematic, can have important implications for calculations of climate

forcing. This is particularly true for aerosol-cloud interactions, as these are very sensitive to both the anthropogenic perturbation

and the natural background state assumed. For example, using perturbed parameter simulations to global climate models

Carslaw et al. (2013) estimated that 45 % of the uncertainty in the global mean forcing due to the cloud albedo effect of aerosols15

was related to uncertainties in the natural background aerosol burden, compared to 34 % for anthropogenic emissions. Others,

including Penner et al. (2011) and Grandey and Wang (2019), have similarly found large dependence of forcing dependent on

choice of background. Where AOD is low, such as over much of the global ocean, a small absolute AOD change can be a large

relative perturbation. Although the limitations of satellite retrievals for some of these applications are well-known (e.g. Penner

et al., 2011; Stier, 2016), the same argument may apply if forcing parametrisations are developed from model simulations20

aggregated in certain ways. As a result, even differences smaller than the GCOS goal uncertainty, such as the daily differences

in Figure 9, may be significant for these purposes.
::
To

::::
paint

::
a

::::
more

::::::::
complete

::::::
picture

::
of

:::
the

:::::::
forcing

::::::
ideally

::
the

::::::
overall

::::::
shape

::
of

::
the

:::::::::::
distribution,

:::::
rather

:::
than

::
a
:::::
single

:::::::
number,

::::::
should

::
be

::::::::::
considered;

:::
this

:::
has

::::
also

::::
been

:::::
found

::
to

::
be

::::::::
important

:::
for

::::::::::::::
parametrisations

:::::
related

::
to
:::::
cloud

::::::::
radiative

:::::
effect

::::::::::::::::
(Chen et al., 2019)

:::
and

::::::
rainfall

:::::::::::::::::::
(Vlc̆ek and Huth, 2009)

:
.

In contrast to the daily results, and even in low-moderate AOD loadings around 0.3, for monthly aggregates (right panel of25

Figure 9) the difference is often similar to or larger than this GCOS uncertainty. This means that the choice of arithmetic or

geometric mean AOD as a summary metric in itself can and often does introduce systematic offsets in reported monthly AOD

of similar size to the goal total uncertainty for an AOD CDR.
:::::
While

:::
this

::
is

:::
not

::::::
strictly

::
an

:::::
error

:::
(in

:::
the

:::::::::::
mathematical

::::::
sense),

::
if

::
the

:::::::
analyst

::
is

::::
using

:::::::::
arithmetic

:::::
mean

::
as

::
a

::::::::
summary

::
of

::::::::::::::::::::
Lognormally-distributed

::::
data

::::
then,

:::
as

:::::
stated

::::::
earlier,

:::
the

:::::::
inferred

::::::
typical

::::::::
(common)

:::::
level

::
of

:::::
AOD

::::
will

::
be

::::::
biased.

:::::::::
Inferences

:::::
made

::::
may

:::
be

::::::::::
misleading,

:::
and

::::
less

::::::::
complete,

::::
than

:::::
those

::
if

:::
the

:::::
shape

::::
and30

:::::
width

::
of

:::
the

:::::::::
distribution

:::::
were

:::::::::
considered

::::::::
explicitly.

:
As with the daily data, the magnitude of the offset is AOD-dependent; the

magnitude is, however, less consistent than for the daily results, with the median offset being largest for AERONET. This might

in part reflect known tendencies for a high bias in low-AOD conditions and/or low bias in high-AOD conditions in these satellite

products (Kahn et al., 2010; Levy et al., 2013; Sayer et al., 2019)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kahn et al., 2010; Eck et al., 2013; Levy et al., 2013; Sayer et al., 2019)

, meaning that the difference τ̄l− τ̄n is dampened due to diminished spatial and temporal variability within and between days.35
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The asymmetry of the variabilities (vertical lines) in both panels of Figure 9 indicates a dependence of the difference on

the specific local conditions. This implies that no simple scaling correction can be applied to existing data sets to transform

between arithmetic and geometric estimates and instead the analyst should recompute from the source data,
::::

i.e.
:::
the

::::::
factors

:::::::
affecting

:::
the

:::::
width

::
of

:::
the

::::::::::
distribution.
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Figure 10. Fraction of months where the difference between arithmetic and geometric mean AOD is larger than the GCOS goal uncertainty

for an AOD climate data record, i.e. |τ̄l− τ̄n| ≥ max[0.03,0.1τ̄l]. Panels show results for (a) AERONET, (b) MISR, (c) MODIS, and (d)

G5NR.

As Figure 9 established that on monthly time scales sensitivities to averaging method often exceed GCOS goal CDR uncer-5

tainties, Figure 10 maps how frequently such exceedences occur. The behaviour for seasonal aggregates (not shown) is more

pronounced than that of monthly, and shows similar spatial features. As seen in earlier parts of this study, the four data sets give

broadly consistent spatial patterns, but differences in magnitude. Specifically, this is seen most frequently (30-90 %, dependent

on grid cell and data set) in eastern Asia and Saharan outflow regions, which is unfortunate because these are important and

frequently-studied components of the global aerosol system. Exceedence of GCOS thresholds in 10-40 % of months is also10

seen fairly consistently across much of eastern North America and Eurasia, South America, South-eastern Asia, and Southern

Africa. This is most common during the summer months (former two cases) and local biomass burning seasons (other cases)

when AOD levels are generally higher. GCOS threshold exceedence is infrequent (observed <10 % of the time) over the re-

mote open ocean in any of the data sets, although may be slightly elevated for oceanic regions downwind of continental aerosol

sources. In all of these regions, the monthly data show higher consistency with Lognormality more often than they do than15

Normality (Figure 7), particularly for the AERONET record, which has the most reliable AOD. Therefore, the locations where
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the difference between τ̄n and τ̄l is largest are also generally those where the data support Lognormal summary statistics the

most.

:
A
::::::::

potential
:::::::::::::
counterexample

:::
to

:::
the

::::
need

::
to

:::::::
account

:::
for

::::::::::
distribution

:::::
shape

::
is

:::
the

::::
case

::
of

:::::::::
particulate

::::::
matter

:::::
(PM)

:::::::::
estimation

::::
from

:::::
AOD

::::::::
retrievals,

:::
in

:::::
which

::::
case

::
it
::::::
might

::
be

:::::
more

:::::::
sensible

:::
to

:::::
report

:::::::::
arithmetic

:::::
mean

:::::
AOD

::::
than

:::::::::
geometric,

:::::
even

::
if

:::
the

:::::::::
underlying

::::::::::
distribution

::
is

::::::::::
Lognormal.

::::
This

::
is

:::::::
because

:::::::::
arithmetic

:::::
mean

::
is

::::::
directly

:::::::::::
proportional

::
to

:::
the

:::::
total,

:::::
while

:::::::::
geometric5

::::
mean

:::::::
requires

::::::::::
knowledge

::
of

::::::::::
distribution

:::::
width

::
as

::::
well

::
to

:::::
return

::::
total

:::::
mass,

::::
and

::
in

:::
PM

::::::
studies

::
it
::
is

:::::
often

:::
the

::::
total

::::
mass

::::::
which

:
is
::
of
:::::::
interest.

::::::::
However,

::
in
::::::::
practical

:::::
terms,

::::
PM

:::::::::::::::
forecasts/nowcasts

:::
and

:::::
daily

:::::::
exposure

:::::::
estimes

:::::::
typically

::::
use

::
the

:::::
finest

:::::::::
resolution

:::
data

::::::::
available

:::::
rather

:::::
than

:::::::::
aggregates

::::::::::::::
(Lee et al., 2016)

:
.
::::
Still,

::::
this

::::
may

::
be

:::::::
relevant

:::
for

:::::::::
long-term

::::::
studies

:::::::
looking

::
at

::::
total

::::
PM

:::::::
exposure

::::::
levels,

:::::
which

:::
are

:::::
often

:::::
finely

::::::::::::::
spatially-resolved

:::
but

:::
are

::::::::::
aggregated

:::::::::
temporally

:::::::::::::::::::::::
(van Donkelaar et al., 2016).

:

:::
The

:::::
issue

:::
may

::::
also

::
be

::::
less

::::::
crucial

::
in

:::::::
analyses

:::::
where

:::
the

:::::::
purpose

::
is

::
to

:::::
assess

:::
the

::::::
offsets

:::::::
between

:::
two

::::
data

:::
sets

::::
(e.g.

:::::::::
difference10

:::::::
between

::
L3

:::::::::::
composites),

::
as

:::::::
opposed

::
to
:::
the

::::::::::
geophysical

:::::
fields

::::::::::
themselves,

::
as

::::::::::
differences

:::::::
between

:::
the

::::::::
arithmetic

::::::
means

::
of

::::
two

:::
data

::::
sets

:::
and

:::::::::
geometric

::::::
means

::
of

:::
the

:::::
same

:::
two

::::
data

::::
sets

:::
are

:::::
likely

::
to

::
be

:::
the

:::::
same

::::
sign.

::::
The

::::::::::
magnitudes

::::
will,

::::::::
however,

:::::
differ

::::::::
dependent

:::
on

:::
the

::::
tails

::
of

:::
the

:::::::::::
distributions.

:::
As

::::::::
indicated

::::::
earlier,

:::
for

::::
AOD

::::::::
sampling

::::::::::
differences

:::::::
between

::::
data

:::
sets

::::
can

::::
often

:::
be

:
a
::::
large

:::::::::::
determinant

::
of

::::::::
observed

::::::
offsets

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Levy et al., 2009; Sayer et al., 2010; Schutgens et al., 2016b, 2017).

:::::
Still,

:::::::::
examining

:::::::
multiple

:::::::::
differences

::::
(e.g.

::::::::::
differences

:::::::
between

:::::::::
arithmetic

::::::
means,

::::::::
between

::::::::
geometric

::::::
means,

::::
and

:::::::
median

::::::::::
differences)

:::
can

:::
be15

:::::::::
informative

:::
on

::::
how

:::::
much

:::
the

:::::::::::
distributions

:::
are

:::::::::
influenced

:::
by

::::::
outliers

::::
and

::
as

::
a
::::::
general

::::::::
indicator

:::
of

:::::
skew.

::::::::
Examples

:::::::
include

:::::
Figure

::
2

::
of

::::::::::::::
Hsu et al. (2012)

::
or

::::::
Figure

::
11

::
of

::::::::::::::::
Sayer et al. (2014).

:

4.2 Implications for AOD trend analyses

As the differences between arithmetic and geometric mean are larger for higher-AOD regions (Figures 9, 10) choice of summary

statistic could also influence the calculation of AOD trends. Specifically, as τ̄l < τ̄n by an increasing amount as AOD increases,20

smaller magnitudes of calculated trends would be expected (as the maxima are dampened to a higher degree than the minima).

Multiple studies over the past few decades have looked at AOD trends globally and regionally, whether over oceans only (e.g.

Mishchenko and Geogdzhayev, 2007; Zhao et al., 2008; Thomas et al., 2010; Zhang and Reid, 2010; Li et al., 2014a) or both

oceans and land (e.g. Hsu et al., 2012; Chin et al., 2014; Li et al., 2014b; Yoon et al., 2014; Pozzer et al., 2015; Klingmüller

et al., 2016). While data sources, periods of analysis, and analysis techniques differ, as do quantitative results, several features25

tend to be consistently reported:

1. AOD over the global ocean, and over many ocean basins, has not changed very much;

2. AOD over parts of eastern North America and Europe has decreased in recent decades; and

3. Among the strongest positive AOD changes tend to be seen over the Arabian Peninsula.

Using three long-term AERONET sites (one for each of the above features), Table 3 provides decadal AOD trends calculated30

using geometric mean AOD τ̄l and arithmetic mean AOD τ̄n as a basis. These sites were used in some of the above studies

to complement satellite retrieval/model simulation analyses; in all cases, those studies used arithmetic mean AOD. Ascension
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Table 3. Decadal trends (±1σ uncertainty estimates) in AERONET AOD at 550 nm, estimated using arithmetic and geometric mean AOD

as a basis for time series.

Trend Record From mean AOD From geometric mean AOD

type length* Trend, AOD dec−1 χ2 Trend, AOD dec−1 χ2

Ascension Island (7.97639◦ S, 14.4147◦ W)

Monthly 153 -0.001 (±0.005) 468 0.000 (±0.005) 447

DJF 16 -0.007 (±0.006) 52.0 -0.002 (±0.007) 60.8

MAM 15 -0.008 (±0.006) 64.6 -0.008 (±0.006) 55.0

JJA 14 0.004 (±0.010) 57.8 0.006(±0.010) 39.2

SON 14 0.042 (±0.007) 89.2 0.032 (±0.007) 83.2

GSFC (38.9925◦ N, 76.8398◦ W)

Monthly 287 -0.018 (±0.003) 931 -0.017 (±0.003) 734

DJF 24 -0.013 (±0.006) 18.4 -0.009 (±0.005) 11.2

MAM 26 -0.039 (±0.008) 109 -0.031 (±0.006) 80.6

JJA 25 -0.144 (±0.021) 79.8 -0.095 (±0.013) 67.6

SON 24 -0.021 (±0.005) 55.4 -0.015 (±0.002) 48.9

Solar Village (24.9069◦ N, 46.3973◦ E)

Monthly 158 0.093 (±0.024) 476 0.080 (±0.022) 505

DJF 13 0.104 (±0.042) 48.6 0.076 (±0.032) 60.1

MAM 15 0.218 (±0.040) 102 0.176 (±0.034) 108

JJA 14 0.176 (±0.043) 130 0.156 (±0.042) 136

SON 14 0.048 (±0.019) 92.6 0.041 (±0.019) 114

*Number of contributing months for the monthly time series; number of contributing years for the seasonal

time series

Island is in the south Atlantic Ocean where reported AOD trends are typically small, and presently has data available from 1998-

2016. Goddard Space Flight Center (GSFC) in Maryland, USA, a region of decreasing AOD, has data from 1993 onwards and

is one of the longest-running AERONET sites; Solar Village (operated 1999-2013) was at a solar power farm northwest of

Riyadh, Saudi Arabia, and near the maximum of AOD trends reported in previous studies.
::
At

:::::
these

::::
sites,

:::
on

:::::::
monthly

:::::
time

:::::
scales

:::
the

::::
data

:::
fell

:::::
more

:::::
often

:::
into

::::
SW

:::::::
category

::
4
::::::
(AOD

::::::::
difference

::
is
:::::
larger

::::
than

:::::
0.01

:::
and

::::
data

:::::
most

::::::::
consistent

::::
with

::::::
draws5

::::
from

:
a
::::::::::
Lognormal

:::::::::::
distribution),

:::::
40 %,

:::::
61 %,

:::
and

:::::
70 %

::
of

:::
the

::::
time

:::
for

:::::::::
Ascension

::::::
Island,

::::::
GSFC,

:::
and

:::::
Capo

:::::
Verde

:::::::::::
respectively,

:::
than

::::::::
category

:
3
::::::

(more
::::::::
consistent

:::::
with

:::::
draws

::::
from

::
a
::::::
Normal

:::::::::::
distribution).

:::
In

::::
most

:::::
cases

:::
the

::::
bulk

::
of

:::
the

:::::::::
remainder

::
of

:::::::
months

:::
fell

:::
into

::::::::
category

:
1
::::::
(AOD

::::::::
difference

:::::::
smaller

::::
than

:::::
0.01).

:::
On

:
a
::::::::
seasonal

::::
basis

::::
this

:::::::::
preference

::
for

::::::::::::
Lognormality

::::
over

:::::::::
Normality

:
is
:::::
even

::::
more

:::::::::::
pronounced,

::::::::::::
corresponding

::
to

:::::::
category

:
4
:::::
68 %,

:::::
79 %,

::::
and

::::
82 %

::
of
:::
the

:::::
time,

::::::::::
respectively.

:
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The purpose here is not to perform an exhaustive global trend analysis, but to assess quantitatively the implications of

Lognormally-distributed AOD on some well-reported features of global aerosol trends.

These
::::
Prior

:
studies typically calculated trends based on deseasonalised monthly mean AOD time series, and calculating a

linear least-squares regression fit. Deaseasonalisation was achieved either by subtracting the mean AOD annual cycle over the

time period, or (Thomas et al., 2010; Klingmüller et al., 2016) by using harmonic regression to model the annual cycle. Li5

et al. (2014a, b) took a somewhat different approach by analysing temporal variability of principal components of monthly

AOD fields, rather than the AOD fields themselves. In some of these analyses, seasonal trends were calculated by averaging

the monthly data within each season, although in this case it is arguably more reasonable to use seasonal aggregates from

daily data as a basis. The motivation for considering seasonal trends is that some aerosol features, and their variability, are

characteristic of particular seasons (e.g. Ascension Island and GSFC sample transported smoke through summer and autumn10

but seldom during other seasons; at Solar Village dust storms are most frequent and intense in spring and summer).

Here, linear trends are calculated using both monthly and seasonal aggregates, for both Normal (i.e.
:
arithmetic mean) and

Lognormal (i.e. geometric mean) aggregates, both calculated from daily AOD (τ̄n or τ̄l respectively). Monthly trends are

calculated using the monthly AOD time series, after subtraction of the mean seasonal cycle, as in previous studies. Seasonal

trends do not require a deseasonalisation step. The data are fit using linear least-squares regression, with the weights equal15

to the standard error on the estimated monthly (or seasonal) AOD. For the Lognormal averaging this is strictly asymmetric,

although it is approximated as symmetric in this case, which has negligible influence on the results. The lower limit for these

standard errors is taken as 0.01, corresponding to the AERONET AOD uncertainty. As this is largely dominated by calibration

uncertainty (Eck et al., 1999) it is not significantly reduced by averaging and can therefore be considered systematic over a

single (roughly year-long) deployment, but closer to random over a multi-year time series. The standard error on the annual20

cycle is added in quadrature to the estimated uncertainty on the monthly time series, to account for the uncertainty in the

deseasonalisation step. Following Weatherhead et al. (1998), the lag-1 autocorrelation is estimated and used to adjust the

uncertainty estimates. Further, the χ2 statistics on the fits, which have an expected value of n-2 (where n is the record length

and two parameters are fit in the regression), were in most cases somewhat in excess of this (Table 3). This implies that the

standard errors are not a complete representation of the uncertainty on the time series data, and/or that a linear model does not25

fully describe the variation. Thus, in addition to the autocorrelation correction, the trend uncertainty estimates in Table 3 are

also scaled by
√

(χ2/(n− 2)).

At each of the three sites, the decadal AOD trends are qualitatively the same whether calculated using arithmetic or geometric

mean AOD time series as a basis. However, as expected, trends using geometric mean AOD are smaller in magnitude (i.e.

increases and declines in AOD are less pronounced). The decrease in magnitude is often of order 10-30 %, which is typically30

within the 1σ uncertainty estimates on the calculated AOD trend. The implication of this is that, as a result of assuming an

underlying Normal distribution, prior studies may be qualitatively correct on the sign of AOD trends, but quantitatively have

a tendency to overestimate their magnitude
:::::
(again

:::::
using

:::
the

:::::
prior

::::::::
definition

::
of

::::::::
‘typical’

::
or

:::::::::
‘common’

::::::
aerosol

::::::::
loading).

::::
For

::::::::::::::::::::
Lognormally-distributed

::::
data,

:::::
trends

::
in
:::::::::
geometric

::::::::
quantities

:::
are

:::::
more

:::::::::::::
straightforward

::
to

:::::::
interpret.

:
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::::
Note

:::
that

::::::
during

:::::::::::
presentations

::::
and

::::::
reviews

:::
of

:::
this

:::::
work,

::
a

:::::::
question

:::::
arose

::
as

::
to

:::::::
whether,

:::::::
moving

::::
from

:::::
point

:::::
trends

:::
to

:::::
larger

:::::::::::
regional-scale

::::::
trends,

:::
the

::::::
central

::::
limit

::::::::
theorem

:::::
(CLT)

::::::
would

:::::
mean

:::
that

:::::::::
arithmetic

:::
and

:::::::::
geometric

:::::
trends

::::::
would

::::::::
converge.

::::
The

::::
CLT

::::
does

:::
not

::::::
imply

:::
that

:::::::::
expanding

:::
the

::::::
region

:::::::
(adding

:::::
more

::::
data)

::::::
means

::::
that

:::
the

:::::
AOD

::::::
would

:::::::
become

:::::
closer

::
to

::
a
:::::::
Normal

::::::::::
distribution;

:::
this

:::
is

:
a
::::::::

common
:::::::::::::
misconception

::
of

:::
the

:::::
CLT.

:::::::
Rather,

:::
the

:::::::::::
uncertainties

:::
on

::::::::
estimates

::
of

::::
the

::::::::
summary

:::::::
statistic

:::::::
(whether

:::::::::
arithmetic

::
or

:::::::::
geometric

:::::::
means)

:::
will

:::::::
behave

::::::::::::
approximately

:::::::::
according

::
to

:::::::
Normal

::::::::
statistics,

::::
even

::
if
:::
the

::::::::::
underlying5

::::
AOD

::::::::::
distribution

::
is

:::
not

:::::::
Normal.

::
It
:::::
does

:::
not

:::::
mean

:::
that

:::
the

::::::::::
underlying

:::::::
quantity

::::::::
becomes

:::::
closer

::
to

::::::::::::::::::
Normally-distributed;

::::
this

::::::::::::
misconception

::
of

:::
the

::::
CLT

::
is
:::::::::

discussed
::
in

:::::::
Section

::::
3.1.3

:::
of

:::
the

::::::
review

:::
by

:::::::::::::::
Sotos et al. (2007).

::::
The

:::::::
answer

:::::::
therefore

::::::::
depends

::
on

:::
the

:::::
form

::
of

::::::::::
distributions

:::
in

:::::
space

:::
and

::::
time

::::::
across

:::
the

::::::
region

:::
(as

::::
well

::
as,

::::::::::
potentially,

:::
the

:::::
order

:::
the

::::
data

:::
are

:::::::::
averaged).

:::
As

::
the

::::::::
evidence

::::
from

::::
data

:::
sets

::
in

::::
this

::::::
analysis

::::::::
(Figures

:
3,
::
4,
::
7,

::
8)

:::::::
indicate

:::
that

:::
on

:::::
larger

:::::
scales

:::::
AOD

:::
data

:::::::
become

::::::::::
increasingly

:::::
often

::::
more

::::::::
consistent

::::
with

::::::::::
Lognormal

::::
than

::::::
Normal

::::::::::
distribution,

:::
and

::::
such

::::
was

:::
also

::::::
found

::
by

::::
prior

::::::
spatial

:::::::
analyses

::::::::::::::::::::::
(Ignatov and Stowe, 2000)10

:
,
:
it
:::::
seems

:::::
likely

::::
that

:::::::::::
regional-scale

::::::
(rather

::::
than

:::::
point)

::::
AOD

:::::
trend

::::::::
estimates

:::::
would

:::::
show

::::::
similar,

::
or

::::
even

:::::::::::
accentuated,

:::::::::
differences

:::::::
between

:::::
trends

::
in

:::::::::
arithmetic

:::
and

:::::::::
geometric

::::
mean

::::::
trends.

4.3 Summary and recommendations for data use

Widely-used spatiotemporal aggregates of aerosol data from surface observations, satellite retrievals, and model simulations

typically consist of arithmetic means and standard deviations of finer-resolution data. These statistics are most meaningful15

for Normally-distributed data, while previous work has indicated that AOD is often distributed close to Lognormally on large

scales.
:::::
While

:::
one

::::
can

::::::::
transform

:::::::
between

:::::::
Normal

::::
and

:::::::::
Lognormal

::::::::
summary

::::::::
statistics

:::::::::::::::::::::::::::::
(e.g. Table 1 of O’Neill et al., 2000)

:
,
::
in

::::::
practice

::
it
::
is
::::::
typical

:::
for

::::
data

:::::
users

::
to
:::::::::

(implicitly
:::

or
:::::::::
explicitly)

::::::
assume

:::::::::
Normality

::
in
:::::

their
::::::::
analyses,

:::::::
without

::::::::::
considering

:::
the

:::::::::
underlying

::::::::::
distribution

:::::
shape.

:::::
This

:::
can

::::::::
influence

:::
the

:::::::::
inferences

::::::
drawn

:::::
from

:::
the

::::
data.

:
This study has illustrated the use of

Shapiro-Wilk tests as a comparative tool to assess whether quantities such as AOD are more consistent with draws from Nor-20

mally or Lognormally distributed populations. Data from ground-based observations (AERONET), satellite retrievals (MISR,

MODIS) and model simulations (G5NR)
:
,
::::::
despite

::::
their

:::::::
varying

:::::::
sampling

::::
and

::::
error

:::::::::::::
characteristics, provide broadly consistent

results.

As time scales increase from days to months to seasons, data become increasingly more consistent with Lognormal than

Normal distributions, and the differences between arithmetic and geometric mean AOD become larger; assuming Normality25

systematically overstates both the typical level of AOD and its variability. In low-AOD regions such as the open ocean and

mountains, often the AOD difference is sufficiently small (<0.01) as to be unimportant for many applications, especially on

daily timescales. However, in continental outflow regions and near source regions over land, and on monthly or seasonal time

scales, the difference is frequently larger than the GCOS goal uncertainty on a climate data record (the larger of 0.03 or 10 %).

As a result of this, estimated trends in geometric mean AOD are smaller in magnitude than (although consistent in sign with)30

those in arithmetic mean AOD.

::
As

::::::
noted

::::::
earlier,

:::::
using

:::
the

:::::::::
arithmetic

:::::
mean

::::
and

::::::::
standard

::::::::
deviation

::
to
::::::::::

summarise
::::::::::
Lognormal

::::
data

::
is

:::
not

::::::::
‘wrong’

::
in

::
a

:::::::::::
mathematical

:::::
sense

::
as

::::
one

::::
can

::::::::
transform

::::::::
between

:::
the

::::
two.

::::
The

::::::
danger

::
is
:::

in
:::
not

:::::::
making

:::
an

::::::
explicit

::::::::::::
consideration

::
of
::::

the
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:::::::::
underlying

:::::::::
distribution

:::::
when

:::::::
drawing

::
an

:::::::::
inference,

::
as

:::
the

:::::
result

::::
may

::
be

:::::::::
misleading

:::
or,

::
at

:
a
:::::::::
minimum,

:::
less

::
of

::
a

:::
full

::::::
picture

::::
than

::::
could

:::::::::
otherwise

::
be

::::::::
obtained.

The main recommendations from this study for future missions and reprocessing of current data sets/simulations are as

follows:

1. The frequency distribution of a geophysical quantity should be analysed in order to asses how best to aggregate it. This5

analysis should be done at the spatial and temporal scale(s) of interest for the aggregation, because distributions are

scale-dependent. The Shapiro-Wilk technique is a powerful tool to assess discrepancies from a Normal or Lognormal

distribution, and should be further combined with desired performance thresholds to assess whether discrepancies are

scientifically relevant for a given quantity.

2. Ideally AOD aggregates such as satellite L3 products, but also from ground-based (e.g. AERONET) and model simu-10

lations, should report geometric mean or median rather than (or in addition to) arithmetic mean AOD. This is
::::::
Where

:::
data

::::
sets

::::::
permit

::::
zero

::
or

::::::::::
unphysical

:::::::
negative

:::::
AOD

:::::
values

::::::::::::
(incompatible

::::
with

:::::::::
geometric

:::::::::::
calculations),

:::::
these

::::::
should

:::
be

:::::::
truncated

:::
to

::::
some

::::::::::
reasonable

:::::
lower

:::::
bound

::::::
which

::::
will

:::
not

::::::::
introduce

::::::::::
meaningful

:::::::
artefacts

::
in
:::::::

derived
:::::::
statistics

:::::
(such

:::
as

::::::
0.0001

::::
used

::::
here

:::
for

:::::::
MODIS

::::
and

:::::::
MISR).

:::::
These

:::::::::
summary

:::::::
statistics

:::
are

:::::::
relevant

:
because multiple data records pro-

vide evidence that AOD distributions are generally closer to Lognormal than Normal, particularly on monthly and15

seasonal time scales, and geometric mean is the more natural and meaningful summary statistic for such data.
::::
This

:::::::::
information

::::::
should

:::
be

::::::
clearly

::::::::::::
communicated

::
to

::::::::
potential

::::
data

:::::
users. Geometric mean AOD is systematically lower, of-

ten (on monthly/seasonal time scales) by more than the GCOS goal climate data record uncertainty of the larger of 0.03

or 10 %, so the choice of averaging method is scientifically important.

3. Due to the computational burden required on the data producer or user’s end (i.e. for satellites, obtaining the full L2 data20

record to reaggregate to daily and then monthly time steps), this is unlikely to happen in the short term. In the meantime,

calculation of geometric mean monthly aggregates from current standard (i.e. arithmetic mean) daily L3 aggregates

could be a useful stopgap measure. This is because the volume of daily L3 data is smaller than L2, and daily spatial

aggregates were found to be less sensitive than monthly to choice of arithmetic vs. geometric averaging.

4. Comparisons and statistical assessments of AOD must account for the expected numerical distribution. Some com-25

mon performance assessment techniques making use of sum-of-squared calculations, such as root mean square error

or coefficient of determination, should not be used in all cases as they can be systematically skewed by large tails on

non-Normally distributed data (Seegers et al., 2018).
::::::::::::
Consequently,

::::::::
dependent

:::
on

:::
the

:::::::::
magnitudes

::
of
::::::
errors

:::
and

:::
the

:::::
range

::
of

::::
AOD

:::::::::
observed,

::::
their

:::::::::::
interpretation

:::
can

:::
be

:::
less

::::::::::
meaningful

::
if

:::
one

::::
does

:::
not

::::
also

::::
look

::
at

:::
the

:::::::::
underlying

::::
data.

:

The analysis presented here refers to AOD, but the methodology is general. GCOS (2011) provide goal uncertainties for30

many geophysical CDRs, which may be helpful for assessing the importance of averaging method in different disciplines.

Overall the Lognormal distribution seems a better reference for AOD aggregates than the Normal distribution, on spatial scales

of single locations or 1 degree, and temporal scales from days to seasons.
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It is important to bear in mind that these simple distribution forms are just approximations for the true underlying distribution

of a geophysical quantity, and the relevant problem is in identifying one which is a sufficiently accurate representation for

a given task. Normal and Lognormal distributions are mathematically convenient and represent many data sets reasonably

well, which is a motivating factor for considering these two both historically and in the present work. Sometimes multiple

distribution forms are suitable: this analysis has shown that often in low-AOD conditions the choice of Normal or Lognormal5

representation may not matter for many purposes. Further, while not analysed here, dependent on choice of parameters Gamma

distributions (often used to describe cloud particle size distributions, e.g. Platnick et al., 2017) can be numerically similar to

Lognormal.
::::::
Indeed,

::::
both

::::::
Gamma

::::
and

:::::::::
Lognormal

::::::::::
distributions

::::
can

::::::
provide

:::::
good

:::::::::
summaries

::
of

:::
rain

::::
rates

::
in

:::::
some

::::::::::::
circumstances

:::::::::::::::::::::::::::::::::
(Cho et al., 2004; Vlc̆ek and Huth, 2009).

:
Sometimes multiple modes are required, and sometimes neither distribution is a

suitable approximation.10

If only a few distributions or points need to be summarised, then it is of course preferable to show the actual distributions

and/or an informative summary which is agnostic to any particular distribution shape, such as a box-whiskers plot. However

for many larger-scale analyses, aggregated outputs from observations and model simulations are likely to remain the format

of choice for many data users, due to their convenience and significantly lower computational/storage requirements than full-

resolution (e.g. L2) data.
:::::
While

::::
these

:::::::::::
unavoidably

:::
lead

::
to
::
a
:::
loss

:::
of

::::::::::
information,

::
it

:
is
:::::::::
important

:::
that

:::::
users

:::::::::
consciously

::::::::
consider15

::
the

::::::::::
underlying

::::::::::
distributions

::::
that

:::
the

::::
data

:::
sets

:::
are

::::::
drawn

::::
from

:::::
when

::::::::
utilising

::::
these

::::::::
summary

::::::::
statistics

::
in

::::::::
research. The above

recommendations will result in more statistically and scientifically meaningful data sets, and decrease potential systematic

biases which can lead to erroneous qualitative and quantitative interpretation about the state of the Earth system.
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