
We would like to think Drs. Chen, Povey, and two anonymous reviewers for their suggestions on our manuscript. 
We appreciate the level of detail and nuance in the comments. We have prepared a revised version with 
attention to these comments. In the below, text in bold indicates Short Comments or Referee Comments, and 
that in regular type indicates our response.

In addition to responses to these comments, the following other changes have been made to the manuscript:
• Corrected a typographical error in Equations 1 and 2 where the normalisation factor N appeared on both 

the left and right-hand sides of the equations.
• Rearranged contents between the Data Availability and Acknowledgments sections to conform with 

Copernicus style requirements.



Short comment from Adam Povey

I wish to support the publication of this manuscript. As the authors outline, it has long been known that 
aerosol optical depth is not normally distributed, such that an arithmetic mean is not expected to 
represent real-world behaviour. This paper will hopefully remind the community of the implications of 
that fact and encourage greater use of geometric means in analysis and logarithmic scales in figures.

We thank Dr. Povey for his support of our study.

If I may comment on Figs. 2 and 3, it does not seem surprising that the majority of the planet exhibits 
little difference between the daily arithmetic and geometric means. The plot below shows the difference 
between the geometric and arithmetic means if we generate random, lognormally distirbuted data for a 
range of medians and widths. Your threshold of -0.01 is not exceeded for distributions with a range of 
small widths and medians that are common in nature. This begs the question why the difference does 
matter in Fig. 5. When observing complex aerosol environments, such as the Saharan outflow, the 
satellite likely samples a single population of aerosol on any given day, which is lognormally distributed.
Over a month, several populations are sampled, giving a multimodal distribution. Geometric statistics 
are more appropriate for combining these samples and so the lognormal distribution is found to be 
superior. Conversely, over Australia, where MODIS retrieves a very narrow range of AODs, the difference 
is still found to be negligible. Alternatively, the increased data volume highlights the failings of 
arithmetic statistics because too few very low AODs and too many very high AODs are observed for a 
normal distribution. When there are fewer observations, it is harder for the Shapiro-Wilk test to 
discriminate behaviour in the distribution’s wings. In summary, I wonder if a single lognormal 
distribution may not sufficient in many circumstances or if the problem is more that AOD must be 
postive, rather than an intrisic lognormality? I don’t believe these details affect the authors central point 
that geometric statistics should be used to evaluate AOD but am curious of their opinion.

As we posted in the Discussion forum these thoughtful comments are exactly the type of discussion we were 
hoping to provoke. We agree with Dr. Povey’s thinking that we need to have some deeper discussion of what
we intend users to take away when we provide them with aggregates, and how to best provide concise, useful 
information while decreasing the chance of misunderstanding or misuse. Realistically most users want and 
expect only a single number to use in their analysis and are not always equipped to consider that this is a 
summary of a distribution of values. My personal opinion is that the geometric mean (lognormal statistics) is a 
better summary statistic than arithmetic mean (normal statistics) for AOD aggregates, overall, for those cases 
when there is likely only a single mode (due to the skew and nonnegativity). In the case of multimodal 
distributions, the answer is less clear. Perhaps it lies in decreasing aggregation scales so that these become less
frequent (e.g. encourage use of daily rather than longer-term composites). The idea of providing fit statistics for 
multiple modes as outlined in Povey & Grainger (2019) is also a good one, although requires extra thought on 
the user end, as would providing histograms directly (which would also create a data volume issue). So this is in 
an open question, and we (as well as Dr. Povey in the aforementioned paper) have provided steps towards 
possible solutions.

The Figure included in the comment is an interesting one (and essentially a multidimensional version of our 
Figure 1). We have added a similar Figure in our revised manuscript (now Figure 2). Note that since Dr. Povey’s 
example is calculated in natural log while our example was in base 10 log, the geometric standard deviations 
covered in Dr. Povey’s simulations should be decreased by a factor of ln 10 (about 2.3) to be equivalent, i.e. our 
geometric standard deviation of 0.35 would correspond to about 0.8 (off the top of the scale) in his plot. This may



resolve the comment comparing Figures 2, 3, and 5. Choice of logarithmic base (and conversions between 
them) is further discussed in the text between Equations 2 and 4.

I also include some technical comments and corrections. P1L2 means line 2 of page 1.

P2L17 in some cases they have also been
P2L21 a regular grid and so are often more
P2L24 observe every location at all the times.
P2L26 and sometimes is not negligible
P7L10 example application is to AOD
P19L20 are most common in so-called
P22L21 also relevant are the magnitude of the differences
P30L29 The page number is 2.
P31L14 The DOI is 10.1029/1999JD900923.
P32L2 The page numbers are 2276-2295.
P32L18 The page numbers are 4026-4053.
P34L13 The page numbers are 13,404-13,408.
P34L21 The page numbers are 672-676.
P35L14 The page numbers are 13,965-13,989.
P36L21 The page numbers are 429-439

We have checked and corrected the above.



Short comment from Yilun Chen

I enjoyed reading the manuscript. This study presents interesting results on AOD distributions in grid, 
and how to reprocess the data. I was very surprised that bimodal distribution (Figure 5) can also be fit as
Lognormality. This method is really useful for me! We published a paper about cloud optical depth 
distribution patterns recently. Maybe the authors want to consider referencing: Chen YL, Chong KZ, Fu 
YF. 2019. Impacts of distribution patterns of cloud optical depth on the calculation of radiative forcing. 
Atmos. Res. 218: 70-77. doi:10.1016/j.atmosres.2018.11.007

Thank you for the kind words, and the reference. That paper ties into one of the other reviewer comments about 
climate impacts, by showing that distribution shape affects inferred forcing (at least for clouds). For aerosols the 
numerical values will be different, but a similar principle is likely to hold. We’ve cited this paper in the expanded 
discussion in the revised manuscript.



Review by Anonymous Referee #1

The authors discuss the nature of probability distributions of AOD, the aerosol optical depth. The 
authors start by analysing for a diverse collection of datasets (AERONET, MODIS, MISR, GEOS5 Nature 
Run), whether spatially or temporally grouped data is better described by a normal or log-normal 
distribution. They show that at short timescales (day), the normal distribution is appropriate but that at 
longer time-scales, lognormal distributions are more realistic. They then continue to show that means 
derived from such datasets, using either arithmic or geomtric means, can be quite different. In particular,
they show that trend estimate can differ significantly in magnitude (though not in sign). As the data 
mostly exhibit log-normal distributions at longer time-scales, the authors conclude that the common use
of arithmic means in trend analysis is inappropriate. The paper concludes with suggestions for 
improvements in aggregation methods. This is an interesting paper about a fundamental issue in Earth 
sciences and entirely appropriate to AMT.

We are pleased that the referee finds the study interesting and appropriate to the journal.

The statistical analysis in this paper seems sound. However, I feel the authors may be overstating the 
importance of this issue. Often we don’t look at AOD but at differences in AOD (satellite evaluation, 
model evaluation, changes between present day and pre-industrial, model sensitivity studies, etc). The 
resulting distributions are in my experience usually more normally than log-normally distributed.

We partially agree with the reviewer here. Yes, it is likely that differences between estimates will be similar 
whether calculated as arithmetic or geometric mean (i.e. if you compare the differences in two monthly geometric
mean AODs from some products, they are likely to be similar to the differences in monthly arithmetic means), 
and the distribution of differences is likely to be closer to Normal. However, (1) that is not a given, and (2) a large 
number of papers are not about comparing different AOD composites (for example many take AERONET or 
satellite data at a given location and you see statements like “the mean AOD was X+/-Y” without consideration of 
the shape of the distribution. It is in these latter cases where we feel reporting either geometric mean and 
standard deviation, or median and percentiles of the distribution, would be more meaningful. We have added a 
note in the expanded discussion sections of the paper about AOD differences.

Also, any log-normal distribution can be accurately defined by arithmic mean and standard deviation. 
Actually, there is a one-to-one transformation from the arithmic statistics to the geometric statistics, see 
e.g. https://en.wikipedia.org/wiki/Lognormal_distribution. My interpretation is that it is not important 
whether one uses arithmic or geometric statistics, as long as one is aware that their use does not imply 
(!) either a normal or log-normal distribution.

We agree here: in fact, our original manuscript cited the table in O’Neill et al (2000) which provides these 
conversion formulae, to point out the transforms. In the revised manuscript we have changed the wording to 
make it clear why we are citing the table there, and added additional explicit mentions elsewhere. On the latter 
point, our experience is that most users take the summary statistic and do not directly consider the underlying 
distribution (i.e. they are not actively aware of this point). We have also emphasised this point in the revised 
manuscript.

Another issue is physical conservation of the property under study. AOD is not a good example so let’s 
consider column burdens of aerosol or trace gases. These may be expected to have log-normal 
distributions in time and space as well. Describing them with geometric means would cause loss of 



mass conservation! Consider a dataset at 10 km that is aggregated to 100 km: the arithmic mean 
preserves total mass in the 100 km grid-box while the geometric mean does not. It seems one has to 
consider what is causing the log-normality: if it is due to lognormal retrieval errors, geometric means 
seem justifiable as they ameliorate the effect of outliers. If it is due to the nature of the property, 
conservation-laws may be more important and arithmic means are to be used. I am sure much more can 
be said about this.
That said, if arithmic means are used to describe log-normal distributions and then carried forward 
through non-linear analyses under the assumption of normality, significant problems may arise. The 
authors allude to this on p. 23, l 19 when they talk about parametrisations.
It would be great if the authors take the above into consideration when preparing their final manuscript. 
In all this is a worthwhile discussion.

Thanks – we partially agree, and these are important points. Our study is one step towards moving to a better 
treatment of data aggregates. We don’t have all the answers so are trying to raise the important points for 
discussion. The point about mass conservation is an interesting one.

If one needs to estimate total mass and has only one metric to look at, arithmetic mean conserves mass. That is 
something of a corner case (which might be applicable to studies using AOD to estimate particulate matter 
levels). In some of those specific applications, a user is likely to want more finely-resolved (spatial and temporal) 
information, however, so might not even be using data aggregates (and instead go back to level 2 data). 
However if spatial and/or temporal variation of the parameter is important, the distribution shape becomes key. 
Further, going beyond one-metric estimates, the combination of (arithmetic or geometric) mean and standard 
deviation also conserves mass. We mention this in case a reader of the review gets the incorrect impression that
lognormal statistics cannot conserve mass.

We have expanded the discussion in the revised manuscript to highlight some more potential applications for 
which one metric might be more or less useful (previously we had used trends as one and discussed forcing as 
another), as well as to point out that the observed distribution is a convolution of the true distribution with any 
measurement/model error.

Minor comments:
p 3, l 33: it would be good to state the relation between arithmic mean (and stddev) with geometric mean 
(and stddev) for a log-normal distribution. Such relation exists, see 
https://en.wikipedia.org/wiki/Lognormal_distribution

As noted above, we’d cited the table in the O’Neill et al (2000) study which provides these conversions. We did 
not include them in our paper for length reasons. We have made the reason for this reference more explicit in our
revised manuscript.

p 5, l 17: "will overstate the typical level of AOD observed and its variability" . While I understand the 
authors’ intention, it seems to me this sentence suffers from the absence of what is "typical". It would 
appear that "typical" here refers to the geometric mean as a parameter that defines a log-normal 
distribution. However, there is a simple 1-on-1 mathematical relation between arithmic and geometric 
mean of a log-normal distribution. I.e. the arithmic mean defines a log-normal distribution as well as the 
geometric mean. Hence both arithmic and geometric mean can be used to define what is "typical".



This is related to the above comment. We have also clarified the use of the word “typical” here in the revised 
manuscript.

p 6, l 25: "using Normal-appropriate statistics has systematic quantitative implications for the 
interpretation of the data." Only if the arithmic mean and stddev are interpreted as defining a normal 
distribution. It is perfectly possible to calculate both without reference to a normal distribution. Actually, 
they can define a log-normal as well.

We agree; note, however, that due to a lack of statistical training many/most users do (implicitly or explicitly) treat
these numbers through the lens of Normal statistics. We hope we have articulated this better in the revised 
manuscript.

p 6, l3: "these factors may include": I believe turbulence is an important factor in the creation of log-
normal distributions?

Yes (for aerosol size distributions, which will be proportional to AOD if their shape is invariant) – we have 
mentioned this factor explicitly in the revised manuscript, and reordered these paragraphs. Previously it was 
implicit in some of the Kok work and textbooks cited. We have expanded the discussion of distributions in nature 
a bit in the revised manuscript (see also response to a reviewer comment below).

p 8, l 13: "This quadratic formulation is more robust to calibration problems in individual channels" 
more robust than what? Maybe consider dropping "more"?

More robust than the two-channel linear interpolation method which is also used commonly. We have expanded 
the sentence to say this in the revised manuscript.

p 11, l 7: "tail-waited" tail-weighted ?

Thanks; this has been corrected.

p 12, l 3: Shouldn’t arithmic and geometric stddev be compared as well?

We think the means are more relevant to compare than the standard deviations here, as they are both notionally 
summary metrics of the same quantity (the “typical” value of the parameter, with attention to the word “typical” as
noted in a previous comment). The physical utility of comparing standard deviations is, in our view, less clear, 
and as most users are using aggregates to get an idea of the AOD is is the means which are of most direct 
relevance to them. We feel that this four-way categorisation (based on SW test results and differences in the 
means) is intuitive and sufficient for the purpose at hand, i.e. asking (1) which distribution form is a more 
appropriate representation and (2) when is is important?

p 13, l 3: "results for temporal (from AERONET and G5NR) and spatial (from MISR, MODIS, and G5NR) 
frequency distributions of" This confused me as both Figures show spatial distributions of the WS test. 
The test, in all cases, was presumably done on time-series of data. The captions to the figures seem to 
say something different: either data was a temporal aggregate (which suggests G5NR results are at its 
native resolution) or spatially aggregate (which suggests each 30 min of G5NR data was used). Please 
clarify this?



Both Figures 2 and 3 of the original manuscript are spatial distributions. Figure 3 of the original submission is a 
spatial aggregate (from source level 2/G5NR data), not a temporal aggregate. The others are temporal 
aggregates. This was discussed in Section 2.2, and is indicated in the caption as well: “aggregated spatially over 
a day from full resolution to 1°”. We have further expanded the captions to Figures 2 and 3 (now 3 and 4) in case 
of confusion.

p 14, l 5: "calculating an arithmetic mean when the underlying distribution is Lognormal (or vice-versa) 
introduces an error smaller than 0.01." I disagree with the use of the word ’error’. No error is incurred at 
all. It is always possible to calculate arithmic means. Any error is due to limited sample size. See also my
previous comments.

It is an error in the case that what is implied by the statistic is not what is inferred by the data user. We have 
reworded to “offset” to clarify this in the revised manuscript.

p 17, l 7: "Note also that the near-universal choice of aggregating daily on a UTC calendar day basis, 
rather in terms of local solar time, can further complicate matters for locations far from the meridian." 
For another example, see Schutgens, Partridge & Stier ACP 2016, Fig. 13 & 14.

Thanks for this reference – we have included it in the revised manuscript (here and elsewhere).

p 23 , l 11: "Even a small change in reported AOD, if systematic, can have important implications for 
calculations of climate forcing." But changes (differences) in AOD are far more likely to have a normal 
distribution.

We feel that the reviewer here is interpreting “changes” to mean “differences in time” while what we mean is 
“before you were using this number, now you are using that number”. We have reworded this (to “offset”) to be 
clearer in the revised manuscript.

p 23, l 20: "the same argument may apply if forcing parametrisations are developed from model 
simulations aggregated in certain ways" This is a fair point. A lot of studies point out the distorting 
impact of non-linear physics/chemistry when using just the mean to represent a distribution. One 
example from remote sensing is the plane-parallel bias noted in cloud retrievals of LWP. Note however 
that such biases exist not because of an arithmetic mean but the representation of any disribution by a 
single number.

Thanks – we have expanded the discussion here along these lines (and included the reference in the Short 
Comment by Y. Chen, as well as another one about rainfall). And yes, this is an instance where one would ideally
use the full distribution or at minimum both mean, a measure of width, and an assumed form.

p 23, l 6: "This implies that no simple scaling correction can be applied to existing data sets to transform
between arithmetic and geometric estimates" . Assuming a normal or log-normal distribution, exact 
transformations exist between mean and stddev of arithmic and geometric statistics.

We have removed this text (and extended the prior sentence) as we acknowledge it could be misleading. We 
meant that no scaling is possible unless you know or assume the underlying distribution form.



Sect 4.2 The analysis in this section seems sound and I have no problems with it. That arithmic means 
yield different trends than geometric means is no surprise, after all these are different means. However, 
there is the suggestion that geometric means are better simply because the underlying distribution is 
log-normal. Rather, geometric statistics make it easier to interpret changes in a log-normal distribution 
but they do not provide more information (or put differently: the arithmetic statistics are not "wrong").
Note also that trend analysis of changing log-normal distribution really requires geometric stddev to be 
analysed as well but this is seldom done.

We agree that arithmetic means here are not “wrong” in a mathematical sense, but rather cause a scientific 
misinterpretation (because users typically don’t consider the distribution something is drawn from). For example 
if someone reads that AOD changes by X per year then they may expect to go outside on any given day and find 
AOD lower by X than it was a year ago (roughly speaking). This will not be the case if X was calculated as a 
trend in arithmetic mean when the underlying distribution is close to Lognormal (because of the relation between 
arithmetic and geometric mean which the reviewer points out, and because most users do not look at the 
standard deviation so would not consider this transform). We note that our example trend analysis did use the 
geometric standard deviation in the estimate of the uncertainty for the regression fit. In the revised manuscript 
we have added sentences in a few points to clarify that it’s not about being “wrong” but about the implicit 
assumptions an analyst makes.

p 26, l 6: "but quantitatively have a tendency to overestimate their magnitude." It may be good to repeat 
here that at these three sites the log-normal distribution is the more appropriate distribution to use 
(previous analysis, Sect 3). At least that seems to be the suggestion here?

Yes – at all three sites, the data fell most often into the category 4 (difference > 0.01 and most consistent with 
draws from a Lognormal distribution). Apologies for the omission of this in the previous version of the paper; we 
have added the numbers into the revised manuscript.

p 27, l 20: "estimated trends in geometric mean AOD are smaller in magnitude" Trends in satellite data 
are over often calculated over regions, not like the point sources the authors have used in their example.
I wonder how this will affect these conclusions? At some point the central-limit-theorem should kick in 
and turn any log-normal distribution into a normal one?

We believe this is a misinterpretation of the central limit theorem. The central limit theorem implies that when you
make multiple estimates of a quantity, those estimates will tend towards a Normal distribution, even if the source 
data are not Normal (https://en.wikipedia.org/wiki/Central_limit_theorem). In this context, it means that your 
estimates of the geometric (or arithmetic) mean AOD averaged across the region, if you could make those 
estimates multiple times, would tend towards a Normal distribution. It does not mean that the underlying AOD 
field itself becomes closer to a Normal distribution. Indeed, looking at the results in this paper and O’Neill et al 
(2000), on longer scales it looks like AOD becomes further from, not closer to, a Normal distribution.

After initially submitting this paper we presented the analysis at several venues and a similar comment came up 
once. As a result we have added some text about the central limit theorem to the paper, including a reference to 
a review paper dealing in part with this misconception.

p 27, point 2: this point seems to imply it is ok to average AOD in time and compare satellites with 
satellites or models, as long as we use the proper mean. The authors know that different sampling of 
data sources often has a far bigger impact. Maybe it is good to state that here.

https://en.wikipedia.org/wiki/Central_limit_theorem


We agree; we mentioned sampling earlier and in the revised manuscript have mentioned again to re-emphasise 
here. These are all individual pieces of the puzzle.

p 27, l 9: "root mean square error" This is a difference between two AOD and is likely to be normally 
distributed.

It is plausible that RMSE distributions are Normally distributed. What we are saying here is that often in AOD 
validation exercises, people report RMSE at a given AERONET site (or collection of sites). Yet this is not always 
a meaningful description of what the level of error is at that location, since it tends to be driven by the high-AOD 
cases which tend to have higher uncertainty. We have expanded a bullet point here to emphasise for the reader 
our main point (which was: look at the data and not just the metric).



Review by Anonymous Referee #3

This paper looks at an important yet widely neglected issue in selecting the appropriate summary 
statistics to create daily or monthly climatology from instantaneous measurements. AOD is used as an 
example, but the study is applicable to any geophysical variables. The study is well thought out, 
carefully executed, and clearly presented. I have a few comments below.

Thank you for the kind words.

1. It would be appealing to give plausible explanations, from the standpoint of physical mechanisms, to 
the fact that certain geophysical variables, like AOD, follow lognormal distribution (raindrop size is often 
described by Gamma distribution, which has a similar skewed shape to lognormal), while some are 
Gaussian. I find the authors’ attempt at P6L5 unconvincing. Statistically, lognormal distribution arises 
from multiplicative processes while normal distribution is from summation of independent/identically 
distributed (Gaussian or non-Gaussian) processes (central limit theorem). But I feel that it is hard to 
relate this statistical interpretation to the physical processes happening in reality. The reason for the 
skewed distribution of many geophysical variables may be due to the simple fact that they are positively 
defined. This is also supported by the authors’ analysis that in clean conditions (AOD approaching 
positively zero), geometric and arithmetic means are not all that different.

Yes, the point about being positive definite is a good one (also made by Adam Povey). We were not trying to 
convince the reader that AOD must be/is Lognormally distributed, only that there are reasons that it might be (or 
at the least might not be Normally distributed). We have expanded the discussion of distributions in nature in the 
revised manuscript (note the Gamma distribution was mentioned already in the context of clouds in the 
conclusion).

2. Negative or zero AODs are set to a very small positive value. This has to be done in order to calculate 
geometric mean. I wonder in such special cases (even if they are rare), does it incur any arbitrary bias 
that renders use of geometric mean less meaningful compared to arithmetic mean? How would the 
operational L2-to L3 algorithm deal with the negative or zero retrievals?

It makes no practical difference since the lowest AODs found tend to be smaller than relevant for many 
applications. A L2 to L3 algorithm should document if there is any truncation, but ideally L2 algorithms permitting 
the retrieval of negative AOD should be changed, because this is an unphysical retrieval. AOD of 0 is a thornier 
case as it is not unphysical, but we’d argue is highly unrealistic. We’ve added a statement in the revised 
manuscript to mention this and suggest that any enforced lower limit to avoid negative or zero values is 
sufficiently low not to bias things.

3. A possible development for aerosol product is to collate products from different sensors for the 
overlapping domain (such as the MODIS twins from Terra and Aqua). In that case, which mean is more 
appropriate, geometric or arithmetic?

If one believes that the two data sets can be regarded as separate samples from the same population (as might 
be the case for the two MODIS sensors, with the same design, similar performance, and identical L2 retrieval 
algorithms), then it would make sense to treat them as one data set when collating their L2 data to make a L3 
aggregate. In that sense the evidence of the paper supports Lognormality (geometric mean) as, overall, being a 
better representation than Normality (arithmetic mean). We’re not sure that this question needs a modification to 



the manuscript as it is not directly on the main topic of the analysis; in any case, the review and this response will
eventually be public and citable via the ACP web page.

4. The study discussed the impact of geometric vs arithmetic means on trend analysis. How about the 
aerosol climatic impact? Are L3 products used in climate model evaluation or assimilation that the 
choice of aggregation method may have important effects?

We picked trends as one of several possible application areas where it’s easy to provide a quantitative example. 
For evaluating model AOD fields, ideally one should account for sampling differences and (as in the previous 
comment) geometric mean is probably the best thing to compare if one is only looking at one metric. Note that 
sampling differences are very important here as well – we cited some references in the paper to highlight this. Of
course it would be better to examine the full pdf (or at minimum some measure of average tendency and some 
measure of variability) but this is not always practical. We did mention aerosol forcing as another aspect but feel 
that providing too many quantitative examples would lengthen the paper and go out of scope. In response to this 
and other reviewer comments these aspects are addressed under the generally expanded discussion sections of
the paper.


