
 1

Historical (1700–2012) Global Multi-model Estimates of the Fire Emissions from 1 

the Fire Modeling Intercomparison Project (FireMIP) 2 

Fang Li1*, Maria Val Martin2, Meinrat O. Andreae3, 4, Almut Arneth5, Stijn Hantson6, 5, 3 

Johannes W. Kaiser7, 3, Gitta Lasslop8, Chao Yue9, 10, Dominique Bachelet11, Matthew 4 

Forrest8, Erik Kluzek12, Xiaohong Liu13, Stephane Mangeon14, 15, Joe R. Melton16, 5 

Daniel S. Ward17, Anton Darmenov18, Thomas Hickler8, 19, Charles Ichoku20, Brian I. 6 

Magi21, Stephen Sitch22, Guido R. van der Werf23, Christine Wiedinmyer24, Sam S. 7 

Rabin5  8 

  9 

1 International Center for Climate and Environment Sciences, Institute of Atmospheric 10 

Physics, Chinese Academy of Sciences, Beijing, China 11 

2 Leverhulme Center for Climate Change Mitigation, Department of Animal & Plant 12 

Sciences, Sheffield University, Sheffield, UK 13 

3 Max Planck Institute for Chemistry, Mainz, Germany 14 

4 Department of Geology and Geophysics, King Saud University, Riyadh, Saudi Arabia 15 

5 Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate 16 

research, Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany 17 

6 Geospatial Data Solutions Center, University of California, Irvine, CA, USA 18 

7 Deutscher Wetterdienst, Offenbach, Germany 19 

8 Senckenberg Biodiversity and Climate Research Institute (BiK-F), 20 

Senckenberganlage, Germany9 State Key Laboratory of Soil Erosion and Dryland 21 

Farming on the Loess Plateau, Northwest A&F University, Yangling, Shanxi, China 22 



 2

10 Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, 23 

CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France 24 

11 Biological and Ecological Engineering, Oregon State University, Corvallis, OR, 25 

USA 26 

12 National Center for Atmospheric Research, Boulder, CO, USA 27 

13 Department of Atmospheric Science, University of Wyoming, Laramie, WY, USA 28 

14 Department of Physics, Imperial College London, London, UK 29 

15 Now at CSIRO, Data61, Brisbane, QLD, Australia 30 

16 Climate Research Division, Environment and Climate Change Canada, Victoria, BC, 31 

Canada 32 

17 Karen Clark and Company, Boston, MA, USA 33 

18 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, 34 

Greenbelt, MD, USA 35 

19 Department of Physical Geography, Goethe University, Frankfurt am Main, 36 

Germany 37 

20 Howard University, NW, Washington, DC, USA 38 

21 Department of Geography and Earth Sciences, University of North Carolina at 39 

Charlotte, Charlotte, NC, USA 40 

22 College of Life and Environmental Sciences, University of Exeter, Exeter, UK 41 

23 Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands 42 

24 University of Colorado Boulder, Boulder, CO, USA 43 

*Correspondence to: Fang Li (lifang@mail.iap.ac.cn) 44 



 3

Abstract 45 

Fire emissions are a critical component of carbon and nutrient cycles and strongly 46 

affect climate and air quality. Dynamic Global Vegetation Models (DGVMs) with 47 

interactive fire modeling provide important estimates for long-term and large-scale 48 

changes in fire emissions. Here we present the first multi-model estimates of global 49 

gridded historical fire emissions for 1700–2012, including carbon and 33 species of 50 

trace gases and aerosols. The dataset is based on simulations of nine DGVMs with 51 

different state-of-the-art global fire models that participated in the Fire Modeling 52 

Intercomparison Project (FireMIP), using the same and standardized protocols and 53 

forcing data, and the most up-to-date fire emission factor table based on field and 54 

laboratory studies in various land cover types. We evaluate the simulations of 55 

present-day fire emissions by comparing them with satellite-based products. The 56 

evaluation results show that most DGVMs simulate present-day global fire emission 57 

totals within the range of satellite-based products. They can capture the high emissions 58 

over the tropical savannas and low emissions over the arid and sparsely vegetated 59 

regions, and the main features of seasonality. However, most models fail to simulate 60 

the interannual variability, partly due to a lack of modeling peat fires and tropical 61 

deforestation fires. Before the 1850s, all models show only a weak trend in global fire 62 

emissions, which is consistent with the multi-source merged historical reconstructions 63 

used as input data for CMIP6. On the other hand, the trends are quite different among 64 

DGVMs for the 20th century, with some models showing an increase and others a 65 

decrease in fire emissions, mainly as a result of the discrepancy in their simulated 66 
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responses to human population density change and land-use and land-cover change 67 

(LULCC). Our study provides an important dataset for further development of regional 68 

and global multi-source merged historical reconstructions, analyses of the historical 69 

changes in fire emissions and their uncertainties, and quantification of the role of fire 70 

emissions in the Earth system. It also highlights the importance of accurately modeling 71 

the responses of fire emissions to LULCC and population density change in reducing 72 

uncertainties in historical reconstructions of fire emissions and providing more reliable 73 

future projections. 74 

 75 

1. Introduction 76 

Fire is an intrinsic feature of terrestrial ecosystem ecology, occurring in all major 77 

biomes of the world soon after the appearance of terrestrial plants over 400 million 78 

years ago (Scott and Glasspool, 2006; Bowman et al., 2009).Fire emissions affect the 79 

Earth system in several important ways. First, chemical species emitted from fires are 80 

a key component of the global and regional carbon budgets (Bond-Lamberty et al., 81 

2007; Ciais et al., 2013; Kondo et al., 2018), a major source of greenhouse gases (Tian 82 

et al., 2016), and the largest contributor of primary carbonaceous aerosols globally 83 

(Andreae and Rosenfeld, 2008; Jiang et al., 2016). Second, by changing the 84 

atmospheric composition, fire emissions affect the global and regional radiation 85 

balance and climate (Ward et al., 2012; Tosca et al. 2013; Jiang et al., 2016; Grandey et 86 

al., 2016; McKendry et al., 2019; Hamilton et al., 2018; Thornhill et al., 2018). Third, 87 

fire emissions change the terrestrial nutrient and carbon cycles through altering the 88 
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deposition of nutrients (e.g., nitrogen, phosphorus), surface ozone concentration, and 89 

meteorological conditions (Mahowald et al., 2008; Chen et al., 2010; McKendry et al., 90 

2019; Yue and Unger, 2018). In addition, they degrade the air quality (Val Martin et al., 91 

2015; Knorr et al., 2017), which poses a significant risk to human health and has been 92 

estimated to result in at least ~165,000, and more likely ~339,000 pre-mature deaths per 93 

year globally (Johnston et al., 2012; Marlier et al., 2013; Lelieveld et al., 2015).    94 

To date, only emissions from individual fires or small-scale fire complexes can be 95 

directly measured from field campaigns and laboratory experiments (Andreae and 96 

Merlet, 2001; Yokelson et al., 2013; Stockwell et al., 2016; Andreae, 2019). 97 

Regionally and globally, fire emissions are often estimated based on satellite 98 

observations, fire proxy records, and numerical models, even though some attempts 99 

have been made to bridge the gap between local observations and regional estimations 100 

using combinations of aircraft and ground based measurements from field campaigns 101 

(e.g., SAMBBA, ARCTAS), satellite-based inventories, and chemical transport 102 

models (e.g., Fisher et al., 2010; Reddington et al., 2019; Konovalov et al., 2018). 103 

Satellite-based fire emission estimates are primarily derived from satellite observations 104 

of burned area, active fire counts, and/or fire radiative power, and are sometimes 105 

constrained by satellite observations of aerosol optical depth (AOD), CO, or CO2 106 

(Wiedinmyer et al., 2011; Kaiser et al., 2012; Krol et al., 2013; Konovalov et al., 2014; 107 

Ichoku and Ellison, 2014; Darmenov and da Silva, 2015; van der Werf et al., 2017; 108 

Heymann et al., 2017). Satellite-based fire emission estimates are available globally, 109 
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but cover only the present-day period, i.e., since 1997 for Global Fire Emissions 110 

Dataset (GFED) and shorter periods for others.  111 

Historical change of fire emissions has been inferred from a variety of proxies, 112 

such as ice-core records of CH4 (isotope δ13CH4 from pyrogenic or biomass burning 113 

source), black carbon, levoglucosan, vanillic acid, ammonium, and CO (Ferretti et al., 114 

2005; McCornnell et al., 2007; Conedera et al., 2009; Wang et al., 2012; Zennaro et al., 115 

2014), site-level sedimentary charcoal records (Marlon et al., 2008, 2016), visibility 116 

records (van Marle et al., 2017a), and fire-scar records (Falk et al. 2011). Fire proxies 117 

can be used to reconstruct fire emissions on a local to global scale and for time 118 

periods of decades to millennia and beyond. However, they are of limited spatial extent 119 

and cannot be directly converted into emission amounts. Moreover, large uncertainties 120 

and discrepancies were shown in their inferred regional or global long-term trends due 121 

to limited sample size and often unclear representative areas and time periods of fire 122 

emissions (Pechony and Shindell, 2010; van der Werf et al., 2013; Legrand et al., 123 

2016).  124 

Dynamic Global Vegetation Models (DGVMs) that include fire modeling are 125 

indispensable for estimating fire carbon emissions at local to global scales for past, 126 

present, and future periods (Hantson et al., 2016). These models represent interactions 127 

among fire dynamics, biogeochemistry, biogeophysics, and vegetation dynamics at the 128 

land surface within a physically and chemically consistent modeling framework. 129 

DGVMs are often used as the terrestrial ecosystem component of Earth System models 130 

(ESMs) and have been widely applied in global change research (Levis et al., 2004; Li 131 
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et al., 2013; Kloster and Lasslop, 2017). Fire emissions of trace gases and aerosols can 132 

be derived from the product of fire carbon emissions simulated by DGVMs and fire 133 

emission factors (Li et al., 2012; Knorr et al., 2016).  134 

Modeling fire and fire emissions within DGVMs started in the early 2000s 135 

(Thonicke et al., 2001), and has rapidly progressed during the past decade (Hantson et 136 

al., 2016). The Fire Model Intercomparison Project (FireMIP) initiated in 2014 was the 137 

first international collaborative effort to better understand the behavior of global fire 138 

models (Hantson et al., 2016). A set of common fire modeling experiments driven by 139 

the same forcing data were performed (Rabin et al., 2017). Nine DGVMs with different 140 

state-of-the-art global fire models participated in FireMIP. All global fire models used 141 

in the upcoming 6th Coupled Model Intercomparison Project (CMIP6) and IPCC AR6 142 

are included in FireMIP, except for the fire scheme in GFDL-ESM (Rabin et al., 2018; 143 

Ward et al., 2018) which is similar to that of CLM4.5 (Li et al., 2012) in FireMIP. Note 144 

that GlobFIRM (Thonicke et al., 2001) in FireMIP is the most commonly-used fire 145 

scheme in CMIP5 (Kloster and Lasslop, 2017), and is still used by some models in 146 

CMIP6.  147 

Earlier studies provided only one single time series of fire emissions for global 148 

grids or regions (Schultz et al., 2008; Mieville et al., 2010; Lamarque et al., 2010; 149 

Marlon et al., 2016; van Marle et al., 2017b; and references therein). This limits their 150 

utility for quantifying the uncertainties in global and regional reconstructions of fire 151 

emissions and the corresponding impacts on estimated historical changes in carbon 152 

cycle, climate, and air pollution. A small number of studies also investigated the 153 
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drivers of fire carbon emission trends (Kloster et al., 2010; Yang et al., 2014; Li et al., 154 

2018; Ward et al., 2018). However,these studies could not identify the uncertainty 155 

source in recent model-based reconstructions or help understand the inter-model 156 

discrepancy in projections of future fire emissions because only a single DGVM was 157 

used in each. 158 

This study provides a new dataset of global gridded fire emissions, including 159 

carbon and 33 species of trace gases and aerosols, over the 1700–2012 time period, 160 

based on nine DGVMs with different state-of-the-art global fire models that 161 

participated in FireMIP. The dataset provides a basis for developing multi-source (e.g., 162 

satellite-based products, model simulations, and/or fire proxy records) merged fire 163 

emission reconstructions and methods. It also, for the first time, allows end users to 164 

select all or a subset of model-based reconstructions that best suits their regional or 165 

global research needs. Importantly, it enables the quantification of the uncertainty 166 

range of past fire emissions and their impacts. In addition, the model-based estimates 167 

of fire emissions are comprehensively evaluated through comparison with 168 

satellite-based products, including amounts, spatial distribution, seasonality, and 169 

interannual variability, thus providing information on the limitations of recent 170 

model-based reconstructions. We also analyze the simulated long-term changes and 171 

the drivers for each DGVM and inter-model differences.  172 

 173 

2 Methods and datasets 174 

2.1 Models in FireMIP 175 
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Nine DGVMs with different fire modules participated in FireMIP: CLM4.5 with CLM5 176 

fire module, CTEM, JSBACH-SPITFIRE, JULES-INFERNO, 177 

LPJ-GUESS-GlobFIRM, LPJ-GUESS-SIMFIRE-BLAZE, LPJ-GUESS-SPITFIRE, 178 

MC2, and ORCHIDEE-SPITFIRE (Table 1, see Rabin et al., 2017 for detailed 179 

description of each model). JSBACH, ORCHIDEE, and LPJ-GUESS used the variants 180 

of SPITFIRE (Thonicke et al., 2010) with updated representation of human ignition 181 

and suppression, fuel moisture, combustion completeness, and the relationship 182 

between spread rate and wind speed for JSBACH (Lasslop et al., 2014), combustion 183 

completeness for ORCHIDEE (Yue et al., 2014, 2015), and human ignition, post-fire 184 

mortality factors, and modifications for matching tree age/size structure for 185 

LPJ-GUESS (Lehsten et al., 2009; Rabin et al., 2017). 186 

The global fire models in the nine DGVMs have diverse levels of complexity 187 

(Rabin et al., 2017). SIMFIRE is a statistical model based on present-day 188 

satellite-based fire products (Knorr et al., 2016). In CLM4.5, crop, peat, and tropical 189 

deforestation fires are empirically/statistically modeled (Li et al., 2013). The scheme 190 

for fires outside the tropical closed forests and croplands in CLM4.5 (Li et al., 2012; 191 

Li and Lawrence, 2017), fire modules in CTEM (Arora and Boer, 2005; Melton and 192 

Arora, 2016), GlobFIRM (Thonicke, 2001), and INFERNO (Mangeon et al., 2016) are 193 

process-based and of intermediate-complexity. That is, area burned is determined by 194 

two processes: fire occurrence and fire spread, but with simple empirical/statistical 195 

equations for each process. Fire modules in MC2 (Bachelet et al., 2015; Sheehan et al., 196 

2015) and SPITFIRE variants are more complex, which use the Rothermel equations 197 
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(Rothermel, 1972) to model fire spread and consider the impact of fuel composition on 198 

fire behavior.  199 

How humans affect fires differs among these global fire models (Table 2), which 200 

influences their estimates of fire emissions. GlobFIRM does not consider any direct 201 

human effect on fires and MC2 fire model only considers human suppression on fire. 202 

CLM4.5 models fires in croplands, human deforestation and degradation fires in 203 

tropical closed forests, and human ignition and suppression for both occurrence and 204 

spread of fires outside of tropical closed forests and croplands. Burned area in 205 

SIMFIRE and human influence on fire occurrence in other models are a non-linear 206 

function of population density. CTEM and JSBACH-SPITFIRE also consider human 207 

suppression on fire duration. JULES-INFERNO treats croplands and crop fires as 208 

natural grasslands and grassland fires. All models, except for CLM4.5 and INFERNO, 209 

set burned area to zero in croplands. FireMIP models treat pasture fires as natural 210 

grassland fires by using the same parameter values if they have pasture plant functional 211 

types (PFTs) or lumping pastures with natural grasslands otherwise. Biomass harvest is 212 

considered in pastures in LPJ-GUESS-GlobFIRM and LPJ-GUESS-SIMFIRE-BLAZE, 213 

which decreases fuel availability for fires, and that JSBACH-SPITFIRE sets high fuel 214 

bulk density for pasture PFTs.  215 

Only CLM4.5 simulates peat fires, although only emissions from burning of 216 

vegetation tissues and litter are included in outputs for FireMIP, i.e., burning of soil 217 

organic matter is not included (Table 2). 218 
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In the FireMIP models, fire carbon emissions are calculated as the product of 219 

burned area, fuel load, and combustion completeness. Combustion completeness is the 220 

fraction of live plant tissues and ground litter burned (0–100%). It depends on PFT and 221 

plant tissue type in GlobFIRM and in the fire modules of CLM4.5 and CTEM, and is 222 

also a function of soil moisture in INFERNO. Combustion completeness depends on 223 

plant tissue type and surface fire intensity in SIMFIRE, fuel type and wetness in the 224 

SPITFIRE family models, and fuel type, load, and moisture in MC2 fire module.  225 

 226 

2.2 FireMIP experimental protocol and input datasets 227 

The nine DGVMs in FireMIP are driven with the same forcing data (Rabin et al., 228 

2017). The atmospheric forcing is from CRU-NCEP v5.3.2 with a spatial resolution of 229 

0.5° and a 6-hourly temporal resolution (Wei et al., 2014). The 1750–2012 annual 230 

global atmospheric CO2 concentration is derived from ice core and NOAA monitoring 231 

station data (Le Quéré et al., 2014). Annual land-use and land-cover change (LULCC) 232 

and population density at a 0.5° resolution for 1700–2012 are from Hurtt et al. (2011) 233 

and Klein Goldewijk et al. (2010, HYDE v3.1), respectively. Monthly cloud-to-ground 234 

lightning frequency for 1901–2012, at 0.5o resolution, is derived from the observed 235 

relationship between present-day lightning and convective available potential energy 236 

(CAPE) anomalies (Pfeiffer et al., 2013, J. Kaplan, personal communication, 237 

2015).Fire emissions in this study are estimated using the model outputs of PFT-level 238 

fire carbon emissions and vegetation characteristics (PFTs and their fractional area 239 

coverages) from the FireMIP historical transient control run (SF1) (Rabin et al., 2017). 240 
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SF1 includes three phases (Fig. 1): the 1700 spin-up phase, the 1701–1900 transient 241 

phase, and the 1901–2012 transient phase. In the 1700 spin-up phase, all models are 242 

spun up to equilibrium, forced by population density and prescribed LULCC at their 243 

1700 values, 1750 atmospheric CO2 concentration, and the repeatedly cycled 1901–244 

1920 atmospheric forcing (precipitation, temperature, specific humidity, surface 245 

pressure, wind speed, and solar radiation) and lightning data. The 1701–1900 transient 246 

phase is forced by 1701–1900 time-varying population and LULCC, with constant CO2 247 

concentration at 1750 level until 1750 and time-varying CO2 concentration for 1750–248 

1900, and the cycled 1901–1920 atmospheric forcing and lightning data. In the 1901–249 

2012 transient phase, models are driven by 1901–2012 time-varying population density, 250 

LULCC, CO2 concentration, atmospheric forcing, and lightning data. Unlike all other 251 

models, MC2 and CTEM run from 1901 and 1861, respectively, rather than 1700.   252 

    Six FireMIP models (CLM4.5, JSBACH-SPITFIRE, JULES-INFERNO, 253 

LPJ-GUESS-SPITFIRE, LPJ-GUESS-SIMFIRE-BLAZE, and 254 

ORCHIDEE-SPITFIRE) also provide outputs of five sensitivity simulations: constant 255 

climate, constant atmospheric CO2 concentration, constant land cover, constant 256 

population density, and constant lightning frequency throughout the whole simulation 257 

period. The sensitivity simulations are helpful for understanding the drivers of changes 258 

in reconstructed fire emissions.  259 

 260 

2.3 Estimates of fire trace gas and aerosol emissions 261 
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Based on fire carbon emissions and vegetation characteristics from DGVMs and fire 262 

emission factors, fire emissions of trace gas and aerosol species i and the PFT j, Ei,j (g 263 

species m-2 s-1), are estimated according to Andreae and Merlet (2001):  264 

Ei,j = EFi,j × CEj/[C],                                  (1) 265 

where EFi,j (g species (kg dry matter (DM)) -1) is a PFT-specific emission factor (EF), 266 

CEj denotes the fire carbon emissions of PFT j (g C m-2 s-1), and [C]=0.5×103 g C (kg 267 

DM)-1 is a unit conversion factor from carbon to dry matter.    268 

 The EFs used in this study (Table 3) are based on Andreae and Merlet (2001), with 269 

updates from field and laboratory studies over various land cover types published 270 

during 2001–2018 (Andreae, 2019). All FireMIP model simulations used the same 271 

EFs from Table 3. 272 

DGVMs generally simulate vegetation as mixture of PFTs in a given grid 273 

location to represent plant function at global scale, instead of land cover types. In 274 

Table 4, we associate the PFTs from each DGVM to the land cover types shown in 275 

Table 3. Grass, shrub, savannas, woodland, pasture, tundra PFTs are classified as 276 

grassland/savannas. Tree PFTs and crop PFTs are classified as forests and croplands, 277 

respectively, similar to Li et al. (2012), Mangeon et al. (2016), and Melton and Arora 278 

(2016). PFTs of evergreen tree and other broadleaf deciduous tree in CTEM, 279 

extra-tropical evergreen and deciduous tree in JSBACH, and broadleaf deciduous tree 280 

and needleleaf evergreen tree in JULES are divided into tropical, temperate, and boreal 281 

groups following Nemani and Running (1996).  282 
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We provide two versions of fire emission products with different spatial 283 

resolutions: the original spatial resolution for each FireMIP DGVM outputs (Table 1), 284 

and a 1x1 degree horizontal resolution. For the latter, fire emissions are unified to 1 285 

degree resolution using bilinear interpolation for CLM4.5, CTEM, JSBACH, and 286 

JULES which have coarser resolution, and area-weighted averaging-up for other 287 

models whose original resolution is 0.5 degree. The 1x1 degree product is used for 288 

present-day evaluation and historical trend analyses in Sects. 3 and 4. 289 

 290 

2.4 Benchmarks 291 

Satellite-based products are commonly used as benchmarks to evaluate present-day 292 

fire emission simulations (Rabin et al., 2017, and references therein). In the present 293 

study, six satellite-based products are used (Table 5). Fire emissions in 294 

GFED4/GFED4s (small fires included in GFED4s) (van der Werf et al., 2017), 295 

GFAS1.2 (Kaiser et al., 2012), and FINN1.5 (Wiedinmyer et al., 2011) are based on 296 

emission factor (EF) and fire carbon emissions (CE) (Eq. 1). CE is estimated from 297 

MODIS burned area and VIRS/ATSR active fire products in the GFED family, 298 

MODIS active fire detection in FINN1.5, and MODIS fire radiative power (FRP) in 299 

GFAS1. Fire emissions from FEER1 (Ichoku and Ellison, 2014) and QFEDv2.5 300 

(Darmenov and da Silva, 2015) are derived using FRP, and constrained with satellite 301 

AOD observations. Satellite-based present-day fire emissions for the same region can 302 

differ by a factor of 2–4 on an annual basis (van der Werf et al., 2010) and up to 12 on a 303 

monthly basis (Zhang et al., 2014). The discrepancy among satellite-based estimates of 304 
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present-day fire emissions mainly comes from the satellite observations used, the 305 

methods applied for deriving fire emissions, and the emissions factors. 306 

 307 

2.5 Multi-source merged historical reconstructions 308 

We also compared the simulated historical changes with historical reconstructions 309 

merged from multiple sources used as forcing data for CMIPs. Fire emission estimates 310 

for CMIP5 and CMIP6 were merged from different sources (Table 5). For CMIP5 311 

(Lamarque et al., 2010), the decadal fire emissions are available from 1850 to 2000, 312 

estimated using GFED2 fire emissions (van der Werf et al., 2006) for 1997 onwards, 313 

RETRO (Schultz et al., 2008) for 1960–1900, GICC (Mieville et al., 2010) for 314 

1900-1950, and kept constant at the 1900 level for 1850–1900. RETRO combined 315 

literature reviews with satellite-based fire products and the GlobFIRM fire model. 316 

GICC is based on a burned area reconstruction from literature review and sparse tree 317 

ring records (Mouillot et al., 2005), satellite-based fire counts, land cover map, and 318 

representative biomass density and burning efficiency of each land cover type.      319 

For CMIP6, monthly fire emission estimates are available from 1750 to 2015 (van 320 

Marle et al., 2017b). The CMIP6 estimates are merged from GFED4s fire carbon 321 

emissions for 1997 onwards, charcoal records GCDv3 (Marlon et al., 2016) for North 322 

America and Europe, visibility records for Equatorial Asia (Field et al., 2009) and 323 

central Amazon (van Marle et al., 2017b), and the median of simulations of six 324 

FireMIP models (CLM4.5, JSBACH-SPITFIRE, JULES-INFERNO, 325 

LPJ-GUESS-SPITFIRE, LPJ-GUESS-SIMFIRE-BLAZE, and 326 
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ORCHIDEE-SPITFIRE) for all other regions. Then, based on the merged fire carbon 327 

emissions, CMIP6 fire trace gas and aerosol emissions are derived using EF from 328 

Andreae and Merlet (2001) with updates to 2013 and Akagi et al. (2011) with updates 329 

for temperate forests to 2014, and a present-day land cover map.  330 

 331 

3 Evaluation of present-day fire emissions 332 

The spatial pattern and temporal variability of different fire emission species are 333 

similar, with some slight differences resulting from the estimated fire carbon emissions 334 

from the land cover types that have different emission factors (Table 3). Therefore, we 335 

focus on several important species as examples to exhibit the performance of FireMIP 336 

models on the simulations of present-day fire emissions.  337 

 338 

3.1 Global amounts and spatial distributions 339 

As shown in Table 6, FireMIP models, except for MC2 and LPJ-GUESS-GlobFIRM, 340 

estimate present-day fire carbon, CO2, CO, CH4, BC, OC, and PM2.5 annual emissions 341 

to be within the range of satellite-based products. For example, the estimated range of 342 

fire carbon emissions is 1.7–3.0 Pg C yr-1, whereas it is 1.5–4.2 Pg C yr-1 for 343 

satellite-based products. Low fire emissions in MC2 result from relatively low 344 

simulated global burned area, only about 1/4 of satellite-based observations (Andela et 345 

al., 2017). In contrast, high emissions in LPJ-GUESS-GlobFIRM are mainly due to the 346 

higher combustion completeness of woody tissues (70–90% of stem and coarse woody 347 

debris burned in post-fire regions) than those used in other FireMIP models (Table 2) 348 
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and the satellite-based GFED family (20–40% for stem and 40–60% for coarse woody 349 

debris) (van der Werf et al., 2017). 350 

   FireMIP DGVMs, except for MC2, represent the general spatial distribution of 351 

fire emissions evident in satellite-based products, with high fire BC emissions over 352 

tropical savannas and low emissions over the arid and sparsely vegetated regions (Fig. 353 

2). Among the nine models, CLM4.5, JULES-INFERNO, and 354 

LPJ-GUESS-SIMFIRE-BLAZE have higher global spatial pattern correlation with 355 

satellite-based products than the other models, indicating higher skill in their 356 

spatial-pattern simulations. It should also be noted that, on a regional scale, CTEM, 357 

JULES-INFERNO, LPJ-GUESS-SPITFIRE, and ORCHIDEE-SPITFIRE 358 

underestimate fire emissions over boreal forests in Asia and North America. 359 

LPJ-GUESS-GlobFIRM and LPJ-GUESS-SIMFIRE-BLAZE overestimate fire 360 

emissions over the Amazon and African rainforests. CLM4.5 and 361 

LPJ-GUESS-GlobFIRM overestimate fire emissions over eastern China. 362 

JSBACH-SPITFIRE underestimates fire emissions in most tropical forests. MC2 363 

underestimates fire emissions over most regions, partly because it allows only one 364 

ignition per year per grid cell and thus underestimates the burned area. 365 

We further analyze the spatial distribution of inter-model differences. As shown in 366 

Fig. 3, the main disagreement among FireMIP models occurs in the tropics, especially 367 

over the tropical savannas in Africa, South America, and northern Australia. This is 368 

mainly driven by the MC2, CTEM, JSBACH-SPITFIRE, and ORCHIDEE-SPITFIRE 369 

simulations (Fig. 2). Differences among the satellite-based estimates have a similar 370 
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spatial pattern, but higher than the inter-model spread in savannas over southern 371 

Africa and lower in the temperate arid and semi-arid regions and north of 60ºN over 372 

Eurasia (Fig. S1a). 373 

 374 

3.2 Seasonal cycle 375 

The FireMIP models reproduce similar seasonality features of fire emissions to 376 

satellite-based products, that is, peak month is varied from the dry season in the tropics 377 

to the warm season in the extra-tropics (Fig. 4).  378 

For the tropics in the Southern Hemisphere, fire PM2.5 emissions of 379 

satellite-based products peak in August–September. Most FireMIP models can 380 

reproduce this pattern, except ORCHIDEE-SPITFIRE and LPJ-GUESS-SPITFIRE 381 

peaking two months and one month earlier, respectively, and JSBACH-SPITFIRE with 382 

much lower amplitude of seasonal variability likely caused by parameter setting in its 383 

fuel moisture functions (Table S9 in Rabin et al. (2017)).  384 

For the tropics in the Northern Hemisphere, most FireMIP models exhibit larger 385 

fire emissions in the northern winter, consistent with the satellite-based products.      386 

In the northern extra-tropical regions, satellite-based products show two periods 387 

of high values: April–May resulting mainly from fires in croplands and grasslands, and 388 

July mainly due to fires in the boreal evergreen forests. Most FireMIP models can 389 

reproduce the second one, except for LPJ-GUESS-SPITFIRE which peaks in October. 390 

CLM4.5 is the only model that can capture both peak periods partly because it’s the 391 

only one to consider unique seasonality of crop fires. 392 
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 393 

3.3 Interannual variability  394 

Global fire PM2.5 emissions from satellite-based products for 1997–2012 show a 395 

substantial interannual variability, which peaks in 1997–1998, followed by a low 396 

around 2000 and a decline starting in 2002–2003 (Fig. 5). The 1997–1998 high 397 

emission values are caused by peat fires in Equatorial Asia in 1997 and widespread 398 

drought-induced fires in 1998 associated with the most powerful El Niño event in 399 

1997–1998 recorded in history (van der Werf et al., 2017; Kondo et al., 2018). Most 400 

FireMIP models cannot reproduce the 1997–1998 peak, except for CLM4.5 as the 401 

only model that simulates the burning of plant-tissue and litter from peat fires 402 

(although burning of soil organic matter is not included) and the drought-linked 403 

tropical deforestation and degradation fires (Li et al., 2013, Kondo et al., 2018). 404 

CLM4.5, CTEM, and LPJ-GUESS-SIMFIRE-BLAZE present the highest temporal 405 

correlation between models and satellite-based products (0.55–0.79 for CLM4.5, 0.51–406 

0.68 for CTEM, and 0.39–0.72 for LPJ-GUESS-SIMFIRE-BLAZE), and thus are 407 

more skillful than other models to reproduce the interannual variability observed from 408 

satellite-based products (Table 7). 409 

We use the coefficient of variation (CV, the standard deviation divided by the 410 

mean, %) to represent the amplitude of interannual variability of fire emissions. As 411 

shown in Fig. 5, for 1997–2012, all FireMIP models underestimate the variation as a 412 

result of (at least) partially missing the 1997–1998 fire emission peak. For 2003–2012 413 

(the common period of all satellite-based products and models), interannual variation 414 
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of annual fire PM2.5 emissions in CLM4.5, CTEM, and LPJ-GUESS family models lies 415 

within the range of satellite-based products (CV=6–12%). Other models present 416 

weaker variation (CV=5%) except for MC2 (CV=24%) that has a much stronger 417 

variation than all satellite-based products and other FireMIP models.  418 

 419 

4 Historical changes and drivers 420 

4.1 Historical changes 421 

Figure 6 shows historical simulations of the FireMIP models as well as the CMIP5 and 422 

CMIP6 reconstructions for fire carbon, CO2, CO, and PM2.5 emissions. We find similar 423 

historical changes for all the species, with the maximum global fire emissions given by 424 

LPJ-GUESS-GlobFIRM and the minima by LPJ-GUESS-SPITFIRE before 1901 and 425 

MC2 afterwards.  426 

Long-term trends in simulated global fire emissions for all models are weak 427 

before the1850s (relative trend <0.015% yr-1). They are similar to CMIP6 estimates 428 

(Fig. 6), but in disagreement with earlier reconstructions based on charcoal records 429 

(Marlon et al., 2008; Marlon et al., 2016), ice-core CO records (Wang et al., 2010), 430 

and ice-core δ13CH4 records (Ferretti et al., 2005), which exhibit a rapid increase from 431 

1700 to roughly the 1850s.After the1850s, disagreement in the trends among FireMIP 432 

models begins to emerge. Fire emissions in LPJ-GUESS-SIMFIRE-BLAZE decline 433 

since ~1850, while fire emissions in LPJ-GUESS-SPITFIRE, MC2, and 434 

ORCHIDEE-SPITFIRE show upward trends from ~1900s. In CLM4.5, CTEM, and 435 

JULES-INFERNO, fire emissions increase slightly before ~1950, similar to the 436 
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CMIP6 estimates, but CTEM and JULES-INFERNO decrease thereafter, contrary to 437 

CMIP5 and CMIP6 estimates and CLM4.5. JSBACH-SPITFIRE simulates a decrease 438 

of fire emissions before 1940s and an increase later, similar to the CMIP5 estimates. 439 

All the long-term trends described above are significant at the 0.05 level using the 440 

Mann-Kendall trend test.   441 

Earlier reconstructions based on fire proxies also show a big difference in 442 

long-term changes after the 1850s. The reconstruction based on the Global Charcoal 443 

Database version 3 (GCDv3, Marlon et al., 2016) exhibits a decline from the late 19th 444 

century to the 1920s, and then an upward trend until ~1970, followed by a drop. The 445 

reconstructions based on the GCDv1 (Marlon et al., 2008) and ice-core CO records 446 

(Wang et al., 2010) show a sharp drop since roughly the 1850s, while a steady rise is 447 

exhibited in the reconstruction based on ice-core δ13CH4 records (Ferretti et al., 2005). 448 

The simulated historical changes of FireMIP models (Fig. 6) fall into this fairly broad 449 

range of long-term trends in these reconstructions. 450 

Spatial patterns of inter-model spread of fire emissions for 1700–1850 and 1900–451 

2000 (Figs. S1b−c) are similar to the present-day patterns as shown in Fig. 3. 452 

 453 

4.2 Drivers 454 

Six FireMIP models also conducted sensitivity experiments, which can be used to 455 

isolate the role of individual forcing factors in long-term trends of fire emissions 456 

during the 20th century. The median of the six models are also used for building 457 

CMIP6 fire emission estimates (van Marle et al. 2017b). The 20th century changes of 458 
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driving forces used in FireMIP are characterized by an increase in the global land 459 

temperature, precipitation, lightning frequency, atmospheric CO2 concentration, 460 

population density, cropland and pasture areas, and a decrease in the global forest area 461 

(Teckentrup et al., 2019).  462 

As shown in Figs. 6 and 7, the downward trend of global fire emissions in 463 

LPJ-GUESS-SIMFIRE-BLAZE is mainly caused by LULCC and increasing 464 

population density. Upward trends in LPJ-GUESS-SPITFIRE and 465 

ORCHIDEE-SPITFIRE are dominated by LULCC and rising population density and 466 

CO2 during the 20th century. In CLM4.5 and JULES-INFERNO, upward trends before 467 

~1950 are attributed to rising CO2, climate change, and LULCC, and the subsequent 468 

drop in JULES-INFERNO mainly results from the rising population density and 469 

climate change. Long-term changes of global fire emissions in JSBACH-SPITFIRE are 470 

mainly driven by LULCC and rising CO2.  471 

As shown in Fig. 7, the inter-model spread in long-term trends mainly arises from 472 

the simulated anthropogenic influence (LULCC and population density change) on fire 473 

emissions, as the standard deviation in simulated responses to LULCC (0.27 Pg C yr-1) 474 

and population density (0.11 Pg C yr-1) is much larger than the other drivers. 475 

LULCC decreases global fire emissions sharply in 476 

LPJ-GUESS-SIMFIRE-BLAZE during the 20th century, but increases global fire 477 

emissions for the other models except for JSBACH-SPITFIRE. The response to 478 

LULCC in LPJ-GUESS-SIMFIRE-BLAZE is because it assumes no fire in croplands 479 

and accounts for biomass harvest (thus reducing fuel availability) in pastures (Table 480 
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2), the area of which expanded over the 20th century. The LULCC-induced increase 481 

in fire emissions for ORCHIDEE-SPITFIRE, LPJ-GUESS-SPITFIRE, and 482 

JULES-INFERNO are partly caused by increased burned area due to the expansion of 483 

grasslands (pastures are lumped in natural grasslands in these models) where fuels are 484 

easier to burn than woody vegetation in the model setups (Rabin et al., 2017). 485 

CLM4.5 models crop fires and tropical deforestation and degradation fires. Crop fire 486 

emissions in CLM4.5 are estimated to increase during the 20th century due to 487 

expansion of croplands and increased fuel loads over time (Fig. S2). Emissions of 488 

tropical deforestation and degradation fires in CLM4.5 are increased before ~1950, 489 

responding to increased human deforestation rate in tropical closed forests based on 490 

prescribed land use and land cover changes (Li et al. 2018). In JSBACH-SPITFIRE, 491 

as croplands and pastures expand over time, the assumption of no fire over croplands 492 

tends to decrease fire emissions, while the setting of high fuel bulk density for 493 

pastures tends to increase fire emissions due to increased fuel combusted per burned 494 

area, which together partly result in the shifted sign of response to LULCC around the 495 

1940s.  496 

Rising population density throughout the 20th century decreases fire emissions in 497 

CLM4.5 and LPJ-GUESS-SIMFIRE-BLAZE because they include human suppression 498 

on both fire occurrence and fire spread. Fire suppression increases with rising 499 

population density and is simulated explicitly in CLM4.5 and implicitly in 500 

LPJ-GUESS-SIMFIRE-BLAZE. On the contrary, rising population density increases 501 

fire emissions in LPJ-GUESS-SPITFIRE and ORCHIDEE-SPITFIRE because 502 
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observed human suppression on fire spread found in Li et al. (2013), Hantson et al. 503 

(2015), and Andela et al. (2017) is not taken into account in the two models. The 504 

response to population density change for the other models is small, reflecting the 505 

compensating effects of human ignition and human suppression on fire occurrence 506 

(strongest in JULES-INFERNO in FireMIP models), and also human suppression on 507 

fire duration (JSBACH-SPITFIRE). 508 

All models simulate increased fire emissions with increased atmospheric CO2 509 

concentration since elevated CO2 increases the fuel load. Elevated CO2 increases both 510 

the photosynthetic uptake of CO2 (Mao et al., 2009) and plant water-use efficiency (i.e., 511 

less water stress on plant growth and succession, Keenan et al., 2013), that is, CO2 512 

fertilization effect, which can stimulate carbon uptake and storage by the terrestrial 513 

biosphere. Such a CO2-driven increase of fuel load is consistent with a recent analysis 514 

of satellite-derived vegetation indices (Zhu et al., 2016). FireMIP models also agree 515 

that impacts of changes in lightning frequency on long-term trends of fire emissions are 516 

small. Moreover, most FireMIP models agree that climate change tends to increase fire 517 

carbon emissions during the first several decades and then falls, reflecting co-impacts 518 

of climate on both fuel load and fuel moisture. 519 

 520 

4.3 Regional long-term changes  521 

We divided the global map into 14 regions following the definition of the GFED 522 

family (Fig. 8a). As shown in Fig. 8b, inter-model discrepancy in long-term changes 523 
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are largest in Southern Hemisphere South America (SHSA), southern and northern 524 

Africa (NHAF and SHAF), and central Asia (CEAS).  525 

Most FireMIP models reproduce the upward trends of fire CO emissions found 526 

also in the CMIP5 or CMIP6 estimates since 1950s in SHSA and till ~1950 in Africa 527 

(Figs. 9e, h, and i). Long-term trends in regional fire emissions in SHSA, Africa, and 528 

central Asia can broadly explain the upward trends in global fire emissions in 529 

LPJ-GUESS-SPITFIRE, MC2, and ORCHIDEE-SPITFIRE, the downward trends in 530 

LPJ-GUESS-SIMFIRE-BLAZE, and the rise followed by a drop in CTEM, whose 531 

global fire emissions exhibit most obvious long-term trends in FireMIP models (Fig. 532 

6).  533 

In other regions, the difference in long-term changes among models is smaller (Fig. 534 

8b). Emissions of most models and CMIP5 estimates exhibit a significant decline in 535 

temperate North America (TENA) from ~1850 to ~1970, while historical changes of 536 

CMIP6 estimates are comparatively small (Fig. 9b). LPJ-GUESS-SIMFIRE-BLAZE 537 

has a more obvious long-term change than the other FireMIP models and CMIPs in 538 

boreal North America (BONA) and northern South America (NHSA) (Figs. 9a and d). 539 

MC2 and LPJ-GUESS-GlobFIRM emissions increase after ~1900 in Europe (EURO), 540 

while emissions of other models and CMIPs are overall constant (Fig. 9f). In boreal 541 

Asia (BOAS), emissions of most models and CMIP6 are relatively constant, while 542 

LPJ-GUESS-GlobFIRM and CMIP5 emissions decline from 1850 to the 1950s and 543 

from 1900 to the 1970s, respectively, and then rise (Fig. 9j). JULES, 544 

LPJ-GUESS-SIMFIRE-BLAZE, CLM4.5, CTEM, and CMIP6 emissions significantly 545 
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decline since the 1950s in Southeast Asia (SEAS), while CMIP5 emissions increase 546 

(Fig. 9l). In equatorial Asia (EQAS), CMIPs emissions increase after ~1950, which is 547 

partly reproduced by only CLM4.5 in FireMIP (Fig. 9m).  548 

As shown in Figs. S3−5, long-term changes of regional fire emissions for other 549 

species are similar to those of fire CO emissions. 550 

The long-term changes of regional fire emissions and inter-model disagreement 551 

are mainly caused by simulated responses to LULCC and/or population density change 552 

for the 20th century (Figs. S6−19). Besides, climate change also plays an important role 553 

in North America, northern South America, Europe, northern Africa, boreal and central 554 

Asia, and Australia. FireMIP models generally simulate increased regional fire 555 

emissions with increased CO2 concentration and negligible impacts due to changes in 556 

lightning frequency, similar to the responses of global fire emissions. 557 

 558 

5 Summary and outlook 559 

Our study provides the first multi-model reconstructions of global historical fire 560 

emissions for 1700–2012, including carbon and 33 species of trace gases and aerosols. 561 

Two versions of the fire emission product are available, at the original spatial resolution 562 

for outputs of each FireMIP model and on a unified 1x1 degree. The dataset is based on 563 

simulations of fire carbon emissions and vegetation distribution from nine DGVMs 564 

with state-of-the-art global fire models that participated in FireMIP and the most 565 

up-to-date emission factors over various land cover types. It will be available to the 566 

public at https://zenodo.org/record/3386620#.XXaE1eRYaP8. 567 
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Our study provides an important dataset with wide-ranging applications for the 568 

Earth science research community. First, it is the first multi-model-based 569 

reconstruction of fire emissions and can serve as a basis for further development of 570 

multi-source merged products of global and regional fire emissions and of the merging 571 

methodology itself. van Marle et al. (2017b) presented an example for using part of the 572 

dataset to develop a multi-source merged fire emission product as forcing dataset for 573 

CMIP6. In van Marle et al. (2017b), the median of fire carbon emissions from six 574 

FireMIP models was used to determine historical changes over most regions of the 575 

world. The merging method and merged product in van Marle et al. (2017b) are still 576 

preliminary, and need to be improved in the future, e.g., by weighting the different 577 

models depending on their global or regional simulation skills. Secondly, our dataset 578 

includes global gridded reconstructions for 300 years. It can thus be used for 579 

analyzing global and regional historical changes in fire emissions on inter-annual to 580 

multi-decadal time scales and their interplay with climate variability and human 581 

activities. Third, the fire emission reconstructions based on multiple models provide, 582 

for the first time, a chance to quantify and understand the uncertainties in historical 583 

changes of fire emissions and their subsequent impacts on carbon cycle, radiative 584 

balance, air quality, and climate. Hamilton et al. (2018), for example, used fire 585 

emission simulations from two global fire models and the CMIP6 estimates to drive 586 

an aerosol model. This allowed for quantification of the impact of uncertainties in 587 

pre-industrial fire emissions on estimated pre-industrial aerosol concentrations and 588 

historical radiative forcing.  589 
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This study also provides significant information of the recent state of fire model 590 

performance by evaluating the present-day estimates based on FireMIP fire models 591 

(also those used in the upcoming CMIP6). Our results show that most FireMIP models 592 

can overall reproduce the amount, spatial pattern, and seasonality of fire emissions 593 

shown by satellite-based fire products. Yet they fail to simulate the interannual 594 

variability partly due to a lack of modeling peat and tropical deforestation fires. In 595 

addition, Teckentrup et al. (2019) found that climate was the main driver of 596 

interannual variability for the FireMIP models. A good representation of fire duration 597 

may be important to get the response of fire emissions to climate right. However, all 598 

FireMIP models limit the fire duration of individual fire events no more than one day 599 

in natural vegetation regions, so they cannot skillfully model the drought-induced 600 

large fires that last multiple days (Le Page et al., 2015; Ward et al., 2018). Recently, 601 

Andela et al. (2019) derived a dataset of fire duration from MODIS satellite 602 

observations, which provides a valuable dataset for developing parameterization of 603 

fire duration in global fire models.        604 

This study also identifies population density and LULCC as the primary 605 

uncertainty sources in fire emission estimates. Therefore, accurately modeling the 606 

responses to these remains a top priority for reducing uncertainty in historical 607 

reconstructions and future projections of fire emissions, especially given that 608 

modeling is the only way for future projections. For the response to changes in 609 

population density, many FireMIP models have not included the observed relationship 610 

between population density and fire spread (Table 2). Moreover, Bistinas et al. (2014) 611 
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and Parisien et al. (2016) reported obvious spatial heterogeneity of the population 612 

density–burned area relationship that is poorly represented in FireMIP models. 613 

For the response to LULCC, improving the modeling of crop fires, pasture fires, 614 

deforestation and degradation fires, and human indirect effect on fires (e.g., 615 

fragmentation of the landscape) and reducing the uncertainty in the interpretation of 616 

land use data set in models are critical. Fire has been widely used in agricultural 617 

management during the harvesting, post-harvesting, or pre-planting periods (Korontzi 618 

et al., 2006; Magi et al., 2012). Crop fire emissions are an important source of 619 

greenhouse gases and air pollutants (Tian et al., 2016; Wu et al., 2017; Andreae, 620 

2019). GFED4s reported that fires in croplands can contribute 5% of burned area and 621 

6% of fire carbon emissions globally in the present day (Randerson et al., 2012; van 622 

der Werf et al., 2017). In FireMIP, only CLM4.5 simulates crop fires, whereas the 623 

other models assume no fire in croplands or treat croplands as natural grasslands. In 624 

CLM4.5, crop fires contribute 5% of the global burned area in 2001−2010, similar to 625 

GFED4s estimates. However, CLM4.5 estimates a total of 260 Tg C yr-1 carbon 626 

emissions (contribution rate:13%), which is higher than the GFED4s estimate (138 Tg 627 

C yr-1) because CLM4.5 simulates higher fuel loads in croplands than the CASA 628 

model used by GFED4s. In CLM4.5, both the carbon emissions from crop fires and 629 

the contribution of crop fire emissions to the total fire emissions increase throughout 630 

the 20th century (Fig. S2), which is consistent with earlier estimates based on a 631 

different crop fire scheme (Ward et al., 2018). In JULES-INFERNO, an increase in 632 

cropland area also leads to an increase in burned area and fire carbon emissions 633 
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because this model treats croplands as natural grasslands. Grasses dry out faster than 634 

woody vegetation and are easier to burn, so an increasing cropland area leads to 635 

increasing burned area and fire carbon emissions. On the other hand, for FireMIP 636 

models that exclude croplands from burning, expansion of croplands leads to a 637 

decrease in burned area and fire carbon emissions. Therefore, different treatment of 638 

crop fires can contribute to the uncertainty in simulated fire emissions. Since four out 639 

of six FireMIP models used for generating CMIP6 estimates exclude croplands from 640 

burning (van Marle et al., 2017b), CMIP6 estimates may underestimate the impact of 641 

historical changes of crop fire emissions in some regions (e.g., China, Russia, India). 642 

Given the small extent of crop fires, high resolution remote sensing may help improve 643 

the detection of crop fires (Randerson et al., 2012; Zhang et al., 2018), which can 644 

benefit the driver analyses and modeling of historical crop fires and their emissions in 645 

DGVMs. 646 

Le Page et al. (2017) and Li et al. (2018) highlighted the importance of 647 

tropical deforestation and degradation fires in the long-term changes of reconstructed 648 

and projected global fire emissions, but in FireMIP only CLM4.5 estimates the 649 

tropical deforestation and degradation fires. For pasture fires, all FireMIP models 650 

assume that they behave like natural grassland fires, which needs to be verified by, for 651 

example, satellite-based products. If fires over pastures and natural grasslands are 652 

significantly different, adding the gridded coverage of pasture as a new input field in 653 

DGVMs without pasture PFTs and developing a parameterization of pasture fires will 654 

be necessary. Furthermore, Archibald (2016) and Andela et al. (2017) found that 655 
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expansion of croplands and pastures decreased fuel continuity and thus reduced 656 

burned area and fire emissions. However, no FireMIP model parameterizes this 657 

indirect human effect on fires. In addition, DGVMs generalize the global vegetation 658 

using different sets of PFTs (Table 4) and represent land use data in different way. 659 

This may lead to different responses of fire emissions to LULCC and thus different 660 

long-term changes of fire emissions among model simulations, given that many 661 

parameters and functions in global fire models are PFT-dependent. LUH2 used in 662 

LUMIP and ongoing CMIP6 provide information of forest/non-forest coverage 663 

changes (Lawrence et al., 2016), which can reduce the misinterpretation of the land 664 

use data in models and thus the inter-model spread of fire emission changes. 665 

As discussed above, most FireMIP models do not consider the human 666 

suppression of fire spread, decreased fuel continuity from expanding croplands and 667 

pastures, human deforestation and degradation fires, and crop fires. Therefore, these 668 

models, and hence the CMIP6 estimates that are mainly based on them, may have 669 

some uncertainties in estimating historical fire emissions and long-term trends. This 670 

may further affect the estimates of the radiative forcing of fire emissions and the 671 

historical response of trace gas and aerosol concentrations, temperature, precipitation, 672 

and energy, water, and biogeochemical cycles to fire emissions based on 673 

Earth/climate system models that include these fire models or are driven by such fire 674 

emissions. It may also influence future projections of climate and Earth system 675 

responses to various population density and land use scenarios. 676 

 677 
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Table 1. Summary description of the Dynamic Global Vegetation Models (DGVMs) 

participated in FireMIP. 

DGVMs tem. res. 

of model 

outputs  

spatial res. 

of model 

outputs  

period natural 

veg. 

distrib. 

fire scheme ref. DGVM ref. 

CLM4.5 but CLM5 fire 

model (CLM4.5) 

monthly ~1.9° (lat) 

×2.5° (lon) 

1700–

2012 

P 

 

Li et al. (2012, 2013) 

Li and Lawrence (2017) 

Oleson et al. (2013) 

CTEM monthly 2.8125°  1861– 

2012 

P 

 

Arora and Boer (2005)  

Melton and Arora (2016) 

Melton and Arora  

(2016) 

JSBACH-SPITFIRE  

(JSBACH) 

monthly 1.875° 1700–

2012 

P 

 

Lasslop et al. (2014) 

Thonicke et al. (2010) 

Brovkin et al. (2013) 

JULES-INFERNO 

(JULES) 

monthly ~1.2° (lat) 

×1.9°(lon) 

1700–

2012 

  M Mangeon et al. (2016) Best et al. (2011)  

Clark et al. (2011) 

LPJ-GUESS-GlobFIRM 

(LGG) 

annual 0.5° 1700–

2012 

M Thonicke et al. (2001) Smith et al. (2014) 

Lindeskog et al. (2013) 

LPJ-GUESS-SPITFIRE 

(LGS) 

monthly 0.5° 1700–

2012 

M Lehsten et al. (2009) 

Rabin et al. (2017) 

Smith et al. (2001) 

Ahlstrom et al. (2012) 

LPJ-GUESS-SIMFIRE 

-BLAZE (LGSB) 

monthly 0.5° 1700–

2012 

  M Knorr et al. (2016) Smith et al. (2014) 

Lindeskog et al. (2013) 

Nieradzik et al. (2017) 

MC2 annual 0.5° 1901–

2008 

M Bachelet et al. (2015)  

Sheehan et al. (2015) 

Bachelet et al. (2015) 

Sheehan et al. (2015) 

ORCHIDEE-SPITFIRE 

(ORCHIDEE) 

monthly 0.5° 1700–

2012 

P Yue et al. (2014, 2015) 

Thonicke et al. (2010) 

Krinner et al. (2005) 

Acronyms: CLM4.5 and CLM5: Community Land Model version 4.5 and 5; CTEM: 

Canadian Terrestrial Ecosystem Model; JSBACH: Jena Scheme for Biosphere- 

Atmosphere Coupling in Hamburg; SPITFIRE: Spread and InTensity fire model; 

JULES: Joint UK Land Environment Simulator; INFERNO: Interactive Fire And 

Emission Algorithm For Natural Environments; GlobFIRM: fire module Global FIRe 

Model; SMIFIRE: SIMple FIRE model; BLAZE: Blaze-Induced Land-Atmosphere 

Flux Estimator; ORCHIDEE: Organizing Carbon Hydrology In Dynamic Ecosystems;  

PFT: plant functional type; P: prescribed; M: modeled  
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Table 2. Summary description of global fire modules in FireMIP DGVMs. 

DGVMs crop  

fire 

tropical 

human  

defor. fire 

human 

ignition 

human fire 

suppression 

peat  

fire 

pasture combust. 

complete. range 

of woody tissue 

CLM4.5 yes yes increase 

with PDa 

occurrence & 

spread areab 

yese as natural 

grassland 

27–35% (stem) 

40% (CWDf) 

CTEM no no increase 

with PD 

occurrence & 

durationc 

no as natural 

grassland 

6% (stem) 

15–18% (CWD) 

JSBACH as grass 

fire 

no increase 

with PD 

occurrence & 

durationc 

no high fuel 

bulk den. 

0–45% 

JULES no no increase 

with PD 

occurrencec no as natural 

grassland 

0–40% 

LGG no no no no no harvest 70–90% 

LGS no 

  

no increase 

with PD 

occurrencec no as natural 

grassland 

0–98% (100hg) 

0–80% (1000hg) 

LGSB no no increase 

with PD 

burned areac no harvest 0–50% 

MC2 no no no occurrenced no as natural 

grassland 

0–87% (100h)  

0–43% (1000h) 

ORCHIDEE no no increase 

with PD 

occurrencec no as natural 

grassland 

0–73% (100h)  

0–41% (1000h) 
a PD: population density 
b fire suppression increases with PD and GDP, different between tree PFTs and 

grass/shrub PFTs 
c fire suppression increases with PD 
d Assume no fire in grid cell when pre-calculated rate of spread, fireline intensity, and 

energy release component are lower than thresholds 

e CLM4.5 outputs in FireMIP include biomass and litter burning due to peat fires, but 

don’t include burning of soil organic matter 

f Coarse Woody Debris 
g100-hour fuels and 1000-hour fuel classes 
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Table 3. Emission factors (g species (kg DM)-1) for land cover types (LCTs). 

No. Species grassland 

/savanna 

tropical  

forest 

temperate 

 forest 

boreal  

forest 

cropland  

  

1 CO2 1647 1613 1566 1549 1421 

2 CO 70 108 112 124 78 

3 CH4 2.5 6.3 5.8 5.1 5.9 

4 NMHC 5.5 7.1 14.6 5.3 5.8 

5 H2 0.97 3.11 2.09 1.66 2.65 

6 NOx 2.58 2.55 2.90 1.69 2.67 

7 N2O 0.18 0.20 0.25 0.25 0.09 

8 PM2.5 7.5 8.3 18.1 20.2 8.5 

9 TPM 8.5 10.9 18.1 15.3 11.3 

10 TPC 3.4 6.0 8.4 10.6 5.5 

11 OC 3.1 4.5 8.9 10.1 5.0 

12 BC 0.51 0.49 0.66 0.50 0.43 

13 SO2 0.51 0.78 0.75 0.75 0.81 

14 C2H6 (ethane) 0.42 0.94 0.71 0.90 0.76 

15 CH3OH (methanol) 1.48 3.15 2.13 1.53 2.63 

16 C3H8 (propane) 0.14 0.53 0.29 0.28 0.20 

17 C2H2 (acetylene) 0.34 0.43 0.35 0.27 0.32 

18 C2H4 (ethylene) 1.01 1.11 1.22 1.49 1.14 

19 C3H6 (propylene) 0.49 0.86 0.67 0.66 0.48 

20 C5H8 (isoprene) 0.12 0.22 0.19 0.07 0.18 

21 C10H16 (terpenes) 0.10 0.15 1.07 1.53 0.03 

22 C7H8 (toluene) 0.20 0.23 0.43 0.32 0.18 

23 C6H6 (benzene) 0.34 0.38 0.46 0.52 0.31 

24 C8H10 (xylene) 0.09 0.09 0.17 0.10 0.09 

25 CH2O (formaldehyde) 1.33 2.40 2.22 1.76 1.80 

26 C2H4O (acetaldehyde) 0.86 2.26 1.20 0.78 1.82 

27 C3H6O (acetone) 0.47 0.63 0.70 0.61 0.61 

28 C3H6O2(hydroxyacetone) 0.52 1.13 0.85 1.48 1.74 

29 C6H5OH (Phenol) 0.37 0.23 0.33 2.96 0.50 

30 NH3 (ammonia) 0.91 1.45 1.00 2.82 1.04 

31 HCN (hydrogen cyanide) 0.42 0.38 0.62 0.81 0.43 

32 MEK/2-butanone 0.13 0.50 0.23 0.15 0.60 

33 CH3CN (acetonitrile) 0.17 0.51 0.23 0.30 0.25 

 

 



 55

Table 4. Attribution of plant function types (PFTs) in FireMIP DGVMs to land cover 

types (LCTs) for emission factors described in Table 2.   

     LCT 

Models 

Grassland 

/Savannas 

Tropical 

Forest 

Temperate 

Forest 

Boreal  

Forest 

Cropland 

 

CLM4.5 A C3/C3/C4 G 

Bor BD S 

Tem BE/BD S 

Tro BE T 

Tro BD T 

 

Tem NE T 

Tem BE T 

Tem BD T 

Bor NE T 

Bor ND T 

Bor BD T 

Crop 

CTEM C3/C4 G BE Ta 

Other BD Ta 

NE/BE Ta  

Other BD Ta 

NETa, ND T 

Cold BD T 

C3/C4 Crop 

 

JSBACH C3/C4 G/P Tro E/D T Ex-Tro E/D Ta Ex-Tro E/D Ta Crop 

JULES 

 

C3/C4 G 

E/D S 

Tro BE T 

BD Ta  

Tem BE T 

BD/NE Ta 

BD/NE Ta 

NDT 

 

LGGb C3/C4 G 

C3/C4 G in P 

Tro BE/BR T 

Tro SI BE T 

Tem NSG/BSG/BE T 

Tem SI SG B T 

Bor NE T 

Bor SI NE T 

R/I S/W Wheat 

R/I Maize 

LGS C3/C4 G Tro BE/BR T 

Tro SI BE T 

Tem SI/&SG B T 

Tem B/N E T 

Bor NE T 

Bor SI/&SG NE/N T 

 

LGSBb C3/C4 G 

C3/C4 G in P 

Tro BE/BR T 

Tro SI BE T 

Tem NSG/BSG/ BE T 

Tem SI SG B T 

Bor NE T 

Bor SI NE T 

R/I S/W Wheat 

R/I Maize 

MC2 Tem C3 G/S 

Sub-Tro C4 G/S 

Tro S/G/Sava 

Bor M W 

Tem/Sub-Tro 

NE/B/M W 

Tundra 

Taiga-Tundra 

Tro BE T 

Tro D Wc 

Maritime NE F 

Sub-Tro NE/BD/BE/M F 

Tem NE/BD F 

Tem C/W M F 

 

Bor NE F 

Subalpine F 

Cool N F 

 

ORCHIDEE 

 

C3/C4 G Tro B E/R T Tem N/B E T 

Tem BD T 

Bor N E/D T 

Bor BT T 

C3/C4 Crop 

Acronyms: T: tree; S: shrub; W: woodland; F: forest; G: grass; P: pasture; Sava: 

Savanna; N: needleleaf; E: evergreen; B: broadleaf; D: deciduous; R: raingreen; SI: 

shaded-intolerant; SG: summer-green; M: mixed; I: irrigated; RF: rainfed; C/W: cool or 

warm; S/W: spring or winter, Tro: Tropical; Tem: Temperate; Bor: Boreal; Sub-Tro: 

subtropical; Ex-Tro: Extratropical; A: Arctic  
a split  tree PFTs into tropical, temperate, and boreal groups following rules of Nemani 

and Running (1996) that also used to make CLM land surface data by Peter et al. (2007; 

2012) since CLM version 3 
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b LGG and LGBS did not outputs PFT-level fire carbon emissions, so land cover 

classified using its dominant vegetation type 
c MC2 classifies tropical savannas and tropical deciduous woodland regions, and the 

latter mainly represents tropical deciduous forests 

 

 

 

Table 5. Summary description of satellite-based products and historical constructions 

merged from multiple sources. 

Name Method Fire data sources Peat  

burning 

Start 

year 

reference 

GFED4 

GFED4s 

GFAS1.2 

FINN1.5 

 

Bottom-up: fuel consumption, 

burned area &active fire counts 

(GFED4&4s), FRP (GFAS1), 

active fire counts (FINN1.5), 

emis. factor 

MODIS,VIRS/ATSR 

 

MODIS 

MODIS 

  Y 

  Y 

  Y 

  N 

1997 

1997 

2001 

2003 

van der Werf et al. (2017) 

 

Kaiser et al. (2012) 

Wiedinmyer et al. (2011) 

FEER1 

QFED2.5 

Top-down: FRP, satellite AOD 

constrained, emis. factor 

MODIS, SEVIRI 

MODIS 

  Y 

  N 

2003 

2001 

Ichoku and Ellison (2014) 

Darmenov and da Silva (2015) 

CMIP5 

 

CMIP6 

Merged decadal fire trace gas 

and aerosol emis. 

Merged monthly fire carbon 

emis., present-day veg. dist., 

emis. factor  

GFED2, GICC, RETRO 

(model GlobFIRM used) 

GFED4s, median of six 

FireMIP model sims., 

GCDv3 charcoal records, 

WMO visibility obs.  

  Y 

 

  Y 

1850 

 

1750 

Lamarque et al. (2010) 

 

van Marle et al. (2017) 

Acronyms: GFED4: Global Fire Emissions Dataset version 4; GFED4s: GFED4 with 

small fires; GFAS1.2: Global Fire Assimilation System version 1.2; FINN1.5: Fire 

Inventory from NCAR version 1.5; FRP: fire radiative power; FEER1: Fire emissions 

from the Fire Energetics and Emissions Research version1; QFED2.5: Quick Fire 

Emissions Dataset version 2.5; AOD: aerosol optical depth; GFED2: GFED version 2; 

RETRO: REanalysis of the TROpospheric chemical composition; GICC: Global 

Inventory for Chemistry-Climate studies; GCDv3: Global Charcoal Database version 3 
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Table 6. Global total of fire emissions from 2003 to 2008 for DGVMs in FireMIP and 

benchmarks. Unit: Pg (Pg=1015g)  

Source C CO2 CO CH4 BC  OC  PM2.5 

FireMIP 

CLM4.5 

CTEM 

JSBACH 

JULES 

LGG 

LGS 

LGSB 

MC2 

ORCHIDEE 

 

2.1  

3.0  

2.1 

2.1 

4.9 

1.7  

2.5 

1.0  

2.8  

 

6.5  

8.9 

6.5 

6.9 

15.4 

5.6 

7.7 

3.1 

9.2 

 

0.36 

0.48 

0.32 

0.44 

0.90 

0.26 

0.48 

0.18 

0.44 

 

0.018 

0.025 

0.013 

0.024 

0.047 

0.011 

0.025 

0.008 

0.018 

 

0.0021 

0.0028 

0.0020 

0.0022 

0.0050 

0.0017 

0.0025 

0.0011 

0.0029 

 

0.020 

0.030 

0.016 

0.020 

0.048 

0.012 

0.024 

0.012 

0.020 

 

0.042 

0.060 

0.036 

0.039 

0.097 

0.027 

0.047 

0.025 

0.045 

Benchmarks 

GFED4 

GFED4s 

GFAS1.2 

FINN1.5 

FEER1 

QFED2.5 

 

1.5  

2.2 

2.1 

2.0 

4.2 

--- 

 

5.4 

7.3 

7.0 

7.0 

14.0 

8.2 

 

0.24 

0.35 

0.36 

0.36 

0.65 

0.39 

 

0.011 

0.015 

0.019 

0.017 

0.032 

0.017 

 

0.0013 

0.0019 

0.0021 

0.0021 

0.0042 

0.0060 

 

0.012 

0.016 

0.019 

0.022 

0.032 

0.055 

 

0.025 

0.036 

0.030 

0.039 

0.054 

0.086 
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Table 7. Temporal correlation of annual global fire PM2.5 emissions between FireMIP 

models and satellite-based GFED4 and GFED4s (1997–2012), GFAS1.2 and QFED2.5 

(2001–2012), and FINN1.5 and FEER1 (2003–2012).  

DGVMs GFED4 GFED4s GFAS1.

2 

FINN1.5  FEER1 QFED2.5 

CLM4.5 

CTEM 

JSBACH 

JULES 

LGG 

LGS 

LGSB 

ORCHIDEE 

   0.73*** 

0.51** 

 ‒0.18 

  0.33 

  0.08 

  0.12 

  0.51** 

 ‒0.13 

  0.79*** 

  0.54** 

‒0.42 

0.31 

0.03 

0.04 

0.64*** 

‒0.25 

0.63** 

0.63** 

 0.10 

 0.31 

‒0.15 

‒0.00 

 0.39 

‒0.16 

  0.62* 

  0.60* 

  0.02 

  0.56* 

  0.01 

  0.40 

  0.72** 

  0.29 

 0.55* 

 0.52 

‒0.04 

 0.29 

‒0.20 

‒0.01 

 0.56* 

‒0.10 

 0.58**   

 0.68** 

 0.32 

 0.39 

‒0.03 

 0.08 

 0.55* 

‒0.10 

*, **, and *** : Pearson correlation passed the Student’s t-test at the 0.1, 0.05, and 

0.01  significance level, respectively. 

 

 

 

 

Figure 1. FireMIP experiment design. Note that CTEM and MC2 start at 1861 and 

1901 and spin-up using 1861 and 1901 CO2, population density, and prescribed / 

modeled vegetation distribution, respectively.  
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Figure 2. Spatial distribution of annual fire black carbon (BC) emissions (g BC m-2 yr-1) 

averaged over 2003–2008. The range of global spatial correlation between DGVMs 

and satellite-based products is also given in brackets. 
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Figure 3. Inter-model standard deviation of 2003–2008 averaged fire BC emissions 

 (g BC m-2 yr-1) in FireMIP models and the zonal average. 
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                    Models                      Satellite-based 

 

Figure 4. Seasonal cycle of fire PM2.5 emissions normalized by the mean from 

FireMIP models and satellite-based products averaged over 2003–2008 in the 

Southern Hemisphere (SH) tropics (0–23.5ºS), Northern Hemisphere (NH) tropics (0–

23.5ºN), and NH extra-tropics (23.5–90ºN). Fire emissions from 

LPJ-GUESS-GlobFIRM and MC2 are updated annually and thus are not included 

here.  
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Figure 5. Temporal change of annual global fire PM2.5 emissions normalized by the 

mean from FireMIP models and satellite-based products. The numbers in the brackets 

are coefficient of variation (CV, the standard deviation divided by the mean, unit: %) 

for 1997–2012 and 2003–2012, respectively. 

 

 

 

Figure 6. Long-term temporal change of fire emissions from DGVMs in FireMIP and 

CMIPs forcing. A 21-year running mean is used.  
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Figure 7. Change in global annual fire carbon emissions (Pg C yr-1) in the 20th 

century due to changes in (a) climate, (b) lightning frequency, (c) atmospheric CO2 

concentration, (d) land use and land cover change (LULCC), and (e) population 

density (control run – sensitivity run). A 21-year running mean is used. The standard 

deviation (Std) of multi-model simulated long-term changes averaged over the 20th 

century is also given in the bracket. Control run is normal transient run, and five 

sensitivity runs are similar to the control run but without change in climate, lightning 

frequency, atmospheric CO2 concentration, land cover, and population density, 

respectively. The 20th century changes of driving forces used in FireMIP are 

characterized by an increase in the global land temperature, precipitation, lightning 
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frequency, atmospheric CO2 concentration, and population density, expansion of 

croplands and pastures, and a decrease in the global forest area. 

 

 

 

 

Figure 8. a) GFED region definition (http://www.globalfiredata.org/data.html), and b) 

inter-model discrepancy (quantified using inter-model standard deviation) in 

long-term changes (a 21-year running mean is used, relative to present-day) of 

simulated regional fire CO emissions (Tg CO yr-1) averaged over 1700–2012 

(calculate long-term changes relative to present-day for each FireMIP model first, 

then the inter-model standard deviation, and lastly the time-average). Acronyms are 

a) 

b) 
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BONA: Boreal North America; TENA: Temperate North America; CEAM: Central 

America; NHSA: Northern Hem. South America; SHSA: Southern Hem. South 

America; EURO: Europe; MIDE: Middle East; NHAF: Northern Hem. Africa; SHAF: 

Southern Hem. Africa; BOAS: Boreal Asia; CEAS: Central Asia; SEAS: Southeast 

Asia; EQAS: Equatorial Asia; AUST: Australia. 

 

 

Figure 9. Long-term changes of annual regional fire CO emissions (Tg CO yr-1) from 

FireMIP models and CMIPs. A 21-year running mean is used. 

 

 


