1 We greatly appreciate the thorough review and helpful comments and suggestions.

2 Our point-by-point responses are as follows.

3

4 [Reviewer 1]

5 General comments

6 First, the manuscript should undergo extensive language editing. Although I am not a native speaker of English, I can notice that a lot of sentences in this manuscript, 7 mostly in the Introduction section, are composed of too many clauses and are often 8 hard to understand. Second, section '4 Historical changes' can be improved, in both 9 contents and structure (see below for detail). Third, the use of CMIP6 data in 10 comparing with FireMIP model simulations sounds like a lit of circular argument to 11 12 me, since results from 6 FireMIP models were used in the creation of CMIP6 13 reconstruction. I believe this paper will be an important contribution to the fire community once these issues are adequately addressed. 14

15

17 18

19 20

16 **Reply:** (1) The language has been edited extensively to improve the readability.

(2) Contents and structure in Sec. 4 have been revised. Please see response to your specific comments below for details.

(3) This study provides and analyzes simulation data from each of nine 21 FireMIP models. Fire history in CMIP6 data is estimated using fire proxy 22 data (charcoal records and visibility records) for North America, Europe, 23 Equatorial Asia, and central Amazon, and only the median of the 24 simulations from six FireMIP models in each grid cell for other regions. 25 Fire proxy data are independent of FireMIP model simulations. 26 Multi-model medians/means are sometimes used as benchmarks to 27 compare with simulations of single models in Earth system research (e.g., 28 Lawrence et al. 2007, Journal of Hydrometeorology), so we think it is 29 appropriate to compare them although they are not entirely independent. 30 For clarification, we have changed "FireMIP models" to "median of six 31 FireMIP model simulations" when describing the sources of CMIP6 fire 32 emissions in Table 5 (Table 4 in the old version). 33

34 35

36 Specific comments

1. Complex or ambiguous sentences in the 'Introduction' (an incomplete list):

1) L66-69: This sentence seems too complex. The four 'and' and one 'as well as'used in this single sentence make it hard to be understood.

Reply: The sentence has been rephrased as "Our study provides an important dataset
 for further development of regional and global multi-source merged historical
 reconstructions, analyses of the historical changes in fire emissions and their
 uncertainties, and quantification of the role of fire emissions in the Earth
 system."

45	
46	2) L81-89: Similarly, this sentence is way too long. The last clause (regarding the 'air
47	quality') should belong to a separate sentence.
48	
49	Reply: According to your suggestion, we have divided the sentence into three as
50	"Second, by changing the atmospheric composition, fire emissions affect the
51	global and regional radiation balance and climate (Ward et al., 2012; Tosca et al.
52	2013; Jiang et al., 2016; Grandey et al., 2016; McKendry et al., 2019; Hamilton
53	et al., 2018; Thornhill et al., 2018). Third, fire emissions change the terrestrial
54	nutrient and carbon cycles through altering the deposition of nutrients (e.g.,
55	nitrogen, phosphorus), surface ozone concentration, and meteorological
56	conditions (Mahowald et al., 2008; Chen et al., 2010; McKendry et al., 2019;
57	Yue and Unger, 2018). In addition, they degrade the air quality (Val Martin et
58	al., 2015; Knorr et al., 2017), which poses a significant risk to human health"
59	
60	3) L93-94: The authors are too assertive in some claims and statements, in my
61	opinion. For instance, in both cases of 'fire emissions are estimated based on' and
62	'Satellite based fire emission estimates are derived from', it may be better to use
63	more modest expressions such as 'are often estimated', or 'are primarily derived
64	from'
65	Reply: We have revised sentences that are too assertive. For instance, the two
66	sentences you mentioned have been changed to "are often estimated" and
67	"are primarily derived from " as you suggested.
68	
69	4) L98-99: 'Data are available globally, but only cover the present-day period'. What
70	'Data' are you exactly talking about, (general) fire emission data, or satellite-based
71	fire emission data? Please be more specific.
72	Reply: "data" has been changed to "Satellite-based fire emission estimates".
73	
74	5) L100-101: 'and CO concentration trapped in'. It is the CO who gets trapped,
75	not the 'concentration'.
76	Reply: "records of, and CO concentration trapped in ice cores" has been changed to
77	"ice-core records of, and CO"
78	
79	6) L104-108: Again, I have a problem in understanding this 'complex' sentence,
80	partly C2 due to the 6 'and'/'or' appearances in the final clause.
81	Reply: The sentence has been divided into two as "Fire proxies can be used to
82	reconstruct fire emissions on a local to global scale and for time periods of
83	decades to millennia and beyond. However, fire proxies "
84	
85	2. Section 4: Historical changes:
86	1) Sections 4.1 and 4.2 are not well separated (even their titles are similar). The

drivers of historical changes are discussed at the end of 4.1 and also in 4.2. Is it better

- to move all contents of drivers to section 4.2, and switch the section titles of 4 88 (Historical changes) and 4.1 (Historical changes and drivers)? 89 **Reply:** We agree with the reviewer. We have moved the discussion about the content 90 of drivers from Sec. 4.1 to Sec. 4.2, and changed the titles of Secs. 4, 4.1, and 91 4.2 to "Historical changes and drivers", "Historical changes", and "Drivers", 92 93 respectively. 94 95 2) L359-360: Any theoretical explanation on the lower amplitude of seasonality from JSBACH-SPITFIRE model? 96 Reply: We have added "likely caused by parameter setting in its fuel moisture 97 98 functions (Table S9 in Rabin et al. (2017))". 99 100 3) L440-441: Can you expand the explanation a little bit? i.e., how did 'assuming no fires over croplands and setting high fuel bulk density for pastures' lead to the sign 101 change in LULCC response in JSBACH model? 102 **Reply:** As suggested, we have expanded the explanation to "In JSBACH-SPITFIRE, 103 as croplands and pastures expand over time, the assumption of no fire over 104 croplands tends to decrease fire emissions, while the setting of high fuel bulk 105 density for pastures tends to increase fire emissions due to increased fuel 106 107 combusted per burned area, which together partly result in the shifted sign of response to LULCC around the 1940s.". 108 109 4) Section 4.3: I like the discussions of drivers of global changes in section 4.2. But I 110 111 would also like to see how these drivers play different roles on a regional scale. 112 **Reply:** We have added 14 figures in the supplementary material (Figs. S6–19) which are similar to Fig. 7 (global) but for 14 regions, to show the role of drivers on 113 114 a regional scale. Also, we have added a new paragraph to briefly describe them in Sec. 4.3 as 115 "The long-term changes of regional fire emissions and inter-model 116 disagreement are mainly caused by simulated responses to LULCC and/or 117 population density change for the 20th century (Figs. S6-19). Besides, climate 118 change also plays an important role in North America, northern South 119 America, Europe, northern Africa, boreal and central Asia, and Australia. 120 FireMIP models generally simulate increased regional fire emissions with 121 increased CO₂ concentration and negligible impacts due to changes in 122 123 lightning frequency, similar to the responses of global fire emissions." 124 3. Possible circular reasoning. According to the text in L303-308, CMIP6 estimates 125 were calculated using different data sources (including 6 FireMIP model results). But 126 the details of the reconstruction process were not given in the manuscript. How large 127 do the FireMIP model results contribute to global emissions in CMIP6? Regardless of 128 the amount of this fraction, some agreements between FireMIP and CMIP6 shown in 129
- Figures 6 and 9 are likely due to the use of the same data source. If you plot similar figures using data in North America + Europe + Equatorial Asia + central Amazon

132 133	(where no FireMIP information is used in CMIP6) only, the comparisons will be independent and maybe more convincing.
134	
135	Reply: Please see the response to your general comment for the comparison between
136	FireMIP simulations and CMIP6 estimates above.
137	
138	We have revised the Fig. 9, which now provides a comparison between
139	CMIP6/CMIP5 and simulations of FireMIP models in boreal North America,
140	temperate North America, Europe, Equatorial Asia, NH South America, and
141	SH South America. A brief description about them are in the revised Paras. 2
142	and 3 of Sec. 4.3.
143	
144	In addition, Figs. 8-11 in van Marle et al. (2017, paper for CMIP6 fire
145	emissions) already compared simulations of FireMIP models and their median
146	with historical fire emission reconstructions based on charcoal records and
147	visibility data (i.e. CMIP6 estimates) in four sub-regions of North America,
148	Europe, and Equatorial Asia, and central Amazon.
149	
150	
151	Other specific comments
152	
153	1) L330: It will be interesting to see the combustion completeness ranges in FireMIP
154	models other than LPJ-GUESS-GlobFIRM.
155	Reply: We have added combustion completeness ranges of all FireMIP models in
156	Table 2, and have changed the sentence to "than those used in other Fire MID models (Table 2) and the setallite based CEED family (20, 40% for
157	FireMIP models (Table 2) and the satellite-based GFED family (20–40% for stem and 40, 60% for searce weady debrie) (year der Worf et al. 2017)."
158 159	stem and 40-60% for coarse woody debris) (van der Werf et al., 2017)."
160	2) L492: 'fire and Earth science research communities'. Is fire science not a part of
161	the Earth science?
162	Reply: Fire is a part of the Earth science. "fire and" has been removed.
163	
164	3) Figure 1: 'CRUNCEP atm.' shown in this figure is not easy for readers who are
165	not familiar with reanalysis data. This can be changed to 'atmospheric forcing' as
166	being consistent with that in the main text.
167	Reply: "CRUNCEP atm." has been changed to "atmospheric forcing" in Fig. 1.
168	
169	4) Figure 3. The pattern shown in this figure is highly dependent on the spatial
170	distribution of BC emissions. It will be good to see a map of inter-model std
171	normalized with mean emissions.
172	Reply: We plotted the inter-model std normalized by mean emissions for grid cells
173	where mean fire BC emissions were larger than 0.001 g BC m ⁻² yr ⁻¹ . High
174	values were located in regions with small mean emissions, which were in fact
175	not important for the global fire emissions, e.g., arid regions, central

rainforests. Thus, we decided to keep the inter-model std map in the manuscript.

178

5) Figure 7: The population density is shown in the figure as 'control run - sensitivity run', which may cause a lot of confusion. In fact, I had a hard time understanding the meaning of 'increasing population density' (in L416) and 'rising population density' (in L421) at first, until I realized the use of this reverse scale in Figure 7. It there any particular reason that you did not use 'sensitivity run - control run' instead?

- Reply: Compared with 'response to no population density change, no climate 185 change,...', *'response* think population densitv 186 we to change 187 (rising/increasing population density over the 20th century), climate change,...' is more intuitive and helps better understand the simulated fire 188 emission change shown in Fig. 6, so we used a reverse scale/'control run -189 sensitivity run' in Fig. 7. 190
- To help understand Fig. 7 and related text easier, we have briefly described the control and sensitivity runs in the caption of Fig. 7 and the 20th century change of driving forces used in FireMIP in both the caption of Fig. 7 and Sec. 4.3.
- 195

Technical corrections:

- 197 1) L59: 'most of the models' to 'most models'
- 198 **Reply:** Done
- 199

203

207

200 2) L116: Is it better to change 'are applied to global change research' to 'have been widely used in global change research'?

- 202 **Reply:**Yes, changed accordingly
- 204 3) L142: In order to make it more specific, 'Our study' may be replaced with 'This
 205 study', or 'The present study', or 'The study presented in this paper', etc.
- 206 **Reply:** "Our study" has been changed to "This study"
- 208 4) L144: 'the nine DGVMs' to 'nine DGVMs'
- 209 **Reply:** Done
- 210211 5) L145: 'The dataset provides the basis for' to 'This dataset provides a basis for'?
- 212 **Reply:** Done
- 213
- 214 6) L280: Why not spell out 'CE' for easier reading?
- 215 **Reply:** We have spelled CE out as "fire carbon emissions".
- 216
- 217 7) L325-326: 'whereas they are 1.5-4.2. . .for satellite-based products'. To be
- consistent with the previous clause, the range value should be in the singular form.
- 219 **Reply:** Changed "they are" to "it is".

238

221 [Reviewer 2]

222 Major comments:

1) The Authors provide a new dataset of nine fire model estimates of carbon and 33 223 other gas and aerosol emissions. They provide a present day analysis of the data and 224 225 show that LULCC is the largest source of uncertainty when simulating historical fire emissions. The collection of this dataset is a useful step forward in synthesizing fire 226 modelling and one which should be of great use to the climate and Earth system 227 science community. The Authors are to be commended on such a large effort and the 228 229 manuscript will be suitable for Atmospheric Chemistry and Physics once some improvements are made to the manuscript. While the content is of great interest I find 230 231 myself agreeing with the previous reviewer that the grammar is not yet at a level 232 suitable for final publication. Unfortunately, many parts of the manuscript (mainly in the first half) were hard to follow due to this. I therefore also propose an extensive 233 review of the text. I have included some suggestions below, but it is not an extensive 234 list. 235

- **Reply:** Thanks for your suggestions. We have done an extensive review of the textand edited the language.
- 2) While the methodology and presentation of results is suitable for publication, the 239 manuscript will benefit from further analysis in three ways. The manuscript's main 240 objective is in presenting a dataset for use by the community, and these additions are 241 all ways to make the manuscript more useful for that potential user: Extending the 242 243 multi-model SD/zonal average plot in Figure 3 for other time slices across the dataset. 244 A small discussion on which models are outliers for different regions/times would be insightful too. As the Authors do not know what regions will be of interest to the 245 potential user in their studies I feel that Figure 9 should be for all regions, not just the 246 three with the most variance, even if trends are small. Furthermore, as it is likely that 247 the potential user will first want to compare to CMIP6, the GFED regions in Fig 8 248 should follow the CMIP6 version in van Marle (i.e., further segregate the Americas). 249 Similar plots for other emissions species would also be useful and can be place in the 250 SI. 251
- **Reply:** 1) We have added Figs. S1b-c to show the multi-model SD/zonal average for two additional time slices, 1700–1850 and 1900–2000, and a discussion in Sec.
 4.1 accordingly as "Spatial patterns of inter-model spread of fire emissions for 1700–1850 and 1900–2000 (Figs. S1b–c) are similar to the present-day patterns as shown in Fig. 3.".
- It may be unsuitable to compare the spatial patterns of SD/zonal average among different time periods in detail because 7 models are used for 1700-1850 and 9 models for 1900–2000 and 2003–2008. MC2 and CTEM do not provide simulations for 1700–1850 (Table 1), and generate lower (MC2) and higher (CTEM) historical global fire emissions than most FireMIP models for the 20th century, respectively (Fig. 6).

- 264 2) Fig. 9 has been revised and included all regions.
- Also, we have briefly described them, including outliers in these regions, in Sec. 4.3 as:

"In other regions, the difference in long-term changes among models is 267 smaller (Fig. 8b). Emissions of most models and CMIP5 estimates exhibit a 268 significant decline in temperate North America (TENA) from ~1850 to ~1970, 269 while historical changes of CMIP6 estimates are comparatively small (Fig. 9b). 270 LPJ-GUESS-SIMFIRE-BLAZE has a more obvious long-term change than the 271 other FireMIP models and CMIPs in boreal North America (BONA) and 272 MC2 northern South America (NHSA) (Figs. 9a and d). 273 and LPJ-GUESS-GlobFIRM emissions increase after ~1900 in Europe (EURO), 274 275 while emissions of other models and CMIPs are overall constant (Fig. 9f). In 276 boreal Asia (BOAS), emissions of most models and CMIP6 are relatively constant, while LPJ-GUESS-GlobFIRM and CMIP5 emissions decline from 277 1850 to the 1950s and from 1900 to the 1970s, respectively, and then rise (Fig. 278 9j). JULES, LPJ-GUESS-SIMFIRE-BLAZE, CLM4.5, CTEM, and CMIP6 279 emissions significantly decline since the 1950s in Southeast Asia (SEAS), 280 281 while CMIP5 emissions increase (Fig. 91). In equatorial Asia (EQAS), CMIPs 282 emissions increase after ~1950, which is partly reproduced by only CLM4.5 in FireMIP (Fig. 9m)." 283

- 3) We used the GFED regions because they represent key fire regions across the world and are the most widely used one by the community. In addition, Figs. 10–11 in van Marle et al. (2017, paper for CMIP6 fire emissions) already compared each of FireMIP models and their medians with historical charcoal-based reconstructions (i.e. CMIP6 estimates) in four sub-regions of North America, so we did not want to repeat the same analyses here.
 - 4) As suggested, we have added Figs. S3–5 for regional fire BC, OC, and CH₄ emissions in the supplementary material, and the words "As shown in Figs. S3–5, long-term changes of regional fire emissions for other species are similar to those of fire CO emissions." in Sec. 4.3.
- 295 296 297

291

292

293

294

284

3) The present-day evaluation is of a suitable level for publication as is; however, 298 299 further historical evaluation can be undertaken. In particular, the contribution of crop burning and how the fire models compare against historical fire proxies (not just the 300 CMIP5/6 reconstructions). As crop fires are only accounted for in CLM, please 301 discuss what this means in terms of missing estimates of historical emissions across 302 FireMIP, a figure of % contribution to total emissions over time for example would be 303 insightful. Included should be a discussion of current knowledge of crop fires in the 304 present day, their uncertainties in emissions back in time, and what this means for 305 CMIP/FireMIP as LULCC has been shown to be the largest uncertainty here. This 306 then links to an overall evaluation of historical emissions with proxies. The inclusion 307

of an updated Figure similar to the one from van der Werf's 2013 paper for example?
I leave it to the Authors to decide on how best to do this, but it should be included to
once again help guide the potential user; perhaps in section 4.3.

311

334

Reply: 1) We have compared the historical changes of the FireMIP simulations with other widely used reconstructions in global-scale fire studies and added "..., but in disagreement with earlier reconstructions based on charcoal records (Marlon et al., 2008; Marlon et al., 2016), ice-core CO records (Wang et al., 2010), and ice-core δ^{13} CH₄ records (Ferretti et al., 2005), which exhibit a rapid increase from 1700 to roughly the 1850s."

and a new paragraph "Earlier reconstructions based on fire proxies also show a 318 319 big difference in long-term changes after the 1850s. The reconstruction based 320 on the Global Charcoal Database version 3 (GCDv3, Marlon et al., 2016) exhibits a decline from the late 19th century to the 1920s, and then an upward 321 trend until ~1970, followed by a drop. The reconstructions based on the 322 GCDv1 (Marlon et al., 2008) and ice-core CO records (Wang et al., 2010) 323 324 show a sharp drop since roughly the 1850s, while a steady rise is exhibited in the reconstruction based on ice-core δ^{13} CH₄ records (Ferretti et al., 2005). The 325 simulated historical changes of FireMIP models (Fig. 6) fall into this fairly 326 broad range of long-term trends in these reconstructions." in Sec. 4.1. 327

- We will perform a detailed regional comparison with reconstructions based on various fire proxies (including but not limited to charcoal records, and considering that recently more paleofire records are being compiled, e.g., the number of sites with charcoal records in China will be increased from 15 in GCDv3 to113) and driver analyses in the near future in cooperation with scientists who work on fire proxies.
- 335
 336
 336
 337
 2) We have added Fig. S2 to show the historical change of crop fire emissions in the CLM and % contribution to total emissions, and have added discussion in Sec. 5 as:

"Fire has been widely used in agricultural management during the harvesting, 338 post-harvesting, or pre-planting periods (Korontzi et al., 2006; Magi et al., 339 2012). Crop fire emissions are an important source of greenhouse gases and 340 air pollutants (Tian et al., 2016; Wu et al., 2017; Andreae, 2019). GFED4s 341 reported that fires in croplands can contribute 5% of burned area and 6% of 342 fire carbon emissions globally in the present day (Randerson et al., 2012; van 343 der Werf et al., 2017). In FireMIP, only CLM4.5 simulates crop fires, 344 whereas the other models assume no fire in croplands or treat croplands as 345 natural grasslands. In CLM4.5, crop fires contribute 5% of the global burned 346 area in 2001–2010, similar to GFED4s estimates. However, CLM4.5 347 estimates a total of 260 Tg C yr⁻¹ carbon emissions (contribution rate:13%), 348 which is higher than the GFED4s estimate (138 Tg C yr⁻¹) because CLM4.5 349 simulates higher fuel loads in croplands than the CASA model used by 350 GFED4s. In CLM4.5, both the carbon emissions from crop fires and the 351

- contribution of crop fire emissions to the total fire emissions increase 352 throughout the 20th century (Fig. S2), which is consistent with earlier 353 estimates based on a different crop fire scheme (Ward et al., 2018). In 354 JULES-INFERNO, an increase in cropland area also leads to an increase in 355 burned area and fire carbon emissions because this model treats croplands as 356 natural grasslands. Grasses dry out faster than woody vegetation and are 357 easier to burn, so an increasing cropland area leads to increasing burned area 358 and fire carbon emissions. On the other hand, for FireMIP models that 359 exclude croplands from burning, expansion of croplands leads to a decrease 360 in burned area and fire carbon emissions. Therefore, different treatment of 361 crop fires can contribute to the uncertainty in simulated fire emissions. Since 362 363 four out of six FireMIP models used for generating CMIP6 estimates exclude 364 croplands from burning (van Marle et al., 2017b), CMIP6 estimates may underestimate the impact of historical changes of crop fire emissions in some 365 regions (e.g., China, Russia, India). Given the small extent of crop fires, high 366 resolution remote sensing may help improve the detection of crop fires 367 (Randerson et al., 2012; Zhang et al., 2018), which can benefit the driver 368 analyses and modeling of historical crop fires and their emissions in 369 DGVMs.". 370
- 371

372 Minor comments:

1) Lines 61-62. The statement 'consistent with multi source merged historical reconstructions' is in reference to CMIP5/6; however, a multi-source merged historical reconstruction of the proxy data (ice cores, charcoal, tree scars etc.) would not result in the same conclusion. Please either rephrase in terms of CMIP, add that this disagrees with proxies, or remove.

- 378 **Reply:** We have added "as input data for CMIP6"
- 379
- 380 2) Line 77: Species emitted from fires
- 381 **Reply:** Done
- 382

383 3) Lines 81-89: I think this sentence needs to be clearer, both in grammar and content. Are all the items in the list symptoms of the atmospheric composition changing in response to fires? For example, changes to the 'terrestrial nutrient and carbon cycles' are more a symptom of changes to the magnitude of deposition and alteration to the land vegetation itself and the human health impacts are linked to the air quality changes (as R1 has also mentioned). Perhaps writing as a numbered list would help?

Reply: The sentence has been changed to "Second, by changing the atmospheric composition, fire emissions affect the global and regional radiation balance and climate (Ward et al., 2012; Tosca et al. 2013; Jiang et al., 2016; Grandey et al., 2016; McKendry et al., 2019; Hamilton et al., 2018; Thornhill et al., 2018). Third, fire emissions change the terrestrial nutrient and carbon cycles through altering the deposition of nutrients (e.g., nitrogen, phosphorus), surface ozone concentration, and meteorological conditions (Mahowald et al.,

- 2008; Chen et al., 2010; McKendry et al., 2019; Yue and Unger, 2018). In 396 addition, they degrade the air quality (Val Martin et al., 2015; Knorr et al., 397 2017), which poses a significant risk to human health..." 398 399 400 4) Line 90: There have been observation campaigns, such as SAMMBA, which have 401 attempted to observe aerosol from fires at the regional scale using a combination of ground based and aircraft measurements. While they are only snap shots, due to the 402 inherent time limitations of campaigns (as compared to say satellites), for 403 completeness I would ask the Authors to list some of these as attempts to bridge that 404 405 gap. Reply: As suggested, we have added "some attempts have been made to bridge the 406 407 gap between local observations and regional estimates using combinations of 408 aircraft and ground based measurements from field campaigns (e.g., SAMBBA, ARCTAS), satellite-based inventories, and chemical transport and 409 aerosol models (e.g., Fisher et al., 2010; Reddington et al., 2019; Konovalov et 410 al., 2018)." 411 412 413 5) Line 99: Define 'present day period', i.e. list years data available. **Reply:** We have added "i.e., since 1997 for GFED and shorter periods for others". 414 415 6) Line 100: Suggest altering to say something like 'gases such as. . .' as they way it 416 is currently presented appears to be a definitive list but is not. For example, vanillic 417 acid has also been used as a unique tracer of fires. Please also make it clear that is the 418 419 C3 methane carbon isotope which is the tracer, as this species has many sources. 420 **Reply:** In the revised version, we have rephrased the sentence as "Historical change of fire emissions has been inferred from a variety of proxies, such as ice-core 421 records of CH₄ (isotope δ^{13} CH₄ from pyrogenic or biomass burning source), 422 black carbon, levoglucosan, vallic acid, ammonium, and CO (Ferretti et al., 423 2005; McCornnell et al., 2007; Conedera et al., 2009; Wang et al., 2012; 424 Zennaro et al., 2014), site-level sedimentary charcoal records (Marlon et al., 425 2008, 2016), visibility records (van Marle et al., 2017a), and fire-scar records 426 (Falk et al. 2011)." 427 428 429 7) Line 104: Can the authors add a few words to describe aerosol indices, it is 430 431 perhaps not as common as the others and would aid in reader comprehension. **Reply:** The aerosol index represents the amount of absorbing aerosols. We have 432 removed it, and changed to "fire-scar records" which is more commonly used. 433
- 434

435 8) Lines 104-109: Suggest that the Authors add something positive here about
436 proxies for balance. While it is true that no proxy can accurately define the past, it
437 currently reads a bit as if you are suggesting all this work is not of any worth.

438 **Reply:** We have added "Fire proxies can be used to reconstruct fire emissions on a
439 local to global scale and for time periods of decades to millennia and beyond."

440	
441	9) Lines 117:119: Suggest: 'Fire emissions of trace gases and aerosols are derived
442	from the product of the simulated DGVM carbon emission and a species emission
443	factor (Li et al., 2012; Knorr et al., 2016).'
444	Reply:Done
445	
446	10) Line 185: 'their estimates of' rather than 'the simulations of'
447	Reply: Done
448	
449	11) Line 186: remove comma
450	Reply: Done
451	
452	12) Line 190-195: Much of this is not grammatically correct, please rephrase.
453	Reply: Changed to "CLM4.5 models fires in croplands, human deforestation and
454	degradation fires in tropical closed forests, and human ignition and
455	suppression for both occurrence and spread of fires outside of tropical closed
456	forests and croplands."
457	-
458	13) Lines 227-235: The information in this paragraph could come before the protocol
459	in the paragraph before. Such that when reading the protocol, it is clear where the data
460	is from already.
461	Reply: Reordered as suggested.
462	
463	14) Line 255: See Andrea (2019) for details; as this paper is only in prep I would
464	suggest not explicitly directing the reader to it for more details.
465	Reply: The manuscript was published recently. We have updated the reference.
466	
467	15) Line 255-256: Suggest: 'All FireMIP model simulations used the same EFs from
468	Table 2.'
469	Reply: Done
470	
471	16) Line 261: Incorrect placing of semi-colon (should be a comma), it could however
472	be placed before 'similar' if wanted. Also suggest adding 'are classified as' for each
473	of the three PFT instances not just the first.
474	Reply: The sentence has been divided into two, so the semi-colon is now a period.
475	Also, the words "are classified as" have been added.
476	
477	17) Line 287: please define 'them'
478	Reply: "them" has been replaced by "satellite-based estimates of present-day fire
479	emissions".
480	
481	18) Line 316: The definition of discrepancy is 'a difference between two figures,
482	results, etc. that are expected to be the same'. I do not think these results should be

483 expected to be the same as the underlying factors have uncertainties in their 484 representations, as the Authors mention?

- 485 **Reply:** "discrepancy" has been changed to "difference".
- 486

487 19) Line 317: Emissions are 'from' the land, not 'over' them which is the488 concentration. Suggest to double check for occurrences elsewhere.

- 489 **Reply:** all "over the land" have been changed to "from the land"
- 490

491 20) Lines 347-350: More details here please. . .. Why? Which models are driving this
492 variability? Do satellites suggest this is a variable region too? etc.

- 493 Reply: We have added "This is mainly driven by the MC2, CTEM,
 494 JSBACH-SPITFIRE, and ORCHIDEE-SPITFIRE simulations (Fig. 2)." and
 495 "The differences among the satellite-based estimates have a similar spatial
 496 pattern, but higher than the inter-model spread in savannas over southern
 497 Africa and lower in the temperate arid and semi-arid regions and north of
 498 60°N over Eurasia (Fig. S1a)." in Sec. 3.1.
- 499 Furthermore, we have added Fig. S1a in Supplementary Material which is 500 similar to Fig. 3 but for satellite-based estimates of fire emissions.
- 501

502 21) Lines 402-403: But in disagreement with the ice-core/tree scar/charcoal proxies?
503 These show variability in emissions from 1700-1900, with a peak ~1850?

- 504**Reply:** Yes. We have added "but in disagreement with earlier reconstructions based505on charcoal records (Marlon et al., 2008; Marlon et al., 2016), ice-core CO506records (Wang et al., 2010), and ice-core δ^{13} CH₄ records (Ferretti et al.,5072005), which exhibit a rapid increase from 1700 to roughly the 1850s. "
- 508

22) Lines 531-535 and 547-550: If most models do not capture these trends does it
not therefore suggests that historical emissions are likely underestimated in most fire
models (and hence also CMIP6)?

512 **Reply:** Yes, it does.

We also note that besides human suppression on fire spread and the decrease in fuel continuity from expanding croplands and pastures (Lines 531–535 and 547–550 in old version), human deforestation and degradation fires and crop fires are not modeled by most FireMIP models which can also affect the simulations of historical fire emissions. At this stage, we are unclear about the net effect of these factors. We think this is an important point to address and have added a discussion in Sec. 5 (see response to your next comment below).

520

521 23) Line 551: The conclusions appears to stop a bit abruptly, could the authors finish 522 the conclusions on an outlook or implication etc. to tie it all together a bit more. One 523 example, global CMIP6 emissions are basically flat w.r.t. time, and so using model 524 emissions which are much more variable will result in a different simulated 525 climate/Earth system response.

Reply: Thank you for this suggestion. We have added a paragraph in Conclusions as 526 "As discussed above, most FireMIP models do not consider the human 527 suppression of fire spread, decreased fuel continuity from expanding 528 croplands and pastures, human deforestation and degradation fires, and crop 529 fires. Therefore, these models, and hence the CMIP6 estimates that are mainly 530 531 based on them, may have some uncertainties in estimating historical fire emissions and long-term trends. This may further affect the estimates of the 532 radiative forcing of fire emissions and the historical response of trace gas and 533 aerosol concentrations, temperature, precipitation, and energy, water, and 534 biogeochemical cycles to fire emissions based on Earth/climate system 535 models that include these fire models or are driven by such fire emissions. It 536 537 may also influence future projections of climate and Earth system responses 538 to various population density and land use scenarios.".

539

545

540 24) Figure 2: The lat/lon co-ordinates are too small to read. Remove as they are not actually necessary.

542 **Reply:** In the revised version, only lat labels at the rightmost and lon labels at the
543 bottom are retained but with a bigger font size as some readers may want to
544 have this information, and all other lat/lon labels have been removed.

546 25) Figure 7: suggest moving d and e to the a and b positions then decreasing the axis 547 limits for the other three so the differences can be seen.

548 **Reply:** We decided to use the same y axis for Figs. 7a-e so readers can easily compare
549 the magnitude of the simulated response of fire emissions to different drivers.
550 The main objective of Fig. 7 is to highlight the importance of simulated
551 responses to LULCC and population density change in the inter-model
552 disagreement of historical fire emission changes, so the same y axis seems
553 better.

- 554
- 555

- 557
- 558
- 559

- 560 Historical (1700–2012) Global Multi-model Estimates of the Fire Emissions from
- 561 the Fire Modeling Intercomparison Project (FireMIP)
- 562 Fang Li^{1*}, Maria Val Martin², Stijn Hantson^{3,4}, Meinrat O. Andreae^{53,4}, Almut
- 563 Arneth⁵⁴, <u>Stijn Hantson^{6, 5}</u>, Johannes W. Kaiser^{7, 3}, Gitta Lasslop⁸⁶, Chao Yue^{97, 108},
- 564 Dominique Bachelet¹¹⁹, Matthew Forrest⁸⁶, <u>Johannes W. Kaiser^{10,5}</u>, Erik Kluzek¹²⁴,
- 565 Xiaohong Liu^{1<u>3</u>2}, <u>Stephane Mangeon^{14, 15}</u>, Joe R. Melton^{1<u>6</u>3}, Daniel S. Ward^{1<u>7</u>4}, Anton
- 566 Darmenov^{1<u>85</u>}, Thomas Hickler^{<u>86, 196</sub>}, Charles Ichoku²⁰¹⁷</u>, Brian I. Magi²¹⁴⁸, Stephen</sup>
- 567 Sitch²²⁺⁹, Guido R. van der Werf²³⁰, Christine Wiedinmyer²⁴, Sam S. Rabin⁵
- 568 ¹
- ⁵⁶⁹ ¹International Center for Climate and Environment Sciences, Institute of Atmospheric
- 570 Physics, Chinese Academy of Sciences, Beijing, China
- ⁵⁷¹ ² Leverhulme Center for Climate Change Mitigation, Department of Animal & Plant
- 572 Sciences, Sheffield University, Sheffield, UK
- 573 <u>³ Max Planck Institute for Chemistry, Mainz, Germany</u>
- ⁴Department of Geology and Geophysics, King Saud University, Riyadh, Saudi
- 575 <u>Arabia</u>
- 576 ³ Geospatial Data Solutions Center, University of California, Irvine, CA, USA
- 577 ⁵⁴ Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate
- 578 research, Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany
- 579 <u>⁶ Geospatial Data Solutions Center, University of California, Irvine, CA, USA</u>
- 580 ⁷ Deutscher Wetterdienst, Offenbach, Germany

581	⁵ Max Planck Institute for Chemistry, Mainz, Germany
582	⁸⁶ Senckenberg Biodiversity and Climate Research Centre (BiK-F),
583	Senckenberganlage, Germany
584	⁹⁷ State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,
585	Northwest A&F University, Yangling, Shanxi, China
586	Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
587	CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
588	¹⁰⁸ Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL,
589	CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
590	State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,
591	Northwest A&F University, Yangling, Shanxi, China
592	¹¹⁹ Biological and Ecological Engineering, Oregon State University, Corvallis, OR,
593	USA
594	¹⁰ Deutscher Wetterdienst, Offenbach, Germany
595	¹²⁴ National Center for Atmospheric Research, Boulder, CO, USA
596	¹³² Department of Atmospheric Science, University of Wyoming, Laramie, WY, USA
597	¹⁴ Department of Physics, Imperial College London, London, UK
598	¹⁵ Now at CSIRO, Data61, Brisbane, QLD, Australia
599	¹⁶³ Climate Research Division, Environment and Climate Change Canada, Victoria,
600	BC, Canada
601	^{1<u>7</u>4} Karen Clark and Company, Boston, MA, USA

- ¹⁸⁵ Global Modeling and Assimilation Office, NASA Goddard Space Flight Center,
- 603 Greenbelt, MD, USA
- ¹⁹⁶ Department of Physical Geography, Goethe University, Frankfurt am Main,
- 605 Germany
- 606 ²⁰¹⁷ Howard University, NW, Washington, DC, USA
- 607 ²¹⁺⁸ Department of Geography and Earth Sciences, University of North Carolina at
- 608 Charlotte, Charlotte, NC, USA
- ⁶⁰⁹ ²²¹⁹ College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- 610 ²³⁰ Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
- 611 ²⁴⁺ University of Colorado Boulder, Boulder, CO, USA
- 612
- 613 *Correspondence to: Fang Li (<u>lifang@mail.iap.ac.cn</u>)
- 614

616 Abstract

Fire emissions are critical for carbon and nutrient cycles, climate, and air quality. Dynamic Global Vegetation Models (DGVMs) with interactive fire modeling provide important estimates for long-term and large-scale changes <u>inof</u> fire emissions. Here we present the first multi-model estimates of global gridded historical fire emissions for 1700–2012, including carbon and 33 species of trace gases and aerosols. The dataset is based on simulations of nine DGVMs with different state-of-the-art global

623	fire models that participated in the Fire Modeling Intercomparison Project (FireMIP),
624	using the same and standardized protocols and forcing data, and the most up-to-date
625	fire emission factor table based on from field and laboratory studies inover various
626	land cover types. We evaluate the simulations of present-day fire emissions by
627	comparing them with satellite-based products. The eEvaluation results show that most
628	DGVMs simulate present-day global fire emission totals within the range of
629	satellite-based products. They, and can capture the high emissions over the tropical
630	savannas and ,-low emissions over the arid and sparsely vegetated regions, and the
631	main features of seasonality. However, most of the models fail to simulate the
632	interannual variability, partly due to a lack of modeling peat fires and tropical
633	deforestation fires. Before the 1850s, Historically, all models show only a weak trend
634	in global fire emissions, <u>before ~1850s, which is</u> consistent with <u>the</u> multi-source
635	merged historical reconstructions used as input data for CMIP6. On the other hand,
636	the trends are quite different among DGVMs for the 20th century, The long-term-
637	trends among DGVMs are quite different for the 20 th century, with some models
638	showing an increase and others a decrease in fire emissions, mainly as a result of the
639	discrepancy in their simulated responses to human population density change and
640	land-use and land-cover change (LULCC). Our study provides an important basic
641	dataset for further development ofping regional and global multi-source merged
642	historical reconstructions and merging methods, , and analyses of zing the historical
643	changes ofin fire emissions and their uncertainties, and quantification as well as of
644	their role of fire emissions in the Earth system. It also highlights the importance of

645	accurately modeling the responses of fire emissions to LULCC and population density
646	change in reducing uncertainties in historical reconstructions of fire emissions and
647	providing more reliable future projections.
648	
649	
650	1. Introduction
651	Fire is an intrinsic feature of terrestrial ecosystem ecology-globally, and has-
652	emergedoccurring in all major biomes of the world soon after the appearance of
653	terrestrial plants over 400 million years ago (Scott and Glasspool, 2006; Bowman et
654	al., 2009)Fire emissions affect the Earth system in several important ways. First,
655	chemical Firespecies emitted from fires emissions are a key component of the global
656	and regional carbon budgets (Bond-Lamberty et al., 2007; Ciais et al., 2013; Kondo et
657	al., 2018),-and also a major source of greenhouse gases (Tian et al., 2016),and the
658	largest contributor of primary carbonaceous aerosols globally (Andreae and Rosenfeld,
659	2008; Jiang et al., 2016). Second, bBy changing the atmospheric composition, fire
660	emissionscan have resultant effects on affect the global and regional radiation
661	balance and climate (Ward et al., 2012; Tosca et al. 2013; Jiang et al., 2016; Grandey
662	et al., 2016; McKendry et al., 201 <u>9</u> 8; Hamilton et al., 2018; Thornhill et al., 2018).
663	Third, fire emissions change the terrestrial nutrient and carbon cycles through altering
664	the deposition of nutrients (e.g., nitrogen, phosphorus), surface ozone concentration,
665	and meteorological conditions, terrestrial nutrient and carbon cycles(Mahowald et

666	al., 2008; Chen et al., 2010; McKendry et al., 201 <u>98</u> ; Yue and Unger, 2018) <u>.</u> , <u>In</u>
667	addition, they degradeand the air quality (Val Martin et al., 2015; Knorr et al., 2017),
668	which <u>poses a significant risk to</u> is a major human health hazard and has been
669	estimated to result in at least ~165,000, and more likely ~339,000 pre-mature deaths
670	per year globally (Johnston et al., 2012; Marlier et al., 2013; Lelieveld et al., 2015).
671	To date, only emissions from individual fires or small-scale fire complexes can
672	be directly measured from <u>laboratory experiments and</u> field campaigns and
673	laboratory experiments (Andreae and Merlet, 2001; Yokelson et al., 2013; Stockwell
674	et al., 2016; Andreae, 2019). Regionally and globally, fire emissions are often
675	estimated based on satellite observations, fire proxy recordsies, andor
676	numericalnumerical models, even though some attempts have been made to bridge the
677	gap between local observations and regional estimations using combinations of
678	aircraft and ground based measurements from field campaigns (e.g., SAMBBA,
679	ARCTAS), satellite-based inventories, and chemical transport models (e.g., Fisher et
680	al., 2010; Reddington et al., 2019; Konovalov et al., 2018) Satellite-based fire
681	emission estimates are primarily derived from satellite observations of burned area,
682	active fire counts, and/or fire radiative power, and are sometimes/or constrained by
683	satellite observations of aerosol optical depth (AOD), CO, or CO ₂ (Wiedinmyer et al.,
684	2011; Kaiser et al., 2012; Krol et al., 2013; Konovalov et al., 2014; Ichoku and Ellison,
685	2014; Darmenov and da Silva, 2015; van der Werf et al., 2017; Heymann et al., 2017).
686	<u>S-Dataatellite-based fire emission estimates</u> are available globally, but only cover only
687	the present-day period, i.e. since 1997 for GFED and shorter periods for others.

688	Historical change of fFire emissions has been inferred from a variety of proxies,
689	<u>such asincludeice-core_</u> records of CH_4 (isotope $\delta^{13}CH_4$ from pyrogenic or
690	biomass burning source), black carbon, levoglucosan, vallic acid, ammonium, and CO-
691	concentration trapped in the air enclosed in ice cores (Ferretti et al., 2005; McCornnell
692	et al., 2007; Conedera et al., 2009; Wang et al., 2012; Zennaro et al., 2014), site-level
693	sedimentary charcoal records (Marlon et al., 2008, 2016), visibility records (van
694	Marle et al., 2017a), and fire-scar records (Falk et al. 2011)and aerosol indices-
695	(Duncan et al., 2003). Fire proxies can be used to reconstruct fire emissions on a local
696	to global scale and for time periods of decades to millennia and beyond These fire-
697	proxies cover decades to millennia, . However, butthey are of limited spatial extent
698	and, cannot be directly related converted into emission amounts. Moreover,, and
699	have-large uncertainties and discrepancies were shown in their inreferred regional or
700	global long-term trends due to limited sample size and often unclear representative
701	areas and time periods of fire emissions (Pechony and Shindell, 2010; van der Werf et
702	al., 2013; Legrand et al., 2016).

Dynamic Global Vegetation Models (DGVMs) that include fire modeling are indispensable for estimating fire carbon emissions at globallocal toand globalregional scales and for thepast, present, and future periods (Hantson et al., 2016). These models represent interactions among fire dynamics, biogeochemistry, biogeophysics, and vegetation dynamics at the land surface withinin a physically and chemically consistent modeling framework. DGVMs <u>are alsooften constituteused as</u> the terrestrial ecosystem component of Earth System models (ESMs) and <u>have been widely applied</u>

710	in are applied to global change research (Levis et al., 2004; Li et al., 2013; Kloster
711	and Lasslop, 2017). Using fire carbon emissions simulated by DGVMs and fire-
712	emission factors, <u>F</u> fire emissions of trace gases and aerosols can be derived
713	from the product of fire carbon emissions simulated by DGVMs and fire emission
714	factors (Li et al., 2012; Knorr et al., 2016).
715	Modeling fire and fire emissions within DGVMs started in the early 2000s
716	(Thonicke et al., 2001), and has rapidly progressed duringduring the past decade
717	(Hantson et al., 2016). The Fire Model Intercomparison Project (FireMIP) initiated in
718	2014 was the first international collaborative effort to better understand the behavior
719	of global fire models (Hantson et al., 2016).5 <u>Awhere a</u> set of common fire modeling
720	experiments driven by the same forcing data were performed (Rabin et al., 2017).
721	Nine DGVMs with different state-of-the-art global fire models participated in
722	FireMIP. All global fire models used in the upcoming 6 th Coupled Model
723	Intercomparison Project (CMIP6) and IPCC AR6 arewere included in FireMIP,
724	except for the fire scheme in GFDL-ESM (Rabin et al., 2018; Ward et al., 2018)
725	which is similar to that of CLM4.5 (Li et al., 2012) in FireMIP. Furthermore, Note that
726	GlobFIRM (Thonicke et al., 2001) in FireMIP waiss the most commonly-used fire
727	scheme in CMIP5 (Kloster and Lasslop, 2017). and is still used by some models in
728	<u>CMIP6</u> .
729	Earlier studies provided only one single time series of fire emissions for global
730	grids or regions (Schultz et al., 2008; Mieville et al., 2010; Lamarque et al., 2010;
731	Marlon et al., 2016; van Marle et al., 2017b; and references therein),. This limitsing

732	their utility for quantifying the uncertaintiesy in global and regional reconstructions of
733	fire emissions and its subsequent the corresponding impacts on estimated historical
734	changes in carbon cycle, climate, and air pollution. A small number of studies also
735	investigated the drivers of fire carbon emission trends (Kloster et al., 2010; Yang et al.,
736	2014; Li et al., 2018; Ward et al., 2018). However, <u>because only a single DGVM</u>
737	was used in these studies, they these studies could not identify the uncertainty source
738	in recent model-based reconstructions or help understand the inter-model discrepancy
739	in projections of future fire emissions because only a single DGVM was used in each.
740	Our study This study provides a new dataset of global gridded fire emissions,
741	including carbon and 33 species of trace gases and aerosols, over the 1700-2012 time
742	period, based on-the nine DGVMs with different state-of-the-art global fire models
743	that participated in FireMIP. The The dataset provides the basis for developing
744	multi-source (e.g., satellite-based products, model simulations, and/or fire proxy
745	recordsies) merged fire emission reconstructions and methods. It also, for the first
746	time, allows end users to select all or a subset of model-based reconstructions that best
747	suits their regional or global research needs, <u>Iand</u> importantly, <u>it enables</u> to
748	quantifythe quantification of the uncertainty range of past fire emissions and their-
749	resulting impacts. In addition, the model-based estimates of fire emissions are
750	comprehensively evaluated through comparison with satellite-based products,
751	including amounts, spatial distribution, seasonality, and interannual variability, thus
752	providing information on the limitations of recent model-based reconstructions. We
753	also analyze the simulated long-term trendschanges of the model-based

754	reconstructions, and the the forcing drivers of these trends for each DGVM and for
755	inter-model discrepancy differences.

757 2 Methods and datasets

758 2.1 Models in FireMIP

- Nine DGVMs with different fire modules participated in FireMIP: CLM4.5 with
- 760 CLM5 fire module, CTEM, JSBACH-SPITFIRE, JULES-INFERNO,
- 761 LPJ-GUESS-GlobFIRM, LPJ-GUESS-SIMFIRE-BLAZE, LPJ-GUESS-SPITFIRE,
- MC2, and ORCHIDEE-SPITFIRE (Table 1, see Rabin et al., 2017 for detailed
- description of each model). JSBACH, ORCHIDEE, and LPJ-GUESS used the
- variants of SPITFIRE (Thonicke et al., 2010) with updated representation of human
- ignition and suppression, fuel moisture, combustion completeness, and the
- relationship between spread rate and wind speed for JSBACH (Lasslop et al., 2014),
- combustion completeness for ORCHIDEE (Yue et al., 2014, 2015), and human
- ignition, post-fire mortality factors, and modifications for matching tree age/size

structure for LPJ-GUESS (Lehsten et al., 2009; Rabin et al., 2017).

The global fire models in the nine DGVMs have diverse levels of complexity

- (Rabin et al., 2017). SIMFIRE is a statistical model based on present-day
- satellite-based fire products (Knorr et al., 2016). In CLM4.5, crop, peat, and tropical
- deforestation fires are empirically/statistically modeled (Li et al., 2013). The scheme
- for fires outside the tropical closed forests and croplands in CLM4.5 (Li et al., 2012;
- Li and Lawrence, 2017) and fire modules in CTEM (Arora and Boer, 2005; Melton

and Arora, 2016), GlobFIRM (Thonicke, 2001), and INFERNO (Mangeon et al., 2016)
are process-based and of intermediate-complexity. That is, area burned is determined
by two processes: fire occurrence and fire spread, but with simple empirical/statistical
equations for each process. Fire modules in MC2 (Bachelet et al., 2015; Sheehan et al.,
2015) and SPITFIRE variants are more complex, which use the Rothermel equations
(Rothermel, 1972) to model fire spread and consider the impact of fuel composition
on fire behavior.

The way in which How humans affect fires is treated differently differs among 783 784 these global fire models (Table 2), which influences ing their estimates -simulationsof fire emissions. GlobFIRM does not consider any direct human effect on fires, and 785 MC2 fire model only considers human suppression on fire. CLM4.5 models fires in 786 787 croplands, human deforestation and degradation fires in tropical closed forests, and human ignition and suppression for both occurrence and spread of fires outside of 788 tropical closed forests and croplands. CLM4.5 includes crop fires, fires caused by-789 man-made deforestation in tropical closed forests, and human ignitions and 790 suppression on both fire occurrence and spread area for fires outside tropical closed 791 forests and croplands. -Burned area in SIMFIRE and human influence on fire 792 occurrence in other models are a non-linear function of population density. CTEM 793 and JSBACH-SPITFIRE also consider human suppression on fire duration. 794 JULES-INFERNO treats croplands and crop fires as natural grasslands and grassland 795 fires. All models, except for CLM4.5 and INFERNO, set burned area to zero inover 796

797 cropland<u>s</u>. <u>FireMIP m</u>Models treat pasture fires as natural grassland fires by using the

798	same parameter values if they have pasture plant functional types (PFTs) or lumping
799	pastures with natural grasslands otherwise. Note that bBiomass harvest is considered
800	in pastures in LPJ-GUESS-GlobFIRM and LPJ-GUESS-SIMFIRE-BLAZE, which
801	decreases fuel availability for fires, and that JSBACH-SPITFIRE sets high fuel bulk
802	density for pasture PFTs.
803	Only CLM4.5 simulates peat fires, although only emissions from burning of
804	vegetation tissues and litter are included in outputs for FireMIP, (i.e., burning of soil
805	organic matter is not included) (Table 2).
806	In the FireMIP models, fire carbon emissions are calculated as the product of
807	burned area, fuel load, and combustion completeness. Combustion completeness is the
808	fraction of live plant tissues and ground litter burned ($0.0-100\%$.0). It depends on
809	PFT and plant tissue type in GlobFIRM and in the fire modules of CLM4.5 and
810	CTEM, and <u>is</u> also a function of soil moisture in INFERNO. Combustion
811	completeness depends on plant tissue type and surface fire intensity in SIMFIRE, fuel
812	type and wetness in the SPITFIRE family models, and fuel type, load, and moisture in
813	MC2 fire module.
814	
815	2.2 FireMIP experimental protocol and input datasets
816	The nine DGVMs in FireMIP are driven with the same forcing data (Rabin et al.,
817	2017). The atmospheric forcing is from CRU-NCEP v5.3.2 with a spatial resolution of
818	0.5° and a 6-hourly temporal resolution (Wei et al., 2014). The 1750-2012 annual
819	global atmospheric CO ₂ concentration is derived from ice core and NOAA monitoring

820	station data (Le Quéré et al., 2014). Annual land-use and land-cover change (LULCC)
821	and population density at a 0.5° resolution for 1700–2012 are from Hurtt et al. (2011)
822	and Klein Goldewijk et al. (2010, HYDE v3.1), respectively. Monthly
823	cloud-to-ground lightning frequency for 1901-2012, at 0.5° resolution, is derived
824	from the observed relationship between present-day lightning and convective
825	available potential energy (CAPE) anomalies (Pfeiffer et al., 2013, J. Kaplan, personal
826	communication, 2015).

Fire emissions in this study are estimated using the model outputs of PFT-level 827 828 fire carbon emissions and vegetation characteristics (PFTs and their fractional area coverages) from the FireMIP historical transient control run (SF1) (Rabin et al., 2017). 829 SF1 includes three phases (Fig. 1): the 1700 spin-up phase, the 1701–1900 transient 830 831 phase, and the 1901–2012 transient phase. In the 1700 spin-up phase, all models are spun up to equilibrium, forced by population density and prescribed land-use and 832 land-cover change (LULCC) at their 1700 values, 1750 atmospheric CO₂ 833 repeatedly cycled 834 concentration, and the 1901–1920 atmospheric forcing (precipitation, temperature, specific humidity, surface pressure, wind speed, and solar 835 radiation) and lightning data. The 1701–1900 transient phase is forced by 1701–1900 836 time-varying population and LULCC, with constant CO₂ concentration at 1750 level 837 until 1750 and time-varying CO₂ concentration for 1750-1900, and the cycled 838 1901–1920 atmospheric forcing and lightning data. In the 1901–2012 transient phase, 839 models are driven by 1901-2012 time-varying population density, LULCC, CO₂ 840

841	concentration, atmospheric forcing, and lightning data. Unlike all other models, MC2
842	and CTEM run from 1901 and 1861, respectively, rather than 1700.
843	The nine DGVMs are driven with the same forcing data (Rabin et al., 2017). The
844	atmospheric forcing is from CRU-NCEP v5.3.2 with a spatial resolution of 0.5° and a
845	6-hourly temporal resolution (Wei et al., 2014). The 1750-2012 annual global
846	atmospheric CO2 concentration is derived from ice core and NOAA monitoring
847	station data (Le Quéré et al., 2014). Annual LULCC and population density at a 0.5°-
848	resolution for 1700 2012 are from Hurtt et al. (2011) and Klein Goldewijk et al.
849	(2010, HYDE v3.1), respectively. Monthly cloud-to-ground lightning frequency for
850	1901-2012, at 0.5 ⁺ resolution, is derived from the observed relationship between
851	present-day lightning and convective available potential energy (CAPE) anomalies
852	(Pfeiffer et al., 2013, J. Kaplan, personal communication, 2015).
853	Six FireMIP models (CLM4.5, JSBACH-SPITFIRE, JULES-INFERNO,
854	LPJ-GUESS-SPITFIRE, LPJ-GUESS-SIMFIRE-BLAZE, and
855	ORCHIDEE-SPITFIRE) also provide outputs of five sensitivity simulations: constant
856	climate, constant atmospheric CO2 concentration, constant land cover, constant
857	population density, and constant lightning frequency throughout the whole simulation
858	period. The sensitivity simulations are helpful for understanding the drivers of
859	changes in reconstructed fire emissions.
860	

2.3 Estimates of fire trace gas and aerosol emissions

Based on fire carbon emissions and vegetation characteristics from DGVMs and fire emission factors, fire emissions of trace gas and aerosol species *i* and the PFT *j*, $E_{i,j}$ (g species m⁻² s⁻¹), are estimated according to Andreae and Merlet (2001):

865

$$E_{ij} = EF_{ij} \times CE_j / [C], \tag{1}$$

866 where $EF_{i,j}$ (g species (kg dry matter (DM))⁻¹) is a PFT-specific emission factor (EF),

867 *CE_j* denotes the fire carbon emissions of PFT *j* (g C m⁻² s⁻¹), and [C]= 0.5×10^3 g C (kg

DM)⁻¹ is a unit conversion factor from carbon to dry matter.

The EFs used in this study (Table 3) are based on Andreae and Merlet (2001), with updates from field and laboratory studies over various land cover types published during 2001–2018 (see Andreae, <u>(2019) for details2019</u>). All FireMIP model simulations used the same EFs from Table 3. The EFs are used for all simulations of FireMIP models in the present study.

DGVMs generally simulate vegetation as mixture of PFTs in a given grid 874 location to represent plant function at global scale, instead of land cover types. In 875 Table 4, we associate the PFTs from each DGVM to the land cover types shown in 876 Table 3. Grass, shrub, savannas, woodland, pasture, tundra PFTs are classified as 877 878 PFTs as croplands, respectively, similar to Li et al. (2012), Mangeon et al. (2016), and 879 Melton and Arora (2016). PFTs of evergreen tree and other broadleaf deciduous tree 880 in CTEM, extra-tropical evergreen and deciduous tree in JSBACH, and broadleaf 881 deciduous tree and needleleaf evergreen tree in JULES are divided into tropical, 882 temperate, and boreal groups following Nemani and Running (1996). 883

We provide two versions of fire emission products with different spatial resolutions: the original spatial resolution for each FireMIP DGVM outputs (Table 1), and a 1x1 degree horizontal resolution. For the latter, fire emissions are unified to 1 degree resolution using bilinear interpolation for CLM4.5, CTEM, JSBACH, and JULES which have coarser resolution, and area-weighted averaging-up for other models whose original resolution is 0.5 degree. The 1x1 degree product is used for present-day evaluation and historical trend analyses in Sects. 3 and 4.

891

892 2.4 Benchmarks

Satellite-based products are commonly used as benchmarks to evaluate present-day 893 fire emission simulations (Rabin et al., 2017, and references therein). In the present 894 895 study, six satellite-based products are used (Table 5). Fire emissions in GFED4/GFED4s (small fires included in GFED4s) (van der Werf et al., 2017), 896 GFAS1.2 (Kaiser et al., 2012), and FINN1.5 (Wiedinmyer et al., 2011) are based on 897 emission factor (EF) and fire carbon emissions (CE) (Eq. 1). CE is estimated from 898 MODIS burned area and VIRS/ATSR active fire products in the GFED family, 899 MODIS active fire detection in FINN1.5, and MODIS fire radiative power (FRP) in 900 GFAS1. Fire emissions from FEER1 (Ichoku and Ellison, 2014) and QFEDv2.5 901 (Darmenov and da Silva, 2015) are derived using FRP, and constrained with satellite 902 AOD observations. Satellite-based present-day fire emissions for the same region can 903 differ by a factor of 2-4 on an annual basis (van der Werf et al., 2010) and up to 12 on 904 905 a monthly basis (Zhang et al., 2014). The discrepancy among satellite-based estimates

906 of present-day fire emissionsthem mainly comes from the satellite observations used,
907 the methods applied for deriving fire emissions, and <u>the</u> emissions factors.

908

909 2.5 Multi-source merged historical reconstructions

910 We also compared the simulated historical changes with historical reconstructions merged from multiple sources used as forcing data for CMIPs. Fire emission estimates 911 for CMIP5 and CMIP6 were merged from different sources (Table 5). For CMIP5 912 (Lamarque et al., 2010), the decadal fire emissions are available from 1850 to 2000, 913 estimated using GFED2 fire emissions (van der Werf et al., 2006) for 1997 onwards, 914 915 RETRO (Schultz et al., 2008) for 1960-1900, GICC (Mieville et al., 2010) for 1900-1950, and kept constant at the 1900 level for 1850-1900. RETRO combined 916 917 literature reviews with satellite-based fire products and the GlobFIRM fire model. GICC is based on a burned area reconstruction from literature review and sparse tree 918 ring records (Mouillot et al., 2005), satellite-based fire counts, land cover map, and 919 920 representative biomass density and burning efficiency of each land cover type.

For CMIP6, monthly fire emission estimates are available from 1750 to 2015 921 (van Marle et al., 2017b). The CMIP6 estimates are merged from GFED4s fire carbon 922 emissions for 1997 onwards, charcoal records GCDv3 (Marlon et al., 2016) for North 923 America and Europe, visibility records for Equatorial Asia (Field et al., 2009) and 924 central Amazon (van Marle et al., 2017b), and the median of simulations of six 925 FireMIP JSBACH-SPITFIRE, 926 models (CLM4.5, JULES-INFERNO, LPJ-GUESS-SPITFIRE, _____LPJ-GUESS-SIMFIRE-BLAZE, and 927

ORCHIDEE-SPITFIRE) for all other regions. Then, based on the merged fire carbon
emissions, CMIP6 fire trace gas and aerosols emissions are derived using EF from
Andreae and Merlet (2001) with updates to 2013 and Akagi et al. (2011) with updates
for temperate forests to 2014, and a present-day land cover map.

932

933 **3 Evaluation of present-day fire emissions**

The spatial pattern and temporal variability of different fire emission species are similar, with <u>some</u> slight <u>differences</u> discrepancies resulting from the estimated fire carbon emissions <u>fromover</u> the land cover types that have different emission factors (Table 3). Therefore, we focus on several important species as examples to exhibit the performance of FireMIP models on the simulations of present-day fire emissions.

940 **3.1 Global amounts and spatial distributions**

941	As shown in Table 6, FireMIP models, except for MC2 and LPJ-GUESS-GlobFIRM,
942	estimate present-day fire carbon, CO ₂ , CO, CH ₄ , BC, OC, and PM _{2.5} annual emissions
943	to be within the range of satellite-based products. For example, the estimated range of
944	fire carbon emissions is 1.7–3.0 Pg C yr ⁻¹ , whereas they are it is 1.5–4.2 Pg C yr ⁻¹ for
945	satellite-based products. Low fire emissions in MC2 result from relatively low
946	simulated global burned area, only about 1/4 of satellite-based observations (Andela
947	et al., 2017). In contrast,, whereas high emissions in LPJ-GUESS-GlobFIRM are
948	mainly due to the higher combustion completeness of woody tissues (70-90% of
949	stem and coarse woody debris burned in post-fire regions) than those used in other

950	FireMIP models	Table 2)Rabin et al., 2017) and the satellite-based GFED	family

- 951 (20-40% for stem and 40-60% for coarse woody debris) (van der Werf et al., 2017).
- FireMIP DGVMs, except for MC2, represent the general spatial distribution of
- 953 fire emissions evident in satellite-based products, with high fire BC emissions over
- tropical savannas and low emissions over the arid and sparsely vegetated regions (Fig.
- 2). Among the nine models, CLM4.5, JULES-INFERNO, and
- 956 LPJ-GUESS-SIMFIRE-BLAZE have higher global spatial pattern correlation with
- satellite-based products than the other models, indicating higher skill in their
- spatial-pattern simulations. It should also be noted that, on a regional scale, CTEM,

959 JULES-INFERNO, LPJ-GUESS-SPITFIRE, and ORCHIDEE-SPITFIRE

- 960 underestimate fire emissions over boreal forests in Asia and North America.
- 961 LPJ-GUESS-GlobFIRM and LPJ-GUESS-SIMFIRE-BLAZE overestimate fire
- 962 emissions over the Amazon and African rainforests. CLM4.5 and
- 963 JSBACH-SPITFIRELPJ-GUESS-GlobFIRM overestimate fire emissions over eastern
- 964 China and North America, respectively. JSBACH-SPITFIRE underestimates fire
- 965 <u>emissions in most tropical forests.</u> MC2 underestimates fire emissions over most
- regions, partly because it allows only one ignition per year per grid cell and thus
- 967 underestimates the burned area.
- 968 We further analyze the spatial distribution of inter-model differences. As shown
- in Fig. 3, the main disagreement among FireMIP models occurs in the tropics,
- 970 especially over the tropical savannas in Africa, South America, and northern Australia.
- 971 This is mainly driven by the MC2, CTEM, JSBACH-SPITFIRE, and

972	ORCHIDEE-SPITFIRE simulations (Fig. 2). Differences among the satellite-based
973	estimates have a similar spatial pattern, but higher than the inter-model spread in
974	savannas over southern Africa and lower in the temperate arid and semi-arid regions
975	and north of 60°N over Eurasia (Fig. S1a).
976	
977	3.2 Seasonal cycle
978	The FireMIP models reproduce similar seasonality features of fire emissions to
979	satellite-based products, that is, peak month is varied from the dry season in the
980	tropics to the warm season in the extra-tropics (Fig. 4).
981	For the tropics in the Southern Hemisphere, fire $PM_{2.5}$ emissions of
982	satellite-based products peak in August-September. Most FireMIP models can
983	reproduce this pattern, except ORCHIDEE-SPITFIRE and LPJ-GUESS-SPITFIRE
984	peaking two months and one month earlier, respectively, and JSBACH-SPITFIRE
985	with much lower amplitude of seasonal variability likely caused by parameter setting
986	in its fuel moisture functions (Table S9 in Rabin et al. (2017)6).
987	For the tropics in the Northern Hemisphere, most FireMIP models exhibit larger
988	fire emissions in the northern winter, consistent with the satellite-based products.
989	In the northern extra-tropical regions, satellite-based products show two periods
990	of high values: April–May resulting mainly from fires inover croplands and
991	grasslands, and July mainly due to fires inover the boreal evergreen forests. Most
992	FireMIP models can reproduce the second one, except for LPJ-GUESS-SPITFIRE

993	which peaks in October. CLM4.5 is the only model that can captures both peak
994	periods partly because it's the only one to model the crop fires.
995	
996	3.3 Interannual variability
997	Global fire PM _{2.5} emissions from satellite-based products for 1997–2012 show a
998	substantial interannual variability, which peaks in 1997–1998, followed by a low
999	around 2000 and a decline starting in 2002-2003 (Fig. 5). The 1997-1998 high
1000	emission values are caused by peat fires in Equatorial Asia in 1997 and widespread
1001	drought-induced fires in 1998 associated with the most powerful 1997-1998-El Niño
1002	event in 1997–1998 recorded in history (van der Werf et al., 2017; Kondo et al., 2018).
1003	Most FireMIP models cannot reproduce the 1997–1998 peak, except for CLM4.5 as
1004	the only model that simulates the burning of plant-tissue and litter from peat fires
1005	(although burning of soil organic matter is not included) and the drought-linked
1006	tropical deforestation and degradation fires (Li et al., 2013, Kondo et al., 2018).
1007	CLM4.5, CTEM, and LPJ-GUESS-SIMFIRE-BLAZE present the highest temporal
1008	correlation between models and satellite-based products (0.55-0.79 for CLM4.5,
1009	0.51–0.68 for CTEM, and 0.39–0.72 for LPJ-GUESS-SIMFIRE-BLAZE), and thus
1010	are more skillful than other models to reproduce the interannual variability observed
1011	from satellite-based products (Table 7).
1012	We use the coefficient of variation (CV, the standard deviation divided by the
1013	mean, %) to represent the amplitude of interannual variability of fire emissions. As
1014	shown in Fig. 5, for 1997–2012, all FireMIP models underestimate the variation as a

1015	result of (at least) partially missing the 1997–1998 fire emission peak. For 2003–2012
1016	(the common period of all satellite-based products and models), interannual variation
1017	of annual fire PM _{2.5} emissions in CLM4.5, CTEM, and LPJ-GUESS family models
1018	lies within the range of satellite-based products (CV=6–12%). Other models present
1019	weaker variation (CV=5%) except for MC2 (CV=24%) that has a much stronger
1020	variation than all satellite-based products and other FireMIP models.
1021	
1022	4 Historical changes and drivers
1023	4.1 Historical changes and drivers
1024	Figure 6 shows historical simulations of the FireMIP models and the CMIP
1025	reconstructions for fire carbon, CO ₂ , CO ₂ and PM _{2.5} emissionsspecies. We find similar
1026	historical changes for all the species, with the maximum global fire emissions given
1027	by LPJ-GUESS-GlobFIRM and the minima by LPJ-GUESS-SPITFIRE before 1901
1028	and MC2 afterwards.
1029	Long-term trends in modelledsimulated global fire emissions for all models are
1030	weak before the1850s (relative trend <0.015% yr ⁻¹) , They are similar to CMIP6
1031	estimates (Fig. 6)-, but in disagreement with earlier reconstructions based on charcoal
1032	records (Marlon et al., 2008; Marlon et al., 2016), ice-core CO records (Wang et al.,
1033	2010), and ice-core δ^{13} CH ₄ records (Ferretti et al., 2005), which exhibit a rapid
1034	increase from 1700 to roughly the 1850s.
1035	_

1036	After the_1850s, disagreement in the trends among FireMIP models begins to
1037	emerge. Fire emissions in LPJ-GUESS-SIMFIRE-BLAZE decline since ~1850, while
1038	fire emissions in LPJ-GUESS-SPITFIRE, MC2, and ORCHIDEE-SPITFIRE show
1039	upward trends from ~1900s. In CLM4.5, CTEM, and JULES-INFERNO, fire
1040	emissions increase slightly before ~1950, similar to the CMIP6 estimates, but CTEM
1041	and JULES-INFERNO decrease thereafter, contrary to CMIP5 and CMIP6 estimates
1042	and CLM4.5. JSBACH-SPITFIRE simulates a decrease of fire emissions before
1043	1940s and an increase later, similar to the CMIP5 estimates. All the long-term trends
1044	described above are significant at the 0.05 level using the Mann-Kendall trend test.
1045	——Six FireMIP models also conducted sensitivity experiments, which can be
1046	used to identify the drivers of their long-term trends during the 20th century. As shown-
1047	in Figs. 6 and 7, the downward trend of LPJ-GUESS-SIMFIRE-BLAZE is mainly-
1048	caused by LULCC and increasing population density. Upward trends in-
1049	LPJ-GUESS-SPITFIRE and ORCHIDEE-SPITFIRE are dominated by LULCC and
1050	rising population density and CO2 during the 20th century. In CLM4.5 and
1051	JULES-INFERNO, upward trends before ~1950 are attributed to rising CO2, climate
1052	change, and LULCC, and the subsequent drop in JULES-INFERNO mainly results-
1053	from the rising population density and climate change. Long-term changes in
1054	JSBACH-SPITFIRE are mainly driven by LULCC and rising CO ₂ .
1055	Earlier reconstructions based on fire proxies also show a big difference in
1056	long-term changes after the 1850s. The reconstruction based on the Global Charcoal
1057	Database version 3 (GCDv3, Marlon et al., 2016) exhibits a decline from the late 19th

1058	century to the 1920s, and then an upward trend until ~1970, followed by a drop. The
1059	reconstructions based on the GCDv1 (Marlon et al., 2008) and ice-core CO records
1060	(Wang et al., 2010) show a sharp drop since roughly the 1850s, while a steady rise is
1061	exhibited in the reconstruction based on ice-core δ^{13} CH ₄ records (Ferretti et al., 2005).
1062	The simulated historical changes of FireMIP models (Fig. 6) fall into this fairly broad
1063	range of long-term trends in these reconstructions.
1064	Spatial patterns of inter-model spread of fire emissions for 1700–1850 and
1065	<u>1900–2000 (Figs. S1b–-c) are similar to the present-day patterns as shown in Fig. 3.</u>
1066	
1067	4.2 Drivers
1068	Six FireMIP models also conducted sensitivity experiments, which can be used to
1069	isolate the role of individual forcing factors in long-term trends of fire emissions
1070	during the 20th century. The median of the six models are also used for building
1071	CMIP6 fire emission estimates (van Marle et al. 2017b). The 20th century changes of
1072	driving forces used in FireMIP are characterized by an increase in the global land
1073	temperature, precipitation, lightning frequency, atmospheric CO ₂ concentration,
1074	population density, cropland and pasture areas, and a decrease in the global forest area
1075	(Teckentrup et al., 2019).
1076	As shown in Figs. 6 and 7, the downward trend of global fire emissions in
1077	LPJ-GUESS-SIMFIRE-BLAZE is mainly caused by LULCC and increasing
1078	population density. Upward trends in LPJ-GUESS-SPITFIRE and
1079	ORCHIDEE-SPITFIRE are dominated by LULCC and rising population density and

- 1080 CO₂ during the 20th century. In CLM4.5 and JULES-INFERNO, upward trends
- 1081 before ~1950 are attributed to rising CO₂, climate change, and LULCC, and the
- 1082 subsequent drop in JULES-INFERNO mainly results from the rising population
- 1083 density and climate change. Long-term changes of global fire emissions in
- 1084 <u>JSBACH-SPITFIRE are mainly driven by LULCC and rising CO₂.</u> for difference in-
- 1085 simulated long-term changes
- 1086 <u>As shown in Fig. 7, t</u>The <u>discrepancyinter-model spread</u> in long-term trends-
- 1087 among FireMIP models mainly arises from the simulated anthropogenic influence
- 1088 (LULCC and population density change) on fire emissions (Fig. 7), as the standard
- 1089 deviation in simulated responses to LULCC (0.27 Pg C yr⁻¹) and population density
- 1090 $(0.11 \text{ Pg C yr}^{-1})$ is much larger than the other drivers.
- 1091 LULCC decreases <u>global</u> fire emissions sharply in
- 1092 LPJ-GUESS-SIMFIRE-BLAZE during the 20th century, but increases global fire
- 1093 emissions for the other models except for JSBACH-SPITFIRE. The response to
- 1094 LULCC in LPJ-GUESS-SIMFIRE-BLAZE is because it assumes no fire in croplands
- and accounts for biomass harvest <u>((thus decreas reducinges fuel availability)</u>) in
- 1096 pastures (Table 2), the area of which expanded over the 20th century. The
- 1097 LULCC-induced increase in fire emissions for the other-
- 1098 modelsORCHIDEE-SPITFIRE, LPJ-GUESS-SPITFIRE, and JULES-INFERNO are
- 1099 partly caused by increased burned area due to the expansion of grasslands (pastures
- are lumped in <u>natural grasslands</u> in these models) where fuels are easier to burn than
- 1101 woody vegetation in the <u>model</u> setup<u>s of all FireMIP models</u> (Rabin et al., 2017).

1102	Additionally, CLM4.5 models crop fires and tropical deforestation and degradation
1103	fires. , Crop fire emissions in CLM4.5 which are estimated to increase during the 20th
1104	century due to expansion of croplands and increased fuel loads over time (Fig. S2).
1105	Emissions of tropical deforestation and degradation fires in CLM4.5 are increased
1106	before ~1950, responding to increased human deforestation rate in tropical closed
1107	forests based on prescribed land use and land cover changes (Li et al. 2018). JSBACH
1108	shifts the sign of response to LULCC around ~1940s due to both assuming no fires-
1109	over croplands and setting high fuel bulk density for pastures. In JSBACH-SPITFIRE,
1110	as croplands and pastures expand over time, the assumption of no fire over croplands
1111	tends to decrease fire emissions, while the setting of high fuel bulk density for
1112	pastures tends to increase fire emissions due to increased fuel combusted per burned
1113	area, which together partly result in the shifted sign of response to LULCC around the
1114	<u>1940s.</u>
1115	Rising population density throughout the 20th century decreases fire emissions in
1116	CLM4.5 and LPJ-GUESS-SIMFIRE-BLAZE because they include human
1117	suppression on both fire occurrence and fire spread. Fire suppression increases with
1118	rising population density simulated explicitly in CLM4.5 and implicitly in
1119	LPJ-GUESS-SIMFIRE-BLAZE. On the contrary, rising population density increases
1120	fire emissions in LPJ-GUESS-SPITFIRE and ORCHIDEE-SPITFIRE because
1121	observed human suppression on fire spread found in Li et al. (2013), Hantson et al.
1122	(2015), and Andela et al. (2017) is not taken into account in the two models. The
1123	response to population density change for the other models is small, reflecting the

compensating effects of human ignition and human suppression on fire occurrence
(strongest in JULES-INFERNO in FireMIP models), and <u>also</u> human suppression on

1126 fire duration (JSBACH-SPITFIRE).

All models simulate increased fire emissions with increased CO₂ since elevated

1128 CO₂ increases fuel load through increasing the carbon entering into the land

ecosystems (Mao et al., 2009) and improving the water-use efficiency (Keenan et al.,

1130 2013). Such a CO₂-driven increase of fuel load is consistent with a recent analysis of

- satellite-derived vegetation indices (Zhu et al., 2016). FireMIP models also agree that
- 1132 impacts of changes in lightning frequency on long-term trends of fire emissions are
- small. Moreover, most FireMIP models agree that climate change tends to increase
- 1134 fire carbon emissions during the first several decades and then falls, reflecting
- 1135 co-impacts of climate on both fuel load and fuel moisture.
- 1136

1137 4.3 Regional long-term changes

- 1138 We divided the global map into <u>14</u> regions following the definition of the GFED
- 1139 family (Fig. 8a). As shown in Fig. 8b, inter-model discrepancy in long-term changes
- are largest in Southern Hemisphere South America (SHSA), southern and northern
- 1141 Africa (NHAF and SHAF), and central Asia (CEAS). In other regions, long-term
- 1142 changes of most FireMIP models are small, similar to CMIP5 or CMIP6 fire emission
- 1143 estimates, except for equatorial Asia where only CLM4.5 partly reproduces the
- 1144 upward trend shown in CMIP5 and CMIP6 estimates after 1950s (not shown).

1145	Most FireMIP models reproduce the upward trends of fire CO emissions found
1146	also in the CMIP5 or CMIP6 estimates since 1950s in SHSA and till ~1950 in Africa
1147	(Figs. 9ac, h, and ib). Long-term trends in regional fire emissions in SHSA, Africa,
1148	and central Asia can broadly explain the upward trends in global fire emissions in
1149	LPJ-GUESS-SPITFIRE, MC2, and ORCHIDEE-SPITFIRE, the downward trends in
1150	LPJ-GUESS-SIMFIRE-BLAZE, and the rise followed by a drop in CTEM, whose
1151	global fire emissions exhibit most obvious long-term trends in FireMIP models (Fig.
1152	6).
1153	In other regions, the difference in long-term changes among models is smaller
1154	(Fig. 8b). Emissions of most models and CMIP5 estimates exhibit a significant
1155	decline in temperate North America (TENA) from ~1850 to ~1970, while historical
1156	changes of CMIP6 estimates are comparatively small (Fig. 9b).
1157	LPJ-GUESS-SIMFIRE-BLAZE has a more obvious long-term change than the other
1158	FireMIP models and CMIPs in boreal North America (BONA) and northern South
1159	America (NHSA) (Figs. 9a and d). MC2 and LPJ-GUESS-GlobFIRM emissions
1160	increase after ~1900 in Europe (EURO), while emissions of other models and CMIPs
1161	are overall constant (Fig. 9f). In boreal Asia (BOAS), emissions of most models and
1162	CMIP6 are relatively constant, while LPJ-GUESS-GlobFIRM and CMIP5 emissions
1163	decline from 1850 to the 1950s and from 1900 to the 1970s, respectively, and then
1164	rise (Fig. 9j). JULES, LPJ-GUESS-SIMFIRE-BLAZE, CLM4.5, CTEM, and CMIP6
1165	emissions significantly decline since the 1950s in Southeast Asia (SEAS), while
1166	CMIP5 emissions increase (Fig. 91). In equatorial Asia (EQAS), CMIPs emissions

- 1167 increase after ~1950, which is partly reproduced by only CLM4.5 in FireMIPin-
- 1168 <u>FireMIP only CLM4.5 partly reproduces _it (Fig. 9m).</u>
- 1169 <u>As shown in Figs. S3–5, long-term changes of regional fire emissions for other</u>
- 1170 species are similar to those of fire CO emissions.
- 1171 The long-term changes of regional fire emissions and inter-model disagreement
- 1172 are mainly caused by simulated responses to LULCC and/or population density
- 1173 change for the 20th century (Figs. S6–19). Besides, climate change also plays an
- 1174 important role in North America, northern South America, Europe, northern Africa,
- 1175 boreal and central Asia, and Australia. FireMIP models generally simulate increased
- 1176 regional fire emissions with increased CO₂ concentration and negligible impacts due
- 1177 to changes in lightning frequency, similar to the responses of global fire emissions.
- 1178
- 1179
- 1180 **5 Summary and outlook**

1181 Our study provides the firstnew multi-model reconstructions of global historical fire

emissions for 1700–2012, including carbon and 33 species of trace gases and aerosols.

- 1183 Two versions of the fire emission product are available, at the original spatial
- resolution for outputs of each FireMIP model and <u>aton</u> a unified 1x1 degree. The
- 1185 dataset is based on simulations of fire carbon emissions and vegetation distribution
- 1186 from nine DGVMs with state-of-the-art global fire models that participated in
- 1187 FireMIP and the most up-to-date emission factors over various land cover types. It

1188 will be available to the public at

1189 https://bwfilestorage.lsdf.kit.edu/public/projects/imk-ifu/FireMIP/emissions.

Our study provides an important dataset with wide-ranging applications for the-1190 fire and the Earth science research communityies. First, it is the first 1191 multi-model-based reconstruction of fire emissions; and can serve as thea basis for 1192 1193 further developingment of multi-source merged products of global and regional fire emissions and of the merging methodology itself. van Marle et al. (2017b) presented 1194 an example for using part of the dataset to develop a multi-source merged fire 1195 emission product as forcing dataset for CMIP6. In van Marle et al. (2017b), the 1196 1197 median of fire carbon emissions from six FireMIP models was used to determine historical changes over most regions of the world. The merging method and merged 1198 1199 product in van Marle et al. (2017b) are still preliminary, and need to be improved in the future, e.g., by weighting the different models depending on their global or 1200 regional simulation skills. Secondly, our dataset includes global gridded 1201 reconstructions for 300 years. It can, thus be can be used for analyzing global and 1202 regional historical changes in fire emissions on inter-annual to multi-decadal time 1203 scales and their interplay with climate variability and human activities. Third, the fire 1204 1205 emission reconstructions based on multiple models provide, for the first time, a chance to quantify and understand the uncertainties in historical changes of fire 1206 emissions and their subsequent impacts on carbon cycle, radiative balance, air quality, 1207 and climate. Hamilton et al. (2018), for example, usinged fire emission simulations 1208 from two global fire models and the CMIP6 estimates to drive an aerosol model₅. This 1209

allowed for __quantificationed of the impact of uncertainties in pre-industrial fire
emissions inon estimated pre-industrial aerosol concentrations and historical radiative
forcing.

1213	This study also provides significant information of the recent state of fire model
1214	performance by evaluating the present-day estimates based on FireMIP fire models
1215	(also those used in the upcoming CMIP6). Our results show that most FireMIP
1216	models can overall reproduce the amount, spatial pattern, and seasonality of fire
1217	emissions shown by satellite-based fire products, but Yet they fail to simulate the
1218	interannual variability partly due to a lack of modeling peat and tropical deforestation
1219	fires. In addition, Teckentrup et al. (2019) found that climate was the main driver of
1220	interannual variability for the FireMIP models. aA good representation of fire
1221	duration may be <u>important</u> to get the variable response of fire emissions to climate
1222	right. Teckentrup et al. (in prep.) found that climate greatly affected interannual
1223	variability of burned area partly through affecting fire durationHowever, all
1224	FireMIP models limit their fire duration of individual fire events no more than within
1225	one day inover natural vegetation regions, so they cannot skillfully model the
1226	drought-induced large fires that last multiple days (Le Page et al., 2015; Ward et al.,
1227	2018). Recently, Andela et al. $(201\frac{98}{9})$ derived a dataset of fire duration from MODIS
1228	satellite observations, which providesed a valuable dataset for developing
1229	parameterization of fire duration in global fire models.
1230	This study also identifies population density and LULCC as the primary
1231	uncertainty sources in fire emission estimates. Therefore, accurately modeling the

44

1232	responses to these-responses remains a top priority forto reducinge uncertainty in
1233	historical reconstructions and future projections of fire emissions, especially given
1234	that modeling is the only way for future projections. For the response to changes in
1235	population density, many FireMIP models have not included the observed relationship
1236	between population density and fire spread (Table 2). Moreover, Bistinas et al. (2014)
1237	and Parisien et al. (2016) reported obvious spatial heterogeneity of the population
1238	density-burned area relationship that is poorly represented in FireMIP models.
1239	For the response to LULCC, improving the modeling of crop fires, and pasture
1240	fires, deforestation and degradation fires, and human indirect effect on fires (e.g. e.g.,
1241	fragmentation of the landscape) and reducing the uncertainty in the interpretation of
1242	land use data set in models areis critical. Fire has been widely used in agricultural
1243	management during the harvesting, post-harvesting, or pre-planting periods (Korontzi
1244	et al., 2006; Magi et al., 2012). Crop fire emissions are an important source of
1245	greenhouse gases and air pollutants (Tian et al., 2016; Wu et al., 2017; Andreae,
1246	2019). GFED4s reported that fires in croplands can contribute 5% of burned area and
1247	6% of fire carbon emissions globally in the present day (Randerson et al., 2012; van
1248	der Werf et al., 2017). In FireMIP, only CLM4.5 simulates crop fires, whereas the
1249	other models assume no fire in croplands or treat croplands as natural grasslands. In
1250	CLM4.5, crop fires contribute 5% of the global burned area in 2001-2010, similar to
1251	GFED4s estimates. However, CLM4.5 estimates a total of 260 Tg C yr ⁻¹ carbon
1252	emissions (contribution rate:13%), which is higher than the GFED4s estimate (138 Tg
1253	C yr ⁻¹) because CLM4.5 simulates higher fuel loads in croplands than the CASA

1254	model used by GFED4s. In CLM4.5, both the carbon emissions from crop fires and
1255	the contribution of crop fire emissions to the total fire emissions increase throughout
1256	the 20th century (Fig. S2), which is consistent with earlier estimates based on a
1257	different crop fire scheme (Ward et al., 2018). In JULES-INFERNO, an increase in
1258	cropland area also leads to an increase in burned area and fire carbon emissions
1259	because this model treats croplands as natural grasslands. Grasses dry out faster than
1260	woody vegetation and are easier to burn, so an increasing cropland area leads to
1261	increasing burned area and fire carbon emissions. On the other hand, for FireMIP
1262	models that exclude croplands from burning, expansion of croplands leads to a
1263	decrease in burned area and fire carbon emissions. Therefore, different treatment of
1264	crop fires can contribute to the uncertainty in simulated fire emissions. Since four out
1265	of six FireMIP models used for generating CMIP6 estimates exclude croplands from
1266	burning (van Marle et al., 2017b), CMIP6 estimates may underestimate the impact of
1267	historical changes of crop fire emissions in some regions (e.g., China, Russia, India).
1268	Given the small extent of crop fires, high resolution remote sensing may help improve
1269	the detection of crop fires (Randerson et al., 2012; Zhang et al., 2018), which can
1270	benefit the driver analyses and modeling of historical crop fires and their emissions in
1271	DGVMs. Earlier studies reported that the timing and emissions from crop fires were
1272	different from natural vegetation fires, and that crop fires could be an important
1273	source of greenhouse gas and air pollutant emissions (Magi et al., 2012; Tian et al.,
1274	2016; Wu et al., 2017). In FireMIP, only CLM4.5 simulates crop fires, whereas the
1275	other models assume no fire over croplands_

1275 other models assume no fire over croplands.-

1276	Le Page et al. (2017) and Li et al. (2018) highlighted the importance of
1277	tropical deforestation and degradation fires in the long-term changes of reconstructed
1278	and projected global fire emissions, but in FireMIP only CLM4.5 estimates the
1279	tropical deforestation and degradation fires. For pasture fires, all FireMIP models
1280	assume that they behave likeare as natural grassland fires, which and this needs to be
1281	verified by, for example, satellite-based products. If fires over pastures and natural
1282	grasslands are significantly different, adding the gridded coverage of pasture as a new
1283	input field in DGVMs without pasture PFTs and developing a parameterization of
1284	pasture fires will be necessary. In additionFurthermore, Archibald (2016) and Andela
1285	et al. (2017) found that expansion of croplands and pastures decreased fuel continuity
1286	and thus reduced burned area and fire emissions. However, no FireMIP model
1287	parameterizes this indirect human effect on fires. In addition, DGVMs generalize the
1288	global vegetation using different sets of PFTs (Table 4) and represent land use data in
1289	different way. This may lead to different responses of fire emissions to LULCC and
1290	thus different long-term changes of fire emissions among model simulations, given
1291	that many parameters and functions in global fire models are PFT-dependent. LUH2
1292	used in LUMIP and ongoing CMIP6 provide information of forest/non-forest
1293	coverage changes (Lawrence et al., 2016), which can reduce the misinterpretation of
1294	the land use data in models and thus the inter-model spread of fire emission changes.
1295	As discussed above, most FireMIP models do not consider the human
1296	suppression of fire spread, decreased fuel continuity from expanding croplands and
1297	pastures, human deforestation and degradation fires, and crop fires. Therefore, these

- 1298 models, and hence the CMIP6 estimates that are mainly based on them, may have
- 1299 some uncertainties in estimating historical fire emissions and long-term trends. This
- 1300 may further affect the estimates of the radiative forcing of fire emissions and the
- 1301 historical response of trace gas and aerosol concentrations, temperature, precipitation,
- 1302 and energy, water, and biogeochemical cycles to fire emissions based on
- 1303 Earth/climate system models that include these fire models or are driven by such fire
- 1304 emissions. It may also influence future projections of climate and Earth system
- 1305 responses to various population density and land use scenarios.
- 1306
- 1307 *Author contribution.* FL contributed to the processing and analyses of the fire
- emission dataset. SS and AA designed the FireMIP experiments and LF, SH, GL, CY,
- 1309 DB, <u>SM</u>, MF, JM, and TH performed FireMIP simulations. MA compiled the EF
- 1310 table. JK, AD, CI, Gv, CW provided satellite-based and CMIP estimates of fire
- 1311 emissions. FL prepared the first draft of manuscript, and revised it with contributions
- 1312 from al<u>MVM and other</u>l co-authors.
- 1313
- 1314 Acknowledgements. This study is co-supported by the National Key R&D Program of
- 1315 China (2017YFA0604302 and 2017YFA0604804), National Natural Science
- 1316 Foundation of China (41475099 and 41875137), and CAS Key Research Program of
- 1317 Frontier Sciences (QYZDY-SSW-DQC002). MVM is supported by the US Joint Fire
- 1318 Science Program (13-1-01-4) and the UK Leverhulme Trust through a Leverhulme
- 1319 Research Centre Award (RC-2015-029). AA acknowledges support from the

1320	Helmholtz Association, its ATMO programme and the Impulse and Networking fund
1321	which funded initial FireMIP activities. AA and SH acknowledge also the EU FP7
1322	project BACCHUS (603445). GL is funded by the German Research Foundation
1323	(338130981). BIM is supported by NSF (BCS-1436496). CI is supported by NASA
1324	(NNH12ZDA001N-IDS). We are grateful to-Stéphane Mangeon for providing data of
1325	JULES-INFERNO simulations, and R. J. Yokelson, ZD. Lin, <u>S. Levis,</u> S. Kloster, M.
1326	van Marle, B. Bond-Lamberty, and J. R. Marlon, and X. Yue for helpful discussions.
1327	We also thank two anonymous reviewers for their valuable comments and suggestions,
1328	and Editor Qiang Zhang for handling this paper.
1329	
1330 1331	Competing interests. The authors declare that they have no conflict of interest.
1332	References
1333	Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T.,
1333 1334	Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic
1334	Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic
1334 1335	Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11,
1334 1335 1336	Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
1334 1335 1336 1337	 Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. Andela, N., et al: A human-driven decline in global burned area, Science, 356,
1334 1335 1336 1337 1338	 Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. Andela, N., et al: A human-driven decline in global burned area, Science, 356, 1356–1362, 2017.
1334 1335 1336 1337 1338 1339	 Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. Andela, N., et al: A human-driven decline in global burned area, Science, 356, 1356–1362, 2017. Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der

- 1343 Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hanson, S., van der-
- 1344 Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size,
- 1345 duration, speed, and direction, Earth Syst. Sci. Data Dis.,
- 1346 https://doi.org/10.5194/essd-2018-89, in review, 2018.
- 1347 Andreae, M. O.: Emission of trace gases and aerosols from biomass burning an
- 1348 updated assessment, Atmos. Chem. Phys., 19, 8523-8546,
- 1349 <u>https://doi.org/10.5194/acp-19-8523-2019, 2019.</u>
- 1350 Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass
- 1351 burning, Global Biogeochem. Cy., 15, 955–966, 2001.
- 1352 Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud- precipitation interactions, Part 1,
- 1353 The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41,
- doi:10.1016/j.earscirev.2008.03.001, 2008.
- 1355 Archibald, S.: Managing the human component of fire regimes: lessons from
- 1356 Africa, Philos. T. R. Soc. B., 371, 20150346, 2016.
- 1357 Arora, V. K. and Boer, G.: Fire as an interactive component of dynamic vegetation
- 1358 models, J. Geophys. Res., 110, 2005.
- 1359 Bachelet, K. Ferschweiler, T. J. Sheehan, B. M. Sleeter, and Z. Zhu: Projected carbon
- 1360 stocks in the conterminous USA with land use and variable fire regimes, Glob.
- 1361 Change Biol., 21, 4548–4560, 2015.
- 1362 Best, M. J., et al.: The Joint UK Land Environment Simulator (JULES), model
- description Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699,
- 1364 doi:10.5194/gmd-4-677-2011, http://www.geosci-model-dev.net/4/677/2011/,

1365

2011.

1366	Bistinas, S. P. Harrison, I. C. Prentice, and J. M. C. Pereira: Causal relationships
1367	versus emergent patterns in the global controls of fire frequency, Biogeosciences,
1368	11, 5087–5101, 2014.
1369	Bond-Lamberty, B., Peckham, S.D., Ahl, D.E., and Gower, S.T.: The dominance of
1370	fire in determining carbon balance of the central Canadian boreal forest, Nature,
1371	450, 89–92, 2007.
1372	Bowman, D. M. J. S., et al.: Fire in the Earth system, Science, 324, 481–484, 2009.
1373	Brovkin, V., et al.: Effect of anthropogenic land-use and land-cover changes on
1374	climate and land carbon storage in CMIP5 projections for the twenty-first century,
1375	J. Climate, 26, 6859–6881, doi:10.1175/JCLI-D-12-00623.1,
1376	http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-12-00623.1, 2013.
1377	Chen, Y., Randerson, J., van der Werf, G., Morton, D., Mu, M., and Kasibhatla, P.:
1378	Nitrogen deposition in tropical forests from savanna and deforestation fires, Glob.
1379	Change Biol., 16, 2024–2038, 2010.
1380	Ciais, P., C., et al.: Carbon and Other Biogeochemical Cycles, In: Climate Change
1381	2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
1382	Assessment Report of the Intergovernmental Panel on Climate Change, edited by:
1383	Stocker, T.F., Qin,D., Plattner, GK., Tignor, M., Allen, S.K., Boschung, J.,
1384	Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press,
1385	Cambridge, United Kingdom and New York, NY, USA, 467–544, 2013.
1386	Clark, D. B. et al.: The Joint UK Land Environment Simulator (JULES), model

- description Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4,
- 1388 701–722, doi:10.5194/gmd-4-701-2011,
- 1389 http://www.geosci-model-dev.net/4/701/2011/, 2011.
- 1390 Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F., and Krebs, P.:
- 1391 <u>Reconstructing past fire regimes: methods, applications, and relevance to fire</u>
- 1392 management and conservation, Quat. Sci. Rev., 28, 555–576,
- 1393 <u>doi:10.1016/j.quascirev.2008.11.005, 2009.</u>
- 1394 Darmenov, A. S., and da Silva, A.: The Quick Fire Emissions Dataset (QFED):
- 1395 Documentation of versions 2.1, 2.2 and 2.4, In: Technical Report Series on
- 1396 Global Modeling and Data Assimilation, edited by Koster, R. D., NASA
- 1397 Goddard Space Flight Center; Greenbelt, MD, USA, pp. 212, 2015.
- 1398 Duncan, B. N., Martin, R. V., Staudt, A. C., Yevich, R., and Logan, J. A.: Interannual-
- 1399 and seasonal variability of biomass burning emissions constrained by satellite-
- 1400 observations, J. Geophys. Res.-Atmos, 108, 4100, doi:10.1029/2002JD002378,
- 1401 2003. Falk, D. A., Heyerdahl, E. K., Brown, P. M., Farris, C., Fulé, P. Z.,
- 1402 McKenzie, D., Swetnam, T. W., Taylor, A. H., and Van Horne, M. L.:
- 1403 Multi-scale controls of historical forest-fire regimes: new insights from fire-scar
- 1404 <u>networks, Front. Ecol. Environ., 9, 446–454, 2011.</u>
- 1405 Ferretti, D. F., et al. : Unexpected changes to the global methane budget over the past
- 1406 2000 years, Science, 309, 1714–1717, https://doi.org/10.1126/science.1115193,
- 1407 2005.

1408	Field, R. D., van der Werf, G. R., and Shen, S. S. P.: Human amplification of
1409	drought-induced biomass burning in Indonesia since 1960, Nat. Geosci., 2,
1410	185–188, https://doi.org/10.1038/ngeo443, 2009.
1411	Fisher, J. A., et al.: Source attribution and interannual variability of Arctic pollution in
1412	spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS)
1413	observations of carbon monoxide, Atmos. Chem. Phys., 10, 977-996,
1414	https://doi.org/10.5194/acp-10-977-2010, 2010.
1415	Grandey, B. S., Lee, HH., and Wang, C.: Radiative effects of interannually varying
1416	vs. interannually invariant aerosol emissions from fires, Atmos. Chem. Phys., 16,
1417	14495-14513, https://doi.org/10.5194/acp-16-14495-2016, 2016.
1418	Hamilton, D. S., et al.: Reassessment of pre-industrial fire emissions strongly affects
1419	anthropogenic aerosol forcing, Nat. Commun., 9, 3182, doi:
1420	10.1038/s41467-018-05592-9, 2018.
1421	Hantson, S., Pueyo, S., and Chuvieco, E.: Global fire size distribution is driven by
1422	human impact and climate, Global Ecol. Biogeogr., 24, 77-86, 2015.
1423	Hantson, S., et al.: The status and challenge of global fire modelling, Biogeosciences,
1424	13, 3359–3375, doi:10.5194/bg-13-3359-2016, 2016.
1425	Heymann, J., Reuter, M., Buchwitz, M., Schneising, O., Bovensmann, H., Burrows, J.
1426	P., Massart, S., Kaiser, J. W., and Crisp, D.: CO ₂ emission of Indonesian fires in
1427	2015 estimated from satellite-derived atmospheric CO ₂ concentrations, Geophys.
1428	Res. Lett., 44, 1537–1544, 2017.
1429	Hurtt, G. C., et al.: Harmonization of land-use scenarios for the period 1500-2100:

- 1430 600 years of global gridded annual land-use transitions, wood harvest, and
- resulting secondary lands, Climatic Change, 109, 117–161,
- doi:10.1007/s10584-011-0153-2, 2011.
- 1433 Ichoku, C. and Ellison, L.: Global top-down smoke-aerosol emissions estimation
- using satellite fire radiative power measurements, Atmos. Chem. Phys., 14,

1435 6643–6667, https://doi.org/10.5194/acp-14-6643-2014, 2014.

- 1436 Jiang, Y., Lu, Z., Liu, X. Qian, Y., Zhang, K., Wang, Y., and Yang, X.: Impacts of
- 1437 global wildfire aerosols on direct radiative, cloud and surface-albedo forcings
- simulated with CAM5, Atmos. Chem. Phys., 16, 14805–14824, 2016
- 1439 Johnston, F. H., et al.: Estimated global mortality attributable to smoke from
- 1440 landscape fires, Environ. Health Persp., 120, 695–701.
- 1441 https://doi.org/10.1289/ehp.1104422, 2012.
- 1442 Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L.,
- 1443 Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.:
- 1444 Biomass burning emissions estimated with a global fire assimilation system based
- 1445 on observed fire radiative power, Biogeosciences, 9, 527–554,
- 1446 https://doi.org/10.5194/bg-9-527-2012, 2012.
- 1447 Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H.
- 1448 P., and Richardson, A. D.: Increase in forest water-use efficiency as atmospheric
- 1449 carbon dioxide concentrations rise, Nature, 499, 324–327, 2013.

- 1450 Klein Goldewijk, K., Beusen, A., and Janssen, P.: Long-term dynamic modeling of
- 1451 global population and built-up area in a spatially explicit way: HYDE 3.1,

1452 Holocene, 20, 565–573, https://doi.org/10.1177/0959683609356587, 2010.

- 1453 Kloster, S., and Lasslop, G.: Historical and future fire occurrence (1850 to 2100)
- simulated in CMIP5 Earth System Models, Global Planet. Change, 58–69, 2017.
- 1455 Kloster, S., Mahowald, N. M., Randerson, J. T., Thornton, P. E., Hoffman, F. M.,
- 1456 Levis, S., Lawrence, D. M.: Fire dynamics during the 20th century simulated by
- the Community Land Model. Biogeosciences, 7(6), 1877–1902.
- 1458 https://doi.org/10.5194/bg-7-1877-2010, 2010.
- 1459 Knorr, W., Dentener, F., Lamarque, J.-F., Jiang, L., and Arneth, A.: Wildfire air
- pollution hazard during the 21st century, Atmos. Chem. Phys., 17, 9223–9236,
- 1461 https://doi.org/10.5194/acp-17-9223-2017, 2017.
- 1462 Knorr, W., Jiang, L., and Arneth, A.: Climate, CO2 and human population impacts on
- 1463 global wildfire emissions, Biogeosciences, 13, 267–282,
- 1464 https://doi.org/10.5194/bg-13-267-2016, 2016.
- 1465 Kondo, M., et al.: Land use change and El Niño-Southern Oscillation drive decadal

1466 carbon balance shifts in Southeast Asia, Nat. Commun., 9, 1154, doi:

1467 10.1038/s41467-018-03374-x, 2018.
1468 -Konovalov, I. B., Lvova, D. A., Beekmann, M., Jethva, H., Mikhailov, E. F., Paris,
1469 J.-D., Belan, B. D., Kozlov, V. S., Ciais, P., and Andreae, M. O.: Estimation of
1470 black carbon emissions from Siberian fires using satellite observations of

- 1471 <u>absorption and extinction optical depths, Atmos. Chem. Phys., 18, 14889–14924</u>,
- 1472 https://doi.org/10.5194/acp-18-14889-2018, 2018.
- 1473 Konovalov, I. B., Berezin, E. V., Ciais, P., Broquet, G., Beekmann, M., Hadji-Lazaro,
- 1474 J., Clerbaux, C., Andreae, M. O., Kaiser, J. W., and Schulze, E.: Constraining
- 1475 CO2 emissions from open biomass burning by satellite observations of co-emitted
- species: a method and its application to wildfires in Siberia, Atmos. Chem. Phys.,
- 1477 14, 10383–10410, 2014.
- 1478 Korontzi, S., McCarty, J., Loboda, T., Kumar, S., and Justice, C.: Global distribution
- 1479 of agricultural fire in croplands from 3 years of Moderate Resolution Imaging
- 1480 Spectroradiometer (MODIS) data, Global Biogeochem. Cy., 20, GB2021,
- 1481 <u>doi:10.1029/2005GB002529, 5 2006.</u>
- 1482 Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein,
- 1483 P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for
- studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19,
- 1485 1–33, https://doi.org/10.1029/2003GB002199, 2005.
- 1486 Krol, M., Peters, W., Hooghiemstra, P., George, M., Clerbaux, C., Hurtmans, D.,
- 1487 McInerney, D., Sedano, F., Bergamaschi, P., El Hajj, M., Kaiser, J. W., Fisher, D.,
- 1488 Yershov, V., and Muller, J.-P.: How much CO was emitted by the 2010 fires
- around Moscow? Atmos. Chem. Phys., 13(9):4737–4747, 2013.
- 1490 Lamarque, J.-F., et al.: Historical (1850–2000) gridded anthropogenic and biomass
- 1491 burning emissions of reactive gases and aerosols: methodology and application,

1492	Atmos. Chem. Phys., 10, 7017-7039, https://doi.org/10.5194/acp-10-7017-2010,
1493	2010.

- 1494 Lasslop, G., Thonicke, K., and Kloster, S.: SPITFIRE within the MPI Earth system
- 1495 model: Model development and evaluation, J. Adv. Model Earth Sy., 6, 740–755,
- 1496 https://doi.org/10.1002/2013MS000284, 2014.
- 1497 Lawrence, D. M., et al.: The Land Use Model Intercomparison Project (LUMIP)

1498 contribution to CMIP6: rationale and experimental design, Geosci. Model Dev., 9,
1499 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, 2016.

- 1500 Legrand, M., et al.: Boreal fire records in Northern Hemisphere ice cores: a review,
- 1501 Clim. Past, 12, 2033-2059, https://doi.org/10.5194/cp-12-2033-2016, 2016.
- 1502 Lehsten, V., Tansey, K., Balzter, H., Thonicke, K., Spessa, A., Weber, U., Smith, B.,

and Arneth, A.: Estimating carbon emissions from African wildfires,

- 1504 Biogeosciences, 6, 349-360, https://doi.org/10.5194/bg-6-349-2009, 2009.
- 1505 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The con-
- tribution of outdoor air pollution sources to premature mortality on a global scale,
- 1507 Nature, 525, 367–371, 2015.
- 1508 Le Page, Y., Morton, D., Bond-Lamberty, B., Pereira, J. M. C., and Hurtt, G.:
- 1509 HESFIRE: A global fire model to explore the role of anthropogenic and weather
- drivers, Biogeosciences, 12, 887–903, https://doi.org/10.5194/bg-12-887-2015,
 2015.
- 1512 Le Page, Y., Morton, D., Hartin, C., Bond-Lamberty, B., Pereira, J. M. C., Hurtt, G.,
 1513 and Asrar, G.: Synergy between land use and climate change increases future fire

- 1514 risk in Amazon forests, Earth Syst. Dynam., 8, 1237–1246,
- 1515 https://doi.org/10.5194/esd-8-1237-2017, 2017.
- 1516 Le Quéré, C., et al.: Global carbon budget 2013, Earth Syst. Sci. Data, 6, 235–263,
- 1517 doi:10.5194/essd-6-235-2014, http://www.earth-syst-sci-data.net/6/235/2014/,
- 1518 2014.
- 1519 Levis, S., Bonan, G. B., Vertenstein, M., and Oleson, K. W.: The Community Land
- 1520 Model's dynamic global vegetation model (CLM-DGVM): Technical description
- and user's guide, NCAR Tech. Note TN-459 IA, Terrestrial Sciences Section,
- 1522 Boulder, Colorado, 2004<u>.</u>
- 1523 Li, F., Zeng, X.-D., Levis, S.: A process-based fire parameterization of intermediate
- 1524 complexity in a Dynamic Global Vegetation Model, Biogeosciences, 9,
- 1525 2761–2780, 2012.
- 1526 Li, F., Levis, S., and Ward, D._S.: Quantifying the role of fire in the Earth system–Part
- 1527 1: Improved global fire modeling in the Community Earth System Model
- 1528 (CESM1), Biogeosciences, 10, 2293–2314, 2013.
- 1529 Li, F., and Lawrence, D._M.: Role of fire in the global land water budget during the

1530 20th century through changing ecosystems, J. Clim., 30, 1893–908, 2017.

- 1531 Li, F., Lawrence, D.M., Bond-Lamberty, B.: Human impacts on 20th century fire
- dynamics and implications for global carbon and water trajectories, Glob. Planet.
- 1533 Change, 162, 18–27, 2018.
- 1534 Lindeskog, M., Arneth, A., Bondeau, A., Waha, K., Seaquist, J., Olin, S., and Smith,
- 1535 B.: Implications of accounting for land use in simulations of ecosystem carbon

1536	cycling in Africa, Earth Syst. Dynam,, 4, 385–407, doi:10.5194/esd-4-385-2013,
1537	2013.
1538	Magi, B.I., Rabin, S., Shevliakova, E., Pacala, S.: Separating agricultural and
1539	non-agricultural fire seasonality at regional scales, Biogeosciences, 9,
1540	3003–3012, 2012.
1541	Mahowald, N., et al.: Global distribution of atmospheric phosphorus sources,
1542	concentrations and deposition rates, and anthropogenic impacts, Global
1543	Biogeochem. Cy., 22, GB4026, doi: 10.1029/2008GB003240, 2008.
1544	Mangeon, S., Voulgarakis, A., Gilham, R., Harper, A., Sitch, S., and Folberth, G.:
1545	INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model,
1546	Geosci. Model Dev., 9, 2685–2700, doi:10.5194/gmd-9-2685-2016,
1547	http://www.geosci-model-dev.net/9/2685/2016/, 2016.
1548	Mao, J. F., Wang, B., and Dai, Y. J.: Sensitivity of the carbon storage of potential
1549	vegetation to historical climate variability and CO ₂ in continental China, Adv.
1550	Atmos. Sci., 26, 87–100, 2009.
1551	Marlier, M. E., DeFries, R. S., Voulgarakis, A., Kinney, P. L., Randerson, J. T.,
1552	Shindell, D. T., Chen, Y., and Faluvegi, G.: El Niño and health risks from
1553	landscape fire emissions in southeast Asia, Nat. Clim. Change, 3, 131–136, 2013.
1554	Marlon, J. R., et al.: Climate and human influences on global biomass
1555	burning over the past two millennia, Nat. Geosci., 1, 697–702,
1556	https://doi.org/10.1038/ngeo313, 2008.
1557	Marlon, J. R., et al.: Reconstructions of biomass burning from sediment-charcoal

- records to improve data–model comparisons, Biogeosciences, 13, 3225–3244,
- 1559 https://doi.org/10.5194/bg-13-3225-2016, 2016.
- 1560 McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E.
- 1561 S., Banta, J. R., Pasteris, D. R., Carter, M. M., and Kahl, J. D. W.: 20th-century
- 1562 industrial black carbon emissions altered arctic climate forcing, Science, 317,
- 1563 1381–1384, doi:10.1126/science.1144856, 2007.
- 1564 McKendry, I. G., Christen, A., Lee, S.-C., Ferrara, M., Strawbridge, K. B., O'Neill, N.,
- 1565 and Black, A.: Impacts of an intense wildfire smoke episode on surface radiation,
- 1566 <u>energy and carbon fluxes in southwestern British Columbia, Canada, Atmos.</u>
- 1567 <u>Chem. Phys., 19, 835–846, https://doi.org/10.5194/acp-19-835-2019, 2019.</u>
- 1568 McMeeking, G. R., et al.: Emissions of trace gases and aerosols during the open-
- 1569 combustion of biomass in the laboratory, J. Geophys. Res., 114, D19210,
- 1570 doi:10.1029/2009JD011836, 2009.
- 1571 Melton, J. R., and Arora, V. K.: Competition between plant functional types in the
- 1572 Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0, Geosci. Model Dev., 9,
- 1573 323–361, doi:10.5194/gmd-9-323-2016, 2016.
- 1574 Mieville, A., Granier, C., Liousse, C., Guillaume, B., Mouillot, F., Lamarque, J.-F.,
- 1575 Grégoire, J.-M., and Pétron, G.: Emissions of gases and particles from biomass
- burning during the 20th century using satellite data and an historical
- 1577 reconstruction, Atmos. Environ., 44, 1469–1477,
- 1578 https://doi.org/10.1016/j.atmosenv.2010.01.011, 2010.

- 1579 Mouillot, F. and Field, C. B.: Fire history and the global carbon budget: a 1°×1°fire
- history reconstruction for the 20th century, Glob. Change Biol., 11, 398–420,
- 1581 https://doi.org/10.1111/j.1365-2486.2005.00920.x, 2005.
- 1582 Nemani, R.R., and Running, S.W.: Implementation of a hierarchical global vegetation
- 1583 classification in ecosystem function models, J. Veg. Sci., 7, 337-346, 1996.
- 1584 Oleson, K., et al..: Technical Description of version 4.5 of the Community Land
- 1585 Model (CLM), Tech. Rep. NCAR/TN-503+STR NCAR, Boulder, CO, USA,
- 1586 pp.434, 2013.
- 1587 Parisien, M., Miller, C., Parks, S.A., DeLancey, E.R., Robinne, F., and Flannigan, M.
- D.: The spatially varying influence of humans on fire probability in North
 America, Environ. Res. Lett., 11:075005, 2016.
- 130) Timerica, Environ. Res. Lett., 11.075005, 2010.
- 1590 Pechony, O., and Shindell, D.T.: Driving forces of global wildfires over the past
- millennium and the forthcoming century, P. Natl. Acad. Sci. USA, 107,
- 1592 19167–19170, 2010.
- 1593 Pfeiffer, M., Spessa, A., and Kaplan, J. O.: A model for global biomass burning in
- 1594 preindustrial time: LPJ-LMfire (v1.0), Geosci. Model Dev., 6, 643–685,
- doi:10.5194/gmd-6-643-2013, 2013.
- 1596 Rabin, S. S., et al.: The Fire Modeling Intercomparison Project (FireMIP),
- phase 1: experimental and analytical protocols with detailed model descriptions.
 Geosci. Model Dev., 10, 1175–1197, 2017.
- 1599 Rabin, S. S., Ward, D. S., Malyshev, S. L., Magi, B. I., Shevliakova, E., and Pacala, S.
- 1600 W.: A fire model with distinct crop, pasture, and non-agricultural burning: use of

- new data and a model-fitting algorithm for FINAL.1, Geosci. Model Dev., 11,
- 1602 815-842, https://doi.org/10.5194/gmd-11-815-2018, 2018.
- 1603 Reddington, C. L., Morgan, W. T., Darbyshire, E., Brito, J., Coe, H., Artaxo, P., Scott,
- 1604 <u>C. E., Marsham, J., and Spracklen, D. V.: Biomass burning aerosol over the</u>
- 1605 Amazon: analysis of aircraft, surface and satellite observations using a global
- aerosol model, Atmos. Chem. Phys., 19, 9125–9152,
- 1607 https://doi.org/10.5194/acp-19-9125-2019, 2019.
- 1608 Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., and Morton, D. C.:
- 1609 <u>Global burned area and biomass burning emissions from small fires, J. Geophys.</u>
- 1610 <u>Res., 117, G04012, https://doi.org/10.1029/2012JG002128, 2012.</u>
- 1611
- 1612 Rothermel, R. C.: A mathematical model for predicting fire spread in wildland fuels,
- 1613 Res. Pap. INT-115, US Department of Agriculture, Ogden, UT, USA, pp. 40,
- 1614 1972.
- 1615 Schultz, M. G., Heil, A., Hoelzemann, J. J., Spessa, A., Thonicke, K., Goldammer, J.
- 1616 G., Held, A. C., Pereira, J. M. C., and van het Bolscher, M.: Global wildland fire
- 1617 emissions from 1960 to 2000, Global Biogeochem. Cy., 22, GB2002,
- 1618 https://doi.org/10.1029/2007GB003031, 2008.
- 1619 Scott, A. C., and Glasspool, I. J.: The diversification of Palaeozoic fire systems and
- 1620 fluctuations in atmospheric oxygen concentration, Proc. Natl. Acad. Sci. U.S.A.,
- 1621 103, 10861–10865, doi:10.1073/pnas.0604090103, 2006.
- 1622 Sheehan, T., Bachelet, D., and Ferschweiler, K.: Projected major fire and vegetation

- changes in the Pacific Northwest of the conterminous United States under
 selected CMIP5 climate futures, Ecol. Model., 317, 16–29,
 doi:10.1016/j.ecolmodel.2015.08.023, 2015.
- 1626 Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle,
- 1627 S.: Implications of incorporating N cycling and N limitations on primary
- 1628 production in an individual-based dynamic vegetation model, Biogeosciences, 11,
- 1629 2027–2054, doi:10.5194/bg-11-2027-2014, 2014.
- 1630 Stockwell, C. E., et al.: Nepal Ambient Monitoring and Source Testing Experiment
- 1631 (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and
- dung cooking fires, garbage and crop residue burning, brick kilns, and other
- 1633 sources, Atmos. Chem. Phys., 16, 11043–11081, 2016.
- 1634 Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and
- 1635 Carmona-Moreno, C.: The influence of vegetation, fire spread and fire behaviour
- 1636 on biomass burning and trace gas emissions: Results from a process-based model,
- 1637 Biogeosciences, 7, 1991–2011, 2010.
- 1638 Thonicke, K., Venevsky, S., Sitch, S., and Cramer, W.: The role of fire disturbance
- 1639 for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation
- 1640 Model, Global Ecol. Biogeogr., 10, 661–677, 2001.
- 1641 Thornhill, G. D., Ryder, C. L., Highwood, E. J., Shaffrey, L. C., and Johnson, B. T.:
- 1642 The effect of South American biomass burning aerosol emissions on the regional
- 1643 climate, Atmos. Chem. Phys., 18, 5321–5342,
- 1644 https://doi.org/10.5194/acp-18-5321-2018, 2018.

- 1645 Tian, H., et al.: The terrestrial biosphere as a net source of greenhouse gases to the1646 atmosphere, Nature, 531, 225–228, 2016.
- 1647 Tosca, M. G., Randerson, J. T., and Zender, C. S.: Global impact of smoke aerosols
- 1648 from landscape fires on climate and the Hadley circulation, Atmos. Chem. Phys.,
- 1649 13, 5227–5241, https://doi.org/10.5194/acp-13-5227-2013, 2013.
- 1650 Teckentrup, L., Harrison, S. P., Hantson, S., Heil, A., Melton, J. R., Forrest, M., Li, F.,
- 1651 Yue, C., Arneth, A., Hickler, T., Sitch, S., and Lasslop, G.: Sensitivity of
- 1652 simulated historical burned area to environmental andanthropogenic controls: A
- 1653 <u>comparison of seven fire models, Biogeosciences Discuss.</u>
- 1654 <u>https://doi.org/10.5194/bg-2019-42, 2019.</u>
- 1655 Val Martin, M., Heald, C.L., Lamarque, J.F., Tilmes, S., Emmons, L.K., Schichtel,
- 1656 B.A.: How emissions, climate, and land use change will impact mid-century air
- 1657 quality over the United States: a focus on effects at national parks, Atmos. Chem.
- 1658 Phys. 15, 2805-2823, 2015.
- 1659 van der Werf, G. R., Peters, W., van Leeuwen, T. T., and Giglio, L: What could have
- 1660 caused pre-industrial biomass burning emissions to exceed current rates?, Clim.
- 1661 Past, 9, 289–306, http://www.clim-past.net/9/289/2013/, 2013.
- 1662 van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and
- 1663 Arellano Jr., A. F.: Interannual variability in global biomass burning emissions
- 1664 from 1997 to 2004, Atmos. Chem. Phys., 6, 3423-3441,
- 1665 https://doi.org/10.5194/acp-6-3423-2006, 2006.

1666	van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P.
1667	S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire
1668	emissions and the contribution of deforestation, savanna, forest, agricultural,
1669	and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735,
1670	https://doi.org/10.5194/acp-10-11707-2010, 2010.
1671	van der Werf, G. R., et al.: Global fire emissions estimates during
1672	1997–2016, Earth Syst. Sci. Data., 9, 679–720, 2017.
1673	van Marle, M. J. E., Field, R. D., van der Werf, G. R., Estrada de Wagt, I. A.,
1674	Houghton, R. A., Rizzo, L. V., Artaxo, P., and Tsigaridis, K.: Fire and
1675	deforestation dynamics in Amazonia (1973–2014), Global Biogeochem. Cy., 31,
1676	24-38,https://doi.org/10.1002/2016GB005445, 2017a.
1677	van Marle, M. J. E., et al., Historic global biomass burning emissions based on
1678	merging satellite observations with proxies and fire models (1750 - 2015), Geosci.
1679	Model Dev, 10, 3329-3357, doi:10.5194/gmd-2017-32, 2017b.
1680	Wang, Z., et al.: The isotopic record of Northern Hemisphere atmospheric carbon
1681	monoxide since 1950: implications for the CO budget, Atmos. Chem. Phys., 12,
1682	4365-4377, https://doi.org/10.5194/acp-12-4365-2012, 2012.
1683	Ward, D. S., Kloster, S., Mahowald, N. M., Rogers, B.M., Randerson, J. T., Hess, P.
1684	G.: The changing radiative forcing of fires: Global model estimates for past,
1685	present and future, Atmos. Chem. Phys. 12, 10857-10886, 2012.
1686	Ward, D. S., Shevliakova, E., Malyshev, S., Rabin, S.: Trends and variability
1687	of global fire emissions due to historical anthropogenic activities. Global

1688	Biogeochem. Cy.,32, 122–142, https://doi.org/10.1002/2017GB005787,
1689	2018.
1690	Wei, Y., et al.: The North American Carbon Program Multi-scale Synthesis and
1691	Terrestrial Model Intercomparison Project – Part 2: Environmental driver data,
1692	Geoscientific Model Development, 7, 2875–2893, doi:10.5194/gmd-7-2875-2014,
1693	2014.
1694	Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A.,
1695	Orlando, J. J., and Soja, A. J. : The Fire INventory from NCAR (FINN): A high
1696	resolution global model to estimate the emissions from open burning, Geosci.
1697	Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011
1698	Wu, Y., Han, Y., Voulgarakis, A., Wang, T., Li, M., Wang, Y., Xie, M., Zhuang, B.,
1699	and Li, S.: An agricultural biomass burning episode in eastern China: Transport,
1700	optical properties, and impacts on regional air quality, J. Geophys. ResAtmos.,
1701	122, 2304–2324, doi:10.1002/2016JD025319, 2017.
1702	Yang, J., Tian, H., Tao, B., Ren, W., Kush, J., Liu, Y., and Wang, Y.: Spatial and
1703	temporal patterns of global burned area in response to anthropogenic and
1704	environmental factors: Reconstructing global fire history for the 20th and early
1705	21st centuries, J. Geophys. Res, -Biogeo., 119, 249-263.
1706	https://doi.org/10.1002/2013JG002532, 2014.
1707	Yokelson, R. J., et al.: Coupling field and laboratory measurements to estimate the
1708	emission factors of identified and unidentified trace gases for prescribed fires,
1709	Atmos. Chem. Phys., 13, 89–116, doi:10.5194/acp-13-89-2013, 2013.

1710	Yue,	C.,	Ciais,	Р.,	Cadule,	Р.,	Thonicke,	Κ.	, and van	Leeuwen,	Τ.	T.: Mod	elling	the

- role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the
- 1712 global vegetation model ORCHIDEE– Part 2: Carbon emissions and the role of
- 1713 fires in the global carbon balance, Geosci. Model Dev., 8, 1321–1338,
- 1714 https://doi.org/10.5194/gmd-8-1321-2015, 2015.
- 1715 Yue, C., et al.: Modelling the role of fires in the terrestrial carbon balance by
- 1716 incorporating SPITFIRE into the global vegetation model ORCHIDEE Part 1:
- simulating historical global burned area and fire regimes, Geosci. Model Dev., 7,

1718 2747–2767, https://doi.org/10.5194/gmd-7-2747-2014, 2014.

- 1719 Yue, X., and Unger, N.-: Fire air pollution reduces global terrestrial productivity,
- 1720 nature commun., 9, 5413, -https://doi.org/10.1038/s41467-018-07921-4, 2018.
- 1721 Zennaro, P., et al.: Fire in ice: two millennia of boreal forest fire history from the
- 1722 Greenland NEEM ice core, Clim. Past, 10, 1905–1924,
- 1723 https://doi.org/10.5194/cp-10-1905-2014, 2014.
- 1724 Zhang, F., Wang, J., Ichoku, C., Hyer, E. J., Yang, Z., Ge, C., Su, S., Zhang, X.,
- 1725 Kondragunta, S., Kaiser, J. W., Wiedinmyer, C., and da Silva, A.: Sensitivity of
- 1726 mesoscale modeling of smoke direct radiative effect to the emission inventory: a
- 1727 case study in northern sub-Saharan African region, Environ. Res. Lett., 9, 075002,
- 1728 doi:10.1088/1748-9326/9/7/075002, 2014.
- 1729 Zhang, T. R., Wooster, M. J., de Jong, M. C., and Xu, W. D.: How well does the
 1730 <u>'Small Fire Boost' methodology used within the GFED4.1s fire emissions</u>

- 1731 <u>database represent the timing, location and magnitude of agricultural burning?</u>
- 1732 Remote. Sens., 10, 823, doi:10.3390/rs10060823, 2018.
- 1733 Zhu, Z., et al: Greening of the Earth and its drivers, Nat. Clim. Change, 6, 791–795,
- 1734 2016.

Table 1. Summary description of the Dynamic Global Vegetation Models (DGVMs)

	1 1						
<u>D(</u>	<u> 3VMs</u>	tem. res.	spatial res.	period	<u>natural</u>	fire scheme ref.	DGVM ref.
		of model	of model		veg.		
		outputs	outputs		distrib.		
CI	M4.5 but CLM5 fire	<u>monthly</u>	<u>~1.9° (lat)</u>	<u>1700–</u>	<u>P</u>	Li et al. (2012, 2013)	<u>Oleson et al. (2013)</u>
<u>mc</u>	<u>del (CLM4.5)</u>		<u>×2.5° (lon)</u>	<u>2012</u>		Li and Lawrence (2017)	
<u>C1</u>	<u>'EM</u>	<u>monthly</u>	<u>2.8125°</u>	<u>1861–</u>	<u>P</u>	Arora and Boer (2005)	Melton and Arora
				<u>2012</u>		Melton and Arora (2016)	<u>(2016)</u>
JS	BACH-SPITFIRE	<u>monthly</u>	<u>1.875°</u>	<u>1700–</u>	<u>P</u>	Lasslop et al. (2014)	Brovkin et al. (2013)
<u>(JS</u>	BACH)			<u>2012</u>		Thonicke et al. (2010)	
JU	LES-INFERNO	monthly	<u>~1.2° (lat)</u>	<u>1700–</u>	<u>M</u>	Mangeon et al. (2016)	<u>Best et al. (2011)</u>
<u>(Л</u>	JLES)		<u>×1.9°(lon)</u>	<u>2012</u>			Clark et al. (2011)
LP	J-GUESS-GlobFIR	<u>annual</u>	<u>0.5°</u>	<u>1700–</u>	<u>M</u>	Thonicke et al. (2001)	Smith et al. (2014)
M	<u>(LGG)</u>			<u>2012</u>			Lindeskog et al. (2013)
LP	J-GUESS-SPITFIRE	monthly	<u>0.5°</u>	<u>1700–</u>	M	Lehsten et al. (2009)	Smith et al. (2001)
<u>(L</u>	<u>GS)</u>			<u>2012</u>		<u>Rabin et al. (2017)</u>	Ahlstrom et al. (2012)
<u>LP</u>	J-GUESS-SIMFIRE	monthly	<u>0.5°</u>	<u>1700–</u>	<u> </u>	Knorr et al. (2016)	Smith et al. (2014)
<u>-B</u>	LAZE (LGSB)			<u>2012</u>			Lindeskog et al. (2013)
							Nieradzik et al. (2017)
M	<u>22</u>	<u>annual</u>	<u>0.5°</u>	<u>1901–</u>	M	Bachelet et al. (2015)	Bachelet et al. (2015)
				<u>2008</u>		Sheehan et al. (2015)	Sheehan et al. (2015)
OF	CHIDEE-SPITFIRE	monthly	<u>0.5°</u>	<u>1700–</u>	<u>P</u>	Yue et al. (2014, 2015)	Krinner et al. (2005)
<u>(O</u>	<u>RCHIDEE)</u>			<u>2012</u>		Thonicke et al. (2010)	

participated in FireMIP.

Acronym: CLM4.5 and CLM5: Community Land Model version 4.5 and 5; CTEM: Canadian Terrestrial Ecosystem Model; JSBACH: Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg; SPITFIRE: Spread and InTensity fire model; JULES: Joint UK Land Environment Simulator; INFERNO: Interactive Fire And Emission Algorithm For Natural Environments; GlobFIRM: fire module Global FIRe Model; SMIFIRE: SIMple FIRE model; BLAZE: Blaze-Induced Land-Atmosphere Flux Estimator; ORCHIDEE: Organizing Carbon Hydrology In Dynamic Ecosystems; PFT: plant functional type; P: prescribed; M: modeled

			_				
<u>DGVMs</u>	crop	tropical	<u>human</u>	<u>human fire</u>	<u>peat</u>	pasture	<u>combust.</u>
	fire	<u>human</u>	<u>ignition</u>	suppression	fire		complete. range
		defor. fire					of woody tissue
<u>CLM4.5</u>	yes	yes	increase	occurrence &	<u>yes^e</u>	<u>as natural</u>	<u>27-35% (stem)</u>
			with PD ^a	spread areab		<u>grassland</u>	40% (CWD ^f)
<u>CTEM</u>	<u>no</u>	<u>no</u>	increase	occurrence &	<u>no</u>	<u>as natural</u>	<u>6% (stem)</u>
			with PD	duration ^c		grassland	<u>15–18% (CWD)</u>
JSBACH	<u>as grass</u>	<u>no</u>	increase	occurrence &	<u>no</u>	<u>high fuel</u>	<u>0–45%</u>
	fire		with PD	duration ^c		<u>bulk den.</u>	
JULES	<u>no</u>	<u>no</u>	<u>increase</u>	occurrence ^c	<u>no</u>	<u>as natural</u>	<u>0–40%</u>
			with PD			grassland	
<u>LGG</u>	<u>no</u>	<u>no</u>	<u>no</u>	<u>no</u>	<u>no</u>	<u>harvest</u>	<u>70–90%</u>
<u>LGS</u>	<u>no</u>	<u>no</u>	increase	occurrence ^c	<u>no</u>	<u>as natural</u>	<u>0–98% (100h^g)</u>
			with PD			grassland	<u>0–80% (1000h^g)</u>
LGSB	<u>no</u>	<u>no</u>	increase	burned area ^c	<u>no</u>	<u>harvest</u>	<u>0–50%</u>
			with PD				
<u>MC2</u>	<u>no</u>	<u>no</u>	<u>no</u>	occurrenced	<u>no</u>	<u>as natural</u>	<u>0–87% (100h)</u>
						grassland	<u>0–43% (1000h)</u>
ORCHIDEE	<u>no</u>	<u>no</u>	increase	occurrence ^c	<u>no</u>	<u>as natural</u>	<u>0-73% (100h)</u>
			with PD			grassland	<u>0–41% (1000h)</u>

Table 2. Summary description of global fire modules in FireMIP DGVMs.

^a PD: population density

^b fire suppression increases with PD and GDP, different between tree PFTs and grass/shrub PFTs

^c fire suppression increases with PD

^dAssume no fire in grid cell when pre-calculated rate of spread, fireline intensity, and energy release component are lower than thresholds

^eCLM4.5 outputs in FireMIP include biomass and litter burning due to peat fires, but don't include burning of soil organic matter

^fCoarse Woody Debris

g100-hour fuels and 1000-hour fuel classes

No.	Species	grassland	tropical	temperate	boreal	cropland
		/savanna	forest	forest	forest	
1	CO_2	1647	1613	1566	1549	1421
2	СО	70	108	112	124	78
3	CH ₄	2.5	6.3	5.8	5.1	5.9
4	NMHC	5.5	7.1	14.6	5.3	5.8
5	H2	0.97	3.11	2.09	1.66	2.65
6	NO _x	2.58	2.55	2.90	1.69	2.67
7	N ₂ O	0.18	0.20	0.25	0.25	0.09
8	PM _{2.5}	7.5	8.3	18.1	20.2	8.5
9	TPM	8.5	10.9	18.1	15.3	11.3
10	TPC	3.4	6.0	8.4	10.6	5.5
11	OC	3.1	4.5	8.9	10.1	5.0
12	BC	0.51	0.49	0.66	0.50	0.43
13	SO_2	0.51	0.78	0.75	0.75	0.81
14	C ₂ H ₆ (ethane)	0.42	0.94	0.71	0.90	0.76
15	CH ₃ OH (methanol)	1.48	3.15	2.13	1.53	2.63
16	C ₃ H ₈ (propane)	0.14	0.53	0.29	0.28	0.20
17	C ₂ H ₂ (acetylene)	0.34	0.43	0.35	0.27	0.32
18	C ₂ H ₄ (ethylene)	1.01	1.11	1.22	1.49	1.14
19	C ₃ H ₆ (propylene)	0.49	0.86	0.67	0.66	0.48
20	C ₅ H ₈ (isoprene)	0.12	0.22	0.19	0.07	0.18
21	C ₁₀ H ₁₆ (terpenes)	0.10	0.15	1.07	1.53	0.03
22	C7H8 (toluene)	0.20	0.23	0.43	0.32	0.18
23	C ₆ H ₆ (benzene)	0.34	0.38	0.46	0.52	0.31
24	C ₈ H ₁₀ (xylene)	0.09	0.09	0.17	0.10	0.09
25	CH ₂ O (formaldehyde)	1.33	2.40	2.22	1.76	1.80
26	C ₂ H ₄ O (acetaldehyde)	0.86	2.26	1.20	0.78	1.82
27	C ₃ H ₆ O (acetone)	0.47	0.63	0.70	0.61	0.61
28	C ₃ H ₆ O ₂ (hydroxyacetone)	0.52	1.13	0.85	1.48	1.74
29	C ₆ H ₅ OH (Phenol)	0.37	0.23	0.33	2.96	0.50
30	NH ₃ (ammonia)	0.91	1.45	1.00	2.82	1.04
31	HCN (hydrogen cyanide)	0.42	0.38	0.62	0.81	0.43
32	MEK/2-butanone	0.13	0.50	0.23	0.15	0.60
33	CH ₃ CN (acetonitrile)	0.17	0.51	0.23	0.30	0.25

 Table <u>3</u>2. Emission factors (g species (kg DM)⁻¹) for land cover types (LCTs).

LCT	Grassland	Tropical	Temperate	Boreal	Cropland
Models	/Savannas	Forest	Forest	Forest	
CLM4.5	A C3/C3/C4 G	Tro BE T	Tem NE T	Bor NE T	Crop
	Bor BD S		Tem BE T	Bor ND T	
	Tem BE/BD S	Tro BD T	Tem BD T	Bor BD T	
CTEM	C3/C4 G	BE T ^a	NE/BE T ^a	NET ^a , ND T	C3/C4 Crop
		Other BD T ^a	Other BD T ^a	Cold BD T	
JSBACH	C3/C4 G/P	Tro E/D T	Ex-Tro E/D T ^a	Ex-Tro E/D T ^a	Crop
JULES	C3/C4 G	Tro BE T	Tem BE T	BD/NE T ^a	
	E/D S	BD T ^a	BD/NE T ^a	NDT	
LGG ^b	C3/C4 G	Tro BE/BR T	Tem NSG/BSG/BE T	Bor NE T	R/I S/W Wheat
	C3/C4 G in P	Tro SI BE T	Tem SI SG B T	Bor SI NE T	R/I Maize
LGS	C3/C4 G	Tro BE/BR T	Tem SI/&SG B T	Bor NE T	
		Tro SI BE T	Tem B/N E T	Bor SI/&SG NE/N T	
LGSB ^b	C3/C4 G	Tro BE/BR T	Tem NSG/BSG/ BE T	Bor NE T	R/I S/W Wheat
	C3/C4 G in P	Tro SI BE T	Tem SI SG B T	Bor SI NE T	R/I Maize
MC2	Tem C3 G/S	Tro BE T	Maritime NE F	Bor NE F	
	Sub-Tro C4 G/S	Tro D W ^c	Sub-Tro NE/BD/BE/M -	Subalpine F	
	Tro S/G/Sava		F	Cool N F	
	Bor M W		Tem NE/BD F		
	Tem/Sub-Tro		Tem C/W M F		
	NE/B/M W				
	Tundra				
	Taiga-Tundra				
ORCHIDEE	C3/C4 G	Tro B E/R T	Tem N/B E T	Bor N E/D T	C3/C4 Crop
			Tem BD T	Bor BT T	

 Table 43. Attribution of plant function types (PFTs) in FireMIP DGVMs to land

cover types (LCTs) for emission factors described in Table 2.

Acronym: T: tree; S: shrub; W: woodland; F: forest; G: grass; P: pasture; Sava: Savanna; N: needleleaf; E: evergreen; B: broadleaf; D: deciduous; R: raingreen; SI: shaded-intolerant; SG: summer-green; M: mixed; I: irrigated; RF: rainfed; C/W: cool or warm; S/W: spring or winter, Tro: Tropical; Tem: Temperate; Bor: Boreal; Sub-Tro: subtropical; Ex-Tro: Extratropical; A: Arctic

^a split tree PFTs into tropical, temperate, and boreal groups following rules of Nemani and Running (1996) that also used to make CLM land surface data by Peter et al. (2007; 2012) since CLM version 3

^b LGG and LGBS did not outputs PFT-level fire carbon emissions, so land cover classified using its dominant vegetation type

^c MC2 classifies tropical savannas and tropical deciduous woodland regions, and the latter mainly represents tropical deciduous forests

Table 54. Summary description of satellite-based products and historical

Name	Method	Fire data sources	Peat	Start	reference
			burning	year	
GFED4	Bottom-up: fuel consumption,	MODIS, VIRS/ATSR	Y	1997	van der Werf et al. (2017)
GFED4s	burned area &active fire counts		Y	1997	
GFAS1.2	(GFED4&4s), FRP (GFAS1),	MODIS	Y	2001	Kaiser et al. (2012)
FINN1.5	active fire counts (FINN1.5),	MODIS	Ν	2003	Wiedinmyer et al. (2011)
	emis. factor				
FEER1	Top-down: FRP, satellite AOD	MODIS, SEVIRI	Y	2003	Ichoku and Ellison (2014)
QFED2.5	constrained, emis. factor	MODIS	Ν	2001	Darmenov and da Silva (2015)
CMIP5	Merged decadal fire trace gas	GFED2, GICC, RETRO	Y	1850	Lamarque et al. (2010)
	and aerosol emis.	(model GlobFIRM used)			
CMIP6	Merged monthly fire carbon	GFED4s, median of six	Y	1750	van Marle et al. (2017)
	emis., present-day veg. dist.,	FireMIP model <u>sims.</u> ,			
	emis. factor	GCDv3 charcoal records,			
		WMO visibility obs.			

constructions merged from multiple sources.

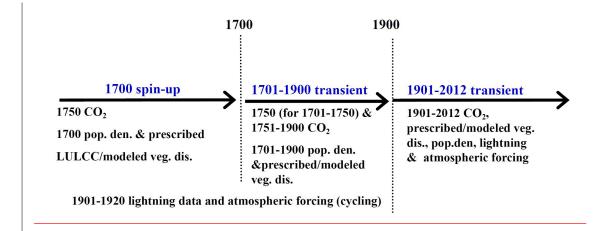
Acronym: GFED4: Global Fire Emissions Dataset version 4; GFED4s: GFED4 with small fires; GFAS1.2: Global Fire Assimilation System version 1.2; FINN1.5: Fire Inventory from NCAR version 1.5; FRP: fire radiative power; FEER1: Fire emissions from the Fire Energetics and Emissions Research version1; QFED2.5: Quick Fire Emissions Dataset version 2.5; AOD: aerosol optical depth; GFED2: GFED version 2; RETRO: REanalysis of the TROpospheric chemical composition; GICC: Global Inventory for Chemistry-Climate studies; GCDv3: Global Charcoal Database version 3

Source	С	CO_2	CO	CH ₄	BC	OC	PM _{2.5}
FireMIP							
CLM4.5	2.1	6.5	0.36	0.018	0.0021	0.020	0.042
CTEM	3.0	8.9	0.48	0.025	0.0028	0.030	0.060
JSBACH	2.1	6.5	0.32	0.013	0.0020	0.016	0.036
JULES	2.1	6.9	0.44	0.024	0.0022	0.020	0.039
LGG	4.9	15.4	0.90	0.047	0.0050	0.048	0.097
LGS	1.7	5.6	0.26	0.011	0.0017	0.012	0.027
LGSB	2.5	7.7	0.48	0.025	0.0025	0.024	0.047
MC2	1.0	3.1	0.18	0.008	0.0011	0.012	0.025
ORCHIDEE	2.8	9.2	0.44	0.018	0.0029	0.020	0.045
Benchmarks							
GFED4	1.5	5.4	0.24	0.011	0.0013	0.012	0.025
GFED4s	2.2	7.3	0.35	0.015	0.0019	0.016	0.036
GFAS1.2	2.1	7.0	0.36	0.019	0.0021	0.019	0.030
FINN1.5	2.0	7.0	0.36	0.017	0.0021	0.022	0.039
FEER1	4.2	14.0	0.65	0.032	0.0042	0.032	0.054
QFED2.5		8.2	0.39	0.017	0.0060	0.055	0.086

Table 65. Global total of fire emissions from 2003 to 2008 for DGVMs in FireMIP

and benchmarks. Unit: Pg (Pg=10¹⁵g)

Table 76. Temporal correlation of annual global fire PM_{2.5} emissions between


FireMIP models and satellite-based GFED4 and GFED4s (1997-2012), GFAS1.2 and

DGVMs	GFED4	GFED4s	GFAS1.2	FINN1.5	FEER1	QFED2.5
CLM4.5	0.73***	0.79***	0.63**	0.62*	0.55*	0.58**
CTEM	0.51**	0.54**	0.63**	0.60*	0.52	0.68**
JSBACH	-0.18	-0.42	0.10	0.02	-0.04	0.32
JULES	0.33	0.31	0.31	0.56*	0.29	0.39
LGG	0.08	0.03	-0.15	0.01	-0.20	-0.03
LGS	0.12	0.04	-0.00	0.40	-0.01	0.08
LGSB	0.51**	0.64***	0.39	0.72**	0.56*	0.55*
ORCHIDEE	-0.13	-0.25	-0.16	0.29	-0.10	-0.10

QFED2.5 (2001–2012), and FINN1.5 and FEER1 (2003–2012).

*,_**,_and *** : Pearson correlation passed the Student's t-test at the 0.1, 0.05, and

0.01 significance level, respectively.

Figure 1. FireMIP experiment design. Note that CTEM and MC2 start at 1861 and 1901 and spin-up using 1861 and 1901 CO2, population density, and prescribed / modeled vegetation distribution, respectively.

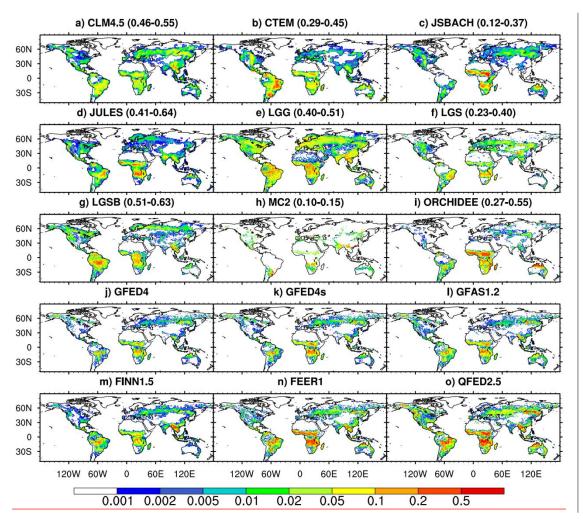
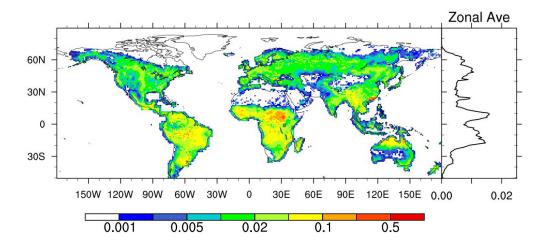
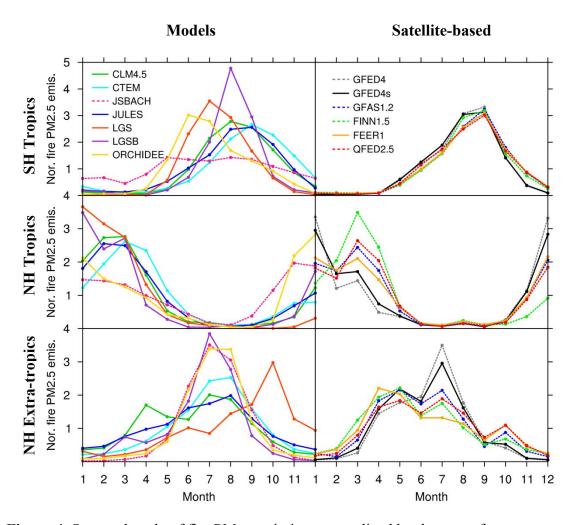
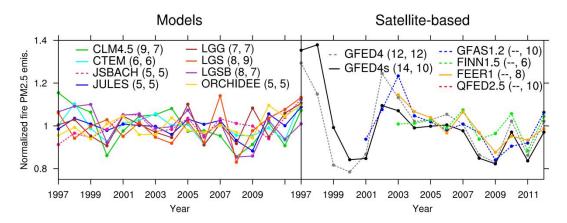
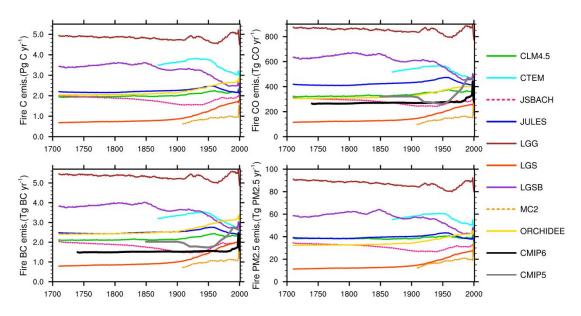


Figure 2. Spatial distribution of annual fire black carbon (BC) emissions (g BC m^{-2}

yr⁻¹) averaged over 2003–2008. The range of global spatial correlation between

DGVMs and satellite-based products is also given in brackets.


Figure 3. Inter-model standard deviation of 2003–2008 averaged fire BC emissions (g BC $m^{-2} yr^{-1}$) in FireMIP models and the zonal average.

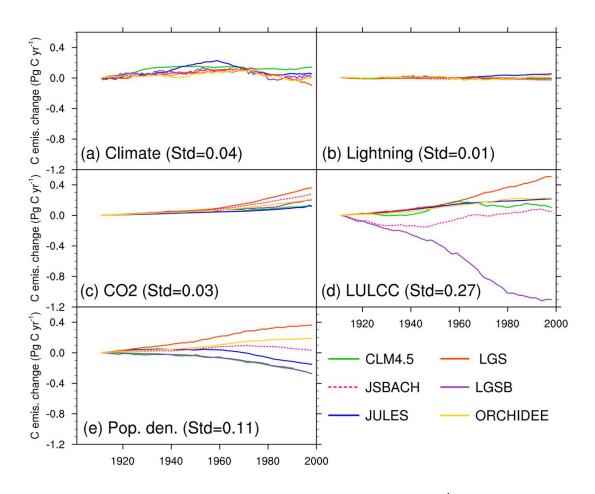

Figure 4. Seasonal cycle of fire PM_{2.5} emissions normalized by the mean from FireMIP models and satellite-based products averaged over 2003–2008 in the Southern Hemisphere (SH) tropics (0–23.5°S), Northern Hemisphere (NH) tropics (0–23.5°N), and NH extra-tropics (23.5–90°N). Fire emissions from LPJ-GUESS-GlobFIRM and MC2 are updated annually and thus are not included here.

Figure 5. Temporal change of annual global fire PM_{2.5} emissions normalized by the mean from FireMIP models and satellite-based products. The numbers in the brackets are coefficient of variation (CV, the standard deviation divided by the mean, unit: %) for 1997–2012 and 2003–2012, respectively.

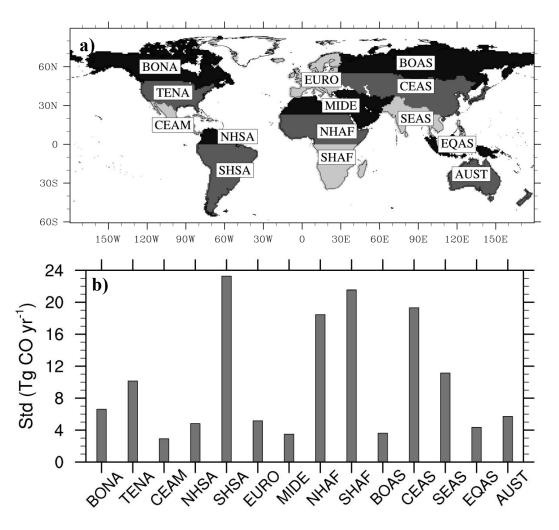
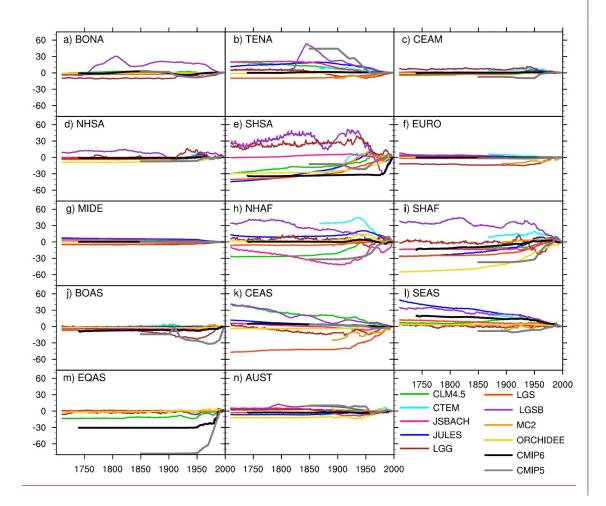


Figure 6. Long-term temporal change of fire emissions from DGVMs in FireMIP and CMIPs forcing. A 21-year running mean is used.


Figure 7. Change in global annual fire carbon emissions (Pg C yr⁻¹) in the 20th century due to changes in (a) climate, (b) lightning frequency, (c) atmospheric CO₂ concentration, (d) land use and land cover change (LULCC), and (e) population density (control run_–sensitivity run). A 21-year running mean is used. The standard deviation (Std) of multi-model simulated long-term changes averaged over the 20th century is also given in the bracket. <u>Control run is normal transient run, and five sensitivity runs are similar to the control run but without change in climate, lightning frequency, atmospheric CO₂ concentration, land cover, and population density, respectively. The 20th century changes of driving forces used in FireMIP are characterized by an increase in the global land temperature, precipitation, lightning</u>

frequency, atmospheric CO₂ concentration, and population density, expansion of croplands and pastures, and a decrease in the global forest area.

Figure 8. a) GFED region definition (http://www.globalfiredata.org/data.html), and b) inter-model discrepancy (quantified using inter-model standard deviation) in long-term changes (a 21-year running mean is used, relative to present-day) of simulated regional fire CO emissions (Tg CO yr⁻¹) averaged over 1700–2012 (calculate long-term changes relative to present-day for each FireMIP model first, then the inter-model standard deviation, and lastly the time-average). Acronyms are

BONA: Boreal North America; TENA: Temperate North America; CEAM: Central America; NHSA: Northern Hem. South America; SHSA: Southern Hem. South America; EURO: Europe; MIDE: Middle East; NHAF: Northern Hem. Africa; SHAF: Southern Hem. Africa; BOAS: Boreal Asia; CEAS: Central Asia; SEAS: South<u>e</u>-East Asia; EQAS: Equatorial Asia; AUST: Australia.

Figure 9. Long-term changes of annual regional fire CO emissions (Tg CO yr⁻¹) from FireMIP models and CMIPs-for regions with highest inter-model discrepancy inlong-term changes of regional fire emissions shown in Fig. 8. A 21-year running mean is used.