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Abstract 15 

Improving the understanding of the health and climate impacts of PM1 remains challenging and is restricted by 

the limitations of current measurement techniques. Detailed investigation of secondary organic aerosol (SOA), 

which is typically the dominating fraction of the organic aerosol (OA), requires instrumentation capable of real-

time, in situ measurements of molecular composition. In this study, we present the first ambient measurements by 

a novel extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF was 20 

deployed along with a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) during summer 

2016 at an urban location (Zurich, Switzerland). Positive matrix factorization (PMF), implemented within the 

Multilinear Engine (ME-2), was applied to the data from both instruments to quantify the primary and secondary 

contributions to OA. From the EESI-TOF analysis, a 6-factor solution was selected as the most representative and 

interpretable solution for the investigated dataset, including two primary and four secondary factors. The primary 25 

factors are dominated by cooking and cigarette smoke signatures while the secondary factors are discriminated 

according to their daytime (two factors) and nighttime (two factors) chemistry. All four factors showed strong 

influence by biogenic emissions but exhibited significant day/night differences. Factors dominating during 

daytime showed predominantly ions characteristic of monoterpene and sesquiterpene oxidation while the 

nighttime factors included less oxygenated terpene oxidation products, as well as organonitrates which were likely 30 

derived from NO3 radical oxidation of monoterpenes. Overall, the signal measured by the EESI-TOF and AMS 

showed a good correlation. Further, the two instruments were in excellent agreement in terms of both the mass 

contribution apportioned to the sum of POA and SOA factors and the total SOA signal. However, while the OOA 

factors separated by AMS analysis exhibited a flat diurnal pattern, the EESI-TOF factors illustrated significant 

chemical variation throughout the day. The captured variability, inaccessible from AMS PMF analysis, was shown 35 

to be consistent with the variations in the physiochemical processes influencing chemical composition and SOA 
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formation. The improved source separation and interpretability of EESI-TOF results suggest it to be a promising 

approach to source apportionment and atmospheric composition research. 

1. Introduction 

Atmospheric aerosols impact visibility, human health and climate on global scale, therefore a detailed knowledge 

of chemical composition, sources and processes is a fundamental prerequisite to develop appropriate mitigation 5 

policies. Organic aerosols are an important fraction of the chemical composition and are classified as primary 

(POA) when directly emitted to the atmosphere and secondary (SOA) when formed in the atmosphere through 

the oxidation of gas-phase precursors, yielding less volatile products which condense to the particle phase 

(Hallquist et al. 2009). Overall, organic aerosols account for 20-60% of the total fine particulate mass in the 

continental mid-latitudes atmosphere and up to 90% in tropical forested areas (Kanakidou et al., 2005, Carlton et 10 

al., 2009). POA emissions typically include combustion of fossil fuels, direct injection of unburnt fuel and 

lubricants, industrial emissions, plant matter debris, biomass burning, cooking emissions and biogenic emissions 

(DeGouw et al., 2009, Hayes et al., 2013). Current models estimate that SOA accounts for a dominant fraction of 

the total organic particulate mass in the lower troposphere, typically between 50 % (in polluted urban areas) and 

90% (Jimenez et al., 2009, Hallquist et al., 2009, Pye et al., 2010, Spracklen et al. 2011). However our capability 15 

to characterize SOA is limited (Heald et al., 2008, Shiravastava et al., 2017). SOA precursors can have either 

biogenic or anthropogenic origins, and although key precursor gases for SOA formation are known, the absolute 

and relative contributions of different sources to SOA remains challenging to determine.  Globally, SOA is 

dominated by oxidation products of biogenic volatile organic compounds, (including the monoterpene α-pinene, 

one of the largest sources of secondary biogenic particulate matter worldwide) resulting in an estimated 90% of 20 

SOA from biogenic emissions compared to only 10% from anthropogenic sources (Hallquist et al., 2009). 

However, it has been shown that interaction between biogenic and anthropogenic volatile organic compounds can 

significantly enhance SOA production and affect its properties (Weber et al., 2007, De Gouw et al., 2009, 

Kautzman et al., 2010, Glasius et al., 2011, Hoyle et al., 2011, Emanuelsson et al., 2013, Setyan et al., 2014, Moise 

et al., 2015). Further, anthropogenic SOA disproportionally affects regions with higher population and thereby 25 

exerts a larger impact on global health than suggested by its global average concentration. Elucidating the sources 

and physicochemical processes governing SOA concentrations requires measurement techniques with high 

temporal and chemical resolution, which have proven challenging to achieve. The molecular composition of 

aerosol particles has so far mostly been investigated offline, using filter or cascade impactor samples which are 

based on a time-integrating sampling step (typically 1 to 24 hours) followed by post-analysis. This method 30 

provides detailed information on individual chemical species and/or functional groups in SOA but can be affected 

by compositional changes due to adsorption, evaporation, and chemical reactions during sample collection, 

storage, and/or transfer (Turpin et al., 2000, Hallquist et al., 2009). Further, many sources and processes affecting 

SOA have characteristic timescales that are too short for this measurement approach. Several online techniques 

have been developed, which couple thermal desorption and/or hard ionization with online mass spectrometry. A 35 

major advantage of the online techniques over offline techniques is their time resolution (Noziere et al., 2015). 

For instance, the Aerodyne aerosol mass spectrometer (AMS) and the CHARON-PTR-ToF-MS are both able to 

describe bulk compositional properties of OA. However, the AMS subjects OA molecules to significant thermal 

decomposition and ionization-induced fragmentation. While thermal decomposition does not significantly 
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influence the CHARON, the proton transfer reaction is of sufficiently high energy that molecules of the type found 

in SOA undergo significant fragmentation, with the signal from the parent ion comprising a very small fraction 

of the total (Müller et al., 2017). In order to retrieve information at the molecular level while avoiding ionization-

induced fragmentation, a few online semi-continuous measurement techniques using soft ionization or thermal 

desorption have been developed (e.g. FIGAERO-CIMS, Lopez Hilfiker et al., 2014 and TAG, Williams et al., 5 

2006). These instruments have better chemical resolution and reduced thermal decomposition but still low time 

resolution. Another important drawback is the segregation of collection and analysis stages, which similarly to 

offline techniques open the possibility of reaction on the collection substrate and/or transfer artifacts. 

Alternatively, a soft ionization called aerosol flowing atmospheric-pressure afterglow (AeroFAPA) is also 

available. This technique allows mass spectrometric analysis of organic aerosols in real time and it consists of an 10 

ion source based on a helium glow discharge at atmospheric pressure. Ionization of the analytes occurs in the 

afterglow region after thermal desorption and produces mainly intact quasi-molecular ions (Brüggemann et al., 

2015). The method though is best suited for polar analytes with high volatilities and low molecular weights while 

for compounds with low vapor pressures, containing long carbon chains and/or high molecular weights, desorption 

and ionization is in direct competition with oxidation of the analytes, leading to the formation of adducts and 15 

oxidation products which impede a clear signal assignment in the acquired mass spectra. In addition, the ionization 

pathways are not well-constrained, which makes non-linear behavior likely. All these limitations (decomposition, 

fragmentation, reaction/transfer artifacts) are particularly problematic for SOA species which is the fraction of 

which sources and reactions are least understood. Therefore, instrumentation is urgently needed that can assess 

original molecular information of organic aerosol, online, with high time resolution and with a linear response to 20 

mass. 

Here we present the first field deployment of a recently developed extractive electrospray ionization time-of-flight 

mass spectrometer (EESI-TOF) (Lopez-Hilfiker et al., 2019), which to our knowledge is the first instrument 20 

capable of online OA measurements at atmospheric concentrations using a controlled ionization scheme without 

thermal decomposition, ionization-induced fragmentation, or separated collection/analysis stages. The field 25 

campaign took place during summer 2016 at an urban background site in Zurich, the largest city in Switzerland; 

the companion paper presents results from a subsequent winter campaign (Qi et al., 2019). This study compares 

EESI-TOF and AMS results in terms of both bulk composition and source apportionment to characterize the EESI-

TOF field performance and gain new insight into the sources and physicochemical processes governing OA 

composition.  30 

2. Method 

2.1 Field campaign 

Continuous online measurements were performed between June and July 2016 at the Swiss National Air Pollution 

Monitoring Network (NABEL) station located in Zürich Kaserne, Switzerland (47°22′42′′ N, 8°31′52′′ E, 410 m 

above sea level) (Herich et al., 2011). Zürich has a population of 1.3 million, and the site is located in the central 35 

metropolitan area, in a courtyard approximately 500 m south of the main train station. This location is not affected 

by major emissions from industries, but surrounded by roads with rather low traffic, apartment buildings, small 

businesses, and restaurants. The NABEL measurement station includes a number of long-term measurements, 
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including trace gas monitors for nitrogen oxides (NOx) and ozone (O3, Thermo Environmental Instruments 49C, 

Thermo Electro Crop., Waltham, MA) and meteorological data including temperature, relative humidity, solar 

radiation, wind speed and direction. For the intensive campaign, a separate trailer was deployed to house an 

additional suite of gas and particle instrumentation, including the EESI-TOF and several other mass spectrometers, 

as described below. 5 

The measurement site has been characterized in previous studies as “urban background” for PM10, PM2.5, and PM1 

and additional air quality parameters (Hueglin et al., 2005, Lanz et al., 2007, Daellenbach et al., 2016). The city 

of Zurich is a hub for railways, roads, and air traffic, providing a useful to assess different sources of SOA 

depending on location and seasonality. Lanz et al. (2007) reported the first PMF study on an AMS dataset acquired 

at this site in summer 2005, and identified six factors, including traffic, wood burning, cooking and a charbroiling 10 

related source along with two secondary sources discriminated according to their volatility and degree of 

oxygenation. Additional studies on summer OA measurements provided further discrimination of  sources 

including primary vs. secondary and fossil vs. non-fossil. Also studies at other sites in Europe demonstrated that 

during summer carbonaceous aerosols are mainly of biogenic origin, emitted either through primary emissions or 

gas-phase oxidation products from biogenic volatile organic compounds (BVOCs) (Genberg et al., 2011; Yttri et 15 

al., 2011). Biogenic SOA (BSOA) has been shown to dominate over combustion-derived aerosols during summer 

(Gelencser et al. 2007, Genberg et al., 2011; Yttri et al., 2011). 

2.2 Instrumentation 

Particle composition was measured by a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) 

and an extractive electrospray time-of-flight mass spectrometer (EESI-TOF). A scanning mobility particle sizer 20 

(SMPS) measured particle size distributions. Here we focus on particle phase composition and organic aerosol 

source apportionment via positive matrix factorization (PMF).  

2.2.1 High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) 

The non-refractory particle composition was monitored by a high resolution time-of-flight aerosol mass 

spectrometer (HR-ToF-AMS, Aerodyne Research Inc.) equipped with a PM1 aerodynamic lens (DeCarlo et al., 25 

2006; Canagaratna et al., 2007). The HR-ToF-AMS was operated with a temporal resolution of 1 minute. Briefly, 

aerosol particles are continuously sampled through an aerodynamic lens, which focuses the particles into a narrow 

beam and accelerates them to a velocity inversely related to their vacuum aerodynamic diameter. The beam 

impacts a heated element (600°C, 10-7 torr), where the non-refractory components flash vaporize. The resulting 

gas is ionized by electron impact (EI, 70 eV) and ion mass-to-charge ratios (m/z)  are analyzed by a time-of-flight 30 

mass spectrometer. The instrument was calibrated for ionization efficiency (IE) at the beginning and at the end of 

the campaign using 400 nm NH4NO3 particles following a mass-based method. A composition-dependent 

collection efficiency (CDCE) was used to correct the measured aerosol mass according to the algorithm of 

Middlebrook et al. (2012). Data analysis was performed in Igor Pro 6.3 (Wave Metrics) using SQUIRREL 1.57 

and PIKA 1.16. 35 

The PMF source apportionment technique (Section 2.3) requires as input the time-series of ions from high-

resolution mass spectral fitting along with their corresponding uncertainties. In the case of the AMS, the 
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measurement uncertainties considered in the error matrix account for electronic noise, ion-to-ion variability at the 

detector, and ion counting statistics (Allan et al., 2003). Following the recommendation of Paatero and Hopke 

(2003), variables (m/z) with low signal-to-noise (SNR < 0.2) were removed, whereas “weak” variables (0.2 < SNR 

< 2) were down-weighted by a factor of 2. Further, all variables calculated during the AMS data analysis as a 

constant fraction of m/z 44 (CO2
+), i.e. the OA contributions to O+, OH+, H2O+, and CO+, were excluded from 5 

PMF analysis to avoid overweighting CO2
+. The contributions of these ions were recalculated after obtaining a 

solution and reinserted in the factor profiles presented here; the total factor mass was likewise corrected. Isotopic 

species were likewise excluded from the PMF solver and rescaled afterwards to their parent ions. The final input 

matrix contained 281 ions (excluding isotopes and CO2-dependent ions and 285 ions including the CO2-dependent 

ions) between m/z 12 and 120 at a resolution of 3000-4000 m/Δm, and 22182 points in time (with steps of 60 s). 10 

2.2.2 Extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) 

The EESI-TOF provides online, near-molecular-level measurements of organic aerosol composition with high 

time resolution. The system, which is described in detail elsewhere (Lopez-Hilfiker et al., 2019), consists of a 

recently developed EESI source integrated with a commercial time-of-flight mass spectrometer  capable of mass 

resolution up to ∼4000 Th/Th (Tofwerk AG, Thun, Switzerland). Briefly, particles and gases are continuously 15 

sampled through a multi-channel extruded carbon denuder which removes most gas-phase species with high 

efficiency. After the denuder, particles intersect a spray of charged droplets generated by a conventional 

electrospray probe and soluble components are extracted. The droplets enter the mass spectrometer through a 

heated stainless steel capillary, wherein the electrospray solvent evaporates and ions are ejected. Although the 

capillary is heated to 250 °C, the effective temperature experienced by the analyte molecules is much lower due 20 

to the short residence time, and no thermal decomposition is observed. The resulting ions are analyzed by a 

portable high-resolution time of flight mass spectrometer with an atmospheric pressure interface (API-TOF) 

(Junninen et al., 2010). The electrospray solution was a 50/50 water/methanol mixture doped with 100 ppm NaI, 

with spectra detected in positive mode. The NaI dopant almost entirely suppresses ionization pathways other than 

formation of Na+ adducts, yielding a linear response to mass (without significant matrix effects) and simplifying 25 

spectral interpretation. The EESI-TOF alternated between direct sampling (8 minutes) and sampling through a 

particle filter (3 minutes) to provide a measurement of instrument background (including spray); the difference 

between these two spectra yields the ambient aerosol composition. Data analysis, including high resolution peak 

fitting, were performed using Tofware version 2.5.7 (Tofwerk AG, Thun, Switzerland).  

Overall the EESI-TOF measured for 3 consecutive weeks during summer in Zurich, achieving >85% data 30 

coverage. The remaining ~15% loss of data acquisition was due to instrumental issues, e.g. clogged electrospray 

capillary resulting in loss of the signal or “dirty solution” to substitute (contamination from ambient air decreasing 

the purity of the solution). Concentrations of inorganic species were very low (see Fig. S1) and a Nafion diffusion 

dryer was used to prevent major changes in relative humidity. No ion-dependent relative response factors were 

applied. The (NaI)Na+ signal, an approximate surrogate for ion source stability, varied by ± 7.3 % (relative 35 

standard deviation) across the entire campaign and exhibited no systematic drift (Fig. S2), and no corrections 

relating to sensitivity drift were applied. 
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Source apportionment analysis on the EESI data included 507 ions between m/z 139 and 401, all of which were 

detected as adducts with Na+ except for nicotine, which was observed with an extra hydrogen (C10H14N2H+,  m/z 

163.123), likely due to hydrogen abstraction from water. Because of this unique ionization pathway, its relative 

sensitivity is less certain and its response to a changing particle matrix is poorly constrained, e.g. non-linear 

response to mass is a possibility. However, the good agreement between the PMF factors for the AMS and the 5 

EESI, discussed in Section 3.3, suggests that any such non-linearities are not significant. One unidentified ion was 

also included in the analysis. The final input matrix contained 4436 points in time (with steps of 300 s, re-averaged 

from original 2 s). The input matrix of data and error were calculated as follows: 1) Raw data with time resolution 

of 2 s were processed with Tofware, including high resolution peak fitting to generate an initial data matrix 

including mass spectra from both direct ambient sampling and the filter blank. 2) Filter periods were interpolated 10 

to yield an estimated background spectrum during ambient measurements. 3) The estimated background was 

subtracted from the ambient spectrum and the resulting difference matrix re-averaged to 300 s time resolution for 

PMF analysis. 4) Ions whose signal was dominated by spray and/or instrument/gas background as defined by a 

signal-to-noise ratio (SNR) below 2 were excluded from further analysis. 5) The error matrix was calculated 

according to Eq. 1 following the model of Allan et al. (2003), which accounts for uncertainties related to the 15 

measurements (𝛿𝑖𝑗) and to the background (𝛽𝑖𝑗). 

𝜎𝑖𝑗 = √𝛿𝑖𝑗
2 + 𝛽𝑖𝑗

2
 

 

(1) 

The raw measured signal from the EESI-TOF is acquired in ions per seconds (cps) but throughout the text and 

figures we report the signal measured by the EESI-TOF in terms of the mass flux of ions to the microchannel plate 

detector (ag s-1), to facilitate interpretation of PMF results and comparison with other instruments, both of which 

are typically described in terms of mass rather than moles. The mass flux of ions is calculated as follows: 20 

 

 

𝑀𝑥 =  𝐼𝑥 × (𝑀𝑊𝑥 − 𝑀𝑊𝑐𝑐) 

 

(2) 

 

 

Where Mx is the mass flux of ions in ag s-1 and x represents the measured molecular composition. Ix is the recorded 

signal (cps) measured by the EESI-TOF. MWx and MWcc represent the molecular weight of the ion and the charge 25 

carrier (e.g. H+, Na+), respectively. Note that this measured mass flux can be related to ambient concentration by 

the instrument flow rate, EESI extraction/ionization efficiency, declustering probability and ion transmission, 

where several of these parameters are ion-dependent (Lopez-Hilfiker et al., 2019). 

 

2.3 Source apportionment 30 

Source apportionment was performed separately on the organic HR-ToF-AMS and EESI-TOF mass spectral time 

series using positive matrix factorization (PMF) as implemented by the multilinear engine (ME-2) (Paatero, 1997) 

and controlled via the interface SoFi (Source Finder, version 6.39; Canonaco et al., 2013) programmed in Igor 

Pro (Wavemetrics, Inc.). PMF is a bilinear receptor model used to describe measurements (in this case the matrix 
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of organic mass spectra as a function of time) as a linear combination of static factor profiles (i.e. characteristic 

mass spectra), corresponding to specific emission sources and/or atmospheric processes, and their time dependent 

source contributions as shown in the following equation (Paatero and Tapper, 1994): 

𝒙𝑖𝑗 = ∑  𝒈𝑖𝑘 × 𝒇𝑘𝑗

𝑝

𝑘=1

+  𝒆𝑖𝑗 

 

(3) 

 

Here xij, gik, fkj, and eij are matrix elements of the measurement, factor time series, factor profiles and residual 5 

matrices, respectively. The subscript i corresponds to time, j corresponds to m/z, and k corresponds to a discrete 

factor. The number of factors in the PMF solution, p, is determined by the user. The factor profiles are static, but 

their concentrations vary with time. Eq. 3 is solved for G and F using a least squares algorithm that iteratively 

minimizes the quantity Q, defined as the sum of the square of the uncertainty-weighted residuals  (eij/σij): 

𝑄 = ∑ ∑ (
𝑒𝑖𝑗

𝜎𝑖𝑗

)

2

𝑗𝑖
 

 

(4) 

 10 

Whereas PMF does not require any a priori assumption regarding sources, ME-2 (Paatero et al. 1999) enables the 

inclusion of external data and/or constraints in the PMF model to improve factor resolution and uncertainty 

analysis. This allows for intelligent rotational control of the retrieved solution. That is, because different 

combinations of G and F can yield solutions with similar mathematical quality constraining one or more factor 

profiles can direct the model towards environmentally reasonable, optimally unmixed solutions. The first 15 

application of constrained profiles to AMS data was performed by Lanz et al. (2008) and demonstrated improved 

model performance by resolving spectrally or temporally similar sources not well-separated by conventional PMF. 

Here constraints are applied by requiring one or more factor profiles to fall within a predetermined range defined 

by a combination of a reference profile and a scalar (α) determining the tightness of constraint. The α value (0 ≤ 

a ≤ 1) determines the extent to which the resolved factors (fj,solution) and (gi,solution) may deviate from input values 20 

(fj, gi). The following conditions need to be fulfilled: 

fj,solution = fj ± α × fj (5) 

 

Because of post-PMF renormalization, the actual profile may contain elements that exceed the boundaries defined 

by Eq. 5. A key consideration for PMF analysis is the number of factors selected by the user. As currently no 

methodical and completely objective approach exists for choosing the right number of factors, this selection must 25 

be evaluated subjectively to provide the most interpretable solution. Factor identification and interpretation 

likewise require user judgement. Criteria utilized here include investigation of the retrieved factor profiles for 

distinctive chemical signatures, diurnal cycle characteristics, and correlations between the time series of factors 

and external measurements. In addition, the evolution of the residual time series as a function of the number of 

resolved factors is also evaluated (Ulbrich et al., 2009; Canonaco et al., 2013; Crippa et al., 2014). 30 
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3. Results 

3.1 AMS PMF 

Figure S1 shows time-series of the species concentrations measured by the AMS over the full period of 

measurements. The organic mass dominates NR-PM1 with a contribution of 74% compared only a 26% 

contribution from inorganic mass. The total measured organic mass reached a maximum concentration of ~30 μg 5 

m-3 during the measurement period, with an average concentration of ~3 μg m-3. We note evidence of both long-

term events and short-term spikes. We selected a five-factor unconstrained PMF solution containing three primary 

and two secondary factors. The primary factors consisted of hydrocarbon-like organic (HOA) related to traffic, 

cooking-related organic aerosol (COA) and a cigarette smoke related factor (CS-OA). The secondary factors were 

separated by their oxygen content, which has been empirically related to volatility (Jimenez et al., 2009), and are 10 

classified here as less oxidized-oxygenated organic aerosol (LO-OOA) and more oxidized-oxygenated organic 

aerosol (MO-OOA) (Zhang et al., 2011). The five-factor solution was preferred because the four-factor solution 

was not able to separate the HOA and COA factors, while the six-factor solution added an additional OOA factor 

with a noisy time-series for which no physical interpretation could be found. Higher-order solutions with up to 

ten factors likewise yielded no additional interpretable factors. Figure 1 shows the mass spectra of the five-factor 15 

solution with ions color-coded according to their chemical family (CxHy, CxHyOz, CxHyNp, CxHyOzNp, HyOz and 

“other” which includes CxOy, Cx, Oy and sulfur-containing ions). The factor time series and diurnal pattern are 

shown in the supplement (Fig. S3). The dominant source in mass is LO-OOA, especially during the period with 

higher temperature, followed by MO-OOA. Specific local events are instead dominated by the primary sources.  

The HOA factor is related to fossil fuel combustion, mainly from traffic emissions. These emissions are  typically 20 

dominated by engine lubricating oil and consist mainly of n-alkanes, branched alkanes, cycloalkanes, and 

aromatics leading to high signal of the ions CnH2n+1
+ and CnH2n−1

+ (Ng et al., 2011).  Prominent contributions of 

non-oxygenated species at m/z 43 (C3H7
+), m/z 55 (C4H7

+) and m/z 57 (C4H9
+) can be observed. Similar to other 

studies (e.g., Lanz et al., 2007; Ulbrich et al., 2009; Zhang et al., 2011) HOA exhibits temporal correlations with 

primary vehicular emissions tracers, such as elemental carbon from traffic (ECtr) and NOx (Zhang et al., 2005).  25 

The COA factor is similar to HOA in that a large fraction of the signal is contributed by CxHy
+ ions. However, 

COA has distinctive mass spectral features, typical of the fragmentation of fatty acids. Characteristic peaks include 

C3H3O+ at m/z 55, C3H5O+ at m/z 57 and higher molecular weight oxygenated fragments: C5H8O+ (m/z 84), 

C6H10O+ (m/z 98), and C7H12O+ (m/z 112). In addition, the COA and HOA factors could be differentiated on the 

basis of the signal ratio of  C3H3O+ to C3H5O+ as the COA spectrum tends to show a substantially higher m/z 55 30 

to m/z 57 ratio (Mohr et al., 2009; Sun et al., 2011). Reliable molecular tracers of cooking emissions are not 

typically available, but Fig. S3b shows a diurnal pattern with significant peaks during meal-times, consistent with 

previous studies. 

The CS-OA factor is related to a cigarette smoke signature and the profile is similar to previously reported 

smoking-related factors measured at the Jungfraujoch (Froehlich et al., 2015) and a German soccer stadium (Faber 35 

et al., 2013). Similar to HOA and COA, the profile includes a strong contribution from CxHy
+, but for CS-OA is 

shifted towards less saturated ions (branched and n-alkanes, cycloalkanes, and alcohols). Relevant signal can be 

observed at m/z 41 (C3H5
+), m/z 43 (C3H7

+ and C2H3O+) and also fragments from aromatic compounds at m/z 77 

(C6H5
+), 91 (C7H7

+), 105 (C8H9
+) and 119 (C9H11

+). In addition, this factor is unique in having a significant 
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contribution from C5H10N+ (m/z 84) which has been attributed to n-methyl-pyrrolidine, a tracer for cigarette smoke 

(Struckmeier et al., 2016). Furthermore, the CS-OA factor exhibits a significantly higher N:C ratio (0.02) 

compared to the other factors (ranging from 0.003 to 0.01) and explains most of the organic nitrogen signal. 

Finally, the OOA factors are characterized by a very high contribution of the signal at m/z 44 (CO2
+), typical of 

AMS SOA profiles. The LO-OOA spectrum is characterized by prominent peaks at m/z 43 (C2H3O+) and m/z 28 5 

(CO+). It resembles LO-OOA factors determined in previous studies at urban sites, as well as newly formed 

aerosol from forest emissions and biogenic SOA from chamber studies (Zhang et al., 2007a; Lanz et al., 2007; 

Ulbrich et al., 2009; Hao et al., 2009; Kiendler-Scharr et al., 2009; Ng et al., 2010; Sun et al., 2010; Hao et al., 

2014). LO-OOA has an atomic O:C ratio of 0.40 (consistent with the global average of LO-OOA of 0.35±0.14 

(Ng et al., 2010)) while the second OOA factor, MO-OOA, is more oxidized with an O:C ratio of 0.50. The mass 10 

spectrum of the latter is dominated by m/z 44 (CO2
+) and m/z 28 (CO+). The profile is similar to MO-OOA factors 

reported at various locations, including urban areas and the boreal forest (Allan et al., 2006; Ulbrich et al., 2009; 

Sun et al., 2010; Raatikainen et al., 2010; Hao et al., 2014). Overall, LO-OOA includes less oxygenated and 

possibly freshly oxidized species while MO-OOA includes highly oxygenated species. Furthermore, the LO-

OOA/MO-OOA ratio is higher particularly on days with higher OOA concentration, which in turn correspond to 15 

sunny weather and warmer temperatures. The strong correlation of this factor with local ambient temperature 

indicates that LO-OOA is rather locally formed and possibly linked with SOA formed from the oxidation of 

biogenic emissions (Fig. S5). Similar findings have been reported by Canonaco et al. (2015) at the same site for 

summer OA measured by an aerosol chemical speciation monitor (ACSM). During summer afternoons, when 

photochemical processes are most vigorous the formation of SVOOA is enhanced compared to LVOOA formation 20 

which typically occurs on a timescale of hours. This is likely due to the formation of semi-volatile oxygenated 

aerosol produced from biogenic precursor gases, especially monoterpenes, whose emissions increase with ambient 

temperature. 

 

The diurnal patterns of these two factors are flatter than the POA factors, however the LO-OOA concentrations 25 

started increasing from early morning, most likely due to condensation of semi-volatile species and fresh 

formation of OOA due to photochemistry. Afterwards this factor continuously decreased, possibly due to 

boundary layer expansion and photochemical conversion to MO-OOA (Fig. 4). However, the LO-OOA 

concentration remained significantly higher than other primary emissions which suggests that LO-OOA probably 

forms from the oxidation of primary emissions and/or continued conversion of less oxidized gas phase products 30 

into the particle phase. Furthermore, a correlation between concentrations of LO-OOA and nitrate (NO3) was 

observed (R=0.47). Particulate nitrate also represents semi-volatile secondary species, which share similarity with 

LO-OOA in terms of volatility and its partitioning behavior with temperature while the MO-OOA time series are 

correlated with sulfate (SO4) (R=0.6) representing a less volatile fraction and suggest that MO-OOA is rather 

related to longer-lived aged regional SOA (Lanz et al., 2007). Overall, the LO-OOA and MO-OOA components 35 

account for 46 % and 25 % of the total organic aerosol mass observed respectively, dominating altogether the 

total OA concentration. Due to the extent of fragmentation occurring in the AMS system it was not possible to 

gain any more information about SOA sources apart from their oxygenation/volatility pattern. The inclusion in 

the analysis of higher detailed chemical composition, provided by the new EESI-TOF system, allowed to 

distinguish with more detail the SOA processes of formation and oxidation pathways, as outlined in the following. 40 
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3.2 EESI-TOF PMF 

3.2.1 Selection and overview of the solution 

We present in the following a PMF analysis on the first-ever ambient EESI-TOF data. As discussed in the previous 

section, PMF analysis of AMS data indicates SOA to be the dominant component but does not provide any direct 5 

chemical information indicating the SOA sources. In contrast, PMF analysis of EESI-TOF data yielded several 

organic aerosol factors related to secondary OA formation. Factors were separated according to different mass 

spectral fingerprints and aging processes for a total of six factors including both POA and SOA. The 6-factor 

solution presented throughout the text is the averaged solution among 795 accepted bootstrap runs (out of 1000 

total). The bootstrap analysis is discussed in detail in Section 3.2.5, and is based around random selection of the 10 

a-value constraints on the profile of a cooking-related factor (COAEESI) (with a-values selected in the range 0 to 

0.1, with a step size of 0.1), with the COAEESI anchor profile constrained using the cleaner cooking-related factor 

profile retrieved in the 7-factor solution. Critically, we consider all solutions classified as being reasonable and 

unmixed (according to the evaluation in Section 3.2.5) to be of equal merit. Therefore the base case solution 

therefore represents only a single, quasi-randomly-selected solution out of this large set (rather than an optimized 15 

solution) and we consider the average of all acceptable solutions to be the best representation of the source 

apportionment analysis.  

 

An overview of the factor profiles, time-series and diurnal patterns is presented in Fig. 2, 3 and 4, respectively. 

Note that the diurnal pattern presented in Fig. 4 refers to the entire measurement period while Fig. S4 shows the 20 

diurnal patterns for the same factors calculated for only the overlapping measurement period between EESI-TOF 

and AMS. We observed two primary factors: cooking-related OA (COAEESI) and cigarette smoke-related OA (CS-

OAEESI). Four SOA factors were resolved; two daytime SOA factors (DaySOA1EESI and DaySOA2EESI) and two 

nighttime factors (NightSOA1EESI and NightSOA2EESI). Each factor is described in further detail in the following 

sections.  25 

A common criterion used to assess the number of factor selection is the examination of Q/Qexp for an increasing 

number of solution factors to evaluate the fraction of explained variation in the data. For unconstrained solutions, 

the Q/Qexp value decreased smoothly from 5.4 to 4.0 as the number of factors increased from two to ten, providing 

little insight into the optimal number of factors. The six-factor solution was chosen after constraining the cleaner 

cooking profile retrieved from the seven-factor solution within the bootstrap analysis (Section 3.2.5). The solution 30 

with one factor less provided a mixed primary emissions factor, while the seven-factor solution resulted in an 

additional non-interpretable splitting of the daytime SOA (as did higher-order solutions).  

Figure 4 shows the diurnal patterns of all individual factor as well as of the sum of all four SOA factors from the 

EESI-TOF analysis and sum of the two OOA factors from the AMS analysis. The pattern of the sum of all SOA 

factors is basically flat. However, each individual SOA factor exhibits strong and distinctive variation. The diurnal 35 

pattern of DaySOA1EESI exhibits a factor of two enhancement in signal between 15:00 and 21:00 while the 

DaySOA2EESI exhibits the same magnitude of enhancement in signal around 12:00 without a consistent decrease 

before 1:00. This shift in time between the two factors could reflect gradients in composition according to lifetime 

of the compounds, production time, partitioning and reactive environment. Concerning the diurnal pattern 
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NightSOA1EESI peaks during the night between 22:00 and 05:00 while NightSOA2EESI is elevated in the early 

morning between 04:00 and noon corroborating the shift in chemistry with also day-time oxidants being available.  

3.2.2 Primary factors (COAEESI and CS-OAEESI) 

The COAEESI mass spectrum is dominated by long-chain fatty acids and alcohols which are typical of cooking 

emissions (Liu et al., 2017). For example, C18H32O3 (coronaric acid, m/z 319.2), C18H34O2 (oleic acid, m/z 305.2) 5 

and C16H30O3 (2-oxo-tetredecanoic acid, m/z 293.2) are prominent and contribute 2.1%, 1.7%, 1.5%, respectively, 

to the overall profile signal. The variability of these ions is also dominated by the cooking source. Another 

prominent peak in the spectrum, accounting for 0.7% of the signal, is C6H10O5 (m/z 185), which is attributed to 

levoglucosan and commonly used as an indicator for primary aerosols originating from biomass combustion 

(Hennigan et al., 2010; Giannoni et al., 2012) as it is derived from the pyrolysis of cellulose and hemicellulose. 10 

The study from Bertrand et al. (in prep) shows C6H10O5 (m/z 185) to be a very prominent peak in the EESI-TOF 

mass spectrum of fresh wood burning emissions. Further, the EESI-TOF is probably more sensitive to 

levoglucosan than to bulk SOA (Lopez-Hilfiker et al., 2019). During this study, it is likely emitted from open  

cooking activities in the vicinity of the measurement site.  

The COAEESI and COAAMS factor time-series are well correlated (R=0.65) during the overlapping measurement 15 

period (20 to 27 June) (Fig. 3), with both showing clear peaks at lunch time and dinner time (Figs. 4 and S4). 

The CS-OAEESI mass spectrum is dominated by C10H14N2 (nicotine, m/z 163.12), and C6H10O5 (levoglucosan) 

which contribute 15% and 10%, respectively, to the profile signal. Levoglucosan is also a known product of 

pyrolysis of simple sugars present in tobacco (Talhout et al., 2006). Other prominent signals occur at m/z 197.04 

(C7H10O5), 199.09 (C7H12O5), 203.1 (C6H12O6, glucose), 215.05 (C7H12O6), 227.05 (C8H12O6), 313.05 (C7H14O12). 20 

The CS-OAEESI shows strong correlation with the AMS factors traffic (HOAAMS, R=0.6) and cigarette smoke (CS-

OAAMS, R=0.73) emission. The correlation further improve when considering the two sources together (R=0.77) 

suggesting a certain extent of mixing of the two sources within the same factor. The discrimination of a separate 

factor related solely to traffic was not possible even investigating solutions with a higher number of factors, where 

only additional non-interpretable secondary sources were discriminated. The inability of the EESI-TOF to resolve 25 

a clear traffic-related factor is likely due to the insensitivity of the instrument to the hydrocarbons dominating 

these emissions (Section 3.3). The diurnal pattern of CS-OAEESI shows a peak during the evening between 21:00 

and 23:00, during which the courtyard in which the measurement site is located is typically more crowded. 

Overall, as expected, the primary factors show low O:C ratios of 0.38 and 0.43, and high H:C ratios of 1.75 and 

1.7 for COAEESI and CS-OAEESI, respectively. 30 

 

3.2.3 Secondary daytime factors 

Two daytime SOA factors (DaySOA1EESI and DaySOA2EESI) were resolved from the EESI-TOF PMF analysis 

(Fig. 2), both of which contain strong signatures of terpene oxidation products. 

Prominent monoterpene-derived ions in the DaySOA2EESI factor profile include m/z 239.09 (C10H16O5), 255.08 35 

(C10H16O6) and 271.079 (C10H16O7) while other peaks are tentatively identified as sesquiterpene oxidation 

products, i.e., m/z 275.16 (C15H24O3), 307.15 (C15H24O5) and 325.162 (C15H26O6). The latter species could also be 

dimers from monoterpenes/isoprene oxidation products. However, the absence of signal from C19 and C20 

compounds suggests that dimer concentrations are low in Zurich. This may be due to suppression of dimerization 
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by NOx (Yan et al., 2016; Kurten et al., 2016), and is consistent with the dimer fraction here being low compared 

to that observed in the Finnish boreal forest, and with both ambient measurements being lower than that of α-

pinene ozonolysis in a NOx-free simulation chamber (Pospisilova et al., 2019). Thus, we believe that the above 

mentioned species are likely related to sesquiterpene oxidation products. Overall, the C10H16Oz series accounts 

for 6.2% of the total profile signal for DaySOA1EESI and 5.3% for DaySOA2EESI (2.5%, 2%, 4.4% and 5.1% for 5 

COAEESI, CS-OAEESI, NghtSOA1EESI and NightSOA2EESI) while the C15H24-28Oz series accounts for 1% of the total 

profile signal for DaySOA1EESI and 2.3% for DaySOA2EESI. Furthermore, other significant series of compounds 

are present including (C9H14Oz) accounting for 5.8% and 5.2%, (C7H10Oz) accounting for 4.7% and 3.5% and 

(C8H12Oz) accounting for 6.4% and 5.6% of the total profile signal for DaySOA1EESI and for DaySOA2EESI. 

The two DaySOAEESI factor spectra are compared in more detail in Fig. 5a, with the carbon number distribution 10 

shown in Fig. 5b. DaySOA1EESI is more shifted towards ions with lower m/z and carbon number. These species 

with less than 10 carbon atoms can represent fragmentation products from terpene oxidation either in the gas 

phase (Molteni et al., 2019) followed by condensation, or during aging in the condensed phase (Pospisilova et al., 

submitted). However, fragmentation results in products progressively more difficult to distinguish from ring-

opening products from the oxidation of aromatic precursors, and therefore we cannot rule out a contribution to 15 

these ions from aromatic oxidation products. DaySOA2EESI is instead shifted towards higher masses with a carbon 

atom number typical of sesquiterpene oxidation products and/or dimerization. Overall the two secondary daytime 

factors show a high apparent O:C ratio of 0.63 and 0.58, and similar apparent H:C ratios of 1.64 and 1.66 for 

DaySOA1EESI and DaySOA2EESI respectively, consistent with the expected values for biogenic precursors of SOA 

which exhibit an H:C ratio from 1.2 to 1.7 (Daellenbach et al., 2018) and specifically monoterpenes and 20 

sesquiterpenes with H:C ratio of 1.6. 

The two daytime SOA factors do not only exhibit different chemistry but also a different dependency on ambient 

temperature. Figure 6 shows the correlation of the two daytime SOA factors with the hourly ambient temperature. 

While DaySOA1EESI does not show a clear dependency on temperature DaySOA2EESI increases exponentially with 

temperature, consistent with known relationships for terpene emissions and biogenic aerosol in terpene-dominated 25 

regions (Leaitch et al., 2011; Vlachou et al., 2018). This supports the interpretation of DaySOA2EESI as a factor 

related to local oxidation of biogenic VOCs and DaySOA1EESI as a factor related to more aged or regional air 

masses. Fig. S5 shows the equivalent relation with temperature for the AMS secondary factors; we note that LO-

OOAAMS exhibits an exponential increase with temperature similar to the DaySOA2EESI but with a weaker 

correlation, suggesting mixing of the two factors identified by the EESI-TOF and possibly also with other sources 30 

not related to biogenic emissions. The time series DaySOA1EESI shows a correlation with MO-OOAAMS (R=0.54) 

which typically represents less volatile and more aged/regional, secondary organic aerosol compounds. An even 

higher correlation is observed between DaySOA2EESI and LO-OOAAMS (R=0.91), where LO-OOAAMS is believed 

to represent semi-volatile and more freshly produced secondary organic aerosol compounds. 

3.2.4 Secondary nighttime factors 35 

Two nighttime SOA factors (NightSOA1EESI and NightSOA2EESI) were resolved from the EESI-TOF PMF 

analysis (Fig. 2). The differences in composition between the two factor profiles are shown in Fig. 7 where the 

signal from the two profiles are also summed by carbon number. NightSOA1EESI peaks between midnight and 

04:00, decreases to nearly zero shortly after sunrise, and remains near zero until after sunset. Relative to the 
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DaySOAEESI factors, the NightSOA1EESI spectrum includes less oxygenated and more volatile terpene oxidation 

products (e.g. C10H16O2 and C10H16O3), which likely partition to the particle phase due to lower nighttime 

temperatures. In addition, prominent signatures from organonitrates are evident, which are likely derived from 

nitrate (NO3) radical oxidation of monoterpenes at night. Previous studies in rural areas during summer suggested 

NO3 oxidation of monoterpenes to contribute a large fraction of the nighttime SOA (Xu et al., 2015; Zhang et al., 5 

2018). Dominant peaks in the spectrum can be observed for the C10H17OxN species at m/z 286.09 (C10H17O7N), 

302.08 (C10H17O8N) and 270.09 (C10H17O6N) which contribute 3.6%, 4.6%, and 2.4%, respectively to the overall 

profile signal (ag s-1) resulting in the highest contributions compared to all the other factors. Another major series 

of compounds in the spectra is found for C10H15OxN which can be observed at m/z 268.08 (C10H15O6N), 284.07 

(C10H15O7N), 300.07 (C10H15O8N) and 316.06 (C10H15O9N) and contribute 1.6%, 1.5%, 1.8%, and 1.5%, 10 

respectively to the profile signal resulting in the highest contributions compared to all the other factors except for 

C10H15O7N and C10H15O8N which contribute ~1.3% and ~1.7% to the NightSOA2EESI profile signal (ag s-1). These 

species are consistent with NO3 oxidation products of atmospherically relevant monoterpenes such as limonene 

(Faxon et al., 2018).  

The NightSOA2EESI likewise exhibits a strong and consistent diurnal cycle, with a daily maximum at 15 

approximately 09:00, minimum at 21:00, and smooth transitions in between. Like NightSOA1EESI, NightSOA2EESI 

exhibits strong signatures from organonitrates. However, contributions from non-nitrogen-containing species 

consistent with limonene and α-pinene ozonolysis and phootoxidation are also evident, e.g. C9H14O5-6 and 

C10H16O4-6 (Beateman et al., 2009; Kahnt et al., 2014; Park et al., 2017) as well as species probably consistent 

with multi-generation terpenes chemistry or aromatic oxidation products suggesting a certain extent of influence 20 

from photochemistry, consistent with the diurnal morning peak of this factor. Dominant compounds in the 

spectrum can be observed at m/z 286.09 (C10H17O7N), 211.058 (C8H12O5), 225.07 (C9H14O5), 239.09 (C10H16O5) 

and 197.042 (C7H10O5) contributing 1.9%, 1.3%, 1.3%, 1.2%, and 0.9%, respectively to the total profile signal 

resulting in the highest contributions among all the other factors signal except for the two DaySOAEESI where they 

contribute with higher percentages between 1.3% and 3% to the profile signal. Overall the two secondary 25 

nighttime factors show similar O:C ratios (~0.6) and H:C ratios (~1.65) while the N:C ratio is higher for 

NightSOA1EESI (0.46) than for NightSOA2EESI (0.3).  

Fig. S5 shows the correlations of the two nighttime SOA factors with ambient temperature. We note that the 

NightSOA1EESI increases to some extent with temperature, consistent with biogenic aerosol and with the behavior 

of DaySOA2. The effect is clear for the night points while not visible for the day points which is expected from 30 

the diurnal pattern of the factor going almost to zero during the day. On the other hand, the NightSOA2EESI does 

not show any clear dependency on the temperature suggesting a combined effect of partitioning, additional 

chemistry, and possibly additional sources. Overall, during the day there will generally be higher terpene 

emissions due to higher temperature, but also higher dilution due to an enhanced boundary layer height compared 

to the night suggesting that, by compensation, terpene-related SOA formation in the lowest layers of the 35 

atmosphere might be similar. As a consequence DaySOA2EESI and NightSOA1EESI might represent first generation 

chemistry with different oxidants reflecting the availability during the time of the day while DaySOA1EESI and 

NightSOA2EESI might represent second generation chemistry oxidation products. As an example, some highly 

functionalized oxidation products from -pinene photooxidation like C10H16O5 are thought to be second 
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generation oxidation products (McVay et al., 2016). As a consequence of the extensive decomposition and 

fragmentation occurring in the AMS system, which particularly affects organonitrates (Farmer et al., 2010), we 

were not able to resolve any factor related to night chemistry or specific factor dominated by a nitrate signature 

to compare with the nighttime SOA factors from the EESI-TOF analysis. However, the organonitrate-derived 

signal in the AMS and that of the EESI-TOF are well correlated. Figure 8 shows the time series of the sum of all 5 

CxHyOzN+ ions from the AMS and [CxHyOzNp]Na+ ions from the EESI-TOF, with R=0.7. For the AMS analysis 

the MO-OOAAMS is the factor that contributes the most to these nitrogen-containing fragments above mentioned 

(~50%) followed by the CS-OAAMS (~20%) while for the EESI-TOF analysis the NightSOA1EESI is the major 

contributor to the nitrogen-containing species (~35%) followed by NightSOA2EESI (~20%). 

3.2.5 Bootstrap analysis 10 

Bootstrap analysis (Davison and Hinkley, 1997) was conducted to determine the statistical stability and 

uncertainties of the EESI-TOF PMF solution, evaluate some trends in specific ions, and extent to which factors 

are discrete versus basis vectors describing compositional gradients. Bootstrap analyses generate a set of new 

input data and error matrices for analysis from random resampling of the original input data. This resampling 

perturbs the input data by randomly choosing rows (time points) of the original matrix which are present several 15 

times, while other rows are removed (Paatero et al., 2014); the overall dimensions of the data matrix is kept 

constant for each resampling. The resampled data made up on average ~64% of the total original data per bootstrap 

run. We performed 1000 bootstrap runs for a 6-factor solution with all factors unconstrained except for COAEESI, 

which as discussed above was constrained using the cooking-related spectrum obtained from the 7-factor 

unconstrained solution. The cleaner spectra and higher correlation with AMS cooking factor (COAAMS) compared 20 

to the cooking profile discriminated in the unconstrained 6-factor solution, where a clear mixing with other profiles 

was still present and an additional not meaningful SOA profile was present resulting from a splitting of the SOA 

factor in the solution with one factor less. The a-value of the constrained COAEESI was randomly selected for each 

bootstrap iteration within the range of 0 to 1 with 0.1 step size. Note that each bootstrap run is started from a 

different initialization point; thus, this methodology also includes the investigation of seed-based variability, 25 

accounting for the possibility of local minima in the solution space. 

A particular point of interest in the bootstrap analysis was the extent to which (day and/or night) SOA factors mix 

with each other. Thus, it is important to characterize solutions where factors are distinct or mixed, and in the case 

of mixing, to characterize the type of mixing (i.e. which factors are mixed). For this purpose, we adapted the 

method of Vlachou et al. (2018). The key steps in this method are as follows: (1) creation of a 6-factor base case: 30 

this was synthesized from the unconstrained 7-factor solution described above to optimize COAEESI, with the split 

SOA mathematically combined into a single factor (see Fig. S6 for the 7-factor solution); (2) Spearman correlation 

between the time series and the profiles of each factor from the base case and a bootstrap solution are used to sort 

the bootstrap factors, yielding a correlation matrix with the highest correlation values on the diagonal; (3) each 

correlation coefficient on the matrix diagonal is compared to those on the intersecting row and column to evaluate 35 

whether it is the highest by a statistically significant margin (based on a pre-selected significance level p from a 

t-test). Vlachou et al. (2018) rejected any solution failing to meet this criterion; here we retain the solution but 

classify it as “mixed”. For mixed solutions, we then determined which factor(s) were mixed (i.e. which factor(s) 

had time series that could not be unambiguously linked to a unique base case factor based on the statistical 



15 
 

significance test described above) and classified solutions according to combinations of mixed factors. This 

allowed a systematic exploration of bootstrapped solutions most likely to have perturbed the boundaries between 

selected SOA factors.  

The analysis of Vlachou et al. (2018) utilized a p-value = 0.05; here we conducted a sensitivity test covering p-

values ranging from 0.05 to 0.6. For p-values lower than 0.3, the only mixing observed was among POA factors 5 

(e.g., p-value=0.2 yielded mixing between COAEESI and POAEESI for ~100 runs based on time series analysis and 

~80 runs based on profile analysis). At a p-value of 0.4, showed mixing NightSOA1EESI with NightSOA2EESI 

and/or DaySOA2EESI for ~50 runs based on time series analysis, while ~ 10 bootstrap runs showed profile mixing 

between DaySOA1EESI and DaySOA2EESI. However, visual analysis of these “mixed SOA” solutions at p=0.4 

showed solutions where both the factor profiles and time series were not distinguishable from the base case. We 10 

therefore concluded that the SOA factor separation is robust, supporting our treatment of these factors as discrete 

entities rather than highly interrelated descriptors of composition gradients. 

We applied at this point a significance threshold of 0.3 (p-value from t-test analysis) and extracted all the solutions 

classified as unmixed. This resulted in 795 accepted solutions out of 1000 runs, with an average a-value of the 

constrained COAEESI profile of 0.399. Figure 9 summarizes the averaged extracted solution from the bootstrap 15 

analysis, showing the means and standard deviations of these 795 accepted solutions for the diurnal patterns (Fig. 

9a) and factor mass spectra standard deviations against relative intensities (Fig. 9b). The uncertainties of the model 

(which correspond to the standard deviations among retained solutions) are also presented in Fig. 9 and indicate 

the high stability of the solution. First we calculated the diurnals, then the standard deviation of the mean diurnals 

across all bootstrap runs. Thus, the error bars describe variability across solutions (i.e. model uncertainty) and 20 

deliberately exclude day-to-day variability in the actual data. 

The median percentage uncertainties for the profiles varied between 5.3 and 12% where the highest uncertainties 

were related to the nighttime SOA factors. The highest diurnal variability was related to CS-OAEESI and 

DaySOA2EESI. Overall, the uncertainties were not of sufficient magnitude to disrupt the diurnal gradients 

discussed above or to significantly affect the apportionment of key ions discussed above. This highlights the 25 

relatively discrete nature of the factors. 

3.3 EESI-TOF and AMS comparison 

Figure 10a shows the bulk comparison between the EESI-TOF and the AMS total signal for the overlapping 

measurement period. The AMS total signal represents the time series of measured organic mass concentration 

while the EESI-TOF total signal is the sum of the mass fluxes of every detected ion (neglecting Na+ mass, and 30 

excluding ions that are high intensity but spray-dominated). Further, no relative sensitivity corrections were 

applied for the EESI-TOF even though it is known that there is some sensitivity variability (Lopez-Hilfiker et al., 

2019). 

The results of the two instruments are correlated (R=0.81) despite the assumption that all EESI-TOF ions have 

the same response factor and even though the AMS measured mass includes a primary source related to traffic 35 

(HOAAMS) that consists mainly of compounds that are insoluble in the electrospray droplets and therefore not 

visible in the EESI-TOF.  

Fig. 10b shows the EESI-TOF signal as a function of AMS mass for the COA and CS-OA primary factors and the 

sum of the SOA factors (i.e. total SOA estimated by EESI-TOF and AMS) where SOA is color coded according 



16 
 

to the N:C ratios. The AMS and EESI-TOF SOA estimates are highly correlated (R=0.90), suggesting that the 

variability in the composition is well captured by the model and in good agreement between the two instruments. 

This strong correlation occurs despite significant variation in SOA composition (e.g. enhanced organonitrates at 

night), suggesting that the differences in relative response factors among different species are not so large as to 

significantly bias the overall source apportionment results. However, some differences are apparent. The time of 5 

the day is the main driver of SOA composition and the N:C ratio follows a similar pattern. The N:C ratio color 

coding of SOA shows a generally higher slope for higher N:C ratios. This is likely due to a combination of two 

factors (1) underestimation of SOA by the AMS due to organonitrate decomposition to the inorganic ions NO+ 

and NO2
+, which are not included in the calculation of SOA mass; and (2) higher sensitivity of the EESI-TOF to 

SOA with a higher nitrogen content. 10 

 

The cooking factors (COA) and the cigarette smoke factors (CS-OA) retrieved from each instrument are in good 

agreement with each other as well, although with lower correlation compared to the secondary factors (R=0.64 

and R=0.73, respectively). The AMS/EESI-TOF correlation for CS-OA further suggests that even though nicotine 

does not ionize by adduct formation with Na+, this alternate pathway does not introduce significant nonlinearities 15 

in its detection, at least under the conditions encountered in Zurich during summer. Similar performance was 

obtained for nicotine detection during winter measurements in Zurich (Qi et al., 2019). Note that the slopes 

retrieved from the linear correlation in Fig. 10a are proportional to the EESI-TOF mean sensitivity of the 

compounds comprising each factor. The slope is nearly a factor of 2 higher for SOA than for COA, which may 

be due to a combination of two factors. First, it is expected that the EESI-TOF may be more sensitive to the highly 20 

oxygenated and highly water-soluble components in SOA than to the fatty acids in COA. Second, the AMS 

relative ionization efficiency for COA has recently been suggested to be approximately two times higher for COA 

than for bulk organics, due to the higher molecular weight and thermal decomposition characteristics of the 

molecules comprising COA (Reyes-Villegas et al., 2018). Nevertheless, these correlations indicate that the EESI-

TOF signal linearly relates to mass concentration even for complex ambient aerosol, and also suggest that the 25 

overall EESI-TOF sensitivity to OA is not subject to significant variation during the study even if the composition 

dependent relative sensitivities are actually unknown. Therefore, we assume that factor-specific sensitivities are 

not needed for the interpretation of the EESI PMF solution where the factors describe the variability in 

composition.  

 30 

Figures 10c and 10d show the atomic H:C and O:C ratios, respectively for the total SOA as well as the COA and 

CS-OA factors determined from the EESI-TOF and AMS data. In terms of O:C ratio, the SOA factors show fair 

consistency with values around 0.6 and 0.5 for the EESI-TOF and AMS analysis, respectively. For the COA and 

CS-OA factors, the O:C ratio is much lower for the AMS (~0.1) than for the  EESI-TOF COA (~0.4). This is 

again consistent with a reduced sensitivity of the EESI-TOF to hydrocarbon-like molecules due to a lower 35 

extraction and/or ionization efficiency. On the other hand the H:C ratios are slightly higher for the EESI-TOF 

measurements with values of ~1.6, ~1.7, and ~1.8 for SOA, CS-OA, and COA, respectively, compared to ~1.3, 

~1.4, and ~1.6, respectively for the AMS analysis. Similar results were also observed for winter aerosol in Zurich 

(Qi et al., 2019) and for aging experiments of wood burning emissions in an environmental chamber (Bertrand et 

al., in preparation). This could suggest a reduced sensitivity of the EESI-TOF to low H:C compounds (e.g. 40 
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aromatic oxidation products) relative to terpene SOA. Alternatively, given that the EESI-TOF sensitivity to 

laboratory-generated SOA from single-component precursors roughly decreases with decreasing molecular 

weight (Lopez-Hilfiker et al., 2019), it may be that compounds with a lower H:C ratio occur predominantly in 

ions with lower carbon number.  

Because the first step in EESI-TOF detection is a rapid extraction into the methanol/water droplets generated by 5 

the electrospray, one possibility for the observed discrepancies in the O:C ratios between the AMS and the EESI-

TOF could be incomplete extraction of less soluble components in the EESI-TOF. To investigate this, we compare 

the O:C ratios from the AMS factors retrieved in the current study (COAAMS 0.1, HOAAMS 0.057 and OOAAMS 

0.42-0.5) with those from offline AMS source apportionment of aqueous filter extracts, where water-insoluble 

components are not detected. The offline-AMS method yields O:C ratios consistent with the online AMS 10 

(COAoffline 0.10, HOAoffline 0.06, and OOAoffline 0.51) (Bozzetti et al., 2017). In contrast, the EESI-TOF ratios are 

significantly higher (COAEESI 0.38 and SOAEESI 0.56-0.62) despite of extraction into a water/methanol mixture 

rather than water-only. This suggests that the EESI extraction process (i.e. solubility) alone cannot explain the 

discrepancies between the two instruments. Note that this assumes no kinetic limitations on solubility/extraction, 

as the offline method applies a water extraction for 20 min, while the EESI-TOF uses a very fast extraction in 15 

water/methanol; however, this assumption is likely valid as laboratory tests suggest complete extraction of 

particles by the EESI-TOF in the measured size range (Lopez-Hilfiker et al., 2019). 

The bulk variabilities of the H:C and O:C ratios for the total EESI-TOF signal vs. that of the AMS are presented 

in Fig. S7. The trends shown there are consistent with and explained by those of the individual factors as discussed 

above. 20 

 

The contribution of each factor from the EESI-TOF PMF analysis over the entire campaign is reported in Fig. 11 

along with the total signal measured from the EESI-TOF (ag s-1) and the total measured mass from the AMS (μg 

m-3) (top panel). We note that periods with higher signal correspond to periods with higher ambient temperature, 

above 25 C° (23- 24 June, 1-2 July and 6-7 July).  These days are characterized by high contributions from the 25 

SOA factors and when temperature exceeded 30 C° (23-24 June) the contribution of the DaySOA2EESI was higher 

compared to DaySOA1EESI. It has been shown previously that oxidized biogenic VOCs can considerably enhance 

particulate mass during heat waves (Guenther et al., 1993, Churkina et al., 2017) suggesting a probable relation 

of the SOA sources discriminated in these analysis with biogenic emissions and especially suggesting a relation 

between DaySOA2 EESI and oxidation of freshly emitted terpenes from vegetation as previously presented in Fig. 30 

6. 

The nighttime composition is significantly different, with NightSOA2EESI in particular often being at or above 

50% of the total SOA as measured by the EESI-TOF while the AMS analysis does not allow identification of this 

factor. We note that according to Fig. 4 (bottom panel) the total AMS OOA is well-correlated with the sum of all 

four EESI-TOF SOA factors, indicating that the high contribution of NightSOA2EESI reflects a large contribution 35 

to the total SOA mass rather than an anomalously high relative sensitivity in the EESI-TOF. This demonstrates 

the extent to which important chemical variability is missed by the AMS PMF analysis. Figure 12 shows pie charts 

of the mean EESI-TOF factor contributions over the entire measurements period (Fig. 12a), for only the 

measurement period overlapping with the AMS (Fig. 12b) and the mean AMS factor contributions (Fig 12c). We 

note that the relative contributions of the factors retrieved from the EESI-TOF analysis are consistent for the two 40 
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measurement periods, with only small variability. This supports the applied approach of comparing the AMS and 

EESI-TOF PMF solutions for the entire available periods, despite the limited temporal overlap. Overall the 

primary factors contribute up to ~20% for the EESI-TOF analysis while they reach up to ~ 30% of the total 

measured mass for the AMS. The secondary factors on the other hand contribute up to ~80% of the total 

apportioned signal for the EESI-TOF analysis and ~70% of the total apportioned mass for the AMS. 5 

Between the two instruments, the COA factors exhibit the strongest difference in contribution, with COAAMS 

accounting for 11.6% of the total measured organic mass while COAEESI for the overlapping period reaches only 

5.7%. This could be a consequence of the under-estimation of the relative ionization efficiency (RIE) of COAAMS, 

discussed earlier, which would result in an overestimation of its measured mass (Reyes-Villegas et al., 2018). 

Accounting for this effect, e.g. considering a COA RIE of 2 instead of the default 1.4 value, the COAAMS 10 

contribution would decrease to 7.2% and as a consequence the HOAAMS, CS-OAAMS, LO-OOAAMS and MO-

OOAAMS contributions would be 7.1%, 11.2%, 48.2% and 26%, respectively improving in this way the agreement 

with the COA factor extracted from the EESI-TOF analysis. The RIE is although only one of the possible 

explanations, another possible reason is that the AMS collection efficiency likely is closer to 1 if cooking aerosols 

are externally mixed (Middlebrook et al., 2012).  15 

Figure 13 shows the explained variation (EV) of each factor for selected ions in the EESI-TOF dataset, as well as 

the variation than cannot be explained by the solution. This is a dimensionless quantity that indicates how much 

each computed factor explained a row (G) or a column (F) of the input data matrix, X. EV values can be interpreted 

as the scaled version of the elements of the input matrix, where the loading of each chemical species in each factor 

is normalized to 1 (Eq. 12, Canonaco et al., 2013).  20 

The compounds explained most by a single factor are nicotine (C10H15N2) of which ~80% of EV is explained by 

the cigarette factor alone (CS-OAEESI), and the fatty acids (C16-18 in Fig. 13), of up to 78% of EV is explained by 

the cooking factor alone (COAEESI). The variability of the nitrogen-containing compounds is mostly explained by 

the secondary nighttime factors, and with increasing oxygenation, the contributions from the primary factors are 

drastically reduced. Further, we include in the analysis two series of compounds likely deriving from biogenic 25 

emissions (C9H14Ox and C10H16Ox) where EV by the DaySOAEESI factors is higher for the more oxygenated 

species, while the EV of less oxygenated species is increased for the NightSOAEESI and primary factors. This is 

consistent with temperature-driven partitioning, causing the less oxygenated (and thus more volatile) compounds 

to be depleted in the particle phase during the day. We also included in the analysis two series of compounds that 

are commonly related to fossil sources (C5-species) and we note the same effect consistent with partitioning 30 

described above. Finally, the C6H10O5 contribution to the total profiles signal is 54% and 45% for the primary and 

secondary factors, respectively while its variability is almost equally explained by the primary and secondary 

factors with similar contributions of 46% and 54%, respectively. This suggests that most likely this chemical 

formula does not represent exclusively levoglucosan (or other sugars emitted from cellulose pyrolysis) which are 

enhanced in primary biomass combustion emissions and under summer conditions can be quickly oxidized 35 

(Bertrand et al., 2018b). Instead, significant contributions from non-sugar isomers generated by gas-phase 

oxidation (similar to the rest of the C6H10Ox series), are likely. For the latter series of compounds the primary 

factors contribute to ~30% and the secondary factors ~70% to the total signal while in terms of explained mass 

weighted variability the series is explained by up to 18% and 81% by primary and secondary factors, respectively. 

Overall, we were able with the EESI-TOF PMF analysis to separate more SOA factors compared to the AMS 40 
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analysis where all variability related to secondary components is included in MO-OOAAMS and LO-OOAAMS. 

Further, the DaySOA2EESI and NightOOA1EESI appear related to specific processes (local daytime terpenes 

oxidation and local nighttime terpenes oxidation, respectively). On the other hand, the DaySOA1EESI and 

NightOOA2EESI factors could not be unambiguously related to a single source of gaseous precursors. These latter 

factors are also more closely related to each other, and likely a convolution of VOC emissions sources and the 5 

atmospheric reactions/timescales for conversion to PM.  

This result is conceptually similar to PMF analysis of NO3-CIMS measurements of gas-phase highly oxygenated 

molecules (HOMs) by Yan et al. (2016) in the Finnish boreal forest during Spring 2012. Several factors were 

separated and related to different oxidation mechanisms. Overall the most significant separation was observed 

between daytime and nighttime; the daytime profiles appeared to be dominated by light HOMs and organonitrates 10 

derived from monoterpene chemistry initiated by OH reaction in presence of NO while the nighttime profiles 

appeared to be dominated by HOMs dimers deriving from the oxidation of monoterpenes with O3 and NO3. 

Despite of compositional differences between the gas and particle phase, several ions having common molecular 

formulae are identified in both studies and have also similar temporal behavior. We use these correlations together 

with the better-understood gas-phase chemistry giving rise to the chosen ions to infer the major processes affecting 15 

the particle phase. For example, C10H15O8N was found to be the major organonitrate representative of daytime 

HOMs (Kulmala et al., 2013) and in the current study shows the highest contributions from the DaySOA1EESI and 

NightSOA2EESI factors. Another example is C10H15O9N which was considered a tracer molecule of daytime 

processes initiated by O3 reaction there, while in the current study its variability is mostly explained by the less 

source-specific DaySOA2EESI and NightSOA1EESI factors. On the other hand, fingerprint molecules related to 20 

nighttime chemistry in Finland, e.g. C10H14O7 and C10H14O9, are in the current study mostly explained by 

NightSOA2EESI and even more so by DaySOA1EESI. This suggests that the variability is strongly driven by local 

source characteristics and environmental conditions, including daylight hours, oxidant concentrations, of oxidant 

and terpene sinks variability. Similarly, Zhang et al. (2018) investigated the nature of monoterpene SOA 

(MTSOA) from FIGAERO-CIMS analysis in a forested area in the southeastern United States influenced by 25 

anthropogenic pollution. They found that different chemical processes involving nitrogen oxides (NOx), during 

day and night, play a central role for the monoterpene SOA produced suggesting a strong anthropogenic–biogenic 

interaction affecting the ambient aerosol. The diurnal pattern of MTSOA was flat but specifically they found that 

the majority of daytime MTSOA was due to fragmentation products of RO2+NO while during nighttime 

monoterpenes were most likely oxidized by NO3 which is primarily formed by NO2+O3. Overall a large fraction 30 

of the identified species in the MTSOA are also present in the current study and contributing with different 

abundance to all the four SOA factors discriminated, suggesting once more the strong biogenic influence of 

secondary aerosol in summer at the measurement site. 

4. Conclusions 

We present the first field deployment of a novel extractive electrospray ionization time-of-flight mass 35 

spectrometer (EESI-TOF), the first instrument capable of near-molecular measurements of organic aerosol (OA) 

at ambient concentrations using a controlled ionization scheme without thermal decomposition, ionization-

induced fragmentation, or separated collection/analysis stages. The EESI-TOF measured for 3 weeks during 

summer in Zurich, Switzerland, achieving >85% data coverage without any systematic drift and signal stability 
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within ± 7.3 % (relative standard deviation). Overall, the campaign demonstrated the EESI-TOF to be a 

sufficiently robust instrument for field operation.  

Positive matrix factorization (PMF) analysis of EESI-TOF mass spectra yielded two primary organic aerosol 

factors: cooking-related OA (COAEESI) characterized by long-chain fatty acids and levoglucosan (likely 

influenced by nearby open cooking activities), and cigarette smoke OA (CS-OAEESI), with a strong nicotine 5 

signature, as well as four secondary factors. The SOA factors were subdivided into two factors enhanced during 

the day (DaySOA1EESI and DaySOA2EESI) and two during night and/or early morning (NightSOA1EESI and 

NightSOA2EESI). All four factors showed strong contributions from ions characteristic of monoterpene oxidation. 

Signatures consistent with sesquiterpene oxidation products were also observed in the daytime factors. DaySOA2 

exhibited a strong exponential relationship with temperature, and the DaySOA1EESI factor mass spectrum was 10 

slightly shifted towards ions with fewer carbon atoms. These differences suggest that DaySOA2EESI is more 

influenced by local oxidation of biogenic emissions, whereas DaySOA1EESI represents more aged aerosol with 

possible anthropogenic influences from the oxidation of light aromatics. Two secondary nighttime factors were 

also observed, with one peaking between midnight and 04:00 (NightSOA1EESI) and the other (NightSOA2EESI) 

gradually increasing after sunset to reach a maximum between 07:00 and 09:00. NightSOA1EESI included less 15 

oxygenated terpene oxidation products, as well as organonitrates, likely derived from NO3 radical oxidation of 

monoterpenes. NightSOA2EESI contained the same signatures with somewhat reduced organonitrate content, as 

well as a stronger contributions from aromatic oxidation products consistent with the onset of photochemistry.  

The EESI-TOF analysis was supported and corroborated by the AMS PMF analysis. We observed a good 

correlation between the total EESI-TOF and AMS organic signals. The apportionment to the sum of POA and 20 

SOA factors was very similar in terms of mass contribution and the agreement between the total SOA signals 

measured by the two instruments was remarkable. However, the diurnal patterns of the SOA factors disclosed a 

different picture. While the total sum of the SOA factors exhibited a rather flat diurnal pattern for both instruments, 

the two AMS OOA factors similarly showed a flat pattern, while the EESI-TOF factors illustrated significant 

chemical variation throughout the day. The variation in chemical composition described by the EESI-TOF factors 25 

was consistent with various physicochemical processes influencing SOA formation, which was not described by 

the AMS PMF solution. Further, the O:C ratio between the two instruments was correlated but offset, and similarl 

differences were found for the H:C ratio. These differences may be due to higher sensitivity of the EESI system 

for terpene-derived SOA than aromatic-derived SOA, or higher sensitivity to higher molecular weight species 

(Lopez-Hilfiker et al., 2019). Overall this work highlights the importance of real-time, highly chemically-resolved 30 

data, such as that provided by the EESI-TOF, for identification of the key sources and physicochemical processes 

governing SOA composition, such as the biogenic emission influences and day/night chemistry identified here. 
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Figure 1. Mass spectra of the five identified OA factors, color-coded by chemical family. 
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Figure 2. Mass spectra in log scale of the six identified OA EESI-TOF PMF factors, color-coded according to their 

chemical families. The sum of each spectrum is normalized to 1.  

 

 5 

 

Figure 3. Time series of EESI-TOF PMF factors (ag s-1) on the left axis and related AMS PMF factors, when applicable, 

on the right axes (μg m-3) for the overlapping measurement period. Solar radiation measurements (W m-2) from the 

NABEL station are reported as well as comparison with the night-time EESI factors time-series.   
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Figure 4. Diurnal variations of the EESI-TOF PMF factors on the left axis (ag s-1) and counterpart diurnal variations 

from the AMS PMF analysis on the right axis (μg m-3). The diurnal variations are here presented for the entire 

measurement period (see Fig. S4 for the overlapping period only). SOAEESI and OOAAMS denote the sums of all the 5 

secondary factors. 
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Figure 5. a) Mirrored mass spectra of EESI DaySOA1 and DaySOA2. Factor profiles are first weighted by their 

molecular weight to represent equivalent mass concentrations (ag s-1) and then normalized such that the sum of each 

spectrum is 1.  b) Histogram of normalized profile signals distributed across bins of carbon atom number. 
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Figure 6. DaySOA1EESI a) and DaySOA2EESI b) correlation with hourly ambient temperature (C). The data are color-

coded according to day (06:00-21:00, red) and night (21:00-06:00, blue) measurements time, they are grouped in 

temperature bins of 1 C° and the size of the dots correspond to the number of points considered. Data recorded during 

precipitation events is discarded. The fitting curve is weighted by 1/standard deviation. 10 
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Figure 7. a) Mirrored mass spectra of EESI NightSOA1 and NightSOA2. Factor profiles are first weighted by their 

molecular weight to represent equivalent mass concentrations (ag s-1) and then normalized such that the sum of each 

spectrum is 1. b) Histogram of normalized profile signals distributed across bins of carbon atom number. 
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Figure 8. Time series of the total signal of all CxHyOzNp species from the AMS (orange trace) and the EESI-TOF (red 

trace). 
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Figure 9. a) Diurnals variations and b) scatter plots of the relative intensities and standard deviations among 795 

bootstrap runs of the six OA factors identified with PMF from the EESI-TOF analysis. 
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Figure 10. a) Total aerosol signal measured by the EESI-TOF versus OA measured by the AMS, with the points colored 

by time. An overall bulk sensitivity to OA can also be estimated from Fig. 10a (1.9 x 10-8). b) Correlations of the CS-

a)

c)

b)

d)
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OA, COA factors and of SOA (total SOA estimated by EESI-TOF and AMS) from the two instruments, where SOA is 

color coded by the N:C ratio (yellow dots represent N:C ≥ 0.032), we estimate bulk sensitivities of 3.2 x 10-8 ions molec-

1 to SOA, 2.8 x 10-8 ions molec-1 to CS-OA, and 9.0 x 10-9 ions molec-1 to COA.  c), d) Atomic ratios, i.e. H:C and O:C 

ratios for SOA and the CS-OA and COA factors.  
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Figure 11. (Top) Total signal from the EESI-TOF (ag s-1) and total organics mass concentration measured with the 

AMS (μg m-3). (Bottom) Relative contributions of the EESI-TOF factors to the total signal. Vertical black lines denote 

midnight. 10 

 

 

 

 

Figure 12. a) Pie charts of the EESI-TOF factor mean contributions (%) to the total measured signal for a) the entire 15 

measurement period and b) the period overlapping with the AMS measurements; c) the AMS factor mean 

contributions (%) to the total measured organic mass. 
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Figure 13. Explained and unexplained variability for a subset of compounds from the EESI-TOF PMF analysis 

weighted on the explained variability of each factor. The subset of molecules has been selected according to the 

interesting species among all the variables in the analysis. Species are ordered according to their chemical composition. 

On average the C5 species contribute 1.7% to the total signal measured, the C9H14Ox ~4%, C10H16Ox ~4.6%, C16-18 ~ 5 

0.7%, C10H17OxN ~1.7%, C9H15OxN ~1.1%, C10H15N2 ~2.5%, C6H10O5 ~3.5% and the remaining C6H10Ox ~0.5%. 
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