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Abstract 20 

Aerosol optical depth (AOD) has become a crucial metric for assessing global 21 

climate change. Although global and regional AOD trends have been studied 22 

extensively, it remains unclear what factors are driving the inter-decadal variations in 23 

regional AOD and how to quantify the relative contribution of each dominant factor. 24 

This study used a long-term (1980–2016) aerosol dataset from the Modern-Era 25 

Retrospective Analysis for Research and Applications, version 2 (MERRA-2) 26 

reanalysis, along with two satellite-based AOD datasets (MODIS/Terra and MISR) 27 

from 2001 to 2016, to investigate the long-term trends in global and regional aerosol 28 

loading. Statistical models based on emission factors and meteorological parameters 29 

were developed to identify the main factors driving the inter-decadal changes of 30 

regional AOD and to quantify their contribution. Evaluation of the MERRA-2 AOD 31 

with the ground-based measurements of AERONET indicated significant spatial 32 

agreement on the global scale (r = 0.85, RMSE = 0.12, MFE = 38.7%, FGE = 9.86%, 33 

and IOA = 0.94). However, when AOD observations from the China Aerosol Remote 34 

Sensing Network (CARSNET) were employed for independent verification, the 35 

results showed that MERRA-2 AODs generally underestimated CARSNET AODs in 36 

China (RMB = 0.72 and FGE =−34.3%). In general, MERRA-2 was able to 37 

quantitatively reproduce the annual and seasonal AOD trends on both regional and 38 

global scales, as observed by MODIS/Terra, albeit some differences were found when 39 

compared to MISR. Over the 37-year period in this study, significant decreasing 40 

trends were observed over Europe and the eastern United States. In contrast, eastern 41 

China and South Asia showed AOD increases, but the increasing trend of the former 42 

reversed sharply in the most recent decade. The statistical analyses suggested that the 43 

meteorological parameters explained a larger proportion of the AOD variability 44 

(20.4%–72.8%) over almost all regions of interest (ROIs) during 1980–2014 when 45 

compared with emission factors (0%–56%). Further analysis also showed that SO2 46 

was the dominant emission factor, explaining 12.7%–32.6 % of the variation in AOD 47 

over anthropogenic aerosol–dominant regions, while BC or OC was the leading factor 48 

over the biomass burning–dominant (BBD) regions, contributing 24.0%–27.7% of the 49 

variation. Additionally, wind speed was found to be the leading meteorological 50 

parameter, explaining 11.8%–30.3% of the variance over the mineral dust–dominant 51 

regions, while ambient humidity (including soil moisture and relative humidity) was 52 

the top meteorological parameter over the BBD regions, accounting for 11.7%–35.5% 53 

of the variation. The results of this study indicate that the variation in meteorological 54 

parameters is a key factor in determining the inter-decadal change in regional AOD. 55 

 56 

1. Introduction  57 

Atmospheric aerosols play a key role in the energy budget of the Earth’s climate 58 

system through aerosol–radiation interactions (direct effect) and aerosol–cloud 59 

interactions (indirect effect). On the one hand, by absorbing and scattering solar and 60 

terrestrial radiation, aerosols generally cool the Earth’s surface and heat the atmosphere, 61 
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depending on the absorption level of the aerosols (McCormick and Ludwig 1967; Ding 62 

et al., 2016; Sun et al., 2018; Zheng et al., 2019). This effect is termed the aerosol direct 63 

effect. The cooling effect of aerosols may partly counteract the warming caused by the 64 

increase in CO2 and other greenhouse gases in the past several decades (IPCC, 2007). 65 

On the other hand, by acting as cloud condensation nuclei or ice nuclei, not only can 66 

aerosols alter the microphysical and radiative properties of clouds, as well as their 67 

lifetimes (Rosenfeld et al., 2019; Andreae 2009), but they can also change the 68 

precipitation efficiency [depending on the aerosol type (Jiang et al., 2018)], modify the 69 

characteristics of the atmospheric circulation, and affect the global hydrological cycle 70 

(Ramanathan et al., 2001; Ackerman et al., 2000; Hansen et al., 1997; Sarangi et al., 71 

2018). This effect is termed the aerosol indirect effect. Furthermore, depending on their 72 

physical and chemical properties, as well as their composition, aerosols can affect 73 

ecosystems (Yue et al., 2017; Liu et al., 2017), atmospheric visibility (Che et al., 2007; 74 

Wang et al., 2009; Che et al., 2014), and even human health [such as through their roles 75 

in lung cancer, respiratory infection, and cardiovascular disease (Silva et al., 2013; 76 

Lelieveld et al., 2015; Cohen et al., 2017)]. Unlike the long-lived greenhouse gases (e.g., 77 

CO2, CH4 and N2O), aerosols produced via anthropogenic activity or naturally have 78 

relatively short life spans and large spatial and temporal variability. Therefore, it is 79 

essential to investigate the long-term variability and inter-decadal trends of atmospheric 80 

aerosol loadings on both regional and global scales.    81 

Aerosol optical depth (AOD), representing the attenuation of sunlight induced by 82 

aerosols and serving as an important measure of aerosol loading, has become a crucial 83 

metric in assessing global climate change and the effects of aerosols on radiation, 84 

precipitation and clouds. Through the efforts of scientists in various countries over the 85 

past three decades, a series of AOD datasets with different time spans derived from 86 

continuous ground-based and satellite observations have been accumulated. These 87 

datasets have been widely employed to investigate the long-term annual and seasonal 88 

trends of AOD at global and regional scales. Although ground-based observations have 89 

limited spatial and/or temporal coverage, they can provide more detailed information on 90 

aerosol properties and long-term variations for satellite and model validation. For 91 

example, using the long-term and high-quality AOD datasets from the Aerosol Robotic 92 

Network (AERONET), Li et al. (2014) found that North America and Europe 93 

experienced a uniform decrease in AOD from 2000 to 2013. Che et al. (2015) estimated 94 

the change in AOD based on AOD data at 12 long-term ground-based sites in China 95 

from the China Aerosol Remote Sensing Network (CARSNET) and found that AOD 96 

showed a downward trend from 2006 to 2009 and an upward trend from 2009 to 2013. 97 

Compared with the spatial sparseness of ground-based observations, inferences from 98 

satellite-based sensors can provide a global perspective of AOD change, due to their 99 

continuous spatial measurements. Previous studies (Hsu et al., 2012; Pozzer et al., 2015; 100 

Mehta et al., 2016; Klingmüller et al., 2016; De Leeuw et al., 2018; Zhang and Reid 101 

2010) have investigated global and regional AOD trends by using multiple satellite 102 

observations, including the Moderate Resolution Imaging Spectroradiometer (MODIS), 103 

Multiangle Imaging Spectroradiometer (MISR), the Sea-viewing Wide Field-of-view 104 

Sensor (SeaWiFS), and others. These studies have shown increased AODs over eastern 105 
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China, India, the Middle East (ME), and the Bay of Bengal, and decreased AODs over 106 

the eastern United States (EUS) and Europe.  107 

In general, regional AOD changes are closely linked to the variations in natural 108 

emissions driven by meteorological conditions (such as mineral dust) and local 109 

anthropogenic emissions associated with economic and population growth. For example, 110 

over anthropogenic aerosol–dominant regions, most of the primary pollutant emissions 111 

[such as black carbon (BC)] and aerosol precursors (such as SO2, NOx and NH3) in 112 

North America and Europe have declined in response to emissions control (Hammer et 113 

al., 2018). In contrast, pollutant emissions and their precursors in the rapidly developing 114 

countries (such as India and China) have increased over the past few decades, 115 

attributable to enhanced industrial activity. However, as a consequence of clean-air 116 

actions, anthropogenic emissions in China have declined significantly in recent years 117 

(Zheng et al., 2018). It has been proven that these changes in local pollutant emissions or 118 

aerosol precursors over the above regions can to a certain extent explain the regional 119 

AOD variability, as observed in long-term satellite aerosol data records (Meij et al., 120 

2012; Itahashi et al., 2012; Feng et al., 2018). On the other hand, various studies have 121 

shown that meteorological changes play a major role in determining the inter-decadal 122 

trend of AOD over mineral dust–dominant regions, particularly in the Sahara Desert (SD) 123 

and the ME (Pozzer et al., 2015; Klingmüller et al., 2016). Based on model simulations 124 

during 2001–2010, Pozzer et al. (2015) suggested that, over biomass burning–dominant 125 

regions, the changes in both meteorology and emissions are equally important for 126 

driving AOD trends. Considering the localized changes in anthropogenic aerosol 127 

emissions and meteorological conditions in different regions, a key question is whether 128 

these factors are responsible for the regional AOD trends, or which main factors 129 

dominate the trends. Therefore, it is important to investigate the cause of regional AOD 130 

trends in terms of the variations in both anthropogenic emissions and meteorological 131 

factors for projecting the response of the Earth-atmosphere system to future changes.  132 

In this study, we used a long-term (1980–2016) aerosol dataset obtained from the 133 

Modern-Era Retrospective Analysis for Research and Applications, version 2 134 

(MERRA-2) reanalysis, along with two satellite-based datasets (MODIS/Terra and 135 

MISR) during 2001–2016, to conduct a comprehensive estimation of global and regional 136 

AOD trends over different periods. To ensure the reliability of the trend assessment, 468 137 

AERONET sites and 37 CARSNET sites with continuous observations for at least one 138 

year were used to assess the performance of the MERRA-2 AOD on a global scale. 139 

Twelve regions dominated by different aerosol types were selected to explore the 140 

relationships between local anthropogenic emissions, meteorological factors, and 141 

regional AOD. Furthermore, stepwise multiple linear regression (MLR) models were 142 

developed to estimate the regional AOD as a function of emission factors and other 143 

meteorological parameters, which allowed the influences of emissions and meteorology 144 

to be separated. Then, the Lindeman, Merenda and Gold (LMG) method was applied to 145 

the MLR models to identify the main factors driving the regional AOD variability and to 146 

quantitatively evaluate the contribution of each driving factor.  147 

 148 

 149 
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2. Data and methods 150 

2.1 MERRA-2 aerosol reanalysis data 151 

MERRA-2 is the latest atmospheric reanalysis version for the modern satellite era 152 

provided by the NASA Global Modeling and Assimilation Office (Gelaro et al., 2017), 153 

using the Goddard Earth Observing System, version 5 (GEOS-5), earth system model 154 

(Molod et al., 2012, 2015), which includes atmospheric circulation and composition, 155 

ocean circulation and land surface processes, and biogeochemistry. Note that, in 156 

MERRA-2, in addition to providing assimilation of traditional meteorological 157 

observations, a series of AOD observation datasets, including bias-corrected AODs 158 

retrieved from the Advanced Very High Resolution Radiometer (AVHRR) instrument 159 

over the oceans (Heidinger et al., 2014) and MODIS (onboard both the Terra and 160 

Aqua satellites) (Levy et al., 2010; Remer et al., 2005), and non-bias-corrected AODs 161 

retrieved from MISR (Kahn et al., 2005) over bright surfaces and ground-based 162 

AERONET observations (Holben et al., 1998), were also assimilated within the 163 

GEOS-5 earth system model. An overview of the MERRA-2 modeling system and a 164 

more detailed description of aerosols in the MERRA-2 system can be found in Gelaro 165 

et al. (2017) and Buchard et al. (2017), respectively. In this study, the three-hourly 166 

MERRA-2 analyzed AOD fields, at a resolution of 0.5° latitude by 0.625° longitude, 167 

were used for evaluation, while the monthly mean AOD values were used for climate 168 

analysis.  169 

2.2 Satellite aerosol data 170 

Two AOD datasets during 2001–2016 retrieved from MODIS and MISR, both 171 

onboard the Terra platform, were used in this study. The MODIS sensor onboard the 172 

Terra satellite observes the Earth at multiple wavelengths (range: 410–1450 nm; 36 173 

bands) with a 2330-km swath, which has provided near-daily global coverage since 174 

2000 (King et al., 2003; Levy et al., 2015). This study employed the combined Dark 175 

Target/Deep Blue (DTB) AOD algorithm at 550 nm, with a 1° × 1° resolution, from 176 

the Level 3 monthly global aerosol dataset for MODIS Terra, Collection 6.1. The 177 

average MAE (RMSE) of the Level 3 MODIS/Terra DTB monthly AOD data have 178 

been estimated to be about 0.075 (0.120) over land (Wei et al., 2019). Note that 179 

MODIS/Aqua L3 was not used because it started late (June 2002). In addition, 180 

compared with the linear trend in MODIS/Aqua AOD during the overlapping period 181 

(2003-2016), MODIS/Terra AOD shows similar performance worldwide (including 182 

spatial-temporal consistency and distribution patterns of trend values) (Fig. S1), 183 

although the Terra sensor has been documented to suffer from degradation issues. The 184 

similar performance between MODIS/Terra and MODIS/Aqua is mainly attributed to 185 

a new calibration approach in the C6 version, which can remove major 186 

non-polarimetric calibration trends from the MODIS data (Levy et al., 2013, 2015; De 187 

Leeuw et al., 2018). 188 

 Total column AOD observations from the MISR sensor onboard the Terra 189 

satellite, which provides observations of the Earth’s atmosphere with nine different 190 



 

6 
 

along-track viewing zenith angles at four different spectral bands (440–866 nm) 191 

(Diner et al., 1998), were utilized. It should be noted that, although MISR has a much 192 

narrower swath (~360 km) compared with MODIS, the multi-angle observation from 193 

MISR provides the capability for retrieving a more reliable AOD over bright surfaces 194 

such as desert areas (Diner et al., 1998; Kahn et al., 2010). The AOD retrieval in the 195 

555-nm channel from monthly global aerosol datasets at a spatial resolution of 0.5° × 196 

0.5° were used in this study. The uncertainty of the MISR Level 2 AOD data over land 197 

and ocean has been estimated to be ±0.05 or ±(0.2 × AOD) (Kahn et al., 2005). Note 198 

that the wavelength of AOD (555 nm) reported by MISR is different from that of the 199 

MERRA-2 and MODIS/Terra datasets (550 nm); however, this slight wavelength 200 

difference is not expected to affect our analysis and conclusions regarding AOD 201 

annual and seasonal trends.  202 

2.3 Ground-based reference data: AERONET and CARSNET 203 

Owing to the accuracy of ground-based AOD observations, long-term 204 

instantaneous AOD observation records from two independent operational 205 

networks—AERONET and CARSNET—were used to validate the three-hourly 206 

MERRA-2 AOD values. Since there are not enough long-term AERONET 207 

observations in China, it was necessary to examine the performance of the MERRA-2 208 

analyzed AOD fields using additional AOD observations from CARSNET. 209 

CARSNET is a ground-based network for monitoring aerosol optical properties that 210 

was first established by the China Meteorological Administration in 2002 (Che et al., 211 

2009). Both AERONET and CARSNET use the same types of sunphotometers, which 212 

can observe direct solar and sky radiances at seven wavelengths (typically 340, 380, 213 

440, 500, 670, 870 and 1020 nm) within a 1.2° full field of view at intervals of about 214 

15 min (Holben et al., 1998; Che et al., 2009). For CARSNET, operating instruments 215 

are calibrated and standardized using CARSNET reference instruments, which in turn 216 

are regularly calibrated at Izaña, Tenerife, Spain, together with the AERONET 217 

program (Che et al., 2009; Che et al., 2018). The cloud-screened AOD [based on the 218 

work of Smirnov et al. (2000)] in CARSNET has the same accuracy as AERONET, 219 

with an estimated uncertainty of 0.01–0.02 (Eck et al., 1999; Che et al., 2009).  220 

In this work, we collected ground-based AOD observations (more than one year 221 

of data) from 468 AERONET sites worldwide and 37 CARSNET sites in China. The 222 

locations of these ground-based sites are shown in Fig. 1. Detailed information about 223 

these AERONET and CARSNET sites is given in Tables S4 and S5. The combined 224 

instantaneous AOD data collected by AERONET (quality-assured and cloud-screened 225 

Level 2.0 data) during 1993–2016 and CARSNET (cloud-screened Level 2.0 data) 226 

during 2002–2014 were used. Moreover, to ensure the reliability of AOD evaluation, 227 

the AOD measurements in two adjacent channels (i.e., 440 and 675 nm) from 228 

AERONET and CARSNET were subsequently interpolated to 550 nm for MERRA-2, 229 

using a second-order polynomial fit to ln (AOD) vs. ln (wavelength) (Eck et al., 230 

1999).  231 

 232 

 233 
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2.4 Emissions inventory and meteorological data 234 

The anthropogenic emissions inventories used in this study were obtained from 235 

the Peking University (PKU) website (http://inventory.pku.edu.cn/), including total 236 

suspended particles (TSP) (Huang et al., 2014), SO2 (Su et al., 2011), BC (Wang et al., 237 

2014), and organic carbon (OC) (Huang et al., 2015), with a spatial resolution of 0.1° 238 

× 0.1° and spanning the period 1980–2014. The emissions were calculated using a 239 

bottom-up approach based on fuel consumption and an emissions factor database. 240 

Huang et al. (2015) showed that the PKU emissions inventories are broadly similar to 241 

those of EDGARv4.2 (Edgar, 2011). Monthly meteorological fields from the 242 

MERRA-2 global reanalysis were also utilized, including total surface precipitation, 243 

surface wind speed, surface relative humidity (RH), mean sea level pressure, etc. 244 

These data have a spatial resolution of 0.5° × 0.625° and span the period 1980–2016 245 

(Gelaro et al., 2017). For more detailed information on the selected meteorological 246 

parameters, see Table 1. 247 

2.5 ROIs 248 

 In this study, 12 regions of interest (ROIs) dominated by different aerosol types 249 

were selected to study the long-term trends in regional aerosol loading and how they 250 

are related to local emission changes as well as the variation in meteorological 251 

variables. These 12 ROIs included three mineral dust–dominant regions [SD (17°W–252 

20°E, 3°N–25°N), ME (38°E–56°E, 14°N–33°N), and Northwest China (NWC; 253 

73°E–94°E, 35°N–47°N)], three biomass burning–dominant regions [the Amazon 254 

Zone (AMZ; 46°W–60°W, 1°S–22°S), Central Africa (CF; 12°E–33°E, 2°S–18°S) 255 

and Southeast Asia (SEA; 96°E–127°E, 8°S–18°N)], and six anthropogenic aerosol–256 

dominant regions [EUS (73°W–94°W, 29°N–45°N), western Europe (WEU; 10°W–257 

18°E, 37°N–59°N), South Asia (SA; 72°E–90°E, 10°N–30°N), northern China (NC; 258 

108°E–120°E, 30°N–40°N), southern China (SC; 108°E–120°E, 20°N–30°N) and 259 

Northeast Asia (NEA; 125°E–145°E, 30°N–41°N)]. The geographical boundaries of 260 

these ROIs are shown in Fig. 1.   261 

2.6 Statistical analysis  262 

2.6.1  Comparison methods 263 

AOD data from the 468 AERONET sites worldwide and the 37 CARSNET sites 264 

in China were used to evaluate the performance of the three-hourly AOD datasets 265 

from MERRA-2. To ensure the accuracy of the assessment, instantaneous 266 

ground-based AOD observations within one hour, obtained from AERONET and 267 

CARSNET, were averaged as the hourly mean AOD and compared with those from 268 

the MERRA-2 three-hourly AOD datasets (see Fig. 2a for the whole procedure).  269 

The errors and quality of the MERRA-2 AOD retrievals are reported using the 270 

(Pearson) correlation coefficient [R, Eq. (1)], the mean absolute error [MAE, Eq. (2)], 271 

root-mean-square error [RMSE, Eq. (3)], the relative mean bias [RMB, Eq. (4)], the 272 

mean fractional error [MFE, Eq. (5)], the fractional gross error [FGE, Eq. (6)], and the 273 

http://inventory.pku.edu.cn/
http://www.baidu.com/link?url=k5E--NHJhuVY-pGmR0_3S6SPE2-1do3dI26sOQJpkYacn1BftNGejUsK7B3q3sO1bZX0wwDrhrTdzIRquJKd9m8d4LFZUA9vRNGHP9ssMVzz1wHOl7wH4ZUS8nleCsee
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index of agreement [IOA, Eq. (7)] for validating the reanalysis (Yumimoto et al., 274 

2017).  275 
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Where N is the total number of pairs of modeled (M, i.e. MERRA-2) and 283 

observed (O, i.e. AERONET or CARSNET) values. MFE represents a measure of 284 

overall modeling error without emphasizing outliers. MFE can range from 0 (best 285 

score) to 200%. FGE represents a measure of the estimation bias error that allows 286 

symmetric analysis of over- or underestimation by the model relative to observations. 287 

The maximum and minimum values of FGE are +200 and –200% respectively, and 0 288 

is the best value. IOA represents a standard measure of the degree of model accuracy, 289 

and it ranges from 0 to 1 (perfect agreement) (Willmott, 1981).  290 

2.6.2  Trend analysis and stepwise MLR model  291 

Long-term trend analysis of the AOD from MERRA-2, MODIS/Terra and MISR 292 

was performed, on monthly time series data, using ordinary least-squares linear 293 

regression—a technique widely employed for trend analysis of aerosol data (Hsu et al., 294 

2012; Pozzer et al., 2015; Klingmüller et al., 2016; Ma et al., 2016; Hammer et al., 295 

2018). Prior to regression, these data were first deseasonalized by subtracting the 296 

monthly mean for different study periods for each grid cell to eliminate the large 297 

influence of the annual cycle. To better compare the results of the trend analysis, the 298 

MERRA-2 and MISR datasets at high spatial resolution (0.5° × 0.625° and 0.5° × 0.5°, 299 

respectively) were bilinear interpolation to the MODIS/Terra resolution of 1° × 1° (see 300 

Fig. 2b for the whole procedure). Incomplete sampling from the satellite instruments 301 

may introduce biases in long-term trend analysis. Thus, to ensure the reliability of the 302 

trend analysis, each grid cell for the MISR and MODIS/Terra AODs was required to 303 
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have valid data for at least 60% of the time period before regression was performed. 304 

Two-tailed Student’s t-tests were used to assess the robustness of each trend estimate, 305 

and the criterion for statistical significance was set at the 95% confidence level.  306 

 Pearson’s R was used to measure the strength of the relationship between AOD, 307 

anthropogenic emissions, and meteorological parameters. MLR models of monthly 308 

MERRA-2 AODs were built for the 12 ROIs using emission factors, meteorological 309 

parameters, and both, as predictors. Four emission factors and 32 meteorological 310 

parameters were considered in the MLR models (Table 1). For each ROI, the MLR 311 

model could be expressed as  312 

y = β
0
+ ∑ β

i
xi

n

i=1

 + ε,                                                   (4) 

where y is the standardized monthly AOD and (x1 ,…, xn) is the ensemble of 313 

standardized monthly explanatory variables. The standardized regression coefficient 314 

β
i
 was determined by the least-squares method, and ε is an error term.  315 

In each step of the MLR model, a variable is considered to be moved or removed 316 

from the set of explanatory variables using the stepwise regression method to obtain 317 

the best model fit. In other words, for each step the model adds a significant (P < 0.05) 318 

explanatory variable to the model, it can be removed only if it is insignificant (P > 0.1) 319 

after adding or removing another variable. A similar model has been widely used to 320 

investigate the relationship between aerosols and meteorology (e.g., Yang et al., 2016; 321 

Tai et al., 2010).  322 

Although the most important explanatory variables were obtained via the above 323 

stepwise MLR model, there might be multiple collinearities among different 324 

explanatory variables. In that situation, the standardized regression coefficient as an 325 

explanation of relative importance is unstable and misleading. To eliminate the 326 

influence of multi-collinearity, the variance inflation factor (VIF) (Altland et al., 2006) 327 

was used to test whether there was a multi-collinearity problem among the variables. 328 

VIF is often regarded as a measure of collinearity between each variable and another 329 

variable in the model. VIF can be calculated from the following relationship:  330 

VIF =
1

1 − 𝑅𝑖
2 ,                                                   (5) 

where 𝑅𝑖
2 is the coefficient of determination of linear regression between the ith 331 

independent variable and other independent variables in the model. The present study 332 

used a VIF threshold of 10, which is widely recommended in the literature (e.g., Hair 333 

et al., 2010; Barnett et al., 2006; Field, 2005), to represent the maximum acceptability 334 

of collinearity.  335 

Finally, to better quantify the relative contributions of each independent 336 

explanatory variable, which were obtained from the stepwise MLR model, to AOD 337 

variability, the LMG method (Bi 2012; Grömping 2006; Lindeman et al., 2014) was 338 

applied. This approach is one of the most advanced methods for determining the 339 

relative importance of explanatory variables in a linear model and provides a 340 

decomposition of the fraction of model-explained contributions (i.e., R
2
) into 341 

http://www.baidu.com/link?url=9lT5Vr1VG4EczGdR-NcOi15lMsbFrCIFZVM6HmklYv3qwIH9aRG2hmV-nOMTUrOKpExpKMTq5uU7rTm3OYdAyeq76mqW38mGYEIshOKC4sthWWAalavSxYrynMj6FR2F
https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Explanatory_variable
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nonnegative contributions using semi-partial R values. The LMG measure for the ith 342 

regressor xi can be expressed as 343 

LMG (𝑥𝑖) =
1

𝑝!
∑ 𝑠𝑒𝑞𝑅2(*𝑥𝑖+|𝑟)

𝑟 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

,                                                   (6) 

where r represents the rth permutation (r = 1, 2,..., p!), and 𝑠𝑒𝑞𝑅2(*𝑥𝑖+|𝑟) represents 344 

the sequential sum of squares for the regressor xi in the ordering of the regressors in 345 

the rth permutation.  346 

For a detailed introduction to and description of the calculation process of the 347 

LMG measure, refer to Grömping (2006). For all variables (including the AODs from 348 

MERRA-2, MISR and MODIS/Terra, the meteorological variables from MERRA-2, 349 

and the emission estimates from PKU), the regional mean was calculated by 350 

averaging valid variable values over all grids within the twelve ROIs. For the seasonal 351 

analysis, the four seasons were considered as follows: spring (March–April–May), 352 

summer (June–July–August), autumn (September–October–November), and winter 353 

(December–January–February). 354 
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3 Results and discussion 355 

3.1 Assessing the performance of the MERRA-2 AOD datasets 356 

on the global scale 357 

Although the official documentation points out that a large number of AOD 358 

observations have been assimilated into the system (Buchard et al., 2017), the global 359 

performance of MERRA-2 AOD is still unknown. In addition, since MERRA-2 360 

assimilates a variety of AOD datasets from different observation periods (such as 361 

AVHRR before 1999, AERONET since 1999, and EOS-era satellite after 2000) 362 

(Buchard et al., 2017), it is difficult to disentangle the influence of each assimilated 363 

dataset alone on the overall accuracy of MERRA-2. Considering that AERONET is 364 

assimilated in MERRA-2 but CARSNET did not, we first use AERONET to evaluate 365 

the overall performance of MERRA-2 AOD on the global scale, and then use 366 

CARSNET to independently examine the performance of the MERRA-2 analyzed 367 

AOD field in China. 368 

3.1.1 MERRA-2 versus AERONET 369 

Using all of the collected AERONET observations, the overall performance of the 370 

MERRA-2 AOD on a global scale was validated first. The results showed significant 371 

spatial agreement between MERRA-2 and ground-based AOD on the global scale, 372 

with an acceptable bias (r = 0.85, RMSE = 0.12, MAE = 0.06, and MFE=38.73%) 373 

(Fig. 3a). Moreover, Fig. 4 shows site-to-site comparisons of the three-hourly 374 

MERRA-2 AOD at 550 nm and the collocated AERONET AOD observations, and a 375 

statistical summary of the comparison and the location information for each site are 376 

given in Table S4. Globally, the MERRA-2 AOD datasets exhibited high R values 377 

against ground-based observations: over 83.3%, 59.0% and 28.0% of sites had an R 378 

greater than 0.6, 0.7 and 0.8, respectively; 95.9% and 87.6% of sites had an IOA 379 

greater than 0.8 and 0.9, respectively; 85.3 % and 50.4% of sites had an MAE lower 380 

than 0.1 and 0.05, respectively; 22.6% and 59.8% of sites had an MFE lower than 30% 381 

and 40%, respectively; and more than 69.9% and 89.3% of sites had an RMSE less 382 

than 0.1 and 0.2, respectively. These results indicated that, although MERRA-2 does 383 

not perform well in some individual regions, it does not affect the global accuracy of 384 

MERRA-2 as the latest global aerosol reanalysis dataset, especially in comparison 385 

with other satellite datasets. In addition, the obvious regional differences in the global 386 

performance of MERRA-2 AOD should not be overlooked. According to Figs. 4c and 387 

e, the RMB was greater than 1 and FGE was greater than 0% in the United States, 388 

southern South America and Australia, which indicates that MERRA-2 overestimates 389 

the AOD in these regions. This overestimation may be attributed to the bias of MISR 390 

AOD in these areas (not shown here) and the fact that AERONET was not assimilated 391 

in MERRA-2 until 1999 (Buchard et al., 2017). In contrast, there clear 392 

underestimation was found in other regions, such as the Amazon Basin, southern 393 

Europe, SA, and SEA. This apparent underestimation (FGE = –23.9%, see Fig. S2b) 394 
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in NC was further confirmed using additional ground-based AOD observations from 395 

CARSNET (reported in the following section). Notably, this underestimation seems to 396 

be systematic, as negative RMB and FGE were found in most parts of the Northern 397 

Hemisphere, except the United States. Such systematic underestimation over these 398 

regions is likely due to the lack of nitrate aerosols in the GOCART model (Buchard et 399 

al., 2017). Furthermore, the underestimation seems to be more prominent in high 400 

nitrate-emissions areas such as NC and SA.  401 

To ensure the accuracy of inter-annual variations of AODs over different ROIs (as 402 

defined in Fig. 1), the regional performance of MERRA-2 AOD was evaluated by 403 

integrating all sites within each ROI (Table 2 and Figs. S2). Regionally, R ranged 404 

from 0.7 to 0.95 among the 12 ROIs, with the highest R (0.95) occurring in the ME 405 

and the lowest (0.7) in the EUS. Similar to the site-to-site FGE distribution, the FGE 406 

presented a systematic overestimation in the EUS of around 17.82%. In contrast, the 407 

FGE showed significant systematic underestimation in NC, SA, CF and SEA, with the 408 

degree of underestimation being 23.9%, 8.1%, 23.0% and 8.5%, respectively. 409 

Significant differences in these regions were also supported by small RMBs of 0.71, 410 

0.87, 0.75 and 0.84, respectively. 411 

The MERRA-2 AOD datasets performed better over SA than over NC, which is 412 

one of the most polluted areas in the world, in terms of a smaller MAE (0.11) and 413 

RMSE (0.18) (Fig. S2f). The better performance over SA is likely due to more AOD 414 

observations having been assimilated in MERRA-2 compared to over NC (Buchard et 415 

al., 2017). For NEA, SC and WEU, MERRA-2 AOD generally compared well to 416 

AERONET AOD, with the MAE being less than 0.1, MFE less than 35%, and RMB 417 

greater than 0.93. For the SD, results were relatively poor in that the MAE was greater 418 

than 0.1 and the RMSE greater than 0.2. Besides, although MERRA-2 performed well 419 

in NWC when only one AERONET site was used, after using additional CARSNET 420 

ground-based observations it was found that the MERRA-2 AOD performance in 421 

NWC needs to be improved (Fig. S3c). Notably, MERRA-2 was found to produce 422 

lower AOD than AERONET, and the bias between them was more obvious for high 423 

AERONET AODs. For instance, the MERRA-2 AODs over most polluted areas (such 424 

as the anthropogenic aerosol–dominant regions of NC and SA and the biomass 425 

burning–dominant regions of SEA and South America) were almost always lower 426 

than those of AERONET when the AERONET AOD was greater than 1.5. This 427 

indicated that MERRA-2 does not capture all high-AOD events well (such as serious 428 

haze events over NC and SA, and frequent biomass burning events over SEA), due to 429 

the following three reasons: (1) a relatively low quantity of ground-based-observed 430 

aerosol data can be used for assimilation; (2) the MERRA-2 system model lacks an 431 

adequate source of anthropogenic emissions with high temporal resolution; and (3) a 432 

lack of nitrate aerosols in the GOCART model (Chin et al., 2002; Colarco et al., 2010; 433 

Buchard et al., 2017).  434 

3.1.2 MERRA-2 versus CARSNET 435 

Since CARSNET is not assimilated in MERRA-2, it is considered for 436 

independent verification. Using all of the collected CARSNET observations, the 437 
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performance of the MERRA-2 AOD in China was validated. Statistical measures for 438 

MERRA-2 AOD at each CARSNET site are shown in Fig. 4 and Table S5, and those 439 

for regional performance (i.e. NEC, NC and SC) are shown in Table 2 and Fig. S3. In 440 

general, the comparison results using CARSNET as reference showed that the 441 

performance of MERRA-2 AOD in China (r = 0.70, RMSE = 0.33, MAE = 0.22, and 442 

MFE = 46.63%) is much worse than that of MERRA-2 AOD on a global scale (Fig. 443 

3a). Regionally, compared with the results from using three AERONET sites as a 444 

comparison, the results comparing CARSNET and MERRA-2 AOD showed a similar 445 

pattern—that is, the underestimation of MERRA-2 AOD over NC is universal. 446 

MERRA-2 underestimated the AOD at almost all CARSNET sites (Fig. 4e and Table 447 

S5), with an overall MAE of 0.23, RMSE of 0.33, MFE of 47.3%, and 448 

underestimation of ~35.5% (Fig. S3a). Similar results based on CARSNET 449 

observations in China have also been reported in the literature (Song et al., 2018; Qin 450 

et al., 2018). Specifically, there was higher agreement over SC compared with NC 451 

(Fig. S3b), mainly because nitrate aerosols in China are mainly concentrated in 452 

industrially intensive areas such as Henan, Shandong, Hebei, and the Sichuan Basin 453 

(Zhang et al., 2012). The lack of a nitrate module in the GOCART model will cause 454 

further AOD uncertainty in these above areas, which is the main reason behind the 455 

relatively low performance of MERRA-2 AOD in these areas.  456 

The purpose of this work was to study the inter-annual or inter-decadal variations 457 

of AOD in different regions. Therefore, taking MODIS/Terra and MISR AOD as a 458 

reference, the accuracy of MERRA-2 annual-mean AOD was evaluated at global and 459 

regional scales (Figs. S4 and S5). Globally, the overall spatial correlations between 460 

the MERRA-2 AOD and MODIS/Terra and MISR AOD datasets was found to be 461 

quite acceptable, with no apparent disagreements in the annual AOD variations during 462 

2001–2016 (Fig. S5). Besides, although an offset was found between MERRA-2, 463 

MODIS/Terra and MISR in terms of absolute values of AOD in some ROIs, the 464 

short-term tendency during the overlapping period was similar among the three 465 

datasets (Fig. S4). Because the aerosol retrieval algorithm based on satellite 466 

observation does not work well under cloudy conditions or for bright surfaces, there 467 

are always numerous missing values in satellite-retrieved AOD datasets. In contrast, 468 

not only is the accuracy of the MERRA-2 AOD dataset comparable with satellite 469 

observations (Fig. S4), it also provides a complete AOD record from 1980 to the 470 

present day. These reasons give confidence that the MERRA-2 aerosol dataset is 471 

suitable for analysis of the variations in AOD. Thus, the AOD values from 472 

MERRA-2’s aerosol analysis fields, in combination with the AOD datasets derived 473 

from two satellite sensors, were used to comprehensively analyze the spatiotemporal 474 

variability of aerosols at global and regional scales. 475 

3.2 Global AOD distribution and inter-annual evolution of 476 

regional AOD 477 

Figure S6 shows the global annual- and seasonal-mean AOD distribution 478 

calculated from the MERRA-2 AOD products during 1980–2016. Furthermore, the 479 
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distributional characteristics of the global annual-mean AOD from MERRA-2, 480 

MODIS and MISR during the same period (2001–2016) are also compared in the 481 

figure. The comparison shows that, although MISR underestimated the AOD (e.g., in 482 

SA and eastern China), as expected because of insufficient sampling (Mehta et al., 483 

2016; Kahn et al., 2009), the three AOD products were generally closely consistent on 484 

the global scale (also see Fig. S5). Generally, high AOD loading was mainly observed 485 

in areas of high anthropogenic and industrial emissions, such as in eastern China and 486 

India, and major source areas of natural mineral dust—particularly the Saharan, 487 

Arabian and Taklimakan deserts.  488 

Due to the seasonal variation of the atmospheric circulation driven by solar 489 

radiation and the intensity of human activities in different regions, the global 490 

distribution of AOD also shows obvious seasonal differences, with global aerosol 491 

loading reaching its maximum in spring and summer. On the one hand, this can 492 

mainly be attributed to the enhanced circulation in spring and summer, which 493 

increases the likelihood of natural mineral dust from several major dust sources in the 494 

Northern Hemisphere (i.e., the Sahara and Sahel, the Arabian Peninsula, Central Asia, 495 

and the Taklimakan and Gobi deserts) being brought into the atmosphere; plus, along 496 

the westerly belt, airflow dust can be transmitted to surrounding sea areas (such as the 497 

strip of the northern tropical Atlantic stretching between West Africa and the 498 

Caribbean, the Caribbean, the Arabian Sea, and the Bay of Bengal) and more remote 499 

areas (such as South America, the Indo-Gangetic Plain, and the eastern coastal areas 500 

of China, Korea, and Japan) (Mao et al., 2014). On the other hand, higher 501 

temperatures and damp air in summer can create favorable conditions for the 502 

hygroscopic growth and secondary formation of aerosols (Minguillón et al., 2015; 503 

Zhao et al., 2018), which raises the AOD in some areas, such as NC and northern 504 

India, dominated by anthropogenic aerosol emissions in summer. Moreover, frequent 505 

local biomass-burning aerosol emissions in central Africa during summer is the main 506 

cause of high AOD in the region (Tummon et al., 2010).  507 

In contrast, global aerosol loading is relatively low in autumn and winter. The 508 

atmosphere in autumn and winter is generally more stable and vertical mixing is 509 

weaker, and thus it is difficult for more aerosols—particularly natural mineral 510 

dust—to be brought into the atmosphere, which leads to lower AOD in autumn and 511 

winter (Zhao et al., 2018). Nevertheless, the AOD in autumn in South America, SEA, 512 

SC and CF is clearly high, which is mainly attributable to the emission of large 513 

amounts of fine aerosol particles (i.e., BC and OC) from frequent biomass burning in 514 

these regions (Thornhill et al., 2018; Ikemori et al., 2018; Chen et al., 2017). Notably, 515 

fine particulate matter composed of sulfate–nitrate–ammonium aerosols, which is 516 

produced by high-intensity anthropogenic activities in autumn and winter, is still the 517 

main contributor to high AOD in eastern China and India (Gao et al., 2018; David et 518 

al., 2018). 519 

To better characterize the temporal evolution of regional AOD, the monthly mean 520 

AODs over the 12 ROIs from 1980 to 2016 were calculated. As illustrated in Fig. 5, 521 

the monthly regional AOD had large seasonal variability, in addition to varying 522 

degrees of fluctuation in different periods. In areas dominated by smoke aerosols from 523 
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biomass burning (i.e., AMZ, CF and SEA), biomass-burning events tend to occur in 524 

the warm season (May to October), leading to a more prominent monthly AOD at this 525 

time of the year compared with the cold season (November to April). It is noteworthy 526 

that MERRA-2 also captured several well-known forest-fire events, such as those in 527 

Indonesia in 1983 and 1997, which have been proven to be mainly related to climatic 528 

drying caused by El Niño and large-scale deforestation (Page et al., 2002; Goldammer 529 

2007). In the CF region, the monthly mean maximum AOD experienced a 530 

transformation process—that is, the monthly maximum AOD often occurred in June 531 

and July before 2000, whereas after 2000 it occurred more frequently in August and 532 

September. This shift may be attributed to the fact that MERRA-2 did not assimilate 533 

any land-based AOD observations before 1999, which made it difficult for the model 534 

to simulate the monthly variation of regional AOD (Gelaro et al., 2017; Buchard et al., 535 

2017). In the AMZ and SEA regions, September and October seems to be the two 536 

most frequent months for the occurrence of high AOD values, but the magnitude of 537 

AOD values has decreased in recent years, which may be related to changes in 538 

meteorological conditions (Torres et al., 2010). 539 

In areas dominated by natural mineral dust aerosol (i.e., the SD, ME and NWC), 540 

the monthly maximum AOD mainly occurred in March–August. Before 2000, there 541 

were many anomalies of the AOD monthly maximum, which also implied frequent 542 

sandstorms. In contrast, the frequency of monthly AOD anomalies decreased after 543 

2000, which may be attributable to the reduced surface wind speed and increased 544 

vegetation cover (Kim et al., 2017; Wang et al., 2018; An et al., 2018). Compared 545 

with the areas dominated by smoke and dust aerosols, the seasonal differences of 546 

AOD in the areas dominated by anthropogenic aerosol emissions appear to be smaller, 547 

but their temporal evolution is more pronounced. In NEA, the monthly maximum 548 

AOD often occurred in March–June, possibly related to the long-distance 549 

transportation of sand and dust in the China–Mongolia deserts (Taklimakan and Gobi). 550 

However, as the frequency of sandstorms has decreased in the past 10 years (An et al., 551 

2018), the monthly maximum AOD has also shown a downward trend. In NC and SA, 552 

the monthly AOD has gradually expanded outward since 1980, indicating that AOD 553 

has experienced a gradual increase. Monthly AOD had large seasonal variability in 554 

the SC region, reaching its maximum in February–April. The increased aerosol 555 

emissions from biomass burning in spring seem to be one of the main reasons for high 556 

AOD in the SC region (Chen et al., 2017). For the EUS and WEU regions, the 557 

characteristics of the monthly variation in AOD were similar—that is, large values of 558 

AOD occurred in summer. With time, the monthly AOD showed a tendency to 559 

gradually shrink inwards, suggesting AOD has experienced a significant decline over 560 

the past few decades in the EUS and WEU. The main drivers of the inter-annual 561 

variability of AOD over each ROI are discussed in detail in sections 3.5 and 3.6.  562 

3.3 Global AOD trend maps  563 

Annual and seasonal linear trends of the MERRA-2 AOD anomaly were 564 

separately calculated for each 1° × 1° grid cell for the whole of 1980–2016 period 565 

(period 1) and for the first 18 years (1980–1997, period 2) and last 19 years (1998–566 
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2016, period 3). Figure 6 shows the spatial distribution of these trends on the global 567 

scale. Throughout period 1, the regions where annual AOD showed a significant 568 

upward trend (p < 0.05) were mainly located in eastern China, SA, the ME, northern 569 

South America, and the southern coastal areas of Africa, whereas some significant 570 

downward trends were observed in the whole of Europe and the EUS. However, 571 

compared with the annual trends, the seasonal AOD trends had obvious regional 572 

differences in terms of their spatial distribution. For instance, a strong positive trend 573 

throughout East Asia, including Korea and Japan, was found in spring. In summer, 574 

there was a significant upward and downward AOD trend in north-central Russia and 575 

the Amazon basin, respectively. In contrast, winter AOD had a significant downward 576 

trend in the area north of 40°N. These differences in seasonal trends are closely 577 

related to the seasonal variations in anthropogenic aerosols generated by local 578 

emissions and natural aerosols driven by meteorological conditions (De Meij et al., 579 

2012; Chin et al., 2014). 580 

In the two different historical periods (i.e., period 2 and 3), these trends seem to 581 

have experienced a remarkable shift. During period 2, the annual AOD had a 582 

significant upward trend throughout the Southern Hemisphere, and similar upward 583 

trends also existed in eastern and northwestern China. This upward trend in the 584 

Southern Hemisphere, which was most likely associated with two giant volcano 585 

eruption events in the early 1980s [El Chichón (Hofmann and Rosen 1983)] and early 586 

1990s [Pinatubo volcanoes (Stenchikov et al., 1998; Bluth et al., 1992; Kirchner et al., 587 

1999)], is also reflected in the regional annual mean AOD time series shown in Fig. 588 

S4. The eruptions led to a strong increase in volcanic ash and SO2 emissions, 589 

consequently increasing AODs from place to place via airflow transport, which was 590 

captured accurately by MERRA-2. Meanwhile, AOD had a significant downward 591 

trend throughout Europe and the EUS, which appears to be related to the reduction of 592 

TSP and SO2 emissions (see section 3.5). Seasonally, a significant upward trend 593 

seems to be prevalent in all seasons in the Southern Hemisphere. Compared with 594 

other seasons, the decline of AOD was more obvious in Europe and America. In 595 

winter, except for the positive trend that still existed in the marine area of the 596 

Southern Hemisphere, the fluctuations in other regions were smaller and relatively 597 

stable.  598 

During period 3, AOD began to show a significant upward trend in most regions, 599 

especially in SA, SEA, the ME, central Russia, the western United States, and 600 

northern South America, whilst still maintaining an upward trend in eastern China 601 

with greater intensity. These upward trends over SA, the ME and eastern China are in 602 

good agreement with the results of Hsu et al., (2012), who used SeaWiFS AOD 603 

records from 1997 to 2010. It is worth noting that the trends for the whole of Europe 604 

shifted from significantly positive to statistically insignificant, while the region that 605 

had shown a significant downward trend before 1997 in the EUS was also shrinking. 606 

Furthermore, the region showing a positive trend, prevailing in the Southern 607 

Hemisphere, shrunk dramatically. Similarly, the spatial distribution of the trend also 608 

had significant differences in different seasons of this period. In spring and winter, 609 

only significant upward trends could be observed on a global scale, mainly in eastern 610 
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China, SA, the ME and South America. Conversely, significant downward trends 611 

were apparent in the EUS, Northwest Africa and central South America in summer. 612 

Additionally, it was also found that the region with a significant downward trend in 613 

Africa shifted from the northwest in summer to the southwest in autumn. The joint 614 

effect of the changes in local emissions and meteorological conditions determined 615 

these trends in these regions. See Section 3.5 for a more detailed explanation. 616 

Ensuring the accuracy of AOD trends calculated by MERRA-2 is critical for 617 

quantifying the contribution of local emissions and meteorological factors to the 618 

inter-decadal variation of AOD in different regions. For comparison, the resulting 619 

annual and seasonal trends of the MERRA-2, MODIS/Terra, and MISR AOD 620 

anomaly over the whole globe were derived, using the same method, between 2001 621 

and 2016; the results are shown in Fig. 7. This comparison shows that the AOD trends 622 

during 2001–2016 calculated by MERRA-2 in most regions of the world agreed well 623 

with the results of MODIS and MISR, on both annual and seasonal timescales. 624 

Although MERRA-2 assimilates MODIS and MISR at the same time, the relatively 625 

small difference between MERRA-2 and MISR may be mainly due to the insufficient 626 

sample size of MISR (MODIS produces three to four times more data than MISR) 627 

(De Meij et al., 2012).  628 

For the annual trend, the significant upward trend observed by MODIS/Terra and 629 

MISR in SA and the ME and the significant downward trend observed in the EUS, 630 

WEU and central South America were consistent with the results of the MERRA-2 631 

trend. Similar trends were reported in a previous study based upon 14 years (2001–632 

2014) of observational records (Mehta et al., 2016). Similarly, upward trends also 633 

existed in spring, autumn and winter, while downward trends were also apparent in 634 

spring, summer and autumn. It should be noted that the trend signals calculated from 635 

MERRA-2 and MODIS/Terra were opposite in SC. The difference in sign associated 636 

with trends during 2001–2016 could mainly be due to the larger deviation between 637 

MERRA-2 and MODIS/Terra between 2001 and 2004 (Fig. S4c). The large deviation 638 

directly led to a reversal of trend throughout the period 2001–2016. This deviation 639 

may be related to the use of different versions of MODIS data: in the MERRA-2 AOD 640 

observing system, MERRA-2 assimilated the bias-corrected AOD derived from 641 

MODIS radiances, Collection 5 (Buchard et al., 2017), and the MODIS data used in 642 

this study was the latest collection (Collection 6.1). Different versions mean 643 

differences in algorithms (Fan et al., 2017), which may affect the statistical error.  644 

3.4 Regional AOD trends 645 

To examine the spatial and temporal changes in more detail, the annual trend over 646 

the globe and in the 12 ROIs, derived based upon MERRA-2 during periods 1, 2 and 647 

3, were calculated. In addition, for comparison purposes, the regional trends in AODs 648 

from MERRA-2, MODIS and MISR during 2001–2016 were also estimated. The 649 

comparisons of the magnitudes of global annual trends with these regional trends are 650 

summarized in Fig. 8 and Table S1. In general, the annual trends derived from 651 

different datasets were small on the global scale. As indicated by the results in Fig. 8 652 

and Table S1, the trend values were −0.00068 yr
−1

 for the globe during period 1, with 653 
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statistical significance at the 95% confidence level. In contrast, no statistically 654 

significant trend was detected at the global scale for period 2 (0.00050 yr
−1

) or 3 655 

(0.00038 yr
−1

). Analyzing the global AOD trends during 2001–2016 from MERRA-2 656 

and the two satellite datasets, it was found that the MERRA-2 trends were negligible, 657 

whereas significant positive (negative) trends were found for MODIS (MISR).  658 

However, the trends could be considerable on regional scales. For example, over 659 

the anthropogenic aerosol–dominant regions for periods 1, 2 and 3, strong positive 660 

trends were apparent over NEA, NC, SC and SA, while strong and statistically 661 

significant negative trends were found over WEU and EUS. For biomass-burning 662 

regions (SEA, CF and AMZ, but not CF, which had a negligible and insignificant 663 

trend), there was a positive trend during periods 1, 2 and 3. For the mineral dust–664 

dominant regions, although there seemed to be an upward trend over the ME, the 665 

estimated trends were not statistically significant for other areas, such as NWC and 666 

the SD. During 2001–2016, the estimated MERRA-2 AOD trend in most ROIs (i.e., 667 

NEA, SA, ME, WEU, EUS, and AMZ) was comparable to and had the same sign as 668 

the trend from both the MODIS and MISR sensors. However, it was opposite in sign 669 

to the MISR data over NC, NWC and the SD, and to the MODIS data over SC, SEA 670 

and CF during overlapping years. These differences in global trends between 671 

MERRA-2 and satellite may be related to several aspects, including the difference in 672 

sample number, data accuracy, different measurement methods, etc. (De Meij et al., 673 

2012). 674 

In addition to the annual trend, the seasonal trend of AOD for different datasets in 675 

different ROIs and different historical periods was also studied (Fig. S7 and Table S1). 676 

Globally, negative trends were observed throughout the four seasons during period 1, 677 

especially during summer, autumn and winter (−0.00078, −0.00092 and −0.00097 yr
−1

, 678 

respectively; statistically significant at the 95% confidence level). On the contrary, 679 

there was a negative trend in period 2, although it was not significant. In the 680 

subsequent period, period 3, the trend values shifted from negative to positive. The 681 

positive trend was more significant in spring and autumn (0.00053 and 0.00070 yr
−1

). 682 

Regionally, strong positive trends were apparent over both NC and SC throughout the 683 

four seasons during periods 1, 2 and 3. Strong upward trends were also found over SA. 684 

These upward trends were most likely associated with an increase in urban/industrial 685 

pollution in China and India. Meanwhile, some similar but relatively moderate 686 

upward trends also existed over NEA in spring. In contrast, strong negative trends 687 

were observed over the WEU and EUS regions, especially during spring, summer and 688 

autumn. The negative trends over WEU and the EUS may partly have been due to a 689 

decrease in polluting aerosols associated with emission control measures (De Meij et 690 

al., 2012; Li et al., 2014). A statistically significant upward trend was also found over 691 

the SD, NWC and the ME in spring during periods 1, 2 and 3 (0.00252, 0.00300 and 692 

0.00463 yr
−1

), respectively. In contrast to the strong downward trends over AMZ in 693 

summer during periods 1, 2 and 3, there appeared to be upward trends in spring over 694 

AMZ and in winter over CF and AMZ. When compared with the regional trends 695 

during 2001–2016 calculated by the two satellite datasets, we found that the seasonal 696 

trends of MERRA-2 were highly consistent with the satellite results in almost all 697 
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regions, especially in spring and autumn. It is worth noting that the trend differences 698 

among the three different datasets in all four seasons still existed in NC and SC, and 699 

the differences had different seasonal characteristics. For example, over NC, the most 700 

significant difference occurred in spring and summer, whereas it occurred in summer 701 

and winter over SC. Seasonal differences in trends are mainly due to insufficient 702 

accuracy of MERRA-2 in China (see Section 3.1.2). 703 

Since the sign of a trend value often varies with the span of the calculation period, 704 

it was necessary to evaluate the sliding trend of different periods to help examine the 705 

time node of the changes more precisely. Therefore, sliding trend analyses were used 706 

to present a more comprehensive analysis of annual trends over the 12 ROIs during 707 

different historical periods (Fig. 9). These trends were calculated for all periods 708 

starting each year from 1980 to 2007 and ending in 2016 with increments of at least 709 

10 years. As shown in Fig. 9, in the EUS and WEU, the AOD experienced a large 710 

decline up until the 1981–1990 period, and then the trend reversed moderately from 711 

1984 to 1986, declined sharply from 1989 after a short increase from 1996 to 1999, 712 

and then sustained a moderate downward trend in the last 17 years. A similar pattern 713 

was found for NWC, SD and AMZ, although there was a stronger upward trend and 714 

relatively weaker downward trend in the corresponding period. In SC and NC, the 715 

AOD experienced a slight increase in the 1980s and a short-term decline around the 716 

1990s, and then showed its largest positive trend since 1995 before reversing sharply 717 

in the last 10 years (Sun et al., 2019). A similar evolution also existed in NEA and the 718 

ME, although the intensities of the trends were relatively weak. In addition to the 719 

negligible downward trend in the 1980s and 1990s, SA showed overall positive trends 720 

throughout the period, corresponding to increasing anthropogenic emissions (Figure 721 

11). Furthermore, in CF, a moderate increasing trend was detected from 1983 to 1985; 722 

then in 1990, and the trends became relatively stable but unexpectedly showed sharp 723 

increases after 1993, followed by a significant decline in the 2000s and reversal in the 724 

last 10 years. The trends for SEA were much smaller and relatively stable. Also, note 725 

that around 1985 and 1990 two distinct opposite trend signs were found in all regions. 726 

These two unexpected trends indicated that large volcanic eruptions not only greatly 727 

affect short-term changes in local aerosols, but also impose different degrees of 728 

disturbance in long-term trends of aerosols in different regions of the world (Hofmann 729 

and Rosen 1983; Stenchikov et al., 1998; Kirchner et al., 1999)..  730 

Furthermore, considering that aerosol concentration and composition usually 731 

have strong seasonal cycles (Li et al., 2018), the trends for each season were also 732 

calculated separately and compared with the MODIS and MISR trends in the period 733 

of overlap (2001–2016). Note that Fig. 10 only shows the evolution of seasonal and 734 

annual trends for every 10-year period starting from 1980 to 2007 for MERRA-2, and 735 

from 2001 to 2007 for MODIS and MISR; refer to Figs. S8–11 for a fuller 736 

presentation of the regional seasonal trend. For all regions, the trends for all seasons, 737 

except autumn in SEA, CF and AMZ and spring in the SD, were in phase with the 738 

annual trend (also see Fig. S12). In general, autumn trends over SEA, CF and AMZ 739 

were larger and often out of phase, possibly attributable to the sudden increase in 740 

aerosol concentration caused by biomass-burning events. Similarly, the spring trend 741 
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over the SD was also larger and more asynchronous than in other seasons. This 742 

phenomenon can mainly be attributed to active spring dust events (Liu et al., 2001). In 743 

addition, compared with the annual and seasonal regional trends during 2001–2016 744 

(Fig. 8 and Fig. S7), the decadal trends of MERRA-2 agreed better with the trend 745 

results from MODIS and MISR. This implies that the trends can change relatively 746 

quickly with time (Li et al., 2018). Supporting evidence was also found from the 747 

strongest trends on both annual and seasonal scales being mostly concentrated in the 748 

lower y-axis values (Fig. 9 and Figs. S8–11). These results also highlight the 749 

importance of evaluating temporal shifts or decadal AOD trends.  750 

3.5 Response of inter-decadal variation in regional AOD to local 751 

emissions and meteorological parameters 752 

Previous studies have shown that the inter-annual variations in regional AOD are 753 

mainly controlled by changes in emissions and meteorological factors (De Meij et al., 754 

2012; Pozzer et al., 2015; Itahashi et al., 2012; Zhao et al., 2017; Chin et al., 2014). 755 

First, the trends of the four emission factors (i.e., TSP, SO2, BC, and OC) and their 756 

correlations with AOD were calculated for the whole study period (1980–2014), as 757 

well as for two individual periods (i.e., 1980–1997 and 1998–2014). Note that the 758 

PKU global emissions inventories were only available for 1980–2014, which limited 759 

our research to a relatively short period. Figures 11 and S13 show the linear trends in 760 

emissions and their relationships with MERRA-2 AOD during 1980–2014, 761 

respectively. The decreasing AOD trends over Europe and the EUS (see Fig. 6) 762 

coincided with substantial reductions in the emissions of primary anthropogenic 763 

aerosols (TSP and BC) and precursor gases (SO2), corresponding to pollution controls 764 

(Hammer et al., 2018; De Meij et al., 2012). This was also supported by significant 765 

positive correlation between AOD and emissions in most regions of Europe and the 766 

EUS (Fig. S13).  767 

Positive trends in TSP and SO2 were present over India and eastern China, which 768 

explained the significant upward trend of AOD in these two regions. In addition, 769 

eastern China and India experienced a shift in the emissions trend during the two 770 

periods (Figs. S14 and 16). In 1980–1997, a significant upward trend existed in both 771 

regions (Huang et al., 2014). In contrast, in 1998–2014, India at least maintained this 772 

upward trend for all four emission factors, with it sometimes being even stronger, 773 

while the positive trends in emissions of TSP and SO2 over eastern China were 774 

interspersed with negative trends. More importantly, the trend of BC and OC in 775 

eastern China reversed completely. The shift in these emission trends in eastern China 776 

can mainly be attributed to the implementation of multiple emission reduction policies 777 

(Zheng et al., 2018). The reductions in emissions were at least partly responsible for 778 

the decreasing trend of AOD in the NC and SC regions in the last 10 years (see Fig. 9). 779 

The trends in primary BC emissions followed a similar pattern as the trends in OC 780 

emissions, except there were positive trends over northeastern China and the positive 781 

(negative) trends over CF, AMZ and SEA (WEU and SC) were lower in magnitude, 782 

reflecting regional changes in fire activity. There were positive AOD trends in areas 783 

https://dictionary.cambridge.org/zhs/topics/beliefs-and-opinions/analysing-and-evaluating/
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dominated by biomass burning (especially in CF and SEA), in response to increased 784 

BC and OC emissions. Because human activities are scarce in desert areas, there was 785 

no direct relationship between AOD and emissions, as expected. Therefore, this 786 

highlights the importance of studying how natural factors (here, this refers to 787 

meteorological parameters) control the inter-annual variation of AOD in different 788 

desert areas. Furthermore, it is worth noting that in the two short periods (especially 789 

1998–2014), these regions with significant positive correlation shrunk and were no 790 

longer significant (Figs. S15 and 17), suggesting other factors such as meteorological 791 

parameters might be driving the inter-annual trend of regional AOD.  792 

To investigate the roles of meteorological parameters in the decadal variation of 793 

AOD, Pearson’s R values between AOD and meteorological parameters (a total of 32; 794 

see Table 1) and over the 12 ROIs for the three periods (i.e., 1980–2014, 1980–1997 795 

and 1998–2014) were calculated. Some of these meteorological variables, such as 796 

surface precipitation, surface wind speed, wind velocity, RH, and surface wetness, 797 

have been shown before to be correlated with regional AOD (Klingmüller et al., 2016; 798 

Pozzer et al., 2015; Chin et al., 2014; He et al., 2016). Correlation analysis showed 799 

similar correlation patterns between AOD and meteorological parameters for the three 800 

different periods over all ROIs. During the period 1998–2014, the correlation was 801 

generally stronger than in the other two periods (see Fig. S18), suggesting 802 

meteorological factors may have played a more important role in this period. In 803 

addition, these correlations seemed to be similar in regions dominated by the same 804 

aerosol type. For example, in the mineral dust–dominated regions (i.e., NWC, ME and 805 

the SD), AOD had a significant positive (negative) correlation with near-surface wind 806 

speed (soil moisture), suggesting that surface wind speed and soil moisture may be the 807 

main factors controlling the dust cycle, which is consistent with previous studies in 808 

the ME (Klingmüller et al., 2016). In the biomass burning–dominated regions (i.e., 809 

SEA, CF and AMZ), AOD had a significant negative correlation with 810 

humidity-related meteorological parameters (such as surface precipitation, RH, and 811 

soil moisture), implying that ambient humidity (including the atmosphere and soil) 812 

may be a direct correlation factor in controlling the frequency of biomass-burning 813 

events (Torres et al., 2010). In contrast, in the regions dominated by anthropogenic 814 

aerosols, the correlation was regionally dependent, and their signs differed from place 815 

to place.  816 

Correlation analysis cannot directly identify the main factors affecting the 817 

inter-decadal change of AOD in different regions. Here, MLR models were used to 818 

diagnose the influences of local anthropogenic emissions and other meteorological 819 

parameters on the inter-decadal variation of AOD over the 12 ROIs. Figure 12 shows 820 

the time series of monthly mean MERRA-2 and MLR model–predicted normalized 821 

AOD anomalies, which used the emission factors, meteorological parameters, and 822 

both, as input predictors, respectively, over the 12 ROIs for the whole study period 823 

(1980–2014). Similar comparisons for the two individual periods (i.e., 1980–1997 and 824 

1998–2014) are also presented in Figs. S19 and 20, respectively. Table S2 summarizes 825 

the predictors included in the MLR models and their performance for the three 826 

different periods over each ROI. The MLR models with both emissions and 827 
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meteorological parameters as predictors generally reproduced the AOD values in most 828 

regions during 1980–2014, except for high AOD values (Fig.12), which is discussed 829 

below. For all the ROIs, the MLR models explained most of the MERRA-2 AOD 830 

variability (R
2
 = 0.42–0.76). However, when meteorology and emissions alone were 831 

used as predictors, there were considerable differences in different ROIs. When 832 

emission factors alone were used as the predictor, it could account for more than 35% 833 

of the AOD variability in regions dominated by anthropogenic aerosols and biomass 834 

burning [except NEA (14%)], with the largest explanation occurring in NC (58%). In 835 

contrast, in the mineral dust–dominated regions (the SD and ME), emission factors 836 

contributed little (< 0.05%) to the inter-annual variation in AOD (Figs. 11g and i). 837 

Moreover, emission factors contributed 37% of the AOD variability in NWC, which is 838 

mainly because of the strong anthropogenic emission sources in northern Xinjiang 839 

(mainly encompassing Urumqi, Korla, Kashgar, etc.). However, compared with 840 

meteorological factors, emissions were not the main factors driving the inter-annual 841 

change of AOD (Fig. 12e). 842 

On the other hand, when meteorological factors were used as predictors in the 843 

MLR models, it was surprising that they explained a larger proportion of the AOD 844 

changes in all ROIs, except NC and SEA, where emission factors accounted for 845 

slightly lower AOD changes of 42% and 33%, respectively. Further analysis indicated 846 

that this difference in contribution between emissions and meteorology seemed to be 847 

greater for the two shorter periods of 1980–1997 and 1998–2017 (see Figs. S19 and 848 

20). Besides, it should also be noted that the total explained variances of the MLR 849 

model for 1980–1997 were generally lower than those of the MLR model for 1998–850 

2014, in all ROIs. The difference can be explained by two reasons: (1) a greater 851 

number of high AOD anomaly values occurred during the period 1980–1997 (Figs. 12 852 

and S19), especially in relation to the two volcanic eruption events in the 1980s and 853 

1990s, which directly reduced the total explained variances of the MLR model, 854 

because the model only considers the inter-decadal variations of local emissions and 855 

meteorological factors, and the large-scale transport of pollutants is not considered; 856 

and (2) meteorology and emissions were confirmed to explain more AOD changes 857 

during the period 1998–2014. 858 

3.6 Relative contributions of local emissions and meteorological 859 

parameters to inter-decadal variations of regional AOD 860 

Application of the LMG method (see Data and Methods section) to the MLR 861 

model allowed the relative contributions of each anthropogenic emission type and 862 

meteorological factor to the inter-decadal variations or trend of regional AOD to be 863 

quantified. Figure 13 shows the relative contributions of the local emissions and 864 

meteorological factors to the changes in regional AOD for the period 1980–2014, as 865 

well as for 1980–1997 and 1998–2014, using both emissions and meteorology as 866 

predictors in the MLR model. During the period 1980–2014, over the anthropogenic 867 

aerosol–dominant regions, SO2 was the dominant emissions driving factor, explaining 868 

24.9%, 15.2%, 32.6%, 21.7% and 12.7% of the variance of AOD over NC, SC, SA, 869 
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WEU and the EUS, respectively (also see Table S3). The above results also confirm 870 

that particulate sulfate is the main contributor to fine-mode AOD in anthropogenic 871 

aerosol–dominant regions (Itahashi et al., 2012; David et al., 2018). Meanwhile, wind 872 

speed (including surface and upper wind speed) was the dominant meteorological 873 

driving factor, explaining 11.4%, 14.2 % and 17.9% of the variance of AOD over NC, 874 

SC and the EUS, respectively. In addition, planetary boundary layer height, 875 

temperature (including surface temperature, upper temperature, and the temperature 876 

difference between the surface and upper atmosphere) and RH (including surface and 877 

upper RH) were the strongest meteorological driving factors over NEA, SA and WEU, 878 

contributing 30.2%, 15.9% and 21.5%, respectively.  879 

On the contrary, over the biomass burning–dominant regions, BC (OC) was the 880 

dominant emissions driving factor over SEA (AMZ), explaining 27.7% (24.0%) of the 881 

variance of AOD. Meanwhile, soil moisture and RH were the top meteorological 882 

driving factors over SEA and AMZ, and CF, contributing 11.7% and 35.5%, and 883 

28.5%, respectively. Furthermore, over the dust-dominant regions, wind speed was 884 

the strongest meteorological driving factor, explaining 30.3% and 29.8% of the 885 

variance in AOD over NWC and the SD, respectively. Different from wind speed 886 

being the primary meteorological driving factor over NWC and the SD, it was the 887 

second most important factor over the ME, while sea level pressure was the primary 888 

driving factor, accounting for 60.9% of the variation in AOD. This large variance 889 

explained by sea level pressure and significant anti-correlations of the AOD with it 890 

(see Fig. S18c), further confirms the previous studies’ findings that frequent 891 

sandstorms over the ME often correspond to large horizontal pressure gradient 892 

differences caused by the enhanced high-pressure system across the eastern 893 

Mediterranean Sea and enhanced low-pressure system across Iran and Afghanistan 894 

(Hamidi et al., 2013; Yu et al., 2016).  895 

By comparing the estimated results of the two independent study periods (i.e., 896 

1980–1997 and 1998–2014), it was found that in almost all ROIs (except NC and 897 

AMZ), meteorological factors contributed a larger explained proportion of AOD 898 

changes during 1998–2014, which indicates that meteorological factors seem to be 899 

becoming increasingly more important in dominating the inter-decadal change of 900 

regional AOD. It is worth noting that, in addition to the increased explained 901 

proportion of SO2 and BC, among these meteorological factors, the role of 902 

diffusion-related parameters (such as horizontal and vertical wind speed, representing 903 

horizontal and vertical diffusion, respectively) seems to be the most prominent. This 904 

is consistent with the findings of Gui et al. (2019), who found wind speed to be the 905 

dominant meteorological driver for decadal changes in fine particulate matter over SC, 906 

based upon a 19-yr record of satellite-retrieved fine particulate matter data (1998–907 

2016).  908 

4 Conclusions and implications 909 

This paper presents a comprehensive assessment of the global and regional AOD 910 

trends over the past 37 years (1980–2016), based on the reanalysis MERRA-2 AOD 911 

dataset. AOD observations from both AERONET and CARSNET stations were used 912 
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to assess the performance of the MERRA-2 AOD dataset on global and regional 913 

scales prior to calculating the global and regional AOD trends. Satellite retrievals 914 

from MODIS/Terra and MISR were then used to estimate the AOD annual and 915 

seasonal trends and compare them with the MERRA-2 results. Finally, the stepwise 916 

MLR and LMG methods were jointly applied to quantify the influences of emission 917 

factors and meteorological parameters on the inter-decadal changes in AOD over 12 918 

ROIs during the three periods of 1980–2014, 1980–1997 and 1998–2014.  919 

Results showed that the MERRA-2 AOD was comparable in accuracy with the 920 

satellite-retrieved AOD, albeit there was slight overestimation in the United States, 921 

southern South America and Australia and underestimation in the NC, SA, CF and 922 

SEA when compared with the ground-based AERONET and CARSNET AOD. 923 

MERRA-2 was proven to be capable of estimating the long-term variability and trend 924 

of AOD, owing to its good accuracy and continuous and complete spatiotemporal 925 

resolution. It was revealed that, in general, MERRA-2 was able to quantitatively 926 

reproduce the AOD annual and seasonal trends (especially decadal trends) during the 927 

overlapping years (2001–2016), as observed by the MODIS/Terra, albeit some 928 

discrepancies (caused by the insufficient sample size) were found when compared to 929 

MISR. The resulting trend analyses based upon the MERRA-2 data from 1980 to 930 

2016 showed that the global annual trend of AOD during this period, although 931 

significantly (p < 0.05) weakly negative (i.e., −0.00068 yr
−1

), was essentially 932 

negligible when compared to the magnitudes of regional AOD trends. On regional 933 

scales, sliding trend analyses suggested that the inter-decadal trends of AOD in 934 

different periods could be significantly different. It was noted that, during the entire 935 

study period (1980–2016), the EUS and WEU showed a non-monotonous decreasing 936 

trend accompanied by occasional fluctuations in the 1980s and 1990s, responding to 937 

the decrease in pollutant emissions, but the intensity of this downward tendency has 938 

slowed over the recent decade. In contrast, AODs in NC and SC experienced a 939 

sustained and significant upward trend before ~2006, and then the trend shifted from 940 

upward to downward due to the Chinese government’s emissions-reduction policy. In 941 

addition to the negligible downward trend in the 1980s and 1990s, SA showed overall 942 

significant positive trends throughout the study period. Moreover, the two large 943 

volcanic eruptions that occurred in the 1980s and 1990s not only greatly affected the 944 

short-term changes in local aerosol loading, but also impacted significantly on the 945 

inter-annual trend of the regional AOD around the world. This highlights the 946 

importance of examining the effects of trans-regional pollutant transport on decadal or 947 

temporal shifts in local AOD trends.   948 

To diagnose the influences of local anthropogenic emissions and other 949 

meteorological parameters on the inter-decadal variation of regional AODs, statistical 950 

MLR models that estimated AOD monthly values over each ROI as a function of local 951 

emissions factors and various meteorological variables were developed. The modeled 952 

AODs using emission factors, meteorological parameters, and both, as input 953 

predictors in the MLR models were compared during three individual periods (i.e., 954 

1980–2014, 1980–1997 and 1998–2014). In general, the MLR models with both 955 

emissions and meteorological parameters as predictors could account for 42%–76% of 956 
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the variability of the MERRA-2 AOD, depending on the ROI. However, when 957 

meteorology and emissions alone were used as predictors, there were considerable 958 

differences in different ROIs. During 1980–2014, compared with the emission factors 959 

(0%–56%), it was found that meteorological parameters explained a larger proportion 960 

of the AOD changes (20.4%–72.8%) over all ROIs (except NC and SEA). Besides, 961 

further analysis also showed that this dominant driving role of meteorological 962 

parameters was stronger during the other two periods.  963 

The LMG method for MLR models suggested that SO2 was the dominant 964 

emissions driving factor, explaining 24.9%, 15.2%, 32.6%, 21.7% and 12.7% of the 965 

variance of AOD over NC, SC, SA, WEU and the EUS, respectively. In contrast, BC 966 

(OC) was the dominant emissions driving factor over SEA (AMZ), explaining 27.7% 967 

(24.0%) of the variance of AOD. For meteorological driving factors, over the mineral 968 

dust–dominant regions, wind speed was the top driving factor, explaining 30.3% and 969 

29.8% of the variance of AOD over NWC and the SD. Meanwhile, soil moisture and 970 

RH were the strongest meteorological driving factors over SEA and AMZ, and CF, 971 

contributing 11.7% and 35.5%, and 28.5%, respectively. Notably, the performance of 972 

the MLR model in 1980–1997 was significantly worse than that in 1998–2014, which 973 

can mainly be attributed to the fact that the statistical model used in this study did not 974 

take into account the impact of trans-regional transport. Consequently, the model 975 

failed to capture the abnormally high values of regional AOD caused by trans-regional 976 

transport during 1980–1997. Finally, deeper insight into the influence of emissions 977 

and meteorological factors, as well as the influence of atmospheric transport, on the 978 

inter-decadal change in regional AOD, will be provided in future modeling studies.  979 
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Table captions: 1404 

Table 1. Prediction variables used in the stepwise MLR models.  1405 

 1406 

Table 2. Statistical measures of the three hourly MERRA-2 AOD versus AERONET and 1407 

CARSNET AODs over the 12 regions of interest.  1408 

 1409 

Figure captions: 1410 

Figure 1. Geographical locations of the AERONET (yellow dots) and CARSNET sites (magenta 1411 

dots) used in this work. The red boxes represent the 12 regions of interest selected in this study: 1412 

Northeast Asia (NEA), northern China (NC), southern China (SC), Southeast Asia (SEA), 1413 

Northwest China (NWC), South Asia (SA), Middle East (ME), western Europe (WEU), Sahara 1414 

Desert (SD), Central Africa (CF), eastern United States (EUS), and Amazon Zone (AMZ).  1415 

 1416 

Figure 2. Flowchart with the procedure followed for (a) the evaluation of MERRA-2 global AOD 1417 

using the AERONET and CARSNET ground-based reference dataset, and (b) the evaluation of 1418 

global and regional AOD trends. 1419 

 1420 

Figure 3. Evaluation of the three-hourly MERRA-2 AOD against the (a) AERONET and (b) 1421 

CARSNET AODs. The color-coded dots indicate the number of samples. The solid red line is the 1422 

line of best fit and the black dashed line is the 1:1 line. For descriptions of statistical metrics, see 1423 

the comparison methods section. 1424 

 1425 

Figure 4. Comparison of the three-hourly MERRA-2 AOD datasets with AOD observations of 1426 

468 AERONET sites worldwide and 37 CARSNET sites in China: site performance maps for the 1427 

(a) correlation coefficient (R), (b) mean absolute error (MAE), root-mean-square error (RMSE), (c) 1428 

relative mean bias (RMB), (d) mean fractional error (MFE), (e) fractional gross error (FGE), and 1429 

(f) the index of agreement (IOA) between MERRA-2 AOD and ground-based AOD observations. 1430 

The size of the circles in Fig.4b represents the RMSE and their inner color represents the MAE. 1431 

The bars in the lower left inset in each panel represent the frequency distribution histograms for 1432 

the R, MAE, RMSE, RMB, MFE, FGE and IOA between MERRA-2 and all ground-based 1433 

observations incorporating AERONET and CARSNET, respectively. Note that all sites within 1434 

each region of interest (ROI) are integrated to assess the accuracy of the MERRA-2 AOD dataset 1435 

in that area. The performance of the MERRA-2 AOD dataset in each ROI is illustrated in Figs. S2 1436 

and S3.  1437 

 1438 

Figure 5. Temporal evolution of regional monthly averaged AOD for the 12 regions of interest. 1439 

Each year is represented by an irregular ring with 12 directions. Each direction of the ring 1440 

represents a specific month; the distance from the center of the ring represents the regional 1441 

monthly mean AOD value; and the color of the ring represents the year. A special ring colored 1442 

cyan represents the monthly mean AOD for the period 1980–2016. 1443 

 1444 

Figure 6. Spatial distributions of the linear trends in annual and seasonal MERRA-2 AOD 1445 
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calculated from the time series value of the de-seasonalized monthly anomaly during (a) 1980–1446 

2016, (b) 1980–1997, and (c) 1998–2016. Only trend values with statistical significance at the 95% 1447 

confidence level are shown.  1448 

 1449 

Figure 7. Spatial distributions of annual and seasonal trends in AOD calculated from the time 1450 

series value of the de-seasonalized monthly anomaly from (a) MERRA-2, (b) MODIS/Terra, and 1451 

(c) MISR between 2001 and 2016. Only trend values with statistical significance at the 95% 1452 

confidence level are shown.  1453 

 1454 

Figure 8. Inter-comparisons of global and regional annual trends in AOD calculated from the time 1455 

series value of the de-seasonalized monthly anomaly of MERRA-2, MODIS/Terra and MISR, 1456 

during the four periods of 1980–2016, 1980–1997, 1998–2016, and 2001–2016. Error bars 1457 

represent the uncertainty associated with the calculated trend. The trend bars with shadow indicate 1458 

statistical significance at the 95% confidence level. 1459 

 1460 

Figure 9. Sliding-window trend analyses of the annual mean MERRA-2 AOD from 1980 to 2016 1461 

over the 12 ROIs (see Fig. 1 for names and locations of regions), with at least 10 years used to 1462 

calculate trends. The x-axis and y-axis indicate the start year and the length of the time series to 1463 

calculate the trend, respectively. The colors of rectangles represent the intensity of the trend (units: 1464 

/year), and those with black ‘x’ signs indicate linear trends above the 95% significance level. 1465 

 1466 

Figure 10. Temporal evolution of sliding decadal trends in the annual and seasonal mean AOD 1467 

from MERRA-2, MODIS/Terra and MISR over the 12 ROIs. The trends were calculated for each 1468 

10-year interval from 1980 to 2007 for MERRA-2, and from 2001 to 2007 for MODIS/Terra and 1469 

MISR. The colors of the rectangles represent the intensity of the decadal trend (units: /year), and 1470 

those with black ‘x’ signs indicate linear trends above the 95% significance level.  1471 

 1472 

Figure 11. Spatial distributions of linear trends (units: kg/km
2
/year) in total anthropogenic 1473 

emissions of total suspended particles (TSP), SO2, black carbon (BC), and organic carbon (OC) 1474 

during 1980–2014 derived from the Peking University emissions inventory 1475 

(http://inventory.pku.edu.cn/) (Huang et al., 2014). Only linear trend values with statistical 1476 

significance at the 95% confidence level are shown.  1477 

 1478 

Figure 12. Time series of MERRA-2 (in black) and modeled AOD monthly normalized anomalies 1479 

from 1980 to 2014 over the 12 regions of interest. The coefficient of determination (R
2
) of the 1480 

regression fit of the stepwise MLR model with emission factors (in blue), meteorology (in green), 1481 

and both emissions and meteorology (in red) as predictors are given in the top-right of each panel.  1482 

 1483 

Figure 13. The LMG method–estimated relative contributions (%) of total variances in the 1484 

stepwise MLR model explained by the local emission factors (left-hand bars) and meteorological 1485 

variables (right-hand bars) over the 12 regions of interest during three periods: (a) 1980–1997 (top 1486 

panel); (b) 1998–2014 (middle panel); and (c) 1980–2014 (bottom panel). Note that 1487 

meteorological parameters were combined as follows: temperature, T (Ts, T850, T700, T500, dT900-s, 1488 

dT850-s); geopotential height, GH (GH850, GH700, GH500); relative humidity, RH (RHs, RH850, RH700, 1489 

http://inventory.pku.edu.cn/
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RH500); vertical velocity, Ome (Ome850, Ome700, Ome500); and wind speed, WS (U850, U700, U500, 1490 

V850, V700, V500, WSs, WS850, WS700, WS500, VWS500-850). Refer to Table S3 for the detailed 1491 

relative contributions of each variable in the stepwise MLR models.1492 
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Table 1. Prediction variables used in the stepwise MLR models.  1493 

Data type Variables Predictors used in the stepwise MLR model
a
 Data source 

Emission factors 

TSP Gridded monthly total emissions of total suspended particles Peking University global emissions 

inventories at 1° × 1° horizontal 

resolution 

(http://inventory.pku.edu.cn/home.h

tml) 

SO2 Gridded monthly total emissions of sulfur dioxide 

BC Gridded monthly total emissions of black carbon 

OC Gridded monthly total emissions of organic carbon 

Meteorological 

parameters 

Pre Gridded monthly total surface precipitation 

MERRA-2 reanalysis dataset at 

0.5° × 0.625° horizontal resolution 

(https://disc.gsfc.nasa.gov/daac-bin/

FTPSubset2.pl) 

PBLH Gridded monthly mean planetary boundary layer height 

SM Gridded monthly mean soil moisture at surface 

SLP Gridded monthly mean sea level pressure 

CLF Gridded monthly mean cloud fraction 

Ts Gridded monthly mean surface temperature 

T Gridded monthly mean 850-, 700- and 500-hPa temperature 

dT 
Gridded monthly mean temperature difference between 900 hPa and the 

surface, and 850 hPa and the surface 

GH Gridded monthly mean 850-, 700- and 500-hPa geopotential height 

RHs Gridded monthly mean surface relative humidity 

RH Gridded monthly mean 850-, 700- and 500-hPa relative humidity 

Ome Gridded monthly mean 850-, 700- 500-hPa vertical velocity 

U Gridded monthly mean 850-, 700- and 500-hPa zonal wind 

V Gridded monthly mean 850-, 700- and 500-hPa meridional wind 

WSs Gridded monthly mean surface wind speed 

WS Gridded monthly mean 850-, 700- and 500-hPa wind speed 

VS500-850
b
 Gridded monthly mean vertical wind shear between 500 and 850 hPa 

a
Units: g/km

2 
(TSP, SO2, BC, OC); kg/m

2
/s (Pre); m (PBLH, GH); 1 (SM, CLF); Pa (SLP); K (T, dT); % (RH); pa/s (Ome); and m/s (U,V, WS, VWS500-850)  1494 

b 
VWS500-850 was calculated as √(𝑈500 − 𝑈850)2 + (𝑉500 − 𝑉850)2 1495 

 1496 



 

40 
 

Table 2. Statistical measures of the three hourly MERRA-2 AOD versus AERONET and CARSNET AODs over the 12 regions of interest.  1497 

ROIs Number of sites Number of collocations R MAE RMSE RMB MFE (%) FGE (%) IOA 

NEA 13 35066 0.79 0.10 0.16 0.93 33.18 -2.65 0.92 

NC 3 16782 0.80 0.25 0.42 0.71 45.44 -23.85 0.78 

SC 2 3616 0.87 0.08 0.13 1.01 24.73 5.25 0.95 

SEA 17 32112 0.79 0.12 0.24 0.84 31.26 -8.52 0.86 

NWC 1 4633 0.85 0.03 0.05 1.01 30.74 1.98 0.98 

SA 13 33385 0.84 0.11 0.18 0.87 34.54 -8.06 0.93 

ME 10 34312 0.95 0.04 0.07 1.02 12.89 4.13 0.98 

WEU 81 252767 0.79 0.04 0.07 0.95 32.91 2.01 0.97 

SD 14 69982 0.81 0.14 0.20 0.97 33.22 4.40 0.91 

CF 5 12380 0.83 0.08 0.14 0.75 35.78 -22.96 0.93 

EUS 38 105577 0.70 0.07 0.11 1.11 42.28 17.82 0.94 

AMZ 8 21105 0.82 0.08 0.19 0.84 35.84 -1.73 0.89 

NC
a
 12 27508 0.70 0.23 0.33 0.71 47.31 -35.45 0.81 

SC
a
 2 2346 0.74 0.15 0.21 0.92 30.85 -8.01 0.90 

NWC
a
 3 10103 0.67 0.20 0.33 0.69 45.17 -26.00 0.78 

 
a
 indicates the statistical results for CARSNET sites.  1498 
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 1499 
Figure 1. Geographical locations of the AERONET (yellow dots) and CARSNET sites (magenta dots) used in this 1500 

work. The red boxes represent the 12 regions of interest selected in this study: Northeast Asia (NEA), northern 1501 

China (NC), southern China (SC), Southeast Asia (SEA), Northwest China (NWC), South Asia (SA), Middle East 1502 

(ME), western Europe (WEU), Sahara Desert (SD), Central Africa (CF), eastern United States (EUS), and Amazon 1503 

Zone (AMZ).  1504 

 1505 
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 1507 

Figure 2. Flowchart with the procedure followed for (a) the evaluation of MERRA-2 global AOD using the 1508 

AERONET and CARSNET ground-based reference dataset, and (b) the evaluation of global and regional AOD 1509 

trends. 1510 

 1511 

 1512 

 1513 

 1514 

 1515 

 1516 

 1517 

 1518 
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 1519 

Figure 3. Evaluation of the three-hourly MERRA-2 AOD against the (a) AERONET and (b) CARSNET AODs. 1520 

The color-coded dots indicate the number of samples. The solid red line is the line of best fit and the black dashed 1521 

line is the 1:1 line. For descriptions of statistical metrics, see the comparison methods section. 1522 

 1523 

 1524 

 1525 

 1526 

 1527 

 1528 

 1529 

 1530 
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 1531 

Figure 4. Comparison of the three-hourly MERRA-2 AOD datasets with AOD observations of 468 AERONET 1532 

sites worldwide and 37 CARSNET sites in China: site performance maps for the (a) correlation coefficient (R), (b) 1533 

mean absolute error (MAE), root-mean-square error (RMSE), (c) relative mean bias (RMB), (d) mean fractional 1534 

error (MFE), (e) fractional gross error (FGE), and (f) the index of agreement (IOA) between MERRA-2 AOD and 1535 

ground-based AOD observations. The size of the circles in Fig.4b represents the RMSE and their inner color 1536 

represents the MAE. The bars in the lower left inset in each panel represent the frequency distribution histograms 1537 

for the R, MAE, RMSE, RMB, MFE, FGE and IOA between MERRA-2 and all ground-based observations 1538 

incorporating AERONET and CARSNET, respectively. Note that all sites within each region of interest (ROI) are 1539 

integrated to assess the accuracy of the MERRA-2 AOD dataset in that area. The performance of the MERRA-2 1540 

AOD dataset in each ROI is illustrated in Figs. S2 and S3. 1541 

 1542 

 1543 

  1544 
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 1545 
Figure 5. Temporal evolution of regional monthly averaged AOD for the 12 regions of interest. Each year is 1546 

represented by an irregular ring with 12 directions. Each direction of the ring represents a specific month; the 1547 

distance from the center of the ring represents the regional monthly mean AOD value; and the color of the ring 1548 

represents the year. A special ring colored cyan represents the monthly mean AOD for the period 1980–2016. 1549 

 1550 

  1551 
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 1552 
Figure 6. Spatial distributions of the linear trends in annual and seasonal MERRA-2 AOD calculated from the time 1553 

series value of the de-seasonalized monthly anomaly during (a) 1980–2016, (b) 1980–1997, and (c) 1998–2016. 1554 

Only trend values with statistical significance at the 95% confidence level are shown.  1555 

 1556 

  1557 
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 1558 

Figure 7. Spatial distributions of annual and seasonal trends in AOD calculated from the time series value of the 1559 

de-seasonalized monthly anomaly from (a) MERRA-2, (b) MODIS/Terra, and (c) MISR between 2001 and 2016. 1560 

Only trend values with statistical significance at the 95% confidence level are shown.  1561 

 1562 

  1563 
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 1564 

Figure 8. Inter-comparisons of global and regional annual trends in AOD calculated from the time series value of 1565 

the de-seasonalized monthly anomaly of MERRA-2, MODIS/Terra and MISR, during the four periods of 1980–1566 

2016, 1980–1997, 1998–2016, and 2001–2016. Error bars represent the uncertainty associated with the calculated 1567 

trend. The trend bars with shadow indicate statistical significance at the 95% confidence level. 1568 

 1569 

  1570 
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 1571 

Figure 9. Sliding-window trend analyses of the annual mean MERRA-2 AOD from 1980 to 2016 over the 12 ROIs 1572 

(see Fig. 1 for names and locations of regions), with at least 10 years used to calculate trends. The x-axis and y-axis 1573 

indicate the start year and the length of the time series to calculate the trend, respectively. The colors of rectangles 1574 

represent the intensity of the trend (units: /year), and those with black ‘x’ signs indicate linear trends above the 95% 1575 

significance level.  1576 

 1577 

  1578 
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 1579 
Figure 10. Temporal evolution of sliding decadal trends in the annual and seasonal mean AOD from MERRA-2, 1580 

MODIS/Terra and MISR over the 12 ROIs. The trends were calculated for each 10-year interval from 1980 to 2007 1581 

for MERRA-2, and from 2001 to 2007 for MODIS/Terra and MISR. The colors of the rectangles represent the 1582 

intensity of the decadal trend (units: /year), and those with black ‘x’ signs indicate linear trends above the 95% 1583 

significance level.  1584 
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 1587 

Figure 11. Spatial distributions of linear trends (units: kg/km2/year) in total anthropogenic emissions of total 1588 

suspended particles (TSP), SO2, black carbon (BC), and organic carbon (OC) during 1980–2014 derived from the 1589 

Peking University emissions inventory (http://inventory.pku.edu.cn/) (Huang et al., 2014). Only linear trend values 1590 

with statistical significance at the 95% confidence level are shown.  1591 
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 1594 

Figure 12. Time series of MERRA-2 (in black) and modeled AOD monthly normalized anomalies from 1980 to 1595 

2014 over the 12 regions of interest. The coefficient of determination (R2) of the regression fit of the stepwise 1596 

MLR model with emission factors (in blue), meteorology (in green), and both emissions and meteorology (in red) 1597 

as predictors are given in the top-right of each panel.  1598 

 1599 

  1600 
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 1601 

Figure 13. The LMG method–estimated relative contributions (%) of total variances in the stepwise MLR model 1602 

explained by the local emission factors (left-hand bars) and meteorological variables (right-hand bars) over the 12 1603 

regions of interest during three periods: (a) 1980–1997 (top panel); (b) 1998–2014 (middle panel); and (c) 1980–1604 

2014 (bottom panel). Note that meteorological parameters were combined as follows: temperature, T (Ts, T850, T700, 1605 

T500, dT900-s, dT850-s); geopotential height, GH (GH850, GH700, GH500); relative humidity, RH (RHs, RH850, RH700, 1606 

RH500); vertical velocity, Ome (Ome850, Ome700, Ome500); and wind speed, WS (U850, U700, U500, V850, V700, V500, 1607 

WSs, WS850, WS700, WS500, VWS500-850). Refer to Table S3 for the detailed relative contributions of each variable 1608 

in the stepwise MLR models.  1609 

 1610 


