

Ozone enhancement due to photo-disassocation of nitrous acid in eastern China

Xuexi Tie^{1,2}, Xin Long^{1,5}, Guohui Li¹, Shuyu Zhao¹, Jianming Xu^{3,4}

¹KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

²Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

³ Shanghai Meteorological Service, Shanghai, 200030, China

⁴Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China

⁵School of Environment Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Correspondence to: XueXi Tie (tiexx@ieecas.cn) or
Jianming Xu (metxuim@163.cn)

28 **Abstract**

29 $\text{PM}_{2.5}$, a particulate matter with a diameter of 2.5 micrometers or less, is one of the
30 major components of the air pollution in eastern China. In the past few years, China's
31 government made strong efforts to reduce the $\text{PM}_{2.5}$ pollutions. However, another
32 important pollutant (ozone) becomes an important problem in eastern China. Ozone
33 (O_3) is produced by photochemistry, which requires solar radiation for the formation
34 of O_3 . Under heavy $\text{PM}_{2.5}$ pollution, the solar radiation is often depressed, and the
35 photochemical production of O_3 is prohibited. This study shows that during fall in
36 eastern China, under heavy $\text{PM}_{2.5}$ pollutions, there were often strong O_3
37 photochemical productions, causing a co-occurrence of high $\text{PM}_{2.5}$ and O_3
38 concentrations. This co-occurrence of high $\text{PM}_{2.5}$ and O_3 is un-usual and is the main
39 focus of this study. Recent measurements show that there were often high HONO
40 surface concentrations in major Chinese mega cities, especially during daytime, with
41 maximum concentrations ranging from 0.5 to 2 ppbv. It is also interesting to note that
42 the high HONO concentrations were occurred during high aerosol concentration
43 periods, suggesting that there were additional HONO surface sources in eastern China.
44 Under the high daytime HONO concentrations, HONO can be photo-dissociated to be
45 OH radicals, which enhance the photochemical production of O_3 . In order to study the
46 above scientific issues, a radiative transfer model (TUV; Tropospheric
47 Ultraviolet-Visible) is used in this study, and a chemical steady state model is
48 established to calculate OH radical concentrations. The calculations show that by
49 including the OH production of the photo-dissociated of HONO, the calculated OH
50 concentrations are significantly higher than the values without including this
51 production. For example, by including HONO production, the maximum of OH
52 concentration under the high aerosol condition (AOD=2.5) is similar to the value
53 under low aerosol condition (AOD=0.25) in the no-HONO case. This result suggests
54 that even under the high aerosol condition, the chemical oxidizing process for O_3
55 production can occurred, which explain the co-occurrence of high $\text{PM}_{2.5}$ and high O_3
56 in spring and fall seasons in eastern China. However, the O_3 concentrations were not
57 significantly affected by the appearance of HONO in winter. This study shows that
58 the seasonal variation of solar radiation plays important roles for controlling the OH
59 production in winter. Because the solar radiation is in a very low level in winter,
60 adding the photolysis of HONO has smaller effect in winter than in fall, and OH

61 remains low values by including the HONO production term. This study provides
62 some important scientific highlights to better understand the O₃ pollutions in eastern
63 China.

64

65 **Keywords; High PM_{2.5} and O₃, eastern China, HONO photolysis**

66

67

68

69

70

71

72 **1. Introduction**

73

74 Currently, China is undergoing a rapid economic development, resulting in a higher
75 demand for energy and greater use of fossil fuels. As a result, the high emissions of
76 pollutants produce heavy pollutions in mega cities of eastern China, such as Beijing
77 and Shanghai. For example, in the city of Shanghai (a largest mega city in China), the
78 urban and economical developments of the city are very rapid. During 1990 to 2015,
79 the population increased from 13.3 to 24.1 million. The number of automobiles
80 increased from 0.2 million (1993) to 2.0 million (2011). The rapid growing population
81 and energy usage caused a rapid increase in the emissions of pollutants, leading to
82 severe air pollution problems in these mega cities (Zhang et al., 2006; Geng et al.,
83 2007; Deng et al., 2008).

84

85 Measurements, such as satellite observations have revealed much higher aerosol
86 pollution in eastern China than in eastern US (Tie et al., 2006). The high aerosol
87 pollution causes a wide range of environmental consequences. According to a study
88 by Tie et al. (2009a), exposure to extremely high particle concentrations leads to a
89 great increase of lung cancer cases. High PM (particular matter) concentrations also
90 significantly reduce the range of visibility in China's mega cities (Deng et al., 2008).
91 According to a recent study, the high aerosol pollution causes important effects on the
92 crop (rice and wheat) production in eastern China (Tie et al., 2016).

93

94 In the troposphere, ozone formation is resulted from a complicated chemical process,
95 and requires ozone precursors, such as VOCs (volatile organic carbons) and NO_x =
96 NO + NO₂ (nitrogen oxides) (Sillman, 1995). As the increase in industrial activity and
97 number of automobiles, the precursors of ozone (O₃) and the global budget of
98 oxidization are also significantly increased (Huang et al., 2017; Huang et al., 2018).
99 As a result, O₃ pollutions are becomes a serous pollution problem in Shanghai and
100 other Chinese mega cities (Geng et al., 2010; Tie 2009b; Tie et al., 2015). The effects
101 on O₃ production rate can be characterized as either NO_x-sensitive or VOC-sensitive
102 conditions (Sillman, 1995; Zhang et al., 2003; Lei et al., 2004; Tie et al., 2013). Thus,
103 better understanding the trends of O₃ precursors (VOCs, NO_x) is important to
104 determine the O₃ trends in Shanghai (as well as many large cities in China).

105 In the past few years, China's government made strong efforts to reduce the PM_{2.5}
106 pollutions. However, another important pollutant (O₃) becomes an important problem
107 in eastern China. Several studies regarding the O₃ formation are previously studied in
108 Shanghai. For example, Geng et al. (2007; 2008) study the relationship between O₃
109 precursors (NOx and VOCs) for the ozone formation in Shanghai. Tie et al. (2009)
110 study the short-term variability of O₃ in Shanghai. Their study suggested that in
111 addition to the ozone precursors, meteorological conditions, such as regional transport,
112 have also strong impacts on the ozone concentrations. During September 2009, a
113 major field experiment (the MIRAGE-Shanghai) was conducted in Shanghai, and
114 multiply chemical species were measured during the experiment. The summary of the
115 measurements by Tie et al (2013) suggests that the ozone formation in Shanghai is
116 under VOC-sensitive condition. However, if the emission ration of NOx/VOCs
117 reduces to a lower value (0.1-0.2), the ozone formation in Shanghai will switch from
118 VOC-sensitive condition to NOx-sensitive condition.

119 Despite of some progresses have been made for the ozone formation in mega cities in
120 China, it is still lack of study of ozone development in large cities of China. For
121 example, this study shows that during fall in eastern China, under heavy PM_{2.5}
122 pollutions, there were often strong O₃ chemical productions, causing the
123 co-occurrence of high PM_{2.5} and O₃ concentrations. Under heavy aerosol condition,
124 the solar radiation is depressed, significantly reducing the photochemical production
125 of O₃. This co-occurrence of high PM_{2.5} and O₃ is an unusual and is the focus of this
126 study. He and Carmichael (1999) suggest that aerosol particles can enhance the
127 scattering of solar radiation, enhancing the flux density inside the boundary layer.
128 Recent measurements also show that there were often high HONO concentrations in
129 major Chinese mega cities, especially during daytime, with maximum concentrations
130 ranging from 0.5 to 2 ppbv (Huang et al., 2017). Shi et al. (2015) suggest that there
131 are several potential HONO sources, including surface emissions, conversion of NO₂
132 at the ocean surface, etc., and adding these sources can improve the calculated HONO
133 concentrations. It is also interesting to note that the high HONO surface
134 concentrations were occurred during high aerosol concentration periods, suggesting
135 that there are additional HONO surface sources in eastern China. Under the high
136 daytime HONO concentrations, HONO can be photo-dissociated to be OH radicals,
137 which enhance the photochemical production of O₃.

139 The paper is organized as follows: in Section 2, we describe the measurement of O₃
140 and PM_{2.5}. In Section 3, we describe the calculation of photo-dissociated rate of
141 HONO and a steady state model for the calculation of OH, and the causes of high O₃
142 production under the heavy aerosol condition. Section 4 shows a brief conclusion of
143 the results.

145 **2. Measurements of O₃ and PM_{2.5}**

147 There are long-term measurements in Eastern China by Chinese Environment
148 Protection Agency (CEPA) for monitoring the air quality in China. In eastern China,
149 especially in the capital city of China (Beijing), there are often heavy air pollutions,
150 especially for fine particular matter (PM_{2.5} – the radius of particle being less than 2.5
151 um). Figure 1 shows the measurement sites in Beijing, in which the measured
152 concentrations of PM_{2.5} and O₃ are used to the analysis. In the region, the air
153 pollutions were very heavy, especially in winter (Long et al., 2016; Tie et al., 2017).
154 The previous studies suggested that the both aerosol and O₃ pollutions became the
155 major pollutants in the region (Li et al., 2017).

157 Figure 2 shows the daily averaged concentrations of PM_{2.5} and O₃ in the Beijing
158 region in 2015. The daily averaged concentrations show that there were strong daily
159 and seasonal variations for both the concentrations of PM_{2.5} and O₃. Despite the daily
160 variation, the concentrations of PM_{2.5} existed a strong seasonal variation. For example,
161 there were very high concentrations during winter, with maximum of ~300 $\mu\text{g}/\text{m}^3$.
162 While in summer, the maximum concentrations reduced to ~150 $\mu\text{g}/\text{m}^3$. The seasonal
163 variability of O₃ concentrations were opposite with the PM_{2.5} concentrations, with
164 lower concentrations in winter (< 50 $\mu\text{g}/\text{m}^3$) and higher concentrations in summer (>
165 150 $\mu\text{g}/\text{m}^3$). These seasonal variations of PM_{2.5} and O₃ have been studied by previous
166 studies (Tie and Cao, 2017; Li et al., 2017). Their results suggest that the winter high
167 PM_{2.5} concentrations were resulted from the combination of both the high emissions
168 (heating season in the Beijing region), and poor meteorological ventilation conditions,
169 such as lower PBL (Planetary Boundary Layer) height (Quan et al., 2013; Tie et al.
170 2015). According to the photochemical theory of O₃ formation, the summer high and

171 winter low O₃ concentrations are mainly due to seasonal variation of the solar
172 radiation (Seinfeld, J. H. and Pandis, 2006).

173

174 In addition to the seasonal variation of solar radiation, the heavy aerosol
175 concentrations play important roles to reduce solar radiation, causing the reduction of
176 solar radiation and O₃ formation (Bian et al., 2007). As we show in Fig. 3a, during
177 wintertime, the O₃ concentrations were strong anti-correlated with the PM_{2.5}
178 concentrations, suggesting that the reduction of solar radiation by aerosol particles
179 have important impact on the reduction of O₃ concentrations. Figure 3a also shows
180 that the relationship between O₃ and PM_{2.5} was not linearly related. For example,
181 when the concentrations of PM_{2.5} were less than 100 $\mu\text{g}/\text{m}^3$, O₃ concentrations rapidly
182 decreased with the increase of PM_{2.5} concentrations. In contrast, when the
183 concentrations of PM_{2.5} were greater than 100 $\mu\text{g}/\text{m}^3$, O₃ concentrations slowly
184 decreased with the increase of PM_{2.5} concentrations. This is consistent with the result
185 of Bian et al (2007).

186

187 It is interesting to note that during late spring, summer, and early fall periods, the
188 correlation between PM_{2.5} and O₃ concentrations was positive relationship compared
189 to the negative relationship in winter (see Fig. 3b). This result suggests that O₃
190 production was high during the heavy haze period, despite the solar radiation was
191 greatly depressed. In order to clearly display this unusual event, we illustrate diurnal
192 variations of PM_{2.5} and O₃, and NO₂ during a fall period (from Oct.5 to Oc. 6, 2015).
193 Figure 4 shows that during this period (as a case study), the PM_{2.5} concentrations were
194 very high, ranging from 150 to 320 $\mu\text{g}/\text{m}^3$. Under such high aerosol condition, the
195 solar radiation should be significantly reduced, and O₃ photochemical production
196 would be reduced. However, the diurnal variation of O₃ was unexpectedly strong,
197 with high noontime concentration of $>220 \mu\text{g}/\text{m}^3$ and very low nighttime
198 concentration of $\sim 25 \mu\text{g}/\text{m}^3$. This strong diurnal variation was due to the
199 photochemical activity, which suggested that during relatively low solar conditions,
200 the photochemical activities of O₃ production was high. According to the theory of the
201 O₃ chemical production, the high O₃ production is related to high oxidant of OH
202 (Seinfeld and Pandis, 2006), which should not be occurred during lower solar
203 radiation. This result brings important issue for air pollution control strategy, because
204 the both air pollutants (high PM_{2.5} and O₃) were important air pollution problems in

205 eastern China.

206

207 To clearly understand the effect of the high aerosol concentrations on solar radiation,
208 we investigate the meteorological conditions, such as cloud covers, relation humidity
209 (RH), and solar radiation during the period of the case study (see Figs. 5 and 6).
210 Figure 5 shows that the cloud condition was close to the cloud free condition, but
211 there was a very heavy aerosol layer in the Beijing region, suggesting that cloud cover
212 played a minor role in the reduction of the solar radiation. The measured RH values
213 (not shown) were generally higher than 60%, with a maximum of 95% during the
214 period. As a result, the high aerosol concentrations companied by high RH produced
215 important effects on solar radiation. As shown in Fig. 6, the daytime averaged solar
216 radiation was significantly reduced (about 40% reduction in Oct. 5-6 period compared
217 with the value of Oct. 8).

218

219 **2. Method**

220

221 In order to better understand the O_3 chemical production occurred in heavy aerosol
222 condition in eastern China, the possible O_3 production in such condition is discussed.
223 Ozone photochemical production ($P[O_3]$) is strongly related to the amount of OH
224 radicals (Chameides et al., 1999). According to the traditional theory, the amount of
225 surface OH radicals is proportional to the surface of solar radiation, which is
226 represented by

227

$$228 [OH] = P[HOx]/L[HOx]^* \quad (R-1)$$

229

230 Where $[OH]$ represents the concentration of hydroxyl radicals ($\#/cm^3$); HOx
231 represents the concentration of $HO_2 + OH$ ($\#/cm^3$); $P[HOx]$ represents the
232 photochemical production of HOx ($\#/cm^3/s$); and $L[HOx]^*$ (1/s) represents the
233 photochemical destruction of HOx , which is normalized by the concentrations of OH.

234

235 The major process for the photochemical production of $P[HOx]$ is through the O_3
236 photolysis and follows by the reaction with atmospheric water vapor. It can express
237 by

$$238 P[HOx] = J_1[O_3]/(k_1 \times am) \times 2.0 \times k_2[H_2O] = P_1[HOx] \quad (R-2)$$

239 Where J_1 represents the photolysis of $O_3 + h\nu \rightarrow O^1D$; k_1 represents the reaction rate
240 of $O^1D + am \rightarrow O^3P$; and k_2 represents the reaction rate of $O^1D + H_2O \rightarrow 2OH$. As
241 we can see, this HOx production is proportional to the magnitude of solar radiation
242 (J_1), and J_1 is the O_3 photolysis with the solar radiation. Figure 7 shows the
243 relationship between the values of J_1 and aerosol concentrations in October at
244 middle-latitude calculated by the TUV model (Madronich and Flocke, 1999). This
245 result suggests that under the high aerosol concentrations (AOD = 2.5), the J_1 value is
246 strongly depressed, resulting in significant reduction of OH concentrations and O_3
247 production. For example, the maximum J_1 value is about 2.7×10^{-5} (1/s) with lower
248 aerosol values (AOD = 0.25). According to the previous study, the surface $PM_{2.5}$
249 concentrations were generally smaller than $50 \mu\text{g}/\text{m}^3$ with this AOD value (Tie et al.,
250 2017). However, when the AOD value increase to 2.5 (the $PM_{2.5}$ concentrations are
251 generally $>100 \mu\text{g}/\text{m}^3$), the maximum J_1 value rapidly decreases to about 6×10^{-6} (1/s),
252 which is about 450% reduction compared to the value with AOD=0.25. This study
253 suggests that under high $PM_{2.5}$ concentrations ($>100 \mu\text{g}/\text{m}^3$), the photochemical
254 production of OH (P[HOx]) is rapidly decreased, leading to low OH concentrations,
255 which cannot initiate the high oxidation of O_3 production. As a result, the high O_3
256 production shown in Fig. 4 cannot be explained. Other sources for O_3 oxidation are
257 needed to explain this result.

259
260 Recent studies show that the HONO concentrations are high in eastern China (Huang
261 et al., 2017). Because under high solar radiation, the photolysis rate of HONO is very
262 high, resulting in very low HONO concentrations in daytime (Seinfeld and Pandis,
263 2006). These measured high HONO concentrations are explained by their studies.
264 One of the explanations is that there are high surface HONO sources during daytime,
265 which produces high HONO concentrations (Huang et al., 2017). Shi et al. (2015)
266 suggest that there are several potential HONO sources, including surface emissions,
267 conversion of NO_2 at the ocean surface, etc. Zhang et al. (2016) parameterized these
268 potential HONO sources in the WRF-Chem model, and the calculated HONO
269 concentrations are increased in the WRF-Chem model. In our calculation, we only use
270 the classical gas-phase chemistry to calculate HONO concentrations, and to illustrate
271 that the importance of these missing sources for the production of OH radicals.

272 Adding these missing sources (there are not fully understand and remain a large
273 uncertainty) could be a very important future work.

274

275 Figure 8 shows the measured HONO concentrations in three large cities in China
276 (Shanghai, Xi'an, and Beijing) during fall and winter. It shows that the measured
277 HONO concentrations were high, with a maximum concentration of 2.3 ppbv during
278 morning, and about 0.5-1.0 ppbv in daytime. As a result, we think that the high
279 HONO is a common event in large cities in eastern China, especially in daytime. This
280 high HONO is also measured by previous studies (Zhang et al. 2016; Huang et al.
281 2017). In this study, we make an assumption that the co-occurrence between O₃ and
282 PM_{2.5} occurred under high HONO concentrations. We note that using this assumption
283 may result in some uncertainties in estimating the effect of HONO on OH. For
284 example, using the measured HONO in Xi'an and Beijing could produce 1-2 times
285 higher OH production by photolysis of HONO than the result by using the data from
286 Shanghai. In this case, we use the measured HONO from Shanghai to avoid the over
287 estimate of the HONO effect, which can be considered as a low-limit estimation.

288

289 It is also interesting to note that the high HONO concentrations were occurred during
290 high aerosol concentration periods. Figure 9 illustrates that when the PM_{2.5}
291 concentrations increased to 70-80 $\mu\text{g}/\text{m}^3$, and the HONO concentrations enhanced to
292 1.4-18 ppbv during September in Shanghai. This measured high HONO
293 concentrations were significantly higher than the calculated concentrations (shown in
294 Fig. 8), suggesting that some additional sources of HONO are needed. This result is
295 consistent with the HONO measurements in other Chinese cities (Huang et al. 2017).

296

297 Under the high HONO concentrations in daytime, HONO can be photolyzed to be OH,
298 and become another important process to produce OH. As a result, the OH production
299 rate (P[HO_x]) can be written to the following reactions.

300

$$301 \quad P_2[\text{HO}_x] = J_2 \times [\text{HONO}] \quad (\text{R-3})$$

$$302 \quad P[\text{HO}_x] = P_1[\text{HO}_x] + P_2[\text{HO}_x] \\ 303 \quad = J_1[\text{O}_3]/(k_1 \times \text{am}) \times 2.0 \times k_2[\text{H}_2\text{O}] + J_2 \times [\text{HONO}] \quad (\text{R-4})$$

304

305 Because the chemical lifetime of OH is less than second, OH concentrations can be
306 calculated according to equilibrium of chemical production and chemical loss. With
307 the both OH chemical production processes, the OH concentrations can be calculated
308 by the following equation (Seinfeld and Pandis, 2006).

309

310
$$P1 + P2 = L1 + L2$$

311

312 Where $P1$ and $P2$ are the major chemical productions, expressed in R-4, and $L1$ and
313 $L2$ are the major chemical loss of OH, and represent by

314

317

318 Under high NO_x condition, such as in the Shanghai region, NO_x concentrations were
319 often higher to 50 ppbv (shown in Fig. 3), the $L1$ term is larger than $L2$. The OH
320 concentrations can be approximately expressed by

321

322
$$[HO] = \{J_1[O_3]/(k_1 \times am) \times 2.0 \times k_2[H_2O] + J_2 \times [HONO]\}/$$

323 $k_3[NO_2] \quad (R-5)$

324

325 Where k_3 is the reaction coefficient of $OH + NO_2 \rightarrow HNO_3$.

326

327 **3. Result and analysis**

328 **3.1. OH productions in different HONO conditions**

329

330 In order to quantify the individual effects of these two OH production terms ($P1$ and
331 $P2$) on the OH concentrations, the $P1$ and $P2$ are calculated under different daytime
332 HONO conditions (calculated low HONO and measured high HONO concentrations).
333 Figure 10 shows that under the low HONO condition, the $P1$ is significantly higher
334 than $P2$, and $P2$ has only minor contribution to the OH values. For example, the
335 maximum of $P1$ occurred at 13 pm, with a value of $65 \times 10^6 \text{#/cm}^3/\text{s}$. In contrast, the
336 maximum of $P2$ occurred at 10 am, with a value of $15 \times 10^6 \text{#/cm}^3/\text{s}$. However, under
337 high HONO condition, the $P2$ plays very important roles for the OH production. The
338

339 maximum of P1 occurred at 11 am, with a value of $350 \times 10^6 \text{#/cm}^3/\text{s}$, which is about
340 500% higher than the P1 value. It is important to note that this calculation is based on
341 the high aerosol condition (AOD = 2.5) in September. This result can explain the high
342 O₃ chemical production in Fig. 4.

343

344 **3.2. OH in different aerosol conditions**

345

346 In order to understand the effect of aerosol conditions, especially high aerosol
347 conditions, on the OH concentrations. Figure 11 shows the OH concentrations with
348 and without HONO production of OH. With including the HONO production (i.e.,
349 including P1 and P2), the calculated OH concentrations are significantly higher than
350 without including this production (i.e., only including P1). The both calculated OH
351 concentrations are rapidly changed with different levels of aerosol conditions. For
352 example, without HONO production, the maximum OH concentration is about
353 $7.5 \times 10^5 \text{#/cm}^3$ under low aerosol condition (AOD=0.25). In contrast, the maximum
354 OH concentration rapidly reduced to $1.5 \times 10^5 \text{#/cm}^3$ under high aerosol condition
355 (AOD=2.5), and further decreased to $1.0 \times 10^5 \text{#/cm}^3$ with the AOD value of 3.5. In
356 contrast, with including HONO production, the OH concentrations significantly
357 increased. Under higher aerosol condition (AOD=2.5), the maximum of OH
358 concentration is about $7.5 \times 10^5 \text{#/cm}^3$, which is the same value under low aerosol
359 condition in the no-HONO case. This result suggests that the measured high O₃
360 production occurred in the high aerosol condition is likely due to the high HONO
361 concentrations in Shanghai.

362

363 **3.3. Effects of clouds**

364

365 Cloud cover can have very important impacts on the photolysis of HONO, which can
366 affect the effect of HONO on the OH radicals. The above calculations are based on
367 the cloud-free condition, with heavy aerosol concentration in the Beijing region. As
368 shown in Fig. 5, during the case study period (Oct 5 to 6, 2015) (see Fig. 4), the
369 weather map shows that the cloud-free condition, with heavy aerosol condition.

370

371 In order to understand the effects of cloud on the photolysis of HONO, we include
372 different cloud covers in the TUV model. The calculated results show in Fig. 12.
373 The results show that the thin cloud (with cloud cover in 2 km and cloud water of 10

374 g/m³), could reduce the photolysis rate of HONO by about 40%, but the HONO could
375 still remain important effects. However, with dense cloud condition (with cloud
376 covers at 2 and 3 km and cloud water of 50 10 g/m³), the photolysis rate of HONO
377 could reduce by 9-10 times by the cloud. In this case, adding photolysis rate of
378 HONO cannot produce important effect on OH radicals and the production of O₃.

379

380 **3.3. OH in winter**

381

382 The measurement of O₃ also shows that the concentrations in winter were always low
383 (see Fig. 2), suggesting that the O₃ concentrations were not significantly affected by
384 the appearance of HONO. Figure 10 shows the OH concentrations in September and
385 December. It shows that under different aerosol conditions, OH concentrations in
386 December were very low compared with the values in September. Both the calculated
387 OH concentrations include the HONO production term. For example, under the
388 condition of AOD=2.5, the maximum OH is about 7.5×10^5 #/cm³ in September, while
389 it rapidly reduces to 1.5×10^5 #/cm³ in December. Under the condition of AOD=3.5,
390 the maximum OH is still maintaining to a relative high level (4.5×10^5 #/cm³) in
391 September. However, the maximum OH values are extremely low in December, with
392 maximum value of 0.5×10^5 #/cm³ in December. Because both the OH chemical
393 productions (P1 and P2) are strongly dependent upon solar radiation (see equation
394 R-4), the seasonal variation of solar radiation plays important roles for controlling the
395 OH production in winter (see Fig. 13). Because the solar radiation is in a very low
396 level in winter, adding the photolysis of HONO has smaller effect in winter than in
397 fall, and OH remains low values by including the HONO production term.

398

399 **Summary**

400

401 Currently, China is undergoing a rapid economic development, resulting in a high
402 demand for energy, greater use of fossil fuels. As a result, the high emissions of
403 pollutants produce heavy aerosol pollutions (PM_{2.5}) in eastern China, such as in the
404 mega city of Beijing. The long-term measurements show that in addition to the heavy
405 aerosol pollution, the O₃ pollution becomes another major pollutants in the Beijing
406 region. The measured results show that there were very strong seasonal variation in
407 the concentrations of both PM_{2.5} and O₃ in the region. During winter, the seasonal
408 variability of O₃ concentrations were anti-correlated with the PM_{2.5} concentrations.

409 However, during late spring and fall periods, the correlation between PM_{2.5} and O₃
410 concentrations was positive compared to the negative in winter. This result suggests
411 that during heavy aerosol condition (the solar radiation was depressed), the O₃
412 chemical production was still high, appearing a double peak of PM_{2.5} and O₃ during
413 fall period. This co-occurrence of high PM_{2.5} and O₃ is the focus of this study. The
414 results are highlighted as follows;

415

416 (1) There are high daytime HONO concentrations in major Chinese mega cities, such
417 as in Beijing and Shanghai. It is also interesting to note that the high HONO
418 concentrations were occurred during high aerosol concentration periods. Under
419 the high daytime HONO concentrations, HONO can be photo-dissociated to be
420 OH radicals, and becomes an important process to produce OH.

421 (2) With including the OH production of measured HONO concentrations, the
422 calculated OH concentrations are significantly higher than without including this
423 production. For example, without HONO production, the maximum OH
424 concentration is about $7.5 \times 10^5 \text{#/cm}^3$ under low aerosol condition (AOD=0.25),
425 and rapidly reduced to $1.5 \times 10^5 \text{#/cm}^3$ under high aerosol condition (AOD=2.5) in
426 September. In contrast, by including HONO production, the OH concentrations
427 significantly increased. For example, under higher aerosol condition (AOD=2.5),
428 the maximum of OH concentration is about $7.5 \times 10^5 \text{#/cm}^3$, which is similar to the
429 value under low aerosol condition in the no-HONO case. This result suggests that
430 even under the high aerosol conditions, the chemical oxidizing process for O₃
431 production can be active. This result is likely for explaining the co-occurrence of
432 high PM_{2.5} and high O₃ in fall season in eastern China.

433 (3) The measurement of O₃ also shows that the concentrations in winter were always
434 low, suggesting that the O₃ concentrations were not significantly affected by the
435 appearance of HONO. The calculated result shows that the seasonal variation of
436 solar radiation plays important roles for controlling the OH production in winter.
437 Because the solar radiation is in a very low level in winter, adding the photolysis
438 of HONO has smaller effect in winter than in fall, and OH remains low values by
439 including the HONO production term.

440 Because in recent years, the PM_{2.5} pollutions are reduced due to the large control
441 efforts by the Chinese government, the O₃ pollutions become another severe pollution
442 problem in eastern China. This study is important, because it provides some important

443 scientific highlights to better understand the O₃ pollutions in eastern China.

444

445 **Data availability.** The data used in this paper can be provided upon request from
446 Xuexi Tie (tiexx@ieecas.cn).

447

448 **Author contributions.** XT came up with the original idea of investigating the
449 scientific issue. XT and JX designed the analysis method. XL, GL and SZ provided
450 the observational data and helped in discussion. XT prepared the manuscript with
451 contributions from all co-authors.

452

453 **Acknowledgement**

454 This work was supported by the National Natural Science Foundation of China
455 (NSFC) under Grant Nos. 41430424 and 41730108. The Authors thanks the supports
456 of Center for Excellence in Urban Atmospheric Environment, Institute of Urban
457 Environment, Chinese Academy of Sciences.

458

459

460 **References**

461

462 Bian H., S.Q. Han, X. Tie, M.L. Shun, and A.X. Liu, Evidence of Impact of Aerosols
463 on Surface Ozone Concentration: A Case Study in Tianjin, China, *Atmos.*
464 *Environ.*, 41, 4672-4681, 2007.

465 Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martines, J., Parrish,
466 D., Lonneman, W., Lawson, D. R., Ras- mussen, R. A., Zimmerman, P.,
467 Greenberg, J., Middleton, P., and Wang, T.: Ozone precursor relationships in the
468 ambient atmo- sphere, *J. Geophys. Res.*, 97, 6037–6055, 1992.

469 Deng X.J, X Tie, D. Wu, XJ Zhou, HB Tan, F. Li, C. Jiang, Long-term trend of
470 visibility and its characterizations in the Pearl River Delta Region (PRD), China,
471 *Atmos. Environ.*, 42, 1424-1435, 2008.

472

473 Geng, F.H., C.S., Zhao, X. Tang, GL. Lu, and X. Tie, Analysis of ozone and VOCs
474 measured in Shanghai: A case study, *Atmos. Environ.*, 41, 989-1001, 2007.

475 Geng, FH, CG Cai, X. Tie, Q. Yu, JL An, L. Peng, GQ Zhou, JM Xu, Analysis of
476 VOC emissions using PCA/APCS receptor model at city of Shanghai, China, *J.*
477 *Atmos. Chem.*, 62, 229–247, DOI :10.1007/s10874-010-9150-5, 2010.

478

479 He, S., & Carmichael, G. R. (1999). Sensitivity of photolysis rates and ozone pro-
480 duction in the troposphere to aerosol properties. *Journal of Geophysical Research: Atmospheres*, 104(D21), 26307-26324.

481

482 Huang, J.P, X. Y. Liu, C. Y. Li, L. Ding, H. P. Yu, The global oxygen budget and its
483 future projection. *Science Bull.* 63, 1180–1186, 2018.

484

485 Huang J., Y. Li, C. Fu, F. Chen, Q. Fu, A. Dai, M. Shinoda, Z. Ma, W. Guo, Z. Li, L.
486 Zhang, Y. Liu, H. Yu, Y. He, Y. Xie, X. Guan , M. Ji, L. Lin, S. Wang, H. Yan
487 and G. Wang, Dryland climate change recent progress and challenges. *Rev. of*
488 *Geophys.*, 55, 719-778, doi:10.1002/2016RG000550, 2017.

489

490 Huang, R. J., L. Yang, JJ Cao, QY Wang, X. Tie, et al., Concentration and sources of
491 atmospheric nitrous acid (HONO) at an urban site in Western China. *Sci. of Total*
492 *Environ.*, 593-594, 165-172, doi.org/10.1016/j.scitotenv.2017.02.166, 2017.

493 Lei, W., R. Zhang, X. Tie, P. Hess, Chemical characterization of ozone formation in
494 the Houston-Galveston area, *J. Geophys. Res.*, 109, doi:10.1029/2003JD004219,
495 2004.

496 Li, G., Bei, N., Cao, J., Wu, J., Long, X., Feng, T., Dai, W., Liu, S., Zhang, Q., and
497 Tie, X.: Widespread and persistent ozone pollution in eastern China during the
498 non-winter season of 2015: observations and source attributions, *Atmos. Chem.*
499 *Phys.*, 17, 2759-2774, doi:10.5194/acp-17-2759-2017, 2017.

500 Long, X., X. Tie, JJ Cao, RJ Huang, T. Feng, N. Li, SY Zhao, J. Tian, GH Li, Q.
501 Zhang, Impact of crop field burning and mountains on heavy haze in the North
502 China Plain: A case study, *Atmos. Chem. Phys.*, 16, 9675-9691,

503 doi:10.5194/acp-16-9675-2016, 2016.

504 505 Madronich, S. & Flocke, S. in *Environmental Photochemistry 2 / 2L*, 1–26 (Springer Berlin Heidelberg, 1999)

506 507 508 509 Quan, J.N., Y. Gao, Q. Zhang, X. Tie*, JJ Cao, SQ Han, JW Meng, PF Chen, DL Zhao, Evolution of Planetary Boundary Layer under different weather conditions, and its impact on aerosol concentrations, *Particuology*, doi: 10.1016/j.partic.2012.04.005, 2013.

510 511 Seinfeld, J. H. and Pandis, S. N.: *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*, 2nd Edn., John Wiley and Sons, New York, 2006.

512 513 514 Shi, C., Wang, S., Liu, R., Zhou, R., Li, D., Wang, W., ... & Zhou, B. (2015). A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China. *Atmospheric Research*, 153, 235-249.

515 516 517 Sillman, S.: The use of NO_y, H₂O₂, and HNO₃ as indicators for ozone-NO_x-hydrocarbon sensitivity in urban locations, *J. Geo- phys. Res.*, 100, 14175–14188, 1995.

518 519 520 Tie, X., G. Brasseur, C. Zhao, C. Granier, S. Massie, Y. Qin, P.C. Wang, GL Wang, PC, Yang100,, Chemical Characterization of Air Pollution in Eastern China and the Eastern United States, *Atmos. Environ.*, 40. 2607-2625, 2006.

521 Tie, X., D. Wu, and G. Brasseur, Lung Cancer Mortality and Exposure to Atmospheric Aerosol Particles in Guangzhou, China, *Atmos. Environ.*, 43, 2375–2377, 2009a.

525 526 527 Tie, X., FH. Geng. L. Peng, W. Gao, and CS. Zhao, Measurement and modeling of O₃ variability in Shanghai, China; Application of the WRF-Chem model, *Atmos. Environ.*, 43, 4289-4302, 2009b.

528 529 530 531 532 Tie X., F. Geng, A. Guenther, J. Cao, J. Greenberg, R. Zhang, E. Apel, G. Li, A. Weinheimer, J. Chen, and C. Cai, Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign, *Atmos. Chem. Phys.*, 13, 5655-5669, doi:10.5194/acp-13-5655-2013, 2013.

533 534 Tie, X., Q. Zhang, H. He, JJ Cao, SQ Han, Y. Gao, X. Li, and XC Jia, A budget analysis on the formation of haze in Beijing, *Atmos. Environ.*, 25-36, 2015.

535 536 537 Tie, X., RJ Huang, WT Dai, JJ Cao, X. Long, XL Su, SY Zhao, QY Wang, GH Li, Effect of heavy haze and aerosol pollution on rice and wheat productions in China, *Sci. Rep.* 6, 29612; doi: 10.1038/srep29612, 2016.

538 539 Tie, X., J.J. Cao, Understanding Variability of Haze in Eastern China, *J Fundam Renewable Energy Appl*, 7:6 DOI: 10.4172/2090-4541.100024, 2017.

540 Tie, X., R.J. Huang, J.J. Cao, Q. Zhang, Y.F. Cheng, H. Su, D. Chang, U. Pöschl, T.

541 Hoffmann, U. Dusek, G. H. Li, D. R. Worsnop, C. D. O'Dowd, Severe Pollution
542 in China Amplified by Atmospheric Moisture, *Sci. Rep.* 7: 15760 |
543 DOI:10.1038/s41598-017-15909-1, 2017.

544 Zhang, L., Wang, T., Zhang, Q., Zheng, J., Xu, Z., & Lv, M.. Potential sources of
545 nitrous acid (HONO) and their impacts on ozone: A WRF/Chem study in a
546 polluted subtropical region. *Journal of Geophysical Research: Atmospheres*,
547 121(7), 3645- 3662, 2016.

548 Zhang, R., X. Tie, and D. Bond, Impacts of Anthropogenic and Natural NO_x Sources
549 over the U.S. on Tropospheric Chemistry, *Proceedings of National Academic
550 Science USA*, 100, 1505-1509, 2003.

552 Zhang, Q., C. Zhao, X. Tie, Q. Wei ,G. Li, and C. Li, Characterizations of Aerosols
553 over the Beijing Region: A Case Study of Aircraft Measurements, 40,
554 4513-4527, *Atmos. Environ.*, 2006.

555

556

557 **Figure Caption**
558

559 **Fig. 1.** The geographic locations of the measurement sites in Beijing, in which the
560 measured concentrations of $\text{PM}_{2.5}$ and O_3 are used to the analysis.

561 **Fig. 2.** The daily averaged concentrations of $\text{PM}_{2.5}$ and O_3 in the Beijing region in
562 2015. The concentrations are averaged over all sites shown in Fig. 1. The blue lines
563 represent the $\text{PM}_{2.5}$ concentrations ($\mu\text{g}/\text{m}^3$), and the red bars represent the O_3
564 concentrations ($\mu\text{g}/\text{m}^3$). The rectangles show some typical events during winter
565 (green), spring and fall (orange), and summer (red).

566 **Fig. 3.** The correlation between O_3 and $\text{PM}_{2.5}$ concentrations during winter (upper
567 panel) and during late spring and fall (lower panel). During winter, O_3 concentrations
568 were strong anti-correlated with the $\text{PM}_{2.5}$ concentrations. During late spring and fall,
569 O_3 concentrations were correlated with the $\text{PM}_{2.5}$ concentrations.

570 **Fig. 4.** The diurnal variations of $\text{PM}_{2.5}$ (blue line) and O_3 (red line), and NO_2 (green
571 line) during a fall period (from Oct. 5 to Oct. 6, 2015). It shows that with high $\text{PM}_{2.5}$
572 condition, there was a strong O_3 diurnal variation.

573 **Fig. 5.** The cloud condition during the period of the case study (between Oct 5 and 6,
574 2015) in the Beijing region. The bright white color shows the cloud covers, and the
575 grey white shows the haze covers. The Beijing region was under the heavy haze
576 conditions during the period.

577 **Fig. 6.** The measured solar radiation (W/m^2) from Oct. 3 to Oct. 9, 2015 in Beijing.
578 The upper panel shows hourly values, and the lower panel shows the daytime
579 averaged values.

580 **Fig. 7.** The effect of aerosol levels with $\text{AOD} = 0.25$ (black line), $\text{AOD} = 2.5$ (red
581 line), $\text{AOD} = 3.5$ (blue line), and $\text{AOD} = 4.0$ (green line) on the O_3 photolysis
582 calculated by the TUV model in October at middle-latitude.

583 **Fig. 8.** The measured HONO concentrations (ppbv) in three large cities in China. The
584 red line was measured in Xi'An from 24 July to August 6, 2015. The blue line was
585 measured in Shanghai from 9 to 18 September, 2009. The dark-red line was measured
586 in Beijing from 1 to 27 January, 2014. The green line is calculated by the WRF-Chem
587 model. The measurement in fall of Shanghai is applied to the calculation for the OH
588 production of HONO .

589 **Fig. 9.** The measured HONO (upper panel) and $\text{PM}_{2.5}$ concentrations (lower panel) in
590 fall in Shanghai. It illustrates that the high HONO concentrations were corresponded
591 with high $\text{PM}_{2.5}$ concentrations.

592 **Fig. 10.** The calculated OH production $P(\text{HOx})$ ($\#/ \text{cm}^3/\text{s}$) by using the model
593 calculated HONO (low concentrations) (in the upper panel) and by using the
594 measured HONO (high concentrations) (in the lower panel). The red bars represent
595 the calculation of the P1 term, and the red bars represent the calculation of the P2
596 term (OH production from HONO).

607 **Fig. 11.** The calculated OH concentrations (#/cm³) with (upper panel) and without
608 (lower panel) HONO production of OH, under different aerosol levels. Dark red
609 (AOD=0.25), red (AOD=2.5)), red (AOD=3.5)), and red (AOD=4.0).

610

611 **Fig. 12.** The effect of cloud cover on the photolysis rate of HONO (J[HONO]). The
612 blue, red, and green lines represent the cloud water vapor of 0 (cloud-free), 10 (g/m³ –
613 thin cloud), and 50 (g/m³ – thick cloud), respectively. The left panel (A) represents
614 the light aerosol condition, with AOD of 0.25, and the right panel (B) represents the
615 heavy aerosol condition, with AOD of 2.5.

616

617 **Fig. 13.** The calculated OH concentrations in September (blue bars) and December
618 (dark red bars), under different aerosol levels.

619

620

621

622

623
624

Figures

625
626
627 **Fig. 1.** The geographic locations of the measurement sites in Beijing, in which the measured
628 concentrations of $PM_{2.5}$ and O_3 are used to the analysis.
629

630
631
632
633
634
635
636
637
638
639
640

Fig. 2. The daily averaged concentrations of PM_{2.5} and O₃ in the Beijing region in 2015. The concentrations are averaged over all sites shown in Fig. 1. The blue lines represent the PM_{2.5} concentrations ($\mu\text{g}/\text{m}^3$), and the red bars represent the O₃ concentrations ($\mu\text{g}/\text{m}^3$). The rectangles show some typical events during winter (green), spring and fall (orange), and summer (red).

641
642

643
644
645
646
647
648
649
650

Fig. 3. The correlation between O_3 and $PM_{2.5}$ concentrations during winter (upper panel) and during late spring and fall (lower panel). During winter, O_3 concentrations were strong anti-correlated with the $PM_{2.5}$ concentrations. During late spring and fall, O_3 concentrations were correlated with the $PM_{2.5}$ concentrations.

651
652
653
654
655
656
657

Fig. 4. The diurnal variations of $PM_{2.5}$ (blue line) and O_3 (red line), and NO_2 (green line) during a fall period (from Oct. 5 to Oct. 6, 2015). It shows that with high $PM_{2.5}$ condition, there was a strong O_3 diurnal variation.

658
659
660
661
662

Fig. 5. The cloud condition during the period of the case study (between Oct 5 and 6, 2015 in the Beijing region. The bright white color shows the cloud covers, and the grey white shows the haze covers. The Beijing region is under the heavy haze conditions during the period.

663
664
665
666
667

Fig. 6. The measured solar radiation (W/m^2) from Oct. 3 to Oct. 9, 2015 in Beijing. The upper panel shows hourly values, and the lower panel shows the daytime averaged values.

668
669
670
671
672
673

Fig. 7. The effect of aerosol levels with AOD = 0.25 (black line), AOD = 2.5 (red line), AOD = 3.5 (blue line), and AOD = 4.0 (green line) on the O_3 photolysis calculated by the TUV model in October at middle-latitude.

674
675
676
677 **Fig. 8.** The measured HONO concentrations (ppbv) in three large cities in China.
678 The red line was measured in Xi'An from 24 July to August 6, 2015. The blue line
679 was measured in Shanghai from 9 to 18 September, 2009. The dark-red line was
680 measured in Beijing from 1 to 27 January, 2014. The green line is calculated by the
681 WRF-Chem model. The measurement in fall of Shanghai is applied to the
682 calculation for the OH production of HONO.
683

684
685
686
687
688

Fig. 9. The measured HONO (upper panel) and PM_{2.5} concentrations (lower panel) in fall in Shanghai. It illustrates that the high HONO concentrations were corresponded with high PM_{2.5} concentrations.

689
690
691 Fig. 10. The calculated OH production $P(HOx)$ ($\#/cm^3/s$) by using the model calculated
692 HONO (low concentrations) (in the upper panel) and by using the measured HONO
693 (high concentrations) (in the lower panel). The red bars represent the calculation of the
694 P1 term, and the red bars represent the calculation of the P2 term (OH production from
695 HONO).

696
697
698
699
700
701
702
703
Fig. 11. The calculated OH concentrations ($\#/cm^3$) with (upper panel) and without (lower panel) HONO production of OH, under different aerosol levels. Dark red (AOD=0.25), red (AOD=2.5), red (AOD=3.5), and red (AOD=4.0).

704
705
706
707
708
709
710
711
712
713
714
715

Fig. 12. The effect of cloud cover on the photolysis rate of HONO ($J[HONO]$). The blue, red, and green lines represent the cloud water vapor of 0 (cloud-free), 10 (g/m^3 – thin cloud), and 50 (g/m^3 – thick cloud), respectively. The left panel (A) represents the light aerosol condition, with AOD of 0.25, and the right panel (B) represents the heavy aerosol condition, with AOD of 2.5.

716
717

718
719
720
721
722

Fig. 13. The calculated OH concentrations in September (blue bars) and December (dark red bars), under different aerosol levels.