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Responses to Reviewers:
Reviewer 1:

We thank the reviewer again for his/her careful reading of the manuscript and helpful comments.
We have revised the manuscript following the suggestions as is described below.

The authors made great efforts of revising the manuscript. However, the paper is still not
well written, and the conclusions were not convincingly supported by the data and method.
This is really an interesting scientific issue. I think there is still considerable more work
necessary to get the manuscript ready for publication at ACP. My major concerns are as
follows:

(1) The whole manuscript is based on the assumption that the co-occurrence of high ozone
and PM2.5 is under high HONO concentration. This assumption is highly possible to be true,
but it is lack of supportive measurement data. The authors have valuable HONO
measurements at three mega-cities including Beijing, Shanghai and Xi’An shown in Figure 8.
Since ozone and PM2.5 are routine measurement air pollutants, | would recommend
including them into the plot as well. Also, in Figure 8, since the measurement time is
different, I do not think they are comparable. | recommend separating Figure 8 into three
subplots by including ozone and PM2.5, and each subplot is for each city. So that the
assumption should be more solid.

Thanks for the constructive suggestion. We have separated Fig. 8 to 3 subplots. Fig. 8a shows
the measured PM2.5 and 03, along with the measured HONO in Beijing. Fig. 8b shows the
measured PM2.5 and 03, along with the measured and calculated HONO in Shanghai. ~ Fig.
8c shows the measured PM2.5 and 03, along with the measured HONO in Xi’an. All figures
show that there were co-occurrences of high 03 and PM2.5, from late spring to early fall,
along with high HONO concentrations. These figures make the assumption to be more solid.
We have added the corresponding text in the revised version.

(2) The authors still did not state the set up of the WRF-Chem simulation, e.g. the gas-phase
mechanism used in the model? The authors need to at least briefly explain why the HONO
calculated by WRF-Chem is much lower than the observation. I think the model only
consider the HONO source with NO+OH only right? Also, how could the authors compare one
WRF-Chem modeling result to observations at three different cities during three
measurement time periods? All of those statement and comparison are not rigorous. Please
revise.

To address the comments of the reviewer, we add more details regarding the chemical
scheme of the WRF-Chem (the version which we used). We adding that “The version of the
WRF-Chem model is based on the version developed by Grell et al. (2015), and is improved
mainly by Tie et al. (2007) and Li et al. (2011). The chemical mechanism chosen in this
version of WRF-Chem is the RADM2 (Regional Acid Deposition Model, version 2) gas-phase
chemical mechanism. For the calculation of HONO, only the gas-phase chemistry of
OH+NO is included to calculate HONO concentrations. As shown in Fig. 8, the calculated
HONO concentrations are significantly smaller than the measured HONO values in eastern
China, suggesting that in addition to the gas-reaction, there are missing HONO sources
(surface sources or others). Because these missing sources are not fully understood and large
uncertainty is remained, in the following calculation, we compare the OH concentrations
due to both calculated HONO (without the missing sources) and the measured HONO
concentrations to illustrate the importance of these missing sources for the production of OH
radicals and to suggest that further study to better understand the missing sources is an
urgent scientific issue”.

(3) Some conclusions and rationales are not rigorous. For example:
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Line 278-279: Unless the authors show the error bars, this conclusion is not solid.
We revise this statement

Line 281-287: see my major concern (1).
According to the reviewer’s suggestion, we make 3 subplots (see answer 1)

Line 289-295: If it is possible, it would be very helpful to include ozone measurement into
Figure 9 as well.
Following the reviewer’s comment, we add O3 measurement in Fig. 9.

(4) The literature is not cited properly:
Line 100-102: the mixed regime for ozone formation is missed in the statement.
Added.

Line 130: Shi et al. (2015) never talked about “several potential HONO sources, including
surface emissions, conversion of NO 2 at the ocean surface, etc., and adding these sources
can improve the calculated HONO concentrations.” These conclusions are from Zhang et al.
(2016).

Corrected.

Line 266: see my comments above, wrong citation.
Corrected.

(5) The paper is not very well written and organized. There are numerous typos and
grammar errors. Please carefully review the whole manuscript and revise them accordingly.
I listed some as follows, but not limited to:

Line 35: only “fall”? It seems the authors mentioned both “late spring and fall” in the
manuscript?
Corrected. Changed to “from late spring to early fall” in all manuscript.

Line 56: here is “spring and fall”? Please be consistent through the whole manuscript.
Corrected.

Line 99: grammar error - “... are becomes ...” Please revise.
Corrected.

Line 121: is it just “fall” or “late spring and fall”? Please be consistent through the whole.
Corrected.

Line 145 and 219: two section 2? Please revise.
Corrected. Also for the following numbers of sections.

Line 174-176: the sentence is redundant. Consider the following:

“The heavy aerosol concentrations play important roles to reduce solar radiation, causing
the reduction of 03 formation.”

Thanks. The sentence is changed according to the suggestion of the reviewer.

Line 176: there is no Fig. 3a. Please indicate the upper panel as (a) in the plot or in the figure
capital.
Corrected.

Line 187: now the seasons include “late spring, summer, and early fall” instead of “late
spring and fall”. I am very confused. Please be consistent about the seasons through the
whole manuscript.
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Thanks for point out this typo. We checked all text, and changed to a consistent word “from
late spring to early fall”.

Line 204-205: the sentence is redundant. Consider the following:
“both PM2.5 and O3 are severe air pollutants in eastern China.”
Thanks. The sentence is changed according to the suggestion of the reviewer.

Line 207-217: Good!

Line 219 and Line 145: two section 2? Please revise.
Corrected.

Line 225: you mean “the surface solar radiation”, not “the surface of solar radiation” right?
Corrected.

Line 236-237: “It can be expressed as”
Corrected.

Line 297-298: the sentence is redundant. Consider the following:
“the high HONO concentrations in daytime become a significant source of OH radicals.”
Thanks. The sentence is changed according to the suggestion of the reviewer.

Line 339: itis “P2” not “P1” right?
Corrected.

Line 363 and Line 380: two section 3.3.
Corrected.

Line 384: “Figure 10 shows the OH concentrations in September and December”? What does
this mean? [ thought Figure 10 shows a sensitivity study of OH production P using measured
and modeled HONO. Do I understand this correctly? Please revise.

Sorry. It should be Fig. 13 not Fig. 10. Corrected.

Line 412-413: “a double peak of PM2.5 and 03”? It sounds like for each pollutant, there is a
double peak. You mean “a co-occurrence of high PM2.5 and 03 concentrations”?
Thanks. We change this sentence to “a co-occurrence of high PM2.5 and 03 in some cases”

Line 413 and 432: only “fall” season?
Corrected.

Line 440: Delete “Because”
Corrected.
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Abstract

PM, s, a particulate matter with a diameter of 2.5 micrometers or less, is one of the
major components of the air pollution in eastern China. In the past few years, China's
government made strong efforts to reduce the PM;s pollutions. However, another
important pollutant (ozone) becomes an important problem in eastern China. Ozone
(O3) is produced by photochemistry, which requires solar radiation for the formation
of O3;. Under heavy PM, s pollution, the solar radiation is often depressed, and the
photochemical production of O; is prohibited. This study shows that during late
spring and early fall in eastern China, under heavy PM; s pollutions, there were often
strong O3 photochemical productions, causing a co-occurrence of high PM; s and O3
concentrations. This co-occurrence of high PM, s and O3 is un-usual and is the main
focus of this study. Recent measurements show that there were often high HONO
surface concentrations in major Chinese mega cities, especially during daytime, with
maximum concentrations ranging from 0.5 to 2 ppbv. It is also interesting to note that
the high HONO concentrations were occurred during high aerosol concentration
periods, suggesting that there were additional HONO surface sources in eastern China.
Under the high daytime HONO concentrations, HONO can be photo-dissociated to be
OH radicals, which enhance the photochemical production of Os. In order to study the
above scientific issues, a radiative transfer model (TUV; Tropospheric
Ultraviolet-Visible) is used in this study, and a chemical steady state model is
established to calculate OH radical concentrations. The calculations show that by
including the OH production of the photo-dissociated of HONO, the calculated OH
concentrations are significantly higher than the values without including this
production. For example, by including HONO production, the maximum of OH
concentration under the high aerosol condition (AOD=2.5) is similar to the value
under low aerosol condition (AOD=0.25) in the no-HONO case. This result suggests
that even under the high aerosol condition, the chemical oxidizing process for Os
production can occurred, which explain the co-occurrence of high PM; s and high O3
in late spring and carly fall seasons in eastern China. However, the O3 concentrations
were not significantly affected by the appearance of HONO in winter. This study
shows that the seasonal variation of solar radiation plays important roles for
controlling the OH production in winter. Because the solar radiation is in a very low

level in winter, adding the photolysis of HONO has smaller effect in winter than in
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fall, and OH remains low values by including the HONO production term. This study
provides some important scientific highlights to better understand the O3 pollutions in

eastern China.

Keywords; High PM; s and O3, eastern China, HONO photolysis
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1. Introduction

Currently, China is undergoing a rapid economic development, resulting in a higher
demand for energy and greater use of fossil fuels. As a result, the high emissions of
pollutants produce heavy pollutions in mega cities of eastern China, such as Beijing
and Shanghai. For example, in the city of Shanghai (a largest mega city in China), the
urban and economical developments of the city are very rapid. During 1990 to 2015,
the population increased from 13.3 to 24.1 million. The number of automobiles
increased from 0.2 million (1993) to 2.0 million (2011). The rapid growing population
and energy usage caused a rapid increase in the emissions of pollutants, leading to
severe air pollution problems in these mega cities (Zhang et al., 2006; Geng et al.,

2007; Deng et al., 2008).

Measurements, such as satellite observations have revealed much higher aerosol
pollution in eastern China than in eastern US (Tie et al., 2006). The high aerosol
pollution causes a wide range of environmental consequences. According to a study
by Tie et al. (2009a), exposure to extremely high particle concentrations leads to a
great increase of lung cancer cases. High PM (particular matter) concentrations also
significantly reduce the range of visibility in China’s mega cities (Deng et al., 2008).
According to a recent study, the high aerosol pollution causes important effects on the

crop (rice and wheat) production in eastern China (Tie et al., 2016).

In the troposphere, ozone formation is resulted from a complicated chemical process,
and requires ozone precursors, such as VOCs (volatile organic carbons) and NOx =
NO + NO, (nitrogen oxides) (Sillman, 1995). As the increase in industrial activity and
number of automobiles, the precursors of ozone (O3;) and the global budget of
oxidization are also significantly increased (Huang et al., 2017; Huang et al., 2018).

As a result, O3 pollution, becomes, a serous pollution problem in Shanghai and other

Chinese mega cities (Geng et al., 2010; Tie 2009b; Tie et al., 2015). The effects on O,
production rate can be characterized as either NOx-sensitive or VOC-sensitive
conditions. For the city areas, Og production is generally VOC-sensitive, while in the

remote area, Op production is generally NOx-sensitive in eastern China (Sillman,

1995; Zhang et al., 2003; Lei et al., 2004; Tie et al., 2013). Thus, better understanding
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the trends of O, precursors (VOCs, NOx) is important to determine the O, trends in

Shanghai (as well as many large cities in China).

In the past few years, China's government made strong efforts to reduce the PM; s
pollutions. However, another important pollutant (O3;) becomes an important problem
in eastern China. Several studies regarding the O3 formation are previously studied in
Shanghai. For example, Geng et al. (2007; 2008) study the relationship between O3
precursors (NOx and VOCs) for the ozone formation in Shanghai. Tie et al. (2009)
study the short-term variability of Oz in Shanghai. Their study suggested that in
addition to the ozone precursors, meteorological conditions, such as regional transport,
have also strong impacts on the ozone concentrations. During September 2009, a
major field experiment (the MIRAGE-Shanghai) was conducted in Shanghai, and
multiply chemical species were measured during the experiment. The summary of the
measurements by Tie et al (2013) suggests that the ozone formation in Shanghai is
under VOC-sensitive condition. However, if the emission ration of NOx/VOCs
reduces to a lower value (0.1-0.2), the ozone formation in Shanghai will switch from

VOC-sensitive condition to NOx-sensitive condition.

Despite of some progresses have been made for the ozone formation in mega cities in
China, it is still lack of study of ozone development in large cities of China. For
example, this study shows that during late spring and early fall in eastern China, under
heavy PM; s pollutions, there were often strong Oz chemical productions, causing the
co-occurrence of high PM»sand O; concentrations. Under heavy aerosol condition,
the solar radiation is depressed, significantly reducing the photochemical production
of Os. This co-occurrence of high PM; s and Oj; is an unusual and is the focus of this
study. He and Carmichael (1999) suggest that aerosol particles can enhance the
scattering of solar radiation, enhancing the flux density inside the boundary layer.
Recent measurements also show that there were often high HONO concentrations in
major Chinese mega cities, especially during daytime, with maximum concentrations

ranging from 0.5 to 2 ppbv (Huang et al., 2017). Zhang, et al. (2016) suggest that there

are several potential HONO sources, including surface emissions, conversion of NO,
at the ocean surface, etc., and adding these sources can improve the calculated HONO
concentrations. It is also interesting to note that the high HONO surface

concentrations were occurred during high aerosol concentration periods, suggesting
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that there are additional HONO surface sources in eastern China. Under the high
daytime HONO concentrations, HONO can be photo-dissociated to be OH radicals,

which enhance the photochemical production of Os.

The paper is organized as follows: in Section 2, we describe the measurement of Os
and PM,s. In Section 3, we describe the calculation of photo-dissociated rate of
HONO and a steady state model for the calculation of OH, and the causes of high Os
production under the heavy aerosol condition. Section 4 shows a brief conclusion of

the results.

2. Measurements of O; and PM, 5

There are long-term measurements in Eastern China by Chinese Environment
Protection Agency (CEPA) for monitoring the air quality in China. In eastern China,
especially in the capital city of China (Beijing), there are often heavy air pollutions,
especially for fine particular matter (PM, s — the radium of particle being less than 2.5
um). Figure 1 shows the measurement sites in Beijing, in which the measured
concentrations of PM,s and O3 are used to the analysis. In the region, the air
pollutions were very heavy, especially in winter (Long et al., 2016; Tie et al., 2017).
The previous studies suggested that the both aerosol and O3 pollutions became the

major pollutants in the region (Li et al., 2017).

Figure 2 shows the daily averaged concentrations of PM;s and O; in the Beijing
region in 2015. The daily averaged concentrations show that there were strong daily
and seasonal variations for both the concentrations of PM; s and Os. Despite the daily
variation, the concentrations of PM; s existed a strong seasonal variation. For example,
there were very high concentrations during winter, with maximum of ~300 ug/m’.
While in summer, the maximum concentrations reduced to ~150 xg/m’. The seasonal
variability of O; concentrations were opposite with the PM, s concentrations, with
lower concentrations in winter (< 50 ug /m’) and higher concentrations in summer (>
150 ug/m’). These seasonal variations of PM, 5 and O3 have been studied by previous
studies (Tie and Cao, 2017; Li et al., 2017). Their results suggest that the winter high

PM, s concentrations were resulted from the combination of both the high emissions
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(heating season in the Beijing region), and poor meteorological ventilation conditions,
such as lower PBL (Planetary Boundary Layer) height (Quan et al., 2013; Tie et al.
2015). According to the photochemical theory of Oz formation, the summer high and
winter low Os; concentrations are mainly due to seasonal variation of the solar

radiation (Seinfeld, J. H. and Pandis, 2006).

The heavy aerosol concentrations play important roles to reduce solar radiation,

causing the reduction of O formation. (Bian et al., 2007). As we show in Fig. 3

(upper panel), during wintertime, the O; concentrations were strong anti-correlated
with the PM,s concentrations, suggesting that the reduction of solar radiation by
aerosol particles have important impact on the reduction of O3 concentrations. Figure
3 (upper panel), also shows that the relationship between O3 and PM,s was not
linearly related. For example, when the concentrations of PM, s were less than 100
ug/m’, O3 concentrations rapidly decreased with the increase of PM, s concentrations.
In contrast, when the concentrations of PM,s were greater than 100 ug/m’, O;
concentrations slowly decreased with the increase of PM,s concentrations. This is

consistent with the result of Bian et al (2007).

It is interesting to note that from Jate spring to, early fall periods, the correlation

between PM,s and Os concentrations was positive relationship compared to the
negative relationship in winter (see Fig. 3 (lower panel)). This result suggests that O;
production was high during the heavy haze period, despite the solar radiation was
greatly depressed. In order to clearly display this unusual event, we illustrate diurnal
variations of PM, s and O3 and NO, during a fall period (from Oct.5 to Oc. 6, 2015).
Figure 4 shows that during this period (as a case study), the PM, s concentrations were
very high, ranging from 150 to 320 ug/m’. Under such high aerosol condition, the
solar radiation should be significantly reduced, and O; photochemical production
would be reduced. However, the diurnal variation of Os; was unexpectedly strong,
with high noontime concentration of >220 ug/m’ and very low nighttime
concentration of ~25 ug/m’. This strong diurnal variation was due to the
photochemical activity, which suggested that during relatively low solar conditions,
the photochemical activities of Oz production was high. According to the theory of the
O3 chemical production, the high O; production is related to high oxidant of OH

(Seinfeld and Pandis, 2006), which should not be occurred during lower solar
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radiation. This result brings important issue for air pollution control strategy, because

Dboth PM, s and O, are severe air pollutants in eastern China.

L 2

To clearly understand the effect of the high aerosol concentrations on solar radiation,
we investigate the meteorological conditions, such as cloud covers, relation humidity
(RH), and solar radiation during the period of the case study (see Figs. 5 and 6).
Figure 5 shows that the cloud condition was close to the cloud free condition, but
there was a very heavy aerosol layer in the Beijing region, suggesting that cloud cover
played a minor role in the reduction of the solar radiation. The measured RH values
(not shown) were generally higher than 60%, with a maximum of 95% during the
period. As a result, the high aerosol concentrations companied by high RH produced
important effects on solar radiation. As shown in Fig. 6, the daytime averaged solar
radiation was significantly reduced (about 40% reduction in Oct. 5-6 period compared

with the value of Oct. 8).

3, Method

In order to better understand the O3 chemical production occurred in heavy aerosol

condition in eastern China, the possible O3 production in such condition is discussed.

Ozone photochemical production (P[O;]) is strongly related to the amount of OH
radicals (Chameides et al., 1999). According to the traditional theory, the amount of

surface OH radicals is proportional to the surface, solar radiation, which is represented

by

[OH] = P[HOx]/L[HOx]* (R-1)

Where [OH] represents the concentration of hydroxyl radicals (#/cm’); HOx
represents the concentration of HO, + OH (#/cm’); P[HOx] represents the
photochemical production of HOx (#/cm’/s); and L[HOx]* (1/s) represents the

photochemical destruction of HOx, which is normalized by the concentrations of OH.

The major process for the photochemical production of P[HOx] is through the Os;
photolysis and follows by the reaction with atmospheric water vapor. It can be

expressed as,
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P[HOx] = J,[0s]/(k; * am) x 2.0 x k,[H,0] = P,[HOx] (R-2)

Where J; represents the photolysis of Oz + iv = O'D; k; represents the reaction rate
of O'D + am = O’P; and k; represents the reaction rate of O'D + H,0 > 20H. As
we can see, this HOx production is proportional to the magnitude of solar radiation
(J1), and J; is the Os; photolysis with the solar radiation. Figure 7 shows the
relationship between the values of J; and aerosol concentrations in October at
middle-latitude calculated by the TUV model (Madronich and Flocke, 1999). This
result suggests that under the high aerosol concentrations (AOD = 2.5), the J, value is
strongly depressed, resulting in significant reduction of OH concentrations and O3
production. For example, the maximum J; value is about 2.7x107 (1/s) with lower
aerosol values (AOD = 0.25). According to the previous study, the surface PM; s
concentrations were generally smaller than 50 ug/m’® with this AOD value (Tie et al.,
2017). However, when the AOD value increase to 2.5 (the PM, s concentrations are
generally >100 ug/m®), the maximum J, value rapidly decreases to about 6x10°° (1/s),
which is about 450% reduction compared to the value with AOD=0.25. This study
suggests that under high PM,s concentrations (>100 ug/m’), the photochemical
production of OH (P[HOXx]) is rapidly decreased, leading to low OH concentrations,
which cannot initiate the high oxidation of O3 production. As a result, the high O;
production shown in Fig. 4 cannot be explained. Other sources for O; oxidation are

needed to explain this result.

Recent studies show that the HONO concentrations are high in eastern China (Huang
et al., 2017). Because under high solar radiation, the photolysis rate of HONO is very
high, resulting in very low HONO concentrations in daytime (Seinfeld and Pandis,
2006). These measured high HONO concentrations are explained by their studies.
One of the explanations is that there are high surface HONO sources during daytime,
which produces high HONO concentrations (Huang et al., 2017). Zhang et al. (2016)
suggest that there are several potential HONO sources, including surface emissions,
conversion of NO, at the ocean surface, etc. Zhang et al. (2016) parameterized these
potential HONO sources in the WRF-Chem model, and the calculated HONO

concentrations are increased in the WRF-Chem model.
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The version of the WRF-Chem model is based on the version developed by Grell et al.

(2015), and is improved mainly by Tie et al. (2017) and Li et al. (2011). The chemical )

mechanism chosen in this version of WRF-Chem is the RADM2 (Regional Acid

Deposition Model, version 2) gas-phase chemical mechanism. For the calculation of

HONO, only the gas-phase chemistry of OH+NO is included to calculate HONO

concentrations. As shown in Fig. 8, the calculated HONO concentrations are

significantly smaller than the measured HONO values in eastern China, suggesting

that in addition to the gas-reaction, there are missing HONO sources (surface sources

or others). Because these missing sources are not fully understood and large

uncertainty is remained, in the following calculation, we compare the OH

concentrations due to both calculated HONO (without the missing sources) and the

measured HONO concentrations to illustrate the importance of these missing sources

for the production of OH radicals and to suggest that further study to better

understand the missing sources is an urgent scientific issue.

v

Figure 8 shows the measured HONO concentrations in three large cities in China

(Shanghai, Xi’an, and Beijing) during fall and winter. It also shows the corresponding

PM, s and O; in the 3 cities (i.e., Fig. 8a for Beijing, Fig. 8b for Shanghai, and Fig. 8c

for Xian). It shows that the measured HONO concentrations were high, ranging from

sub-ppbv to a few ppbv, with higher values during morning, and Jower values in

daytime. The co-occurrences of high PM,s and Oz happened in the 3 cities. As a

result, we think that the high HONO is a common event in large cities in eastern
China, especially in daytime. This high HONO is also measured by previous studies
(Zhang et al. 2016; Huang et al. 2017). In this study, we make an assumption that the
co-occurrence between O3 and PM; s occurred under high HONO concentrations. We
note that using this assumption may result in some uncertainties in estimating the
effect of HONO on OH. For example, using the measured HONO in Xi’an and
Beijing could produce 1-2 times higher OH production by photolysis of HONO than
the result by using the data from Shanghai. In this case, we use the measured HONO
from Shanghai to avoid the over estimate of the HONO effect, which can be

considered as a low-limit estimation.

It is also interesting to note that the high HONO concentrations were occurred during

high aerosol concentration periods. Figure 9 illustrates that when the PMy;s
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concentrations increased to 70-80 ug/m®, and the HONO concentrations enhanced to
1.4-18 ppbv during September in Shanghai. This measured high HONO
concentrations were significantly higher than the calculated concentrations (shown in
Fig. 8), suggesting that some additional sources of HONO are needed. This result is

consistent with the HONO measurements in other Chinese cities (Huang et al. 2017).

The high HONO concentrations in daytime become a significant source of OH
radicals. As a result, the OH production rate (P[HOx]) can be written to the following

reactions.

P,[HOx] = J, x [HONO] (R-3)
P[HOx] = P,[HOx] + P,[HOx]
= 1,[05]/(k; x am) x 2.0 % ko[H,0] + J, x [HONO]  (R-4)

Because the chemical lifetime of OH is less than second, OH concentrations can be
calculated according to equilibrium of chemical production and chemical loss. With
the both OH chemical production processes, the OH concentrations can be calculated

by the following equation (Seinfeld and Pandis, 2006).

P1+P2=L1+1L2

Where P1 and P2 are the major chemical productions, expressed in R-4, and L1 and

L2 are the major chemical loss of OH, and represent by

L1: OH +NO, > HNO; (R-5)
L2: HO,+HO; 2 H,0,+ 0, (R-6)

Under high NOx condition, such as in the large cities in eastern China, NOx

concentrations were often higher to 50 ppbv (as shown in Fig. 4). As a result, the L1

term is larger than L2. The OH concentrations can be approximately expressed as,

[HO] = {J)[Os)/(k; x am) x 2.0 x ky[H,0] + J, x [HONO]}/
k3[NO;] (R-5)
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Where Kkj is the reaction coefficient of OH + NO; 2 HNOs.

4, Result and analysis

4,1. OH productions in different HONO conditions

In order to quantify the individual effects of these two OH production terms (P1 and
P2) on the OH concentrations, the P1 and P2 are calculated under different daytime
HONO conditions (calculated low HONO and measured high HONO concentrations).
Figure 10 shows that under the low HONO condition, the P1 is significantly higher
than P2, and P2 has only minor contribution to the OH values. For example, the
maximum of P1 occurred at 13 pm, with a value of 65x10° #/cm/s. In contrast, the
maximum of P2 occurred at 10 am, with a value of 15x10° #/cm>/s. However, under
high HONO condition, the P2 plays very important roles for the OH production. The
maximum of P2 occurred at 11 am, with a value of 350%10° #/cm’/s, which is about
500% higher than the P1 value. It is important to note that this calculation is based on
the high aerosol condition (AOD = 2.5) in September. This result can explain the high

O3 chemical production in Fig. 4.

4,2. OH in different aerosol conditions

In order to understand the effect of aerosol conditions, especially high aerosol
conditions, on the OH concentrations. Figure 11 shows the OH concentrations with
and without HONO production of OH. With including the HONO production (i.e.,
including P1 and P2), the calculated OH concentrations are significantly higher than
without including this production (i.e., only including P1). The both calculated OH
concentrations are rapidly changed with different levels of aerosol conditions. For
example, without HONO production, the maximum OH concentration is about
7.5%10° #/cm’ under low aerosol condition (AOD=0.25). In contrast, the maximum
OH concentration rapidly reduced to 1.5x10° #/cm’ under high aerosol condition
(AOD=2.5), and further decreased to 1.0x10° #/cm® with the AOD value of 3.5. In
contrast, with including HONO production, the OH concentrations significantly
increased. Under higher aerosol condition (AOD=2.5), the maximum of OH
concentration is about 7.5%x10° #cm’, which is the same value under low aerosol

condition in the no-HONO case. This result suggests that the measured high O;
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production occurred in the high aerosol condition is likely due to the high HONO

concentrations in Shanghai.

4,3. Effects of clouds

Cloud cover can have very important impacts on the photolysis of HONO, which can
affect the effect of HONO on the OH radicals. The above calculations are based on
the cloud-free condition, with heavy aerosol concentration in the Beijing region. As
shown in Fig. 5, during the case study period (Oct 5 to 6, 2015) (see Fig. 4), the

weather map shows that the cloud-free condition, with heavy aerosol condition.

In order to understand the effects of cloud on the photolysis of HONO, we include
different cloud covers in the TUV model. The calculated results show in Fig. 12.
The results show that the thin cloud (with cloud cover in 2 km and cloud water of 10
g/m’), could reduce the photolysis rate of HONO by about 40%, but the HONO could
still remain important effects. However, with dense cloud condition (with cloud
covers at 2 and 3 km and cloud water of 50 10 g/m’), the photolysis rate of HONO
could reduce by 9-10 times by the cloud. In this case, adding photolysis rate of
HONO cannot produce important effect on OH radicals and the production of Os.

4,4, OH in winter

The measurement of O3 also shows that the concentrations in winter were always low
(see Fig. 2), suggesting that the O3 concentrations were not significantly affected by
the appearance of HONO. Figure 13 shows the OH concentrations in September and
December. It shows that under different aerosol conditions, OH concentrations in
December were very low compared with the values in September. Both the calculated
OH concentrations include the HONO production term. For example, under the
condition of AOD=2.5, the maximum OH is about 7.5x10° #/cm’ in September, while
it rapidly reduces to 1.5x10° #cm’ in December. Under the condition of AOD=3.5,
the maximum OH is still maintaining to a relative high level (4.5x10° #/cm’) in
September. However, the maximum OH values are extremely low in December, with
maximum value of 0.5x10° #/cm’ in December. Because both the OH chemical
productions (P1 and P2) are strongly dependent upon solar radiation (see equation

R-4), the seasonal variation of solar radiation plays important roles for controlling the
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OH production in winter (see Fig. 13). Because the solar radiation is in a very low
level in winter, adding the photolysis of HONO has smaller effect in winter than in

other seasons,and OH remains low values by including the HONO production term.

Summary

Currently, China is undergoing a rapid economic development, resulting in a high
demand for energy, greater use of fossil fuels. As a result, the high emissions of
pollutants produce heavy aerosol pollutions (PM,s) in eastern China, such as in the
mega city of Beijing. The long-term measurements show that in addition to the heavy
aerosol pollution, the O3 pollution becomes another major pollutants in the Beijing
region. The measured results show that there were very strong seasonal variation in
the concentrations of both PM, s and O3 in the region. During winter, the seasonal
variability of O3 concentrations were anti-correlated with the PM, s concentrations.

However, from Jlate spring to early, fal, the correlation between PM,s and O;

concentrations was positive compared to the negative in winter. This result suggests
that during heavy aerosol condition (the solar radiation was depressed), the O;

chemical production was still high, appearing a co-occurrence of high PM, 5 and Oz in

some cases, from late spring to early fall, This co-occurrence of high PM, s and O; is

the focus of this study. The results are highlighted as follows;

(1) There are high daytime HONO concentrations in major Chinese mega cities, such
as in Beijing and Shanghai. It is also interesting to note that the high HONO
concentrations were occurred during high aerosol concentration periods. Under
the high daytime HONO concentrations, HONO can be photo-dissociated to be
OH radicals, and becomes an important process to produce OH.

(2) With including the OH production of measured HONO concentrations, the
calculated OH concentrations are significantly higher than without including this
production. For example, without HONO production, the maximum OH
concentration is about 7.5x10° #cm® under low aerosol condition (AOD=0.25),
and rapidly reduced to 1.5x10° #/cm® under high aerosol condition (AOD=2.5) in
September. In contrast, by including HONO production, the OH concentrations
significantly increased. For example, under higher aerosol condition (AOD=2.5),

the maximum of OH concentration is about 7.5%10° #/crnS, which is similar to the
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value under low aerosol condition in the no-HONO case. This result suggests that
even under the high aerosol conditions, the chemical oxidizing process for O;
production can be active. This result is likely for explaining the co-occurrence of

high PM; s and high O3 from late, spring to early,in eastern China.

(3) The measurement of O3 also shows that the concentrations in winter were always
low, suggesting that the O3 concentrations were not significantly affected by the
appearance of HONO. The calculated result shows that the seasonal variation of
solar radiation plays important roles for controlling the OH production in winter.
Because the solar radiation is in a very low level in winter, adding the photolysis

| of HONO has smaller effect in winter than in other seasons, and OH remains low
values by including the HONO production term.
| In recent years, the PM, s pollutions are reduced due to the large control efforts by the

Chinese government, the O3 pollutions become another severe pollution problem in

eastern China. This study is important, because it provides some important scientific

highlights to better understand the O3 pollutions in eastern China.

Data availability. The data used in this paper can be provided upon request from

Xuexi Tie (tiexx@ieecas.cn).
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Figure Caption

Fig. 1. The geographic locations of the measurement sites in Beijing, in which the
measured concentrations of PM, s and O3 are used to the analysis.

Fig. 2. The daily averaged concentrations of PM, s and Os in the Beijing region in
2015. The concentrations are averaged over all sites shown in Fig. 1. The blue lines
represent the PM,s concentrations (ug/m’), and the red bars represent the Oj
concentrations (pg/m’). The rectangles show some typical events during winter
(green), spring and fall (orange), and summer (red).

Fig. 3. The correlation between Os; and PM, s concentrations during winter (upper
panel) and from, late spring to eraly, fall (lower panel). During winter, O;

concentrations were strong anti-correlated with the PM, s concentrations. From, late
spring to early, fall, O3 concentrations were correlated with the PM, s concentrations.

Fig. 4. The diurnal variations of PM, s (blue line) and Os (red line), and NO, (green
line) during a fall period (from Oct.5 to Oc. 6, 2015). It shows that with high PM; s
condition, there was a strong O diurnal variation.

Fig. 5. The cloud condition during the period of the case study (between Oct 5 and 6,
2015) in the Beijing region. The bright white color shows the cloud covers, and the
grey white shows the haze covers. The Beijing region was under the heavy haze
conditions during the period.

Fig. 6. The measured solar radiation (W/m?) from Oct. 3 to Oct. 9, 2015 in Beijing.
The upper panel shows hourly values, and the lower panel shows the daytime
averaged values.

Fig. 7. The effect of aerosol levels with AOD = 0.25 (black line), AOD = 2.5 (red
line), AOD = 3.5 (blue line), and AOD = 4.0 (green line) on the O; photolysis
calculated by the TUV model in October at middle-latitude.

Fig. 8a. The measured HONO concentrations (ppbv) and the PM,s and O; daily

concentrations in Beijing. The upper panel shows the measured daily concentrations
of PM, s and Os as shown in Fig.2. The dark-red line was measured HONO in Beijing
from 1 to 27 January, 2014.

Fig. 8b. The measured HONO concentrations (ppbv) and the PM,s and O; daily
concentrations in Shanghai. The upper panel shows the measured daily concentrations
of PM,sand O; in 2015. The dark-red line was measured in Shanghai from 9 to 18
September, 2009. The green line was calculated by the WRF-Chem model.

Fig. 8c. The measured HONO concentrations (ppbv) and the PM,s and O; daily
concentrations in Xi’an. The upper panel shows the measured daily concentrations of
PM,sand Os in 2015. The red line was measured HONO in Xi’An from 24 July to

August 6, 2015.

Fig. 9. The measured HONO (upper left panel), PM, s concentrations (lower left
panel), and Os concentrations (upper right panel) in fall in Shanghai. It illustrates that
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the high HONO concentrations were corresponded with high PM, s concentrations,

Fig. 10. The calculated OH production P(HOx) (#/cm’/s) by using the model
calculated HONO (low concentrations) (in the upper panel) and by using the
measured HONO (high concentrations) (in the lower panel). The red bars represent
the calculation of the P1 term, and the red bars represent the calculation of the P2
term  (OH production from HONO).

Fig. 11. The calculated OH concentrations (#/cm’) with (upper panel) and without
(lower panel) HONO production of OH, under different aerosol levels. Dark red
(AOD=0.25), red (AOD=2.5) ), red (AOD=3.5) ), and red (AOD=4.0).

Fig. 12. The effect of cloud cover on the photolysis rate of HONO (JJHONOY]). The
blue, red, and green lines represent the cloud water vapor of 0 (cloud-free), 10 (g/m’ —
thin cloud), and 50 (g/m® — thick cloud), respectively. The left panel (A) represents
the light aerosol condition, with AOD of 0.25, and the right panel (B) represents the
heavy aerosol condition, with AOD of 2.5.

Fig. 13. The calculated OH concentrations in September (blue bars) and December
(dark red bars), under different aerosol levels.
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911 Fig. 1. The geographic locations of the measurement sites in Beijing, in which the measured
912 concentrations of PM, s and O; are used to the analysis.
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Fig. 2. The daily averaged concentrations of PM,s and Os in the Beijing region in 2015. The
concentrations are averaged over all sites shown in Fig. 1. The blue lines represent the PM; s

concentrations (pg/ms), and the red bars represent the O; concentrations (pg/m3).

The rectangles

show some typical events during winter (green), spring and fall (orange), and summer (red).
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941 Fig. 4. The diurnal variations of PM; 5 (blue line) and O; (red line), and NO, (green line)
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943 there was a strong O3 diurnal variation.
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Fig. 5. The cloud condition dufing the period of the case study (between Oct 5 and 6, 2015 in the
Beijing region. The bright white color shows the cloud covers, and the grey white shows the haze

covers. The Beijing region is under the heavy haze conditions during the period.
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31

Formatted: Font:(Default) Times New
Roman, Font color: Text 1

Xuexi Tie 8/8/2019 9:11 AM

2.5

=
o}

HONO (ppbv)

-

9—0—0—0—0—0—0—
12 3 4 5 6 7

Deleted:

Formatted: Font:(Default) Times New
Roman

Xuexi Tie 8/8/2019 9:14 AM
Deleted: in

Xuexi Tie 8/8/2019 9:14 AM
Formatted: Subscript
Xuexi Tie 8/8/2019 9:14 AM
Formatted: Subscript
Xuexi Tie 8/8/2019 9:45 AM
Formatted: Subscript
Xuexi Tie 8/8/2019 9:45 AM
Formatted: Subscript
Xuexi Tie 8/8/2019 9:15 AM
Moved (insertion) [1]

||

|




200 1
|_le)k] .
— b) Shanghai
180 PM2.5 (b) € Formatted: Font:(Default) Times New
160 1 Roman, 11 pt, Font color: Text 1
140 -
120 -
o
é 100 -
=}
80 |
60 ]
40 - ‘
20
W“W ’ | | L I ) N|HI\|HMII‘
'19,;,,\\\ ,\(;,\/L\ '6’\%\ 0Ne;,\b‘\ c,\"’\ 2 o\ ) \ ) %) \ '\9 '\?’\’0\
Date
1
09 “@-HONO-M
0.8 - “®-HONO-C
0.7 -
0.6 |
'g 0.5
0.4 -
03 -
0.2
0.1 -
o ®—0-e—0-0—0. 0—0—0—0—0"0—0—0-0-g_g_og-0—0-00—9—¢
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
972 Hour
973
974
975 Fig. 8b. The measured HONO concentrations (ppbv) and the PM,s and O; daily
976 concentrations in Shanghai. The upper panel shows the measured daily concentrations of
977 PM,sand Os in 2015. The dark-red line was measured in Shanghai from 9 to 18 September,
978 2009. The green line was calculated by the WRF-Chem model.
979
980 B

32



981
982
983
984
985
986
987
988
989
990
991

200 -
EmQO3
180 -
—PM25
160 - ﬂ
140 -

ug/m3

(c) Xi'An

M

M j

0
N\ v o o o N oy o N o\
&) o o o o) o o \d > N\
I I G R I S A
I Date
257 HONO-XA

ppbv

2 -
1.5
1 -
0.5 -

1 2 3 45 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24
Hours

Fig. 8c. The measured HONO concentrations (ppbv) and the PM,s and O; daily

concentrations in Xi’an. The upper panel shows the measured daily concentrations of PM, s
and O3 in 2015. The red line was measured HONO in Xi’An from 24 July to August 6, 2015.

33

Formatted: Font:(Default) Times New
Roman, 11 pt, Font color: Text 1

Xuexi Tie 8/8/2019 9:56 AM

Deleted: three large cities in China. The red
line was measured in Xi’An from 24 July to
August 6, 2015. The blue line was measured in
Shanghai from 9 to 18 September, 2009. The
dark-red line was measured in Beijing from 1
to 27 January, 2014. The green line is
calculated by the WRF-Chem model. The
measurement in fall of Shanghai is applied to
the calculation for the OH production of
HONO. . @ )
Xuexi Tie 8/8/2019 9:15 AM
Moved up [1]: The dark-red line was
measured in Beijing from 1 to 27 January,
2014.
Xuexi Tie 8/8/2019 10:17 AM
2
1.8
1.6
14
3 12
Q
Q.
— 1
S
o 0.8
I
0.6
0.4
0.2 l
0
100
90
80
@ 70
S
Y 60
2
i 50
S 4
& 30
20
< el
. |
q?xo,f}’ 99\09 \,§
o"’g 0“9 IS
P&,
A S
Deleted:

Formatted: Font:(Default) Times New
Roman



1017
1018
1019
1020

120

1
0.8
0.6
0.4
20
0.2
L

®
3

HONO (ppbv)
03 (ppbv)
3

N
8

PM2.5 (ug/m3)

Now s
S & S8

FPOFRIP PP PFDFP S SR
D7 9797 97 37 A O 7 07 BB 07 o7 o 97 (0 AT 0
SIS IS IS IS I I IS I SIS IS
PSP F PSP ST E P E S
L S S S S S S

10
0

of
§
8
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concentrations (upper right panel) in fall in Shanghai. It illustrates that the high HONO

concentrations were corresponded with high PM, 5 concentrations.
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Fig. 10. The calculated OH production P(HOx) (#/cm3/s) by using the model calculated
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Fig. 13. The calculated OH concentrations in September (blue bars) and December (dark red bars),
under different aerosol levels.
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