
Reply to Comments from Reviewer #1 

We thank the reviewers for their valuable comments which help us improve the quality 

of the manuscript. We have carefully revised our manuscript following the reviewers’ 

comments. Point-by-point responses are given below. The reviewers’ comments are in 

black and our responses are in blue. 

 

Comment: 
This paper summarizes the important processes controlling atmospheric deposition of 

Hg. The topic is important, and new knowledge is available in the literature, so a review 

paper on this topic is a good and useful product to the broad scientific research 

community. However, there have been recent review papers that have largely covered 

the same topics and ideas, which leaves some doubt about this paper as one that makes 

a large contribution to the literature. 

Response: 

We agree with the reviewer that the contribution of the manuscript was not clear. We 

have reorganized our manuscript, made significant revision, and added more discussion 

on the uncertainties in the observation and simulation of global speciated atmospheric 

Hg deposition to terrestrial surfaces. We believe the revised manuscript is more focused 

and more informative. Please refer to the revised manuscript. 

 

Comment: 

The abstract does not put forth many new ideas. 

Response: 

We have modified the abstract substantially based on the revised manuscript. Here is 

our updated abstract: 

“One of the most important processes in the global mercury (Hg) biogeochemical 

cycling is the deposition of atmospheric Hg, including gaseous elemental mercury 

(GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM), to 

terrestrial surfaces. Results of wet, dry, and forest Hg deposition from global 



observation networks, individual monitoring studies, and observation-based 

simulations have been reviewed in this study. Uncertainties in the observation and 

simulation of global speciated atmospheric Hg deposition to terrestrial surfaces have 

been systemically estimated based on assessment of commonly used observation 

methods, campaign results for comparison of different methods, model evaluation with 

observation data, and sensitivity analysis for model parameterization. The uncertainties 

of GOM and PBM dry deposition measurements come from the interference of 

unwanted Hg forms or incomplete capture of targeted Hg forms, while that of GEM dry 

deposition observation originates from the lack of standardized experimental system 

and operating procedure. The large biases in the measurements of GOM and PBM 

concentration and the high sensitivities of key parameters in resistance models lead to 

high uncertainties in GOM and PBM dry deposition simulation. Non-precipitation Hg 

wet deposition could play a crucial role in alpine and coastal regions, and its high 

uncertainties in both observation and simulation affect the overall uncertainties of Hg 

wet deposition. The overall uncertainties in the observation and simulation of the total 

global Hg deposition were estimated to be ±(30–50) % and ±(50–70) %, respectively, 

with the largest contributions from dry deposition. According to the results from 

uncertainty analysis, future research needs were recommended, among which global 

Hg dry deposition network, unified methods for GOM and PBM dry deposition 

measurements, quantitative methods for GOM speciation, campaigns for 

comprehensive forest Hg behavior, and more efforts on long-term Hg deposition 

monitoring in Asia are the top priorities.” 

 

Comment: 

There are a few missed opportunities such as when cloud/fog scavenging is mentioned 

the authors state: “the influence of cloud/fog scavenging is easy to neglect”. The 

authors should be more quantitative in their language so as to provide scientists with 

more concrete information on relationships and processes. 

Response: 



We have modified the manuscript substantially to focus on the uncertainties. We have 

quantified the uncertainties in both observation and simulation of different types of Hg 

deposition. The uncertainties in non-precipitation wet deposition have been discussed 

in detail. Please refer to Section 3.1.2 and 4.1.2. Discussion on the influence of cloud 

or fog scavenging has been added. Please refer to Lines 151–158 in the revised 

manuscript: 

“Fog or cloud Hg deposition is not yet considered in the global Hg wet deposition 

observation network. However, studies (Stankwitz et al., 2012; Weiss-Penzias et al., 

2016b; Gerson et al., 2017) have shown that cloud and fog water have higher Hg 

concentration than rain water in the same region, and cloud and fog could have a 

remarkable contribution to Hg wet deposition in high-elevation forests and near-water 

surfaces. Cloud and fog scavenging of reactive Hg (GOM and PBM) could result in 

lower Hg concentration in precipitation.” 

 

Comment: 

Another example in the abstract that is a missed opportunity to provide some detailed 

information is the last line: “Future research needs have been proposed based on the 

current knowledge of global mercury deposition to terrestrial surfaces”. This statement 

is too vague and does not provide much substance. For example, in the conclusion, the 

4th recommendation regarding fog, cloud, and dew is The field “requires more 

standardized sampling methods”. This is too vague and does not translate into a 

roadmap for improving the science. 

Response: 

We have modified the description of future research needs. Please refer to Section 6. 

We have also revised the abstract to make a more clear statement. Please refer to Lines 

31–35 in the revised manuscript: 

“According to the results from uncertainty analysis, future research needs were 

recommended, among which global Hg dry deposition network, unified methods for 

GOM and PBM dry deposition measurements, quantitative methods for GOM 

speciation, campaigns for comprehensive forest Hg behavior, and more efforts on long-



term Hg deposition monitoring in Asia are the top priorities.” 

 

Comment: 

My suggestion is that the authors rethink their main focus of this paper –maybe all of 

deposition is too broad – and provide more insights and proscriptions for future research 

and/or data gaps. The authors have cited a large number of references and have done 

considerable research in the field. An improved focus would sharpen the discussion and 

make the paper more interesting to read. 

Response: 

We thank the reviewer for the valuable comment and have taken the advice. We have 

sharpened the discussion in the manuscript to focus on the uncertainties in the 

observation and simulation of global speciated atmospheric Hg deposition to terrestrial 

surfaces. 

 

Comment: 

One minor comment I have is that the following statement does not make sense to me: 

“The slope of the relationship implies the Hg concentration in precipitation. Europe has 

the flattest slope among all regions, indicating its lowest Hg pollution level around the 

world.” Europe has the lowest Hg pollution level around the world? That does not seem 

correct.  

Response: 

We have deleted this part of discussion. 

 



Reply to Comments from Reviewer #2 

We thank the reviewers for their valuable comments which help us improve the quality 

of the manuscript. We have carefully revised our manuscript following the reviewers’ 

comments. Point-by-point responses are given below. The reviewers’ comments are in 

black and our responses are in blue. 

 

Comment: 

A method section is missing. The authors may want to provide a Methodology section 

to cover the following items, how the literature search/review was conducted, what is 

the scope of the literature search, what are the primary source of publications (e.g. peer 

reviewed journal articles, government reports), restrictions if any (e.g. by year of 

publication, or by language). 

Response: 

We thank the reviewer for the suggestion. However, a method section is not quite 

common for a review paper. Considering the manuscript is already very long, we have 

not added a method section. Instead, we have modified the last paragraph of the 

Introduction part to make it more clear what the purpose of this review work is. Please 

refer to Lines 75–88 in the revised manuscript: 

“Significant efforts have been made in the past decade for quantifying atmospheric Hg 

deposition through both direct observations and model simulations, especially on dry 

deposition (Lyman et al., 2009; Zhang et al., 2009; Holmes et al., 2011; Lai et al., 2011; 

Castro et al., 2012; Gustin et al., 2012; Peterson et al., 2012; L. Zhang et al., 2012; Fang 

et al., 2013; Sather et al., 2013; Lynam et al., 2014; Sather et al., 2014; Huang and 

Gustin, 2015a; Weiss-Penzias et al., 2016a; Zhang et al., 2016b; Hall et al., 2017; 

Sprovieri et al., 2017). Yet large uncertainties still exist due to limitations of current 

methods for Hg deposition measurements and modeling (Gustin et al., 2015). The 

purpose of this paper is to give an overview of the uncertainties in the observation and 

simulation of global speciated atmospheric Hg deposition to terrestrial surfaces. In this 

paper, we investigated results from the observation and simulation of global Hg 



deposition, reviewed methods adopted for Hg deposition measurements and modeling, 

estimated the uncertainties of different methods for different Hg deposition forms, and 

summarized the overall uncertainty level of global Hg deposition.” 

 

Comment: 

The scope of the review needs more justification. The title reads, “Global deposition of 

speciated atmospheric mercury to terrestrial surfaces: an overview”. The rational of 

excluding the water surfaces (Figures 1, 6, 7 do include water through) and snow/ice 

over land should be presented.  

Response: 

We have modified the title and put focus on the uncertainties in the observation and 

simulation of global speciated atmospheric Hg deposition to terrestrial surfaces. 

Surface type is not our primary concern in the revised manuscript. The “water” surfaces 

here refer to the terrestrial surfaces near water. We have added the explanation to both 

figure captions and the main text. Please refer to Lines 146–147 in the revised 

manuscript: 

“The “water” surfaces here refer to the terrestrial surfaces near water, e.g., coastal, 

offshore, and lakeside sites.” 

 

Comment: 

The scientific contribution could be enhanced significantly. The manuscript as written 

is a somewhat descriptive presentation of estimation methods (sections 2 and 3) and Hg 

deposition values (sections 4 and 5). Consequently, there is a lack of new insights and 

findings. The authors are encouraged to conduct a rigorous research leading to more 

depth discussion that highlights the advancement, challenges, and directions for future 

research. Some potential topics are listed below (also see sample papers and a sample 

weblink at the end) 1) Comparison of co-located measurements with different 

techniques 2) Comparison of Hg deposition estimates by different models 3) Model-

measurement comparison 4) Observed/predicted changes in Hg deposition due to 

changes in quantity of Hg emissions in local, regional or globe scale 5) 



Observed/predicted changes in Hg deposition due to changes in profiles (e.g. the 

percentage of each Hg species in total emission) of Hg emissions in local, regional or 

globe scale 6) Contributions to observed/simulated Hg dry deposition from different 

sources or regions 7) The major sources of uncertainty in Hg deposition estimates and 

how to reduce those uncertainties 8) What is the knowledge or data gap (relevant to Hg 

deposition) that hinders our understand of the global Hg cycle, or the development and 

evaluation of emission control measures? 

Response: 

We greatly appreciate the valuable comment. We agree with the reviewer that the 

contribution of the manuscript was not clear. We have reorganized our manuscript, 

made significant revision, and added more discussion on the uncertainties in the 

observation and simulation of global speciated atmospheric Hg deposition to terrestrial 

surfaces. We believe the revised manuscript is more focused and more informative. 

Please refer to the revised manuscript. 

 

Comment: 

The “Bidirectional air-surface exchange model for GEM” is presented. However, dry 

deposition of GEM is estimated in many field studies and model simulations, including 

most GEM dry deposition data presented in the manuscript. Thus, the authors may want 

to include dry deposition models of GEM.  

Response: 

As mentioned in responses to previous comments, we have revised the manuscript 

extensively to focus on the uncertainties. The bidirectional model is a more commonly 

used model in recent years, so we have estimated the uncertainty in the simulation of 

GEM deposition flux based on the bidirectional model instead of the resistance model. 

Previous review work (Zhang et al., 2009) has discussed the two types of models in 

detail. 

Reference: 

Zhang, L. M., Wright, L. P., and Blanchard, P.: A review of current knowledge 

concerning dry deposition of atmospheric mercury, Atmos. Environ., 43, 5853–5864, 



10.1016/j.atmosenv.2009.08.019, 2009. 

 

Comment: 

Please provide facts to support your statements, e.g. “For PBM dry deposition, a size-

segregated resistance model is more and more widely applied” (L312) 

Response: 

The description here was not accurate. We have modified the expression. Please refer 

to Lines 700–703 in the revised manuscript: 

“For PBM dry deposition, resistance models regarding both fine and coarse particles 

are more and more widely applied based on the theory that vd for atmospheric particles 

strongly depend on particle size (Dastoor and Larocque, 2004; Zhang et al., 2009; 

Zhang and He, 2014).” 

 

Comment: 

Most materials presented in sections 2 and 3 can be found in previous review/research 

papers, because those techniques have been around for a while. The authors could 

provide a summary table and direct the interested readers to those review/research 

papers, instead of a lengthy description of each method. Another option is to provide a 

comparative review of those methods and to include strength, weakness, recent 

advancements if any, and application issues.  

Response: 

We have modified the discussion on the methods for observation and simulation of Hg 

deposition to follow the estimation of uncertainties in the revised manuscript. Method 

details have been lessened. 

 

Comment: 

Section 4.3 (Forest deposition or Deposition over forests) could be better placed in 

section 5 (Global Hg deposition on different terrestrial surfaces).  

Response: 

We have reorganized the whole manuscript. The uncertainty analysis for forest Hg 



deposition is based on methods for litterfall and throughfall deposition. Therefore, it is 

in parallel with wet and dry deposition. Please refer to Section 3.3 and 4.3 in the revised 

manuscript. 

 

Comment: 

If the authors decided to keep the equations, please 1) provide unit of each variable, 2) 

provide the source of each equation, 3) clarify the expansion factor in equations (8) and 

(9). Is it an expansion from a measurement in a small area to a forest? 4) explain how 

to calculate two resistances with equation (16). 

Response: 

We think variable unit is not quite necessary for the uncertainty analysis in this review 

work. We have added the sources of each equation and clarified the “expansion factor”. 

Equation (16) means that there are two sets of vg (gravitational settling velocity), Ra 

(aerodynamic resistance), and Rs (surface resistance) for fine and coarse particles, 

respectively. 
 
Comment: 

Please state the mechanism of Hg deposition via cloud/fog at high elevation sites (L258).  

Response: 

Cloud and fog can scavenge Hg in the atmosphere. At alpine or coastal sites, Hg can 

deposit onto the ground through cloud or fog. Cloud or fog is not able to be collected 

by precipitation samplers. Studies (Stankwitz et al., 2012; Weiss-Penzias et al., 2016b; 

Gerson et al., 2017) have shown that cloud and fog water have higher Hg concentration 

than rain water in the same region, and cloud and fog could have a remarkable 

contribution to Hg wet deposition in high-elevation forests and near-water surfaces. 

References: 

Stankwitz, C., Kaste, J. M., and Friedland, A. J.: Threshold increases in soil lead and 

mercury from tropospheric deposition across an elevational gradient, Environ. Sci. 

Technol., 46, 8061–8068, 10.1021/es204208w, 2012. 

Weiss-Penzias P., Coale K, Heim W, Fernandez D, Oliphant A, Dodge C, Hoskins D, 



Farlin J, Moranville R, Olson A. Total- and monomethyl-mercury and major ions in 

coastal California fog water: Results from two years of sampling on land and at sea. 

Elem. Sci. Anth., 4, 1–18, 10.12952/journal.elementa.000101, 2016b. 

Gerson, J. R., Driscoll, C. T., Demers, J. D., Sauer, A. K., Blackwell, B. D., 

Montesdeoca, M. R., Shanley, J. B., and Ross, D. S.: Deposition of mercury in forests 

across a montane elevation gradient: Elevational and seasonal patterns in 

methylmercury inputs and production, J. Geophys. Res. Biogeo., 122, 1922–1939, 

10.1002/2016jg003721, 2017. 

 

Comment: 

L456, the authors may want to distinguish the net emission fluxes from “natural GEM 

emission sources”. 

Response: 

We have modified the expression according to the comment. Please refer to Lines 217–

220 in the revised manuscript: 

“The four Asian sites using micrometeorological methods all show negative values 

(−36.3±19.6 μg m−2 yr−1), indicating the role of East Asia as a net emission source rather 

than a net deposition sink (Luo et al., 2014; Luo et al., 2016; Ci et al., 2016; Yu et al., 

2018).” 

 

Comment: 

Figure 6, “precipitation levels” or “annual precipitation”?  

Response: 

We have modified to wording accordingly. 

 

Comment: 

The papers from which data were obtained to generate each figure could be tabulated 

and presented as Supplement Information. 

Response: 

We have tabulated the raw data and created a Supporting Information file. 



 
Comment: 

There are quite a few awkward sentences and word choices, e.g. “Ci is the total Hg 

concentration in precipitation water” (L193), “Usually, GOM and PBM contribute 

equivalently to Hg wet deposition (Cheng et al., 2015).” (L206), add “GEM dry 

deposition is equivalent to GOM and PBM dry deposition, even significantly higher 

than in forests” (L535), “consequently exhibit significantly high litterfall Hg deposition 

fluxes.” (L560), “Water surfaces could affect Hg wet deposition through fog 

scavenging.” (L580), “The contribution GEM dry deposition has been underestimated 

previously.” (L596), “Cloud, fog or even dew Hg deposition needs careful investigation” 

(L599), please rephrase.  

Response: 

We thank the reviewer for the detailed comments. We have rephrased or deleted these 

sentences. Please refer to the revised manuscript. 

 

Comment: 

There are some contradicting or confusing statements, e.g. “Based on available 

measurements of PBM size distributions and fine/coarse PBM mass ratios, Zhang et al. 

(2016b) assumed 30% of the total PBM mass to be coarse particles in order to estimate 

total PBM dry deposition flux based on the theory that PBM has the same proportion 

in both fine and course particles.” (L318) 

Response: 

We have modified the statement. Please refer to Lines 706–709 in the revised 

manuscript: 

“Based on measurements of particle size distributions and Hg mass distribution 

between fine and coarse particles, Zhang et al. (2016b) assumed that coarse particles 

account for 30 % of the total PM, and the Hg mass concentrations on fine and coarse 

particles are consistent.” 

 

Comment: 



Avoid the use of first person, i.e. “we”.  

Response: 

We have avoided the use of “we”. 

 



Reply to Comments from Reviewer #3 

We thank the reviewers for their valuable comments which help us improve the quality 

of the manuscript. We have carefully revised our manuscript following the reviewers’ 

comments. Point-by-point responses are given below. The reviewers’ comments are in 

black and our responses are in blue. 

 

Comment: 

In general, this paper is not easy to follow, the authors jump from one topic to another. 

They did not do advanced discussion. In more paragraphs, they only described methods 

and data, and probably two/three sentences to summarize/discuss what they learn from 

these methods/data. There is nothing inspiring readers. A review paper should do better 

than that. 

Their conclusions/summaries are not new. Gustin’s group has published couple review 

articles discussing the first three aspects in 2015, and the 4th aspect has been mentioned 

in multiple previous articles. I really do not find any new concepts in this article, and 

how can we solve the difficulties that the Hg research community is facing. For example, 

do the authors have any suggestion to understand behaviors of various GOM 

compounds in the atmosphere? 

I agree this is an important research field and there are gaps which make scientists 

cannot fully understand global Hg cycle. A review paper related to this topic should be 

published to draw attention from environmental research groups. However, the way that 

this paper is done cannot provide useful information to scientists. I suggest the authors 

re-think about the article structure and put more efforts on advanced discussions. 

Response: 

We greatly appreciate the valuable comment. We agree with the reviewer that the 

contribution of the manuscript was not clear. We have reorganized our manuscript, 

made significant revision, and added more discussion on the uncertainties in the 

observation and simulation of global speciated atmospheric Hg deposition to terrestrial 

surfaces. We believe the revised manuscript is more focused and more informative. 



Please refer to the revised manuscript. 

 

Comment: 

Abstract is read more like a summary than an abstract. I suggest to re-write the abstract 

and focus on your key aspects. Moreover, the authors must provide some potential 

solutions/suggests for each gap that are discussed in their conclusions. 

Response: 

We have rewritten the abstract based on the revised manuscript. Here is our updated 

abstract: 

“One of the most important processes in the global mercury (Hg) biogeochemical 

cycling is the deposition of atmospheric Hg, including gaseous elemental mercury 

(GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM), to 

terrestrial surfaces. Results of wet, dry, and forest Hg deposition from global 

observation networks, individual monitoring studies, and observation-based 

simulations have been reviewed in this study. Uncertainties in the observation and 

simulation of global speciated atmospheric Hg deposition to terrestrial surfaces have 

been systemically estimated based on assessment of commonly used observation 

methods, campaign results for comparison of different methods, model evaluation with 

observation data, and sensitivity analysis for model parameterization. The uncertainties 

of GOM and PBM dry deposition measurements come from the interference of 

unwanted Hg forms or incomplete capture of targeted Hg forms, while that of GEM dry 

deposition observation originates from the lack of standardized experimental system 

and operating procedure. The large biases in the measurements of GOM and PBM 

concentration and the high sensitivities of key parameters in resistance models lead to 

high uncertainties in GOM and PBM dry deposition simulation. Non-precipitation Hg 

wet deposition could play a crucial role in alpine and coastal regions, and its high 

uncertainties in both observation and simulation affect the overall uncertainties of Hg 

wet deposition. The overall uncertainties in the observation and simulation of the total 

global Hg deposition were estimated to be ±(30–50) % and ±(50–70) %, respectively, 

with the largest contributions from dry deposition. According to the results from 



uncertainty analysis, future research needs were recommended, among which global 

Hg dry deposition network, unified methods for GOM and PBM dry deposition 

measurements, quantitative methods for GOM speciation, campaigns for 

comprehensive forest Hg behavior, and more efforts on long-term Hg deposition 

monitoring in Asia are the top priorities.” 

 

Comment: 

Introduction is fine, but this is a review paper. There are more previous Hg review 

articles, such as Selin et al., 2007, and some key finding paper are not included in this 

review paper, such as Moore et al., 2014 Nature. These articles might not be directly 

linked to Hg deposition, but they do have indirect impacts on Hg deposition. After 

reading this article, I feel the authors focus on the measuring methods and numeric 

models, but do not discuss in advance about global deposition processes. 

Response: 

We have sharpened the discussion in the manuscript to focus on the uncertainties in the 

observation and simulation of global speciated atmospheric Hg deposition to terrestrial 

surfaces. We have also added the recent modeling work for Hg wet deposition. Please 

refer to Section 4.1.1 in the revised manuscript. 

 

Comment: 

A summary table or multiple summary tables would help the readers to read through 

this section. 

Response: 

We have added a summary table for the uncertainties discussed in this study. Please 

refer to Table 1. We have also created a Supporting Information file listing all the Hg 

deposition studies. 

 

Comment: 

Surrogate surface: the key point of this method is the surface affinity and fluent 

conditions near surface, but I did not see the authors discuss these here. Huang et al., 



2011 published a paper discussing fluent conditions near KSS surface, and how this 

impacts mass transfer. 

Response: 

We have added more discussion on how the sampler designs or fluent conditions affect 

the uncertainty of the surrogate surface method. Please refer to Lines 382–414 in the 

revised manuscript: 

“Different surrogate surfaces were used to measure different RM forms. Mounts with 

cation-exchange membranes (CEMs) are widely used for GOM dry deposition 

measurements (Lyman et al., 2007; Lyman et al., 2009; Castro et al., 2012; Huang et 

al., 2012a; Peterson et al., 2012; Sather et al., 2013). The down-facing aerodynamic 

mount with CEM is considered to be the most reliable deployment for GOM dry 

deposition measurements so far (Lyman et al., 2009; Huang et al., 2014). Knife-edge 

surrogate surface (KSS) samplers with quartz fiber filter (QFFs) and dry deposition 

plates (DDPs) were deployed for PBM dry deposition measurements (Lai et al., 2011; 

Fang et al., 2012b; Fang et al., 2013). However, these samplers are not well verified to 

reflect the deposition velocity of PBM, and hence not widely accepted. KCl-coated 

QFFs were used to measure the total RM (GOM+PBM) dry deposition, but failed to 

capture GOM efficiently (Lyman et al., 2009; Lai et al., 2011). 

According to Eq. (4), the uncertainty of RM dry deposition comes from the 

uncertainties of RM concentration and dry deposition velocity. The uncertainty of RM 

concentration mainly originates from the interference of unwanted RM forms or 

incomplete capture of targeted RM forms. CEMs exhibited a GOM capture rate of 51–

107 % in an active sampling system (Huang and Gustin, 2015b). The CEM mounts 

designed to measure only GOM dry deposition capture part of fine PBM (Lyman et al., 

2009; Huang et al., 2014), while the KSS samplers with QFFs designed to measure only 

PBM dry deposition may also collect part of GOM (Rutter and Schauer, 2007; Gustin 

et al., 2015). Based on the RM concentration measurements and the surrogate surface 

method evaluations, the GOM concentration related uncertainty is estimated to be ±50 % 

(Lyman et al., 2009; Lyman et al., 2010; Gustin et al., 2012; Fang et al., 2013; Zhang 

et al., 2013; Huang et al., 2014). The design of the sampler (e.g., the sampler orientation, 



the shape of the sampler, variation in turbulence, low surface resistances, passivation, 

etc.) leads to the dry deposition velocity related uncertainty which is about ±50 % for 

GOM (Lyman et al., 2009; Lai et al., 2011; Huang et al., 2012a). Calculating based on 

the method described by Eq. (2), the overall uncertainty of GOM dry deposition 

observation is ±70 %. There is not enough information to quantify the overall 

uncertainty of PBM dry deposition observation in a similar way. Based on the 

distribution of daily samples in the study of Fang et al. (2012b), the overall uncertainty 

of PBM dry deposition measurements is assumed to be roughly ±100 % or within a 

factor of 2.” 

 

Comment: 

Enclosure methods: Choi and Holsen 2008/2009 articles are also important, and the 

authors did not discuss about the bio-process/photo-process related to Hg reduction in 

DFC. 

Response: 

We have added the discussion of the influence of DFC material based on the study of 

Choi and Holsen (2009). Please refer to Lines 474–476 in the revised manuscript: 

“Choi and Holsen (2009) reported that the polycarbonate DFC blocks most of the UV-

B light from reaching the soil where Hg2+ can be reduced to Hg0, and hence the GEM 

emission flux might be underestimated by at most 20 %.” 

 

Comment: 

Micrometeorological methods: This method has been used to understand GOM flux as 

well, but no discussion here.  

Response: 

We have added discussion on micrometeorological methods for GOM dry deposition 

measurement. Please refer to Lines 372–375 in the revised manuscript: 

“The micrometeorological methods and the enclosure methods were also adopted in 

some studies (Poissant et al., 2004; Zhang et al., 2005; Skov et al., 2006), but not widely 

used due to the high uncertainties in the measurements of GOM and PBM 



concentrations using the Tekran system.” 

 

Comment: 

In forests: Choi and Holsen 2009, and there are more articles from Driscoll’s group 

discussing Hg cycle in forests. 

Response: 

We have cited the study of Choi and Holsen (2009). We have also cited articles from 

Driscoll’s group: 

Blackwell, B. D., and Driscoll, C. T.: Using foliar and forest floor mercury 

concentrations to assess spatial patterns of mercury deposition, Environ. Pollut., 202, 

126–134, 10.1016/j.envpol.2015.02.036, 2015a. 

Blackwell, B. D., and Driscoll, C. T.: Deposition of mercury in forests along a montane 

elevation gradient, Environ. Sci. Technol., 49, 5363–5370, 10.1021/es505928w, 2015b. 

Bushey, J. T., Nallana, A. G., Montesdeoca, M. R., and Driscoll, C. T.: Mercury 

dynamics of a northern hardwood canopy, Atmos. Environ., 42, 6905–6914, 

10.1016/j.atmosenv.2008.05.043, 2008. 

Gerson, J. R., Driscoll, C. T., Demers, J. D., Sauer, A. K., Blackwell, B. D., 

Montesdeoca, M. R., Shanley, J. B., and Ross, D. S.: Deposition of mercury in forests 

across a montane elevation gradient: Elevational and seasonal patterns in 

methylmercury inputs and production, J. Geophys. Res. Biogeo., 122, 1922–1939, 

10.1002/2016jg003721, 2017. 

Luo, Y., Duan, L., Driscoll, C. T., Xu, G. Y., Shao, M. S., Taylor, M., Wang, S. X., and 

Hao, J. M.: Foliage/atmosphere exchange of mercury in a subtropical coniferous forest 

in south China, J. Geophys. Res. Biogeo., 121, 2006–2016, 10.1002/2016jg003388, 

2016. 

 

Comment: 

GOM resistance: page 10 line 299-310, Gustin et al., 2015 has summarized this, this is 

not a new idea. I just feel, the authors are writing a review article, but they are repeating 

the concepts from the summaries in other’s review articles without adding their new 



thoughts. 

Response: 

We have sharpened the discussion in the manuscript to focus on the uncertainties in the 

observation and simulation of global speciated atmospheric Hg deposition to terrestrial 

surfaces. 

 

Comment: 

Page 13 line 401-402, is ambient concentrations not important? 

Response: 

We have deleted this sentence. 

 

Comment: 

Page 14, line 412-414, Europe has…., any ambient data to support this argument? 

Response: 

We have deleted this argument. 

 

Comment: 

Line 427, deposition fluxes concentrations, what does “fluxes concentrations” mean? 

Response: 

We have modified this statement. Please refer to Lines 182–183 in the revised 

manuscript: 

“Most studies on GOM dry deposition were conducted in North America and Europe” 

 

Comment: 

Line 435-439, the authors should explain why they are showing significantly different? 

Different surface affinity? 

Response: 

We have discussed the surrogate surface method in detail. Please refer to Lines 382–

414 in the revised manuscript: 

“Different surrogate surfaces were used to measure different RM forms. Mounts with 



cation-exchange membranes (CEMs) are widely used for GOM dry deposition 

measurements (Lyman et al., 2007; Lyman et al., 2009; Castro et al., 2012; Huang et 

al., 2012a; Peterson et al., 2012; Sather et al., 2013). The down-facing aerodynamic 

mount with CEM is considered to be the most reliable deployment for GOM dry 

deposition measurements so far (Lyman et al., 2009; Huang et al., 2014). Knife-edge 

surrogate surface (KSS) samplers with quartz fiber filter (QFFs) and dry deposition 

plates (DDPs) were deployed for PBM dry deposition measurements (Lai et al., 2011; 

Fang et al., 2012b; Fang et al., 2013). However, these samplers are not well verified to 

reflect the deposition velocity of PBM, and hence not widely accepted. KCl-coated 

QFFs were used to measure the total RM (GOM+PBM) dry deposition, but failed to 

capture GOM efficiently (Lyman et al., 2009; Lai et al., 2011). 

According to Eq. (4), the uncertainty of RM dry deposition comes from the 

uncertainties of RM concentration and dry deposition velocity. The uncertainty of RM 

concentration mainly originates from the interference of unwanted RM forms or 

incomplete capture of targeted RM forms. CEMs exhibited a GOM capture rate of 51–

107 % in an active sampling system (Huang and Gustin, 2015b). The CEM mounts 

designed to measure only GOM dry deposition capture part of fine PBM (Lyman et al., 

2009; Huang et al., 2014), while the KSS samplers with QFFs designed to measure only 

PBM dry deposition may also collect part of GOM (Rutter and Schauer, 2007; Gustin 

et al., 2015). Based on the RM concentration measurements and the surrogate surface 

method evaluations, the GOM concentration related uncertainty is estimated to be ±50 % 

(Lyman et al., 2009; Lyman et al., 2010; Gustin et al., 2012; Fang et al., 2013; Zhang 

et al., 2013; Huang et al., 2014). The design of the sampler (e.g., the sampler orientation, 

the shape of the sampler, variation in turbulence, low surface resistances, passivation, 

etc.) leads to the dry deposition velocity related uncertainty which is about ±50 % for 

GOM (Lyman et al., 2009; Lai et al., 2011; Huang et al., 2012a). Calculating based on 

the method described by Eq. (2), the overall uncertainty of GOM dry deposition 

observation is ±70 %. There is not enough information to quantify the overall 

uncertainty of PBM dry deposition observation in a similar way. Based on the 

distribution of daily samples in the study of Fang et al. (2012b), the overall uncertainty 



of PBM dry deposition measurements is assumed to be roughly ±100 % or within a 

factor of 2.” 

 

Comment: 

Page 17, line 537-540, different surface (e.g. forest vs grassland), there are many 
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talking about the characteristic of surfaces. 
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High GOM concentration at high elevation leads to high GOM deposition. Leaf area 
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the uncertainty analysis in the simulation of GOM dry deposition with resistance model. 
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Abstract. One of the most important processes in the global mercury (Hg) 10 

biogeochemical cycling is the deposition of atmospheric Hg, including gaseous 11 

elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate-bound 12 

mercury (PBM), to terrestrial surfaces. Results of wet, dry, and forest Hg deposition 13 

from global observation networks, individual monitoring studies, and observation-14 

based simulations have been reviewed in this study. Uncertainties in the observation 15 

and simulation of global speciated atmospheric Hg deposition to terrestrial surfaces 16 

have been systemically estimated based on assessment of commonly used observation 17 

methods, campaign results for comparison of different methods, model evaluation 18 

with observation data, and sensitivity analysis for model parameterization. The 19 

uncertainties of GOM and PBM dry deposition measurements come from the 20 

interference of unwanted Hg forms or incomplete capture of targeted Hg forms, while 21 

that of GEM dry deposition observation originates from the lack of standardized 22 

experimental system and operating procedure. The large biases in the measurements 23 

of GOM and PBM concentration and the high sensitivities of key parameters in 24 

resistance models lead to high uncertainties in GOM and PBM dry deposition 25 

simulation. Non-precipitation Hg wet deposition could play a crucial role in alpine 26 

and coastal regions, and its high uncertainties in both observation and simulation 27 

affect the overall uncertainties of Hg wet deposition. The overall uncertainties in the 28 

observation and simulation of the total global Hg deposition were estimated to be 29 

±(30–50) % and ±(50–70) %, respectively, with the largest contributions from dry 30 
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deposition. According to the results from uncertainty analysis, future research needs 31 

were recommended, among which global Hg dry deposition network, unified methods 32 

for GOM and PBM dry deposition measurements, quantitative methods for GOM 33 

speciation, campaigns for comprehensive forest Hg behavior, and more efforts on 34 

long-term Hg deposition monitoring in Asia are the top priorities. 35 

 36 

1 Introduction 37 

Mercury (Hg) is a global pollutant, characterized by its neurotoxicity, persistency and 38 

bioaccumulation effect. It undergoes regional or global long-range transport via 39 

atmospheric circulation, deposition to local or remote areas, methylation in 40 

ecosystems, and accumulation through food chain, posing high risks to human health 41 

and the environment (Obrist et al., 2018). Hg in the atmosphere has three major 42 

forms: gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and 43 

particulate-bound mercury (PBM). The sum of the three Hg forms is named total 44 

mercury (TM). GOM and PBM are also known as reactive mercury (RM). GEM is the 45 

predominant form of atmospheric Hg (>90 %) with a long residence time of several 46 

months to over one year due to its chemical inertness and low solubility. GOM used to 47 

be estimated to account for less than 1 % of atmospheric Hg, which is easily 48 

scavenged by wet deposition, resulting in a short residence time of hours to days 49 

(Schroeder and Munthe, 1998; Lindberg et al., 2007). However, recent studies (Lyman 50 

et al., 2010; Gustin et al., 2013; McClure et al., 2014; Gustin et al., 2015) show that 51 

there could be a significant underestimation of GOM due to the low capture efficiency 52 

of the KCl denuder method adopted by most observation sites in the presence of 53 

ozone or moisture. PBM (<10 % of atmospheric Hg) stays in the air for days to 54 

several weeks depending on particle size before scavenged by dry or wet deposition 55 

(Schroeder and Munthe, 1998; Lindberg et al., 2007; Ci et al., 2012; Fu et al., 2012; 56 

Zhang et al., 2016a). 57 

Deposition is one of the most important processes in global Hg cycling, leading to 58 

the sink of atmospheric Hg (Obrist et al., 2018). According to the Global Mercury 59 

Assessment 2018 (UN Environment, 2019), the annual Hg deposition to land and 60 

freshwater is estimated to be 3600 t. Atmospheric Hg deposition can be broadly 61 

divided into wet and dry deposition. Hg wet deposition is mostly in the form of 62 

precipitation (rain, snow, etc.), with non-negligible contribution from non-63 
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precipitation forms (cloud, fog, dew, frost, etc.). Hg dry deposition is highly related to 64 

the underlying surfaces, including forest canopies, grasslands, wetlands, agricultural 65 

fields, deserts, background non-vegetated soils, contaminated sites, etc. (Zhang et al., 66 

2009). Forest canopy is regarded as an important sink of atmospheric Hg for its 67 

special forms of deposition, litterfall and throughfall (Gustin et al., 2008). Litterfall is 68 

a form of indirect Hg dry deposition through foliar uptake of atmospheric Hg, and 69 

throughfall includes wet-deposited Hg above the canopy and a portion of dry-70 

deposited Hg washed off from the canopy (Wright et al., 2016). Hg deposition 71 

through litterfall has recently been drawn much attention to by the study of Wang et 72 

al. (2016a). The sum of litterfall and throughfall is regarded as the total Hg deposition 73 

in forest canopies. 74 

Significant efforts have been made in the past decade for quantifying atmospheric 75 

Hg deposition through both direct observations and model simulations, especially on 76 

dry deposition (Lyman et al., 2009; Zhang et al., 2009; Holmes et al., 2011; Lai et al., 77 

2011; Castro et al., 2012; Gustin et al., 2012; Peterson et al., 2012; L. Zhang et al., 78 

2012; Fang et al., 2013; Sather et al., 2013; Lynam et al., 2014; Sather et al., 2014; 79 

Huang and Gustin, 2015a; Weiss-Penzias et al., 2016a; Zhang et al., 2016b; Hall et al., 80 

2017; Sprovieri et al., 2017). Yet large uncertainties still exist due to limitations of 81 

current methods for Hg deposition measurements and modeling (Gustin et al., 2015). 82 

The purpose of this paper is to give an overview of the uncertainties in the observation 83 

and simulation of global speciated atmospheric Hg deposition to terrestrial surfaces. 84 

In this paper, we investigated results from the observation and simulation of global Hg 85 

deposition, reviewed methods adopted for Hg deposition measurements and modeling, 86 

estimated the uncertainties of different methods for different Hg deposition forms, and 87 

summarized the overall uncertainty level of global Hg deposition. 88 

2 Observation-based estimation of global Hg deposition 89 

2.1 Wet deposition 90 

Precipitation is the major form of Hg wet deposition. There have been several 91 

observation networks of Hg wet deposition through precipitation. The Global Mercury 92 

Observation System (GMOS) is so far the only global scale network covering the 93 

northern hemisphere, the tropics, and the southern hemisphere (Sprovieri et al., 2017). 94 

The Mercury Deposition Network (MDN) of the National Atmospheric Deposition 95 
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Program (NADP) in North America is the earliest continental scale network 96 

specifically for Hg deposition (Prestbo and Gay, 2009; Weiss-Penzias et al., 2016a). 97 

Hg wet deposition is also monitored in the European Monitoring and Evaluation 98 

Programme (EMEP) for Europe (Tørseth et al., 2012; Bieser et al., 2014). A new 99 

Asia–Pacific Mercury Monitoring Network has recently been established (Obrist et 100 

al., 2018). Figure 1 summarizes the global distribution of the observed Hg wet 101 

deposition fluxes based on results from both these global or regional networks and 102 

individual studies. 103 

Sprovieri et al. (2017) reported a 5-year record (2011–2015) of Hg wet deposition 104 

at 17 selected GMOS monitoring sites, which provided a global baseline of the Hg 105 

wet deposition flux including regions in the southern hemisphere and tropical areas. 106 

The average Hg wet deposition fluxes in the northern hemisphere, the tropics, and the 107 

southern hemisphere were 2.9 (0.2–6.7), 4.7 (2.4–7.0), and 1.9 (0.3–3.3) μg m−2 yr−1, 108 

respectively. The MDN network has a much longer history dating back to the 1990s. 109 

Weiss-Penzias et al. (2016a) analyzed records from 19 sites in the United States (U.S.) 110 

and Canada between 1997 and 2013, and discovered trends of Hg concentration in 111 

wet deposition, with the early time period (1998–2007) producing a significantly 112 

negative trend (−1.5±0.2 % yr−1) and the late time period (2008–2013) a flat slope (not 113 

significant). Therefore, the MDN data of 136 sites for the time period of 2008–2015 114 

(http://nadp.slh.wisc.edu/mdn) were used in Figure 1 to represent the recent 115 

background Hg wet deposition level in North America. Fu et al. (2016a) summarized 116 

wet deposition measurements from 7 monitoring sites in China. Hg wet deposition 117 

fluxes at rural sites in forest and grassland were averagely 6.2 and 2.0 μg m−2 yr−1, 118 

respectively, while the flux at an urban site was as high as 12.6±6.5 μg m−2 yr−1. 119 

Overall, East Asia has the highest wet deposition flux (averagely 16.1 μg m−2 yr−1), 120 

especially in the southern part of China where the GEM concentration level is 121 

relatively high (Fu et al., 2008; Guo et al., 2008; Wang et al., 2009; Fu et al., 2010a; 122 

2010b; Ahn et al., 2011; Huang et al., 2012b; Seo et al., 2012; Huang et al., 2013; 123 

Sheu and Lin, 2013; Marumoto and Matsuyama, 2014; Xu et al., 2014; Zhu et al., 124 

2014; Huang et al., 2015; Zhao et al., 2015; Han et al., 2016; Fu et al., 2016a; Ma et 125 

al., 2016; Nguyen et al., 2016; Qin et al., 2016; Sommar et at., 2016; Cheng et al., 126 

2017; Chen et al., 2018; Lu and Liu, 2018). North America has an average Hg wet 127 

deposition flux of 9.1 μg m−2 yr−1, and exhibits a descending spatial profile from the 128 
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southeastern part to the northwestern part, which is consistent with the distribution of 129 

the atmospheric Hg concentration (L. Zhang et al., 2012; Gichuki and Mason, 2014; 130 

Lynam et al., 2017). Europe has the lowest Hg wet deposition level (averagely 3.4 μg 131 

m−2 yr−1) according to the available observation and simulation data (Connan et al., 132 

2013; Bieser et al., 2014; Siudek et al., 2016). Observation data for the tropics and the 133 

southern hemisphere are scarce with large uncertainties (Wetang'ula, 2011; Gichuki 134 

and Manson, 2013; Sprovieri et al., 2017). The one exceptional tropical site with a 135 

wet deposition flux of 16.8 μg m−2 yr−1 is in Kenya while the other sites in the tropics 136 

are all in Mexico (Wetang'ula, 2011; Hansen and Gay, 2013). The two sites in the 137 

southern hemisphere with annual precipitation of over 4000 mm are in Australia and 138 

have wet deposition fluxes of 29.1 and 18.2 μg m−2 yr−1, respectively (Dutt et al., 139 

2009). Seen from the bottom part of Figure 1, Hg wet deposition flux is not 140 

significantly correlated with elevation. 141 

Hg wet deposition on different terrestrial surface types were investigated in this 142 

study. As shown in Figure 2, the average Hg wet deposition flux follows the 143 

ascending sequence of barren areas, grasslands, croplands, savannas, and urban areas. 144 

The wet deposition level has a strong correlation with precipitation on these surfaces. 145 

The “water” surfaces here refer to the terrestrial surfaces near water, e.g., coastal, 146 

offshore, and lakeside sites. The near-water surfaces and forest canopies have lower 147 

Hg wet deposition levels than the other surfaces at a similar amount of precipitation. 148 

In other words, the Hg concentrations in precipitation for these two types of surface 149 

types are lower (by 20–30 %) than for the other types. This is possibly related to non-150 

precipitation Hg wet deposition (e.g., cloud, fog, dew, and frost). Fog or cloud Hg 151 

deposition is not yet considered in the global Hg wet deposition observation network. 152 

However, studies (Stankwitz et al., 2012; Weiss-Penzias et al., 2016b; Gerson et al., 153 

2017) have shown that cloud and fog water have higher Hg concentration than rain 154 

water in the same region, and cloud and fog could have a remarkable contribution to 155 

Hg wet deposition in high-elevation forests and near-water surfaces. Cloud and fog 156 

scavenging of reactive Hg (GOM and PBM) could result in lower Hg concentration in 157 

precipitation. 158 

Studies on non-precipitation Hg wet deposition (e.g., cloud, fog, dew, and frost) are 159 

very limited so far. Stankwitz et al. (2012) and Gerson et al. (2017) found the average 160 

cloud Hg deposition fluxes of two North American montane forests to be 7.4 and 4.3 161 
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μg m−2 yr−1, respectively, equivalent to rainfall Hg deposition. In California coastline, 162 

fog Hg deposition, with only 2 % volume proportion, accounts for 13 % of the total 163 

wet deposition (Weiss-Penzias et al., 2016b). Converse et al. (2014) found the annual 164 

dew and frost Hg deposition at a high-elevation meadow in the U.S. to be about 0.12 165 

μg m−2 yr−1, 2–3 orders of magnitude smaller than wet deposition. More standardized 166 

method are in urgent need for non-precipitation Hg wet deposition measurements. 167 

2.2 Dry deposition 168 

Observation-based estimation of Hg dry deposition consists of two types, direct 169 

measurements of speciated Hg dry deposition fluxes and model simulations based on 170 

observation of speciated atmospheric Hg concentrations. Figure 3 shows the global 171 

distribution of the GOM, PBM and GEM dry deposition fluxes from observation-172 

based estimation (either direct observation of dry deposition or simulation based on 173 

Hg concentration observation). The global Hg dry deposition network is very 174 

immature compared to the wet deposition network due to the inconsistency in 175 

methods for estimation. GOM dry deposition fluxes were either measured by the 176 

surrogate surface methods or simulated based on GOM concentration measurements. 177 

PBM dry deposition fluxes were mainly estimated from the measurements of total or 178 

size-resolved PBM concentrations. GEM dry deposition fluxes were measured by 179 

different types of methods, the surrogate surface methods, the enclosure methods, and 180 

the micrometeorological methods. 181 

Most studies on GOM dry deposition were conducted in North America and 182 

Europe, among which direct observations of GOM dry deposition are mainly from 183 

North America (Lyman et al., 2007; Lyman et al., 2009; Weiss-Penzias et al., 2011; 184 

Lombard et al., 2011; Castro et al., 2012; Gustin et al., 2012; Peterson et al., 2012; 185 

Zhang et al., 2012; Sather et al., 2013; Bieser et al., 2014; Sather et al., 2014; Wright 186 

et al., 2014; Huang and Guatin, 2015a; Enrico et al., 2016; Han et al., 2016; Zhang et 187 

al., 2016b; Huang et al., 2017). Regardless of the estimating methods, the average 188 

GOM dry deposition flux in North America (6.4 μg m−2 yr−1) is higher than in Europe 189 

(3.0 μg m−2 yr−1). There have been very few studies on GOM dry deposition in Asia. 190 

Han et al. (2016) used knife-edge surrogate surface (KSS) samplers with quartz filters 191 

to measure GOM dry deposition at a remote site in South Korea, and found an 192 

average GOM dry deposition flux of 4.78 μg m−2 yr−1. A significant correlation 193 

(R2=0.532, p<0.01) was found between the elevation and the GOM dry deposition 194 
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flux (Figure 4). Huang and Gustin (2015a) found that measured dry deposition of 195 

GOM was significantly high at sites over 2000 m above sea level, and attributed it to 196 

high GOM concentrations at high elevation and atmospheric turbulence. Significant 197 

discrepancies were found between the GOM dry deposition fluxes from direct 198 

observations and from model simulations based on measurements of GOM 199 

concentrations (Figure 5). 200 

Due to the severe particulate matter (PM) pollution in East Asia, many independent 201 

size-resolved PM measurements were conducted in recent years with analysis of Hg 202 

in PM accordingly. Results from size-resolved PBM analysis and PBM dry deposition 203 

models show that East Asia has a much higher average of PBM dry deposition flux 204 

(45.3 μg m−2 yr−1) than North America (1.1 μg m−2 yr−1) with coarse-particle PBM dry 205 

deposition not considered (Fang et al., 2012a; Fang et al., 2012b; Zhu et al., 2014; 206 

Zhang et al., 2015; Huang et al., 2016; Guo et al., 2017). Studies (Fang et al., 2012a; 207 

Zhu et al., 2014) have shown that Hg in coarse particles accounts for a large 208 

proportion of the total PBM, which was previously neglected, because PBM measured 209 

by the Tekran system only considers fine particles. Therefore, the PBM dry deposition 210 

could be generally underestimated. 211 

Although large uncertainties still exist in the methods for GEM dry deposition 212 

measurements, it should be noted that GEM dry deposition is non-negligible 213 

compared to GOM and PBM. The average GEM dry deposition is lower in Europe 214 

(4.3±8.1 μg m−2 yr−1) while higher in North America (5.2±15.5 μg m−2 yr−1) with more 215 

variation (Castelle et al., 2009; Baya and Heyst, 2010; Converse et al., 2010; Miller et 216 

al., 2011). The four Asian sites using micrometeorological methods all show negative 217 

values (−36.3±19.6 μg m−2 yr−1), indicating the role of East Asia as a net emission 218 

source rather than a net deposition sink (Luo et al., 2014; Luo et al., 2016; Ci et al., 219 

2016; Yu et al., 2018). However, the GEM dry deposition observation in Asia is still 220 

very limited. Agnan et al. (2016) and Zhu et al. (2016) made detailed summaries of 221 

campaign-based GEM dry deposition observations, and addressed the importance of 222 

natural Hg emission sources. 223 

Figure 6 exhibits the dry deposition fluxes of GOM, PBM and GEM for different 224 

terrestrial surface types. As shown in Figure 6a, high GOM dry deposition levels were 225 

found for grasslands (mainly alpine meadows) and savannas. This is probably because 226 

of the enhanced Hg oxidation process at high elevations with more halogen free 227 
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radicals or more intensive solar radiations. Urban areas also have high GOM dry 228 

deposition fluxes due to high GOM concentrations. The low GOM dry deposition 229 

fluxes on moist surfaces (near-water surfaces and croplands) might be partially 230 

because of fog and dew scavenging (Malcolm and Keeler. 2002; Zhang et al., 2009). 231 

The PBM dry deposition flux is high on surfaces with high human activities (urban 232 

areas and croplands) and low in vegetative areas, implying the heavier PM pollution 233 

in urban and rural areas than in remote areas (Figure 6b). Short-term observation of 234 

GEM dry deposition shows high fluctuation. Therefore, we summarized model 235 

estimations and one annual observation dataset (L. Zhang et al., 2012; Bieser et al., 236 

2014; Zhang et al., 2016b; Enrico et al., 2016), and found that the GEM dry 237 

deposition does not only depend on GEM concentration, but also on the air–soil Hg 238 

exchange compensation point (Luo et al., 2016). Regarding the annual air–surface Hg 239 

exchange, instead of an important natural source, forests tend to be a net sink of 240 

atmospheric Hg (Figure 6c). 241 

2.3 Forest deposition 242 

Hg deposition in forests is mainly in the forms of litterfall and throughfall. Wang et 243 

al. (2016a) made a comprehensive assessment of the global Hg deposition through 244 

litterfall, and found litterfall Hg deposition an important input to terrestrial forest 245 

ecosystems (1180±710 Mg yr−1). South America was estimated to bear the highest 246 

litterfall Hg deposition (65.8±57.5 μg m−2 yr−1) around the world. This was partially 247 

because some studies were conducted in the Amazonian rainforest (Fostier et al., 248 

2015), mainly semi-deciduous or evergreen tropical forest, which account for over 249 

40% litterfall deposition globally (Shen et al., 2019). Another reason was that some 250 

sampling sites were very close to large cities or polluted areas, which could lead to 251 

more Hg accumulation (Teixeira et al., 2012; Buch et al., 2015; Teixeira et al., 2017; 252 

Fragoso et al., 2018). There have been numerous forest Hg deposition studies in the 253 

recent decade in East Asia with the second highest average litterfall Hg deposition 254 

flux (35.5±27.7 μg m−2 yr−1). The forest type varies among different studies, but East 255 

Asia has much higher Hg concentrations in litterfall (42.9–62.8 ng g−1) compared to 256 

other regions (Wan et al., 2009; Wang et al., 2009; Fu et al., 2010a; Fu et al., 2010b; 257 

Gong et al., 2014; Luo et al., 2016; Ma et al., 2015; Han et al., 2016; Fu et al., 2016a; 258 

Ma et al., 2016; Wang et al., 2016b; Zhou et al., 2016; Zhou et al., 2017). Lower 259 

levels of litterfall Hg deposition fluxes were found in North America (12.3±4.9 μg m−2 260 
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yr−1) and Europe (14.4±5.8 μg m−2 yr−1) (Larssen et al., 2008; Obrist et al., 2009; 261 

Fisher and Wolfe, 2012; Juillerat et al., 2012; Obrist et al., 2012; Risch et al., 2012; 262 

Benoit et al., 2013; Navrátil et al., 2014; Gerson et al., 2017; Risch et al., 2017; Risch 263 

and Kenski, 2018). According to Risch et al. (2017), the litterfall Hg deposition flux 264 

in the eastern U.S. decreased year by year during 2007–2014 with a declining rate of 265 

0.8 μg m−2 yr−1. From 2007 to 2009 the decrease occurred more rapidly due to the Hg 266 

emission control strategies during this period of time. The litterfall Hg deposition flux 267 

and the Hg concentration in litterfall are shown in Figure 7. In general, evergreen 268 

forests have higher litterfall Hg concentrations than deciduous forests due to longer 269 

accumulation time (Wright et al., 2016). Evergreen broadleaf forests have not only 270 

high litterfall Hg concentrations but also high litterfall rates (Shen et al., 2019), and 271 

consequently bear high litterfall Hg deposition. Comparing the levels of wet, dry, and 272 

litterfall Hg depositions in forests, litterfall markedly takes the lead, especially for 273 

evergreen broadleaf forests. This is consistent with the budget of global litterfall Hg 274 

deposition developed by Wang et al. (2016a). 275 

Most studies on Hg deposition in forests in North America use rainfall instead of 276 

throughfall since dry deposition in North American forests has limited contribution 277 

(Risch et al., 2017), while Asian studies found large discrepancy between throughfall 278 

and rainfall Hg deposition fluxes (32.9±18.9 and 13.3±8.6 μg m−2 yr−1, respectively), 279 

indicating a high dry deposition level in Asian forests (Wan et al., 2009; Wang et al., 280 

2009; Fu et al., 2010a; Fu et al., 2010b; Luo et al., 2016; Ma et al., 2015; Han et al., 281 

2016; Fu et al., 2016a; Ma et al., 2016; Wang et al., 2016b; Zhou et al., 2016). 282 

Litterfall and throughfall Hg deposition fluxes are equivalent. Wright et al. (2016) 283 

summarized previous studies and reported the mean litterfall and throughfall Hg 284 

deposition, respectively, 42.8 and 43.5 μg m−2 yr−1 in Asia, 14.2 and 19.0 μg m−2 yr−1 285 

in Europe, and 12.9 and 9.3 μg m−2 yr−1 in North America. 286 

3 Uncertainties in Hg deposition observation 287 

3.1 Uncertainties in the measurements of Hg wet deposition 288 

3.1.1 Measurements of Hg wet deposition through precipitation 289 

Hg wet deposition through precipitation, mostly rainfall, is easier to measure than dry 290 

deposition and usually more reliable. The rainfall Hg wet deposition flux is calculated 291 

as follows (Zhao et al., 2018): 292 
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where Fwet,rainfall is the total rainfall Hg wet deposition flux; n is the number of 294 

precipitation events during a certain period; Ci is the total Hg concentration in 295 

rainwater during Event i; and Di is the precipitation depth of Event i. 296 

Both manual and automatic precipitation sample collectors were used in previous 297 

studies (Fu et al., 2010a; Gratz and Keeler, 2011; Marumoto and Matsuyama, 2014; 298 

Zhu et al., 2014; Brunke et al., 2016; Chen et al., 2018). The collected water samples 299 

are preserved with HCl or BrCl in cool and dark environment for up to one month in 300 

case of potential wall loss and photo-induced reduction of Hg (EPA Method 1631E; 301 

Sprovieri et al., 2017). The total Hg concentration in water samples is then analyzed 302 

by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry 303 

(CVAFS) following EPA Method 1631, which allows the relative percent difference 304 

(RPD) between field duplicates to be no more than 20 %. GMOS reported their 305 

ongoing precision recovery (OPR) for every 12 samples to be generally within 93–306 

109 % (Sprovieri et al., 2017). The RPD for MDN precipitation Hg analysis is 307 

generally within 10 % according to the inter-laboratory comparisons in the external 308 

quality assurance project (2015–2016) conducted by the United States Geological 309 

Survey (USGS) for MDN. For individual studies (Fu et al., 2010a; Huang et al., 2015; 310 

Zhao et al., 2018), the relative standard deviation (RSD) is also generally less than 311 

10 %. Overall, the relative uncertainty in rainwater Hg concentration analysis is 312 

estimated to be ±10 %. 313 

Automatic precipitation sample collectors cover the lid automatically when it is not 314 

raining to prevent potential contamination, while manual collectors require manually 315 

placing collectors before precipitation events and retrieving them after events. The 316 

measurements of precipitation volume by sample collectors also have uncertainties 317 

(Wetherbee et al., 2017). Based on the USGS report (2015–2016) for MDN, the RSD 318 

of the daily measured precipitation depth by electronically recording gauges was 319 

within 7 %, which was close to an early study (Wetherbee et al., 2005). Therefore, the 320 

relative uncertainty in precipitation depth measurements is estimated to be ±7 %. 321 

The uncertainty of the precipitation Hg wet deposition flux can be calculated based 322 

on the uncertainties of the rainwater Hg concentration and the measurement of 323 

precipitation depth. The relative uncertainty of precipitation Hg wet deposition is 324 

estimated to be ±12 % using the following equation: 325 
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      (2) 326 

where δF(wet) and UF(wet) are the relative and absolute uncertainties of Hg wet 327 

deposition flux, respectively; δC and UC are the relative and absolute uncertainties of 328 

the total Hg concentration in precipitation water, respectively; and δD and UD are the 329 

relative and absolute uncertainties of the precipitation depth, respectively. 330 

3.1.2 Measurements of Hg wet deposition through cloud, fog, dew and frost 331 

Non-precipitation Hg wet deposition, e.g., cloud, fog, dew and frost, could account for 332 

a notable proportion of the total wet deposition in montane, coastal, arid, and semi-333 

arid areas (Lawson et al., 2003; Sheu and Lin, 2011; Stankwitz et al., 2012; Blackwell 334 

and Driscoll, 2015b). Quantifying Hg in cloud or fog helps better understand the 335 

impact of long-range transport and local sources on global Hg cycling (Malcolm et al., 336 

2003). The non-precipitation Hg deposition flux is calculated as follows: 337 

wet,non-precipitation
1

m

j j
j

F C D
=

= ⋅∑             (3) 338 

where Fwet,non-precipitation is the non-precipitation Hg deposition flux; m is the number 339 

of non-precipitation wet deposition events during a certain period; Cj is the total Hg 340 

concentration in non-precipitation wet deposition water during Event j; and Dj is the 341 

non-precipitation wet deposition depth of Event j. 342 

Both active and passive collectors have been used to collect cloud or fog water 343 

(Lawson et al., 2003; Malcolm et al., 2003; Kim et al., 2006; Sheu and Lin, 2011; 344 

Schwab et al., 2016; Weiss-Penzias et al., 2018). The major uncertainty lies in the 345 

deposition depth. The deposition depth of cloud, fog, dew or frost is usually modeled 346 

based on meteorology (Converse et al., 2014; Katata, 2014). The fog deposition depth 347 

can be measured by standard fog collectors (SFC). The uncertainty of fog deposition 348 

depth measurements is mainly from the collecting efficiency of SFC depending on the 349 

wind speed, wind direction, or mesh types (Weiss-Penzias et al., 2016b; Fernandez et 350 

al., 2018). Montecinos et al. (2018) evaluated the collection efficiency of SFC to be 351 

up to 37 %. Therefore, there is extremely large uncertainty in the measurements of the 352 

fog deposition depth. Based on the fog deposition studies (Weiss-Penzias et al., 353 

2016b; Fernandez et al., 2018; Montecinos et al., 2018), the overall uncertainty of 354 

non-precipitation Hg deposition flux observation is estimated to be ±300 %. Note that 355 

the true uncertainty range is not symmetric about the mean because some of the 356 
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underlying variables are lognormally distributed (Streets et al., 2005). A better 357 

interpretation of ‘‘±300 %’’ might be ‘‘within a factor of 4’’. 358 

3.2 Uncertainties in the measurements of Hg dry deposition 359 

Direct measurements of the Hg dry deposition flux is technically challenging, large 360 

uncertainties still exist in quantify Hg dry deposition accurately (Wright et al., 2016). 361 

Three major categories of methods for direct Hg dry deposition measurements are the 362 

surrogate surface methods, the enclosure methods, and the micrometeorological 363 

methods (Zhang et al., 2009; Huang et al., 2014). 364 

3.2.1 Measurements of RM (GOM and PBM) dry deposition 365 

RM dry deposition flux is proportional to the corresponding RM concentration (Zhang 366 

et al., 2009): 367 

dry,RM d zF v C= ⋅               (4) 368 

where Fdry,RM is the RM dry deposition flux; Cz is the RM concentration at 369 

reference height z; and vd is the dry deposition velocity. 370 

Most of the RM dry deposition measurements used the surrogate surface methods 371 

(Huang et al., 2014; Wright et al., 2016). The micrometeorological methods and the 372 

enclosure methods were also adopted in some studies (Poissant et al., 2004; Zhang et 373 

al., 2005; Skov et al., 2006), but not widely used due to the high uncertainties in the 374 

measurements of GOM and PBM concentrations using the Tekran system. For the 375 

surrogate surface methods, the RM dry deposition flux is determined using the 376 

following equation (Huang et al., 2014): 377 

dry,SS
MF
A t

=
⋅

               (5) 378 

where Fdry,SS is the Hg dry deposition flux using the surrogate surface methods; M 379 

is the total Hg amount collected on the material during the sampling period; A is the 380 

surface area of the collection material; and t is the exposure time. 381 

Different surrogate surfaces were used to measure different RM forms. Mounts 382 

with cation-exchange membranes (CEMs) are widely used for GOM dry deposition 383 

measurements (Lyman et al., 2007; Lyman et al., 2009; Castro et al., 2012; Huang et 384 

al., 2012a; Peterson et al., 2012; Sather et al., 2013). The down-facing aerodynamic 385 

mount with CEM is considered to be the most reliable deployment for GOM dry 386 

deposition measurements so far (Lyman et al., 2009; Huang et al., 2014). Knife-edge 387 

surrogate surface (KSS) samplers with quartz fiber filter (QFFs) and dry deposition 388 
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plates (DDPs) were deployed for PBM dry deposition measurements (Lai et al., 2011; 389 

Fang et al., 2012b; Fang et al., 2013). However, these samplers are not well verified to 390 

reflect the deposition velocity of PBM, and hence not widely accepted. KCl-coated 391 

QFFs were used to measure the total RM (GOM+PBM) dry deposition, but failed to 392 

capture GOM efficiently (Lyman et al., 2009; Lai et al., 2011). 393 

According to Eq. (4), the uncertainty of RM dry deposition comes from the 394 

uncertainties of RM concentration and dry deposition velocity. The uncertainty of RM 395 

concentration mainly originates from the interference of unwanted RM forms or 396 

incomplete capture of targeted RM forms. CEMs exhibited a GOM capture rate of 397 

51–107 % in an active sampling system (Huang and Gustin, 2015b). The CEM 398 

mounts designed to measure only GOM dry deposition capture part of fine PBM 399 

(Lyman et al., 2009; Huang et al., 2014), while the KSS samplers with QFFs designed 400 

to measure only PBM dry deposition may also collect part of GOM (Rutter and 401 

Schauer, 2007; Gustin et al., 2015). Based on the RM concentration measurements 402 

and the surrogate surface method evaluations, the GOM concentration related 403 

uncertainty is estimated to be ±50 % (Lyman et al., 2009; Lyman et al., 2010; Gustin 404 

et al., 2012; Fang et al., 2013; Zhang et al., 2013; Huang et al., 2014). The design of 405 

the sampler (e.g., the sampler orientation, the shape of the sampler, variation in 406 

turbulence, low surface resistances, passivation, etc.) leads to the dry deposition 407 

velocity related uncertainty which is about ±50 % for GOM (Lyman et al., 2009; Lai 408 

et al., 2011; Huang et al., 2012a). Calculating based on the method described by Eq. 409 

(2), the overall uncertainty of GOM dry deposition observation is ±70 %. There is not 410 

enough information to quantify the overall uncertainty of PBM dry deposition 411 

observation in a similar way. Based on the distribution of daily samples in the study of 412 

Fang et al. (2012b), the overall uncertainty of PBM dry deposition measurements is 413 

assumed to be roughly ±100 % or within a factor of 2. 414 

3.2.2 Measurements of GEM dry deposition 415 

GEM has a low dry deposition velocity due to its mild activity, high volatility and low 416 

water solubility, and deposited GEM could re-emit into the atmosphere (Bullock et al., 417 

2008; Fu et al., 2016b). Various methods have been applied to studies on air–surface 418 

GEM exchange, among which the enclosure methods and the micrometeorological 419 

methods were most commonly used (Zhang et al., 2009; Agnan et al., 2016; Zhu et al., 420 

2016; Yu et al., 2018). 421 
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Micrometeorological methods are considered more reliable because of higher 422 

temporal resolution and less interference from the microenvironment (Zhu et al., 423 

2016). With the high expenses of these methods, they are not as widely used as the 424 

enclosure methods (Sommar et al., 2013a; Pierce et al., 2015). Micrometeorological 425 

methods can be divided into the direct flux measurement methods and the gradient 426 

methods. The most known one of the former is the relaxed eddy accumulation (REA) 427 

method, while the latter include the aerodynamic (AER) method and the modified 428 

Bowen-ratio (MBR) method (Zhang et al., 2009; Yu et al., 2018). 429 

The REA method is based on sampling upward and downward moving eddies at 430 

constant flow rates, which relies on an ultrasonic anemometer to detect the vertical 431 

wind velocity and control the fast response valves. The GEM dry deposition flux 432 

based on the REA method is calculated as follows (Sommer et al., 2013b): 433 

dry,REA down up( )wF C Cβσ= −             (6) 434 

where Fdry,REA is the GEM dry deposition flux measured by the REA method; β is 435 

relaxation coefficient; σw is the standard deviation of the vertical wind speed; and 436 

Cdown and Cup are the downward and upward GEM concentration, respectively. 437 

The REA method conducts upward and downward sampling at the same height, 438 

eliminating the footprint difference and potential GEM formation and loss (Zhu et al., 439 

2016). Dual inlets were recommended and applied in recent studies due to advantages 440 

of synchronous concentration determination (Sommar et al., 2013b; Zhu et al., 2015b; 441 

Kamp et al., 2018; Osterwalder et al., 2016). 442 

The gradient methods (AER and MBR) sample air at different height to get the 443 

vertical GEM concentration gradient. For the AER method, the GEM dry deposition 444 

flux is calculated using the following equation (Fritsche et al., 2008; Baya and Van 445 

Heyst, 2010; Yu et al., 2018): 446 

dry,AER
CF K
z

∂
=

∂
              (7) 447 

where Fdry,AER is the GEM dry deposition flux measured by the AER method; K is 448 

the turbulent transfer coefficient (Yu et al., 2018); and ∂C/∂z is the gradient of the 449 

vertical GEM concentration. 450 

For the MBR method, the GEM dry deposition flux is calculated based on the 451 

theory that the flux ratio of GEM over the reference scalar (e.g., H2O) is proportional 452 

to their concentration gradients (Obrist et al., 2006; Converse et al., 2010): 453 
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Hg
dry,MBR r

r

C
F F

C
∂

=
∂

              (8) 454 

where Fdry,MBR is the GEM dry deposition flux measured by the MBR method; Fr is 455 

the flux of the reference scalar; and ∂CHg/∂Cr is the concentration gradient ratio of 456 

GEM over the reference scalar. 457 

Enclosure methods rely on the conservation of mass and have been used for most 458 

GEM flux measurements due to their relatively low costs, portability, versatility and 459 

intuitive nature (Eckley et al., 2011; Sommar et al., 2013a; Sommar et al., 2013b; 460 

Agnan et al., 2016; Zhu et al., 2016; Ma et al., 2018). The dynamic flux chamber 461 

(DFC) method is the most commonly used enclosure method. A vacuum pump is 462 

applied to draw air through a low Hg blank chamber at a constant flow, and the GEM 463 

concentrations at the inlet and outlet of the chamber are measured sequentially by a 464 

mercury analyzer coupled with a switchable valve. The GEM dry deposition flux is 465 

calculated according to the following equation (Zhu et al., 2015a): 466 

inlet outlet
dry,DFC

( )Q C CF
A
−

=             (9) 467 

where Fdry,DFC is the GEM dry deposition flux measured by the DFC method; Q is 468 

the flushing flow rate; Cinlet and Coutlet are the GEM concentrations at the chamber 469 

inlet and outlet, respectively; and A is the area of the chamber footprint. 470 

Different flushing flow rates, chamber designs and materials, as well as the lack of 471 

standard operating protocol and blank correcting procedures, make it hard for 472 

comparison between different studies (Eckley et al., 2010; Agnan et al., 2016; 473 

Osterwalder et al., 2018). Choi and Holsen (2009) reported that the polycarbonate 474 

DFC blocks most of the UV-B light from reaching the soil where Hg2+ can be reduced 475 

to Hg0, and hence the GEM emission flux might be underestimated by at most 20 %. 476 

A novel DFC, abbreviated as NDFC, was designed and utilized in recent studies (Lin 477 

et al., 2012; Zhu et al., 2015a; Zhu et al., 2015b; Osterwalder et al., 2018). The GEM 478 

dry deposition flux under atmospheric condition can be calculated based on the flux 479 

measured by NDFC with the internal shear property precisely controlled and the 480 

surface shear property (Lin et al., 2012). 481 

The uncertainty of air–surface GEM exchange flux using the micrometeorological 482 

methods were estimated to be up to ±30 % (Meyers et al., 1996; Lindberg et al., 2001; 483 

Fritsche et al., 2008; Sommer et al., 2013a; Zhu et al., 2015b). The more widely used 484 

enclosure methods have much higher uncertainties. Zhu et al. (2016) summarized 485 
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existing air–surface GEM exchange studies and found that the mean flux using 486 

micrometeorological methods is higher than using DFCs by a factor of 2. Therefore, 487 

the overall uncertainty of GEM dry deposition observation is estimated to be ±100 %. 488 

3.3 Uncertainties in the measurements of Hg deposition in forests 489 

In forest ecosystems, Hg dry and wet depositions are not easy to be distinguished 490 

markedly, and litterfall and throughfall are commonly used to evaluate the total Hg 491 

deposition (Wang et al., 2016a; Wright et al., 2016). 492 

3.3.1 Litterfall Hg deposition measurements 493 

Hg dry deposition in forests includes uptake of Hg by leaf stomata and cuticle, tree 494 

bark, and underlying soil. Some of the deposited Hg in the soil may emit back into the 495 

atmosphere and be captured by leaves, while some of the deposited Hg in leaves may 496 

be translocated to branches, stems and roots (Risch et al., 2012). Litterfall Hg 497 

deposition includes the remaining dry-deposited Hg in leaves and bark as well as the 498 

captured Hg emitted from the soil (Blackwell and Driscoll, 2015a; Wright et al., 499 

2016). Litterfall Hg deposition flux is calculated as follows (Fisher and Wolfe, 2012): 500 

litterfall
A l lE C MF

A t
⋅ ⋅

=
⋅

             (10) 501 

where Flitterfall is the litterfall Hg deposition flux; EA is the litterfall trap area 502 

expansion factor (note: leaves outside the area above the trap could fall into the trap 503 

due to horizontal air fluctuation); Cl is the Hg mass concentration in litterfall; Ml is the 504 

total dry weight of litterfall; A is the litterfall trap area; and t is the sampling time. 505 

The Hg content in litterfall can be determined by thermal decomposition, 506 

amalgamation, and cold vapor atomic absorption spectrophotometry (CVAAS) 507 

following EPA Method 7473 (Richardson and Friedland, 2015; Fu et al., 2016a; Zhou 508 

et al., 2017; Risch et al., 2017). Alternatively, the litterfall samples can be digested 509 

into solution, and the extracted Hg in the solution can be analyzed following EPA 510 

Method 1631E (Fu et al., 2010a; Fisher and Wolfe, 2012). The uncertainty in litterfall 511 

Hg content analysis is about ±7 % according to the Litterfall Mercury Monitoring 512 

Network developed by NADP (Risch et al., 2017) and individual studies (Benoit et 513 

al., 2013; Ma et al., 2015; Zhou et al., 2016; Gerson et al., 2017). Litterfall samples 514 

are collected during the leaf-growing or -falling seasons with litterfall traps or 515 

collectors (Fisher and Wolfe, 2012). Total litterfall consists of leaves and needles, 516 

woody material such as twigs and bark, and reproductive bodies such as flowers, 517 
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seeds, fruits, and nuts (Meier et al., 2006; Risch et al., 2012). The total litter mass 518 

collected by different samplers could cause a RSD of 16 % (Risch et al., 2012) and 519 

Risch et al., 2017). Therefore, the overall uncertainty of litterfall Hg deposition 520 

observation on a regular basis is estimated to be ±20 %. Moreover, based on the 521 

assumption that the total Hg concentration in litterfall is linearly accumulated during 522 

the growing season, some studies estimated litterfall Hg concentration by multiplying 523 

a scale factor, which may cause extra uncertainty (Bushey et al., 2008; Poissant et al., 524 

2008; Fu et al., 2010a; Gong et al., 2014). Taking this into consideration, the overall 525 

uncertainty of litterfall Hg deposition observation is estimated to be ±30 %. 526 

3.3.2 Throughfall Hg deposition measurements 527 

Throughfall Hg deposition includes wet-deposited Hg above the canopy and a portion 528 

of dry-deposited Hg washed off from the canopy (Blackwell and Driscoll, 2015a; 529 

Wright et al., 2016). Throughfall Hg deposition flux is calculated as follows (Fisher 530 

and Wolfe, 2012): 531 

throughfall
A t tE C VF

A t
⋅ ⋅

=
⋅

             (11) 532 

where Fthroughfall is the throughfall Hg deposition flux; EA is the throughfall funnel 533 

area expansion factor; Ct is the Hg mass concentration in throughfall; Vt is the total 534 

volume of throughfall; A is the throughfall funnel area; and t is the sampling time. 535 

Throughfall under canopy is usually collected using a passive bulk throughfall 536 

collector with a funnel connected a bottle for water storage (Wang et al., 2009; Fisher 537 

and Wolfe, 2012; Åkerblom et al., 2015) or collected as open-field rain collection if 538 

the environmental condition permits (Choi et al., 2008; Fu et al., 2010a; Fu et al., 539 

2010b; Han et al., 2016). Attention should be paid to potential litterfall contamination 540 

and cloud or fog deposition influence at high elevation sites if the collector is not 541 

sheathed (Fisher and Wolfe, 2012; Wright et al., 2016). Throughfall samples are 542 

usually analyzed following EPA Method 1631E (Fisher and Wolfe, 2012). Therefore, 543 

throughfall Hg deposition should have a similar uncertainty as rainfall Hg deposition. 544 

Considering the possible interference for throughfall sample collection, the overall 545 

uncertainty of throughfall Hg deposition observation is estimated as ±20 %. 546 

4 Uncertainties in Hg deposition simulation 547 

4.1 Uncertainties in models for Hg wet deposition 548 
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4.1.1 Model for precipitation Hg wet deposition 549 

Hg wet deposition through precipitation is an important process in global or regional 550 

chemical transport models (CTMs), such as GEOS-Chem and CMAQ-Hg (Lin et al., 551 

2010; Y. Zhang et al., 2012; Bieser et al., 2014; J. Zhu et al., 2015; Horowitz et al., 552 

2017). As shown in Eq. (1), precipitation Hg wet deposition is the product of the total 553 

Hg concentration in rainwater and the precipitation depth. The precipitation Hg 554 

concentration contains more uncertain factors. Hg in rainwater is mainly from the 555 

scavenging of GOM and PBM in both free troposphere and boundary layer. Based on 556 

the modeling work for Hg wet deposition in the United States using GEOS-Chem 557 

(Selin and Jacob, 2008), GOM and PBM contributed 89 % and 11 % to the total Hg 558 

wet deposition, respectively, and 60% of the GOM induced wet deposition originated 559 

from scavenging in the free troposphere. Seo et al. (2012) and Cheng et al. (2015) also 560 

reported higher scavenging coefficient for GOM than for PBM. Therefore, Hg redox 561 

chemistry in the free troposphere, aqueous phase Hg speciation, aqueous phase 562 

sorption, and the scavenging process tend to be the dominant sources of uncertainties 563 

(Lin et al., 2006; Lin et al., 2007; Cheng et al., 2015). 564 

In the simulation of Hg wet deposition by the GEOS-Chem model, the uncertainty 565 

of precipitation depth is usually within ±10 % because it is based on assimilated 566 

meteorological observations from the Goddard Earth Observing System (GEOS) 567 

instead of meteorological models (Y. Zhang et al., 2012). Y. Zhang et al. (2012) 568 

conducted a nested-grid simulation of Hg over North America using GEOS-Chem, 569 

and reported the normalized bias of the annual Hg wet deposition flux to be ranging 570 

from −14 % to +27 % comparing to the MDN observations. Horowitz et al. (2017) 571 

used GEOS-Chem to reproduce observed Hg wet deposition fluxes over North 572 

America, Europe, and China and also got low bias (0–30 %). The CMAQ-Hg model 573 

exhibits a higher uncertainty level because the precipitation depth is simulated by 574 

meteorological models (e.g., MM5 or WRF) and its uncertainty has a strong impact 575 

on model prediction on Hg wet deposition (Lin et al., 2006). In the study of Bullock et 576 

al. (2009), the precipitation simulated by MM5 was averagely 12% greater than 577 

observed and the CMAQ simulation of Hg wet deposition was averagely about 15% 578 

above the MDN observations. However, different boundary conditions could cause a 579 

25% difference (Bullock et al., 2009). Holloway et al. (2012) found that the CMAQ-580 

Hg model underestimated wet deposition by 21 % on an annual basis and showed 581 
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average errors of 55 %. Based on the comparison between observed and modeled 582 

results and the sensitivity of key parameters, the overall uncertainty of precipitation 583 

Hg wet deposition simulation is estimated to be ±30 %. 584 

4.1.2 Model for non-precipitation Hg wet deposition 585 

Non-precipitation Hg wet deposition simulation has never been considered in CTMs, 586 

but performed in some individual studies with Hg concentration data for cloud, fog, 587 

dew or frost samples (Ritchie et al., 2006; Converse et al., 2014; Blackwell and 588 

Driscoll, 2015b). Non-precipitation deposition depth can be estimated using resistance 589 

models, analytical models or sophisticated atmosphere-soil-vegetation models. Katata 590 

(2014) reviewed different types of models for fog deposition estimation, and found 591 

the four most sensitive factors to be canopy homogeneity, droplet size spectra, droplet 592 

capture efficiency, and canopy structure. Since fog is the most important form of non-593 

precipitation deposition, the overall uncertainty in the simulation of non-precipitation 594 

Hg wet deposition is estimated to be ±200 % or a factor of 3 based on the sensitivity 595 

analysis in the study of Katata (2014). 596 

4.2 Uncertainties in models for Hg dry deposition 597 

Hg dry deposition flux can be estimated by coupling speciated atmospheric Hg 598 

concentrations with dry deposition models (Wright et al., 2016). Therefore, in this 599 

part, the uncertainties of speciated Hg concentration measurements were first 600 

discussed, followed by the uncertainty analyses of Hg dry deposition models. 601 

4.2.1 Uncertainties in speciated Hg concentration measurements 602 

Although many new methods and apparatus have been or are being developed to 603 

better determine speciated Hg concentrations in ambient air, up to now the Tekran 604 

2537/1130/1135 system is still the most widely used commercial instrument for 605 

continuous measurements of speciated Hg (Gustin et al., 2015). Regional and global 606 

monitoring networks such as Atmospheric Mercury Network (AMNet) and GMOS 607 

have all been using the Tekran systems and developed systematic quality assurance 608 

and quality control (QA/QC) protocols to assure data quality (Obrist et al., 2018). 609 

Therefore, this section is mainly to assess the uncertainties of the Tekran system. 610 

Tekran 2537 uses a pair of gold trap cartridges (A/B) to capture GEM in order to 611 

achieve continuous observation and to reduce the uncertainty of GEM measurements. 612 

The standard operating procedure (SOP) of GMOS for the determination of GEM 613 
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requires the RPD of the average of five consecutive A trap concentrations and five 614 

consecutive B trap concentrations to be less than 10 % (Sprovieri et al., 2017). In field 615 

comparisons held by EMEP, the RSD from Tekran measurements are also generally 616 

within 10 % (Aas, 2006). However, in the Reno Atmospheric Mercury 617 

Intercomparison eXperiment (RAMIX) campaign, the RPD between two co-located 618 

Tekran systems was as high as 25–35 % (Gustin et al., 2013). This was possibly 619 

related to other factors, such as the configuration of the manifold, which could be 620 

occasional or systemic. Therefore, considering the possible uncertainty brought by the 621 

system setup, the overall uncertainty of GEM concentration measurements by the 622 

Tekran system is estimated to be ±20 %. 623 

Tekran 1130 uses a KCl-coated denuder to pre-concentrate GOM, and the collected 624 

GOM is then thermally desorbed at 500 °C and converted to GEM for quantification. 625 

A number of studies have reported the significant interference of ozone and humidity 626 

on the GOM capture rate of the denuder (Lyman et al., 2010; Jaffe et al., 2014; 627 

McClure et al., 2014; Gustin et al., 2015). McClure et al., (2014) found that the KCl-628 

coated denuder only captures 20–54 % HgBr2 in the ambient air under the influence 629 

of humidity and ozone. Huang et al. (2013) compared denuder- and membrane-based 630 

methods, and reported that the KCl-coated denuder only captures 27–60 % of the 631 

GOM measured by CEMs. Discrepancy with a factor of 2–3 at times was found 632 

between the Tekran system and other new methods in the RAMIX campaign (Gustin 633 

et al., 2013). Cheng and Zhang (2017) developed a numerical method to assess the 634 

uncertainty of GOM measurements, and estimated the GOM concentrations measured 635 

at 13 AMNet sites to be underestimated by a factor of 1.3 to more than 2. Gustin et al. 636 

(2015) reported that the capture efficiency ratio of CEMs over the denuder method for 637 

five major GOM compounds ranges from 1.6 to 12.6. Recent studies (Huang and 638 

Gustin, 2015a; Huang et al., 2017) applied a correction factor of 3 for Tekran GOM 639 

data when modeling dry deposition flux. Therefore, the overall uncertainty of the 640 

GOM concentration measured by the Tekran system is estimated to be ±200 % or 641 

within a factor of 3. 642 

Tekran 1135 uses a quartz filter downstream the KCl denuder to collect PM2.5, and 643 

the collected fine particles are then thermally desorbed at 800 °C at a pyrolyzer and 644 

converted to GEM for the quantification of PBM, or rather PBM2.5. The uncertainties 645 

in PBM concentration measurements have not been systemically assessed so far. 646 

Gustin et al. (2015) pointed out that breakthrough of GOM from the upstream denuder 647 
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could result in the retention of GOM on the quartz filter and induce consequent PBM 648 

overestimation. The RAMIX campaign showed that the RSD of PBM measurements 649 

was 70–100 % when the Tekran systems were free standing (Gustin et al., 2013). 650 

Coarse PBM is neglected in Tekran measurements with an impactor removing all 651 

coarse particles. However, based on the estimation of Zhang et al. (2016b), about 652 

30 % of PBM could be on coarse particles. Regarding the limited evidence from 653 

previous studies, the overall uncertainty of the PBM concentration measured by the 654 

Tekran system is estimated to be ±100 % or a factor of 2. 655 

4.2.2 Resistance model for GOM dry deposition 656 

Based on Eq. (4), the dry deposition velocity (vd) is the key parameter in the 657 

determination of Hg dry deposition flux. It can be estimated using a resistance model 658 

(Zhang et al., 2002; Zhang et al., 2003): 659 

1
d

a b c

v
R R R

=
+ +

              (12) 660 

where Ra is the aerodynamic resistance depending on the meteorological conditions 661 

and the land use category; Rb is the quasi-laminar resistance, a function of friction 662 

velocity and the molecular diffusivity of each chemical species (Zhang et al., 2002); 663 

and Rc is the canopy resistance which can be further parameterized as follows: 664 
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            (13) 665 

where Wst is the fraction of stomatal blocking under wet conditions; Rst is the 666 

stomatal resistance; Rm is the mesophyll resistance; and Rns is the non-stomatal 667 

resistance which is comprised of in-canopy, soil, and cuticle resistances. Cuticle and 668 

soil resistances for GOM are scaled to those of SO2 and O3 by the following equation: 669 
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            (14) 670 

where Rx is the cuticle or soil resistance; α and β are two scaling parameters (Zhang 671 

et al., 2003; L. Zhang et al., 2012). Among the numerous parameters in the resistance 672 

model the two scaling factors for the non-stomatal resistance components regarding 673 

the solubility and reactivity of the chemical species are the most sensitive ones. The 674 

values for HNO3 (α=β=10) used to be applied in the model for GOM (Marsik et al., 675 

2007; Castro et al., 2012; L. Zhang et al., 2012). However, some other studies found 676 

the values for HONO (α=β=2) are probably more suitable for GOM due to equivalent 677 



22 

effective Henry’s Law constants (H*) between HONO and HgCl2 (Lyman et al., 678 

2007). Huang and Gustin (2015a) indicated that no single value could be used to 679 

calculate GOM dry deposition due to the unknown GOM compounds. Various values 680 

for the two scaling parameters (α=β=2, 5, 7 and 10) were used in Huang et al. (2017) 681 

to identify dominant GOM deposition species. 682 

The uncertainties of Ra and Rb are estimated to be generally small, within the range 683 

of ±30 % (Zhang et al., 2003; Huang et al., 2012a), while the uncertainty of Rc usually 684 

has a larger impact, especially through the selection of α and β. Lyman et al. (2007) 685 

changed the values of α and β from 2 to 10, and found a 120% enhancement of vd. 686 

With a correction factor of 3 for the GOM concentration measured by Tekran, Huang 687 

and Gustin (2015a) got similar modeled and measured GOM dry deposition values 688 

with bias of up to ±100 %. Huang et al. (2017) also applied the correction factor of 3, 689 

tested different values of α and β, and found the bias of GOM dry deposition 690 

simulation to be up to a factor of 2.5. As discussed above, the overall uncertainty of 691 

the GOM concentration measured by Tekran is within a factor of 3. If the GOM dry 692 

deposition simulation is directly based on the Tekran GOM data, its uncertainty level 693 

would be much higher than a factor of 3. However, recent studies (Huang et al., 2014; 694 

Huang and Gustin, 2015a; Huang et al., 2017) have used a correction factor of 3 for 695 

GOM concentration data which offsets the uncertainty of GOM dry deposition. 696 

Therefore, the overall uncertainty in GOM dry deposition simulation is estimated to 697 

be a factor of 2.5 or ±150 %. 698 

4.2.3 Resistance model for PBM dry deposition 699 

For PBM dry deposition, resistance models regarding both fine and coarse particles 700 

are more and more widely applied based on the theory that vd for atmospheric 701 

particles strongly depend on particle size (Dastoor and Larocque, 2004; Zhang et al., 702 

2009; Zhang and He, 2014). Many independent studies (Fang et al., 2012b; Zhu et al., 703 

2014) showed that Hg in coarse particles constitutes a large mass fraction of the total 704 

PBM, which was previously neglected. PBM measured by Tekran 2537/1130/1135 705 

only considers fine particles. Based on measurements of particle size distributions and 706 

Hg mass distribution between fine and coarse particles, Zhang et al. (2016b) assumed 707 

that coarse particles account for 30 % of the total PM, and the Hg mass concentrations 708 

on fine and coarse particles are consistent. Taking coarse particles into consideration, 709 

the total PBM dry deposition can be calculated as follows (Zhang et al., 2016b): 710 
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dry,PBM 1f f c
fF C v v

f
 

= + − 
           (15) 711 

where Fdry,PBM is the total PBM dry deposition flux; Cf is the mass concentration of 712 

PBM in fine particles; vf and vc are the dry deposition velocities of PBM for fine and 713 

coarse particles, respectively; and f is the mass fraction of PBM in coarse particles. vf 714 

and vc can be calculated using the following equation (Zhang et al., 2001): 715 

1
x g

a s

v v
R R

= +
+

              (16) 716 

where vx is vf or vc; vg is the gravitational settling velocity; Ra is the aerodynamic 717 

resistance; and Rs is the surface resistance which can be parameterized as a function of 718 

collection efficiencies from Brownian diffusion, impaction, and interception 719 

mechanisms (L. Zhang et al., 2012; Zhang et al., 2016b). Zhang and He (2014) have 720 

developed an easier bulk algorithm based on the vx scheme of Zhang et al. (2001) to 721 

make this model more widely applicable in monitoring networks. 722 

Zhang et al. (2001) conducted a model comparison with two PBM dry deposition 723 

schemes, and the results showed that the differences between models are generally 724 

within the range of 20 %. However, recent studies found the proportion of coarse 725 

particles plays a crucial role in the evaluation of PBM dry deposition velocity (Zhang 726 

et al., 2016b). Zhang et al. (2016b) assumed that 30 % of the total PBM mass is on 727 

coarse particles, and found that 44 % PBM deposition was caused by coarse particle 728 

deposition. We tested the model used by Zhang et al. (2016b), and found a 2-fold 729 

change when we increased the coarse PBM proportion from 30 % to 50%. In other 730 

words, the uncertainty of the PBM deposition velocity could be as high as ±100 %. As 731 

discussed above, the overall uncertainty of the PBM concentration measured by 732 

Tekran is about ±100 %. Considering both aspects and applying the calculation 733 

method based on Eq. (2), the overall PBM uncertainty in GOM dry deposition 734 

simulation is estimated to be ±150 %. 735 

4.2.4 Bidirectional model for GEM dry deposition 736 

GEM dry deposition can also be calculated using the resistance model with different 737 

parameters. However, the re-emission and natural emission of GEM must be taken 738 

into consideration. Net GEM dry deposition is estimated from the difference between 739 

the estimated unidirectional deposition flux and the modeled total re-emission plus 740 

natural emission in the resistance model (L. Zhang et al., 2012). 741 
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A bidirectional air-surface exchange model modified from the resistance model is 742 

more and more recommended in recent years (Zhang et al., 2009; Bash, 2010; Wang 743 

et al., 2014; Zhang et al., 2016b; Zhu et al., 2016). In the bidirectional scheme, the 744 

GEM dry deposition flux can be calculated as follows (Zhang et al., 2009): 745 

dry,GEM
a c

a b

F
R R
χ χ−

=
+

              (17) 746 

1
1 1 1 1ga st

c
a b st m ac g a b st m ac g cutR R R R R R R R R R R R R

χχ χχ
−

  
= + + + + +    + + + + + +  

(18) 747 

where Fdry,GEM is the net GEM dry deposition flux; χa is the GEM concentration at a 748 

reference height; Ra, Rb, Rst, Rm, Rac, Rg and Rcut are aerodynamic, quasi-laminar, 749 

stomatal, mesophyll, in-canopy aerodynamic, ground surface and cuticle resistances, 750 

respectively (Zhang et al., 2016b); and χst and χg are canopy, stomatal and ground 751 

surface compensation points, respectively. Based on observations on different land use 752 

categories, Wright and Zhang (2015) have proposed a range of χst and χg. 753 

The studies of L.Zhang et al. (2012) and Zhang et al. (2016b) have shown the great 754 

importance of the previously neglected GEM dry deposition. Due to the presence of 755 

natural and re-emission of GEM, the net GEM dry deposition has a higher uncertainty 756 

level than GOM and PBM dry deposition. Although both the studies of L. Zhang et al. 757 

(2012) and Zhang et al. (2016b) reported the uncertainty of net GEM dry deposition to 758 

be averagely about a factor of 2, there were many exceptions (over a factor of 2–5) 759 

according to L. Zhang et al. (2012), especially when the net GEM dry deposition 760 

fluxes were at low level. Based on the above concern and the sensitivity analysis 761 

conducted in the study of Zhang et al. (2016b), the overall uncertainty of the net GEM 762 

dry deposition simulation is within a factor of 2 or ±100 % when GEM dominates the 763 

total Hg dry deposition, while it could be as high as a factor of 5 or ±400 % when 764 

GOM+PBM dominate the total dry deposition. According to this estimation, the 765 

overall uncertainty of the total dry deposition is in the range of ±(100–150) %. It tends 766 

to increase when the dominance of dry deposition shifts from GEM to GOM+PBM. 767 

4.3 Uncertainties in models for forest Hg deposition 768 

The study of Wang et al. (2016a) is to date the only modeling study for litterfall Hg 769 

deposition. Monte Carlo simulation was adopted to assess the global Hg deposition 770 

through litterfall based on the measured litterfall Hg concentrations and the global 771 

litterfall biomass distribution. The estimated global annual Hg deposition through 772 
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litterfall was reported to be 1180 t with a relative uncertainty of ±60 %. There is no 773 

modeling study on throughfall Hg deposition so far. Consequently, we can only use 774 

the overall uncertainty of wet and dry deposition simulation to represent throughfall, 775 

which will be discussed in the next section. 776 

5 Summary of uncertainties in Hg deposition to terrestrial surfaces 777 

Based on the review work above, the overall uncertainties of wet, dry, and forest Hg 778 

deposition can be calculated using the following equation: 779 

2 2 2 2 2 2 2 2
2 2 2 2A B A B A A A B B BA B

A B A A B B
A B A B A B

U U F P F PU P P
F F F

δ δ
δ δ δ+ ++

+
+ + +

+ +
= = = = +   (19) 780 

where δA, δB, and δA+B are the relative uncertainties of Part A, Part B, and the total 781 

deposition flux, respectively; UA, UB, and UA+B are the absolute uncertainties of them, 782 

respectively; FA+B is the total deposition flux; and PA and PB are the proportions of 783 

Part A and Part B deposition fluxes, respectively. 784 

Table 1 summarizes the previously estimated relative uncertainties for wet, dry, and 785 

forest Hg deposition fluxes. Although the uncertainty of precipitation Hg deposition 786 

flux is low (±12 % and ±30 % for observation and simulation, respectively), the 787 

uncertainty of non-precipitation Hg deposition has been neglected. Due to the 788 

condensation effect, non-precipitation deposition could contribute equivalent or even 789 

larger proportion to Hg wet deposition than rainfall (Stankwitz et al., 2012; Blackwell 790 

and Driscoll, 2015b; Weiss-Penzias et al., 2016b; Gerson et al., 2017). Considering 791 

the global area of hotspot regions for cloud, fog, dew, and frost, such as alpine and 792 

coastal regions, the overall contribution of non-precipitation deposition to Hg wet 793 

deposition is approximately 5–10 %. Given the high uncertainty level of non-794 

precipitation Hg deposition, the overall uncertainties in the observation and simulation 795 

of global Hg wet deposition are estimated to be ±(20–30) % and ±(30–35) %, 796 

respectively. 797 

Hg dry deposition has a much larger uncertainty level than wet deposition from 798 

both observation and simulation perspectives. High GOM deposition fluxes were 799 

exhibited in North America, while high PBM deposition fluxes were found in East 800 

Asia (Wright et al., 2016). Based on the global observation and simulation data 801 

(Wright et al., 2016; Zhang et al., 2016b), the ratio of global GOM dry deposition 802 

over PBM dry deposition could be in the range of 1:1 to 3:1, and the ratio of global 803 
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GEM dry deposition over RM (GOM+PBM) dry deposition could be in the range of 804 

1:9 to 9:1. Therefore, the overall uncertainties in the observation and simulation of 805 

global Hg dry deposition are estimated to be ±(55–90) % and ±(90–130) %, 806 

respectively. 807 

Without studies specifically on throughfall deposition modeling, the uncertainty of 808 

throughfall Hg deposition simulation has been estimated based on the uncertainties of 809 

both wet and dry deposition simulation, and turned out to be up to ±90 %. Studies on 810 

both litterfall and throughfall Hg deposition (Larssen et al., 2008; Navrátil et al., 811 

2014; Luo et al., 2016; Ma et al., 2015; Fu et al., 2016a; Wang et al., 2016a; Gerson et 812 

al., 2017) showed that the relative contributions of litterfall and throughfall could be 813 

in the range of 2:3 to 4:1. Accordingly, the overall uncertainties in the observation and 814 

simulation of global forest Hg deposition are estimated to be ±(20–25) % and ±(50–815 

60) %, respectively. 816 

Based on global and regional modeling studies (Selin and Jacob, 2008; Wang et al., 817 

2016a; UN Environment, 2019), the relative contributions of wet, dry, and litterfall 818 

Hg deposition are estimated to be approximately 1:2:1. With the previously estimated 819 

uncertainty ranges for wet, dry, and litterfall deposition, the overall uncertainties in 820 

the observation and simulation of global total Hg deposition are calculated to be 821 

±(30–50) % and ±(50–70) %, respectively. It should be noted that the low overall 822 

uncertainty for observation can only be achieved when Hg deposition networks are 823 

established worldwide. 824 

6 Implications and future research needs 825 

With a big effort of literature review, this study has estimated the uncertainties in the 826 

observation and simulation of global Hg deposition to terrestrial surfaces through 827 

different pathways. The implications from the comprehensive uncertainty analysis and 828 

the derivative research needs in the future are as follows: 829 

(1) The observation methods for both wet and forest Hg deposition fluxes have low 830 

uncertainty levels. Although large uncertainties still exist in the methods for Hg dry 831 

deposition measurements, the overall uncertainty in global Hg deposition observation 832 

can be as low as ±(30–50) % as long as global dry deposition monitoring networks for 833 

GOM, PBM and GEM are established. Optimized surrogate surfaces and DFCs are 834 

economic approaches for RM and GEM measurements, respectively, and could be 835 

recommended for the global dry deposition network. 836 
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(2) Methods with high time resolution for the accurate measurements of GOM and 837 

PBM concentrations are in urgent needs. The KCl denuder-based method for GOM 838 

measurements has significant underestimation. The application of a correction factor 839 

of 3 could reduce the uncertainty in GOM dry deposition simulation. However, this 840 

correction factor is not universally applicable. Different humidity levels or ozone 841 

concentrations lead to a significant change in underestimation. Different chemical 842 

forms of GOM (e.g., HgCl2, HgBr2, HgO, HgSO4, etc.) also have different KCl 843 

capture efficiencies. On account of the GOM dry deposition velocity, the chemical 844 

form of GOM also plays a crucial role. Different model parameterizations should be 845 

applied for different GOM species. Therefore, quantification methods for measuring 846 

different GOM species need to be developed to improve the simulation of GOM dry 847 

deposition flux. 848 

(3) The contribution of GEM dry deposition to the total global Hg deposition is still 849 

unclear, which leads to the extremely large uncertainty in GEM dry deposition 850 

simulation. More comparisons between observation and simulation of the GEM dry 851 

deposition flux should be conducted to improve model parameterization. Moreover, 852 

the GEM deposition process is complicated in forests. It is useful to measure the 853 

above-canopy apparent deposition flux, the under-canopy dry deposition flux, the 854 

litterfall deposition flux, and the throughfall deposition flux at the same site to get a 855 

more comprehensive understanding of the process. 856 

(4) Non-precipitation Hg wet deposition has been neglected in the global 857 

monitoring networks and modeling studies. Cloud, fog, or even dew and frost Hg 858 

deposition could be quite important in hotspot regions, such as alpine and coastal 859 

areas. It could be enriched in aqueous Hg and affect other deposition processes, or in 860 

other words, change the overall Hg residence time. Extremely large uncertainties still 861 

exist in both observation and simulation of non-precipitation Hg wet deposition. More 862 

standardized sampling methods are required for long-term observation of non-863 

precipitation Hg wet deposition. 864 

(5) Asia has the highest atmospheric Hg concentration level. However, the Hg 865 

deposition studies in Asia are still quite limited. Hg wet deposition network has not 866 

been established in Asia, and there are only a few scattered studies on dry deposition 867 

in East Asia. The Hg wet and dry deposition processes in Asia could be quite different 868 

from those in North America and Europe because of the high atmospheric Hg and 869 

high PM condition in Asia. 870 
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Table Captions 1555 

Table 1. Summary of relative uncertainties of different types of Hg deposition to 1556 

terrestrial surfaces. 1557 
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Table 1. Summary of relative uncertainties of different types of Hg deposition to 1559 

terrestrial surfaces. 1560 

Type of Hg deposition Relative uncertainty 
in observation (%) 

Relative uncertainty in 
simulation (%) 

Wet deposition ±(20–30) ±(30–35) 

Precipitation ±12 ±30 

Cloud, fog, dew, and frost ±300 ±200 

Dry deposition ±(55–90) ±(90–130) 

GOM dry deposition ±70 ±150 

PBM dry deposition ±100 ±150 

GEM dry deposition ±100 ±100 (GEM dominates) 
±400 (RM dominates) 

Forest deposition ±(20–25) ±(50–60) 

Litterfall ±30 ±60 

Throughfall ±20 ±90 

Overall ±(30–50) ±(50–70) 

 1561 

  1562 
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Figure Captions 1563 

Figure 1. Global distribution of the observed Hg wet deposition fluxes by observation 1564 

networks around the world (μg m−2 yr−1). 1565 

Figure 2. Hg wet deposition fluxes (cyan columns with black bars as standard 1566 

deviations) and annual precipitation (orange dots) for different terrestrial surface 1567 

types. “Water” stands for the terrestrial surfaces near water. The numbers in brackets 1568 

stand for the numbers of samples. 1569 

Figure 3. Global distribution of the (a) GOM, (b) PBM, and (c) GEM dry deposition 1570 

fluxes (μg m−2 yr−1) from observation-based estimation. 1571 

Figure 4. Relationship between the elevation and the GOM dry deposition flux. 1572 

Figure 5. Comparison between the GOM dry deposition fluxes from direct 1573 

observations and from model simulations based on measurements of GOM 1574 

concentrations. The numbers in brackets stand for the numbers of samples. 1575 

Figure 6. Dry deposition fluxes (cyan columns with black bars as standard deviations) 1576 

of (a) GOM, (b) PBM and (c) GEM for different terrestrial surface types. “Water” 1577 

stands for the terrestrial surfaces near water. The numbers in brackets stand for the 1578 

numbers of samples. 1579 

Figure 7. Litterfall Hg deposition fluxes (cyan columns with black bars as standard 1580 

deviations) and Hg concentrations in litterfall (orange dots) for different terrestrial 1581 

surface types. The numbers in brackets stand for the numbers of samples. DB stands 1582 

for deciduous broadleaf forests, DN stands for deciduous needle leaf forests, EB 1583 

stands for evergreen broadleaf forests, and EN stands for evergreen needle leaf 1584 

forests. 1585 
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 1588 

Figure 1. Global distribution of the observed Hg wet deposition fluxes by observation 1589 

networks around the world (μg m−2 yr−1). 1590 
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 1592 

Figure 2. Hg wet deposition fluxes (cyan columns with black bars as standard 1593 

deviations) and annual precipitation (orange dots) for different terrestrial surface 1594 

types. “Water” stands for the terrestrial surfaces near water. The numbers in brackets 1595 

stand for the numbers of samples. 1596 
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 1598 

Figure 3. Global distribution of the (a) GOM, (b) PBM, and (c) GEM dry deposition 1599 

fluxes (μg m−2 yr−1) from observation-based estimation. 1600 

  1601 



55 

 1602 

Figure 4. Relationship between the elevation and the GOM dry deposition flux. 1603 
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 1605 

Figure 5. Comparison between the GOM dry deposition fluxes from direct 1606 

observations and from model simulations based on measurements of GOM 1607 

concentrations. The numbers in brackets stand for the numbers of samples. 1608 
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 1610 

Figure 6. Dry deposition fluxes (cyan columns with black bars as standard deviations) 1611 

of (a) GOM, (b) PBM and (c) GEM for different terrestrial surface types. “Water” 1612 

stands for the terrestrial surfaces near water. The numbers in brackets stand for the 1613 

numbers of samples. 1614 
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 1616 

Figure 7. Litterfall Hg deposition fluxes (cyan columns with black bars as standard 1617 

deviations) and Hg concentrations in litterfall (orange dots) for different terrestrial 1618 

surface types. The numbers in brackets stand for the numbers of samples. DB stands 1619 

for deciduous broadleaf forests, DN stands for deciduous needle leaf forests, EB 1620 

stands for evergreen broadleaf forests, and EN stands for evergreen needle leaf 1621 

forests. 1622 
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