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Abstract.

In this paper we show that the origin of the ice phase in tropical cumulus clouds over the sea may occur by primary ice
nucleation of small crystals at temperatures just between 0 and -5°C. This was made possible through use of a holographic
instrument able to image cloud particles at very high resolution and small size (6 um). The environment in which the
observations were conducted was notable for the presence of desert dust advected over the ocean from the Sahara. However,
there is no laboratory evidence to suggest that these dust particles can act as ice nuclei at temperatures warmer than about -
10°C, the zone in which the first ice was observed in these clouds. The small ice particles were observed to grow rapidly by
vapour diffusion, riming, and possibly through collisions with supercooled raindrops, causing these to freeze and potentially
shatter. This in turn leads to the further production of secondary ice in these clouds. Hence, although the numbers of primary
ice particles are small, they are very effective in initiating the rapid glaciation of the cloud, altering the dynamics and

precipitation production processes.

1. Introduction

The formation of the first ice particles in convective clouds is poorly understood, partly due to the difficulty in measuring
small particles that are potentially outside the resolution capability of many cloud microphysics instruments. Even with
measurements approaching the required resolution (likely a few 10s of microns), understanding the origin of the first ice in
natural free floating clouds is complicated by competing microphysical processes such as secondary ice production and the
effects of potential seeding from outside. Making measurements in rapidly evolving, dynamic and turbulent convective
clouds is particularly challenging, as is knowing the composition of aerosol present in the atmosphere and their ice
nucleating properties. After ice is initiated in convective clouds, rapid glaciation often follows (Hallett et al., 1978; Hobbs
and Rangno, 1985; Koenig, 1963; Lawson et al., 2015; Rangno and Hobbs, 1991), producing ice crystal concentrations
several orders of magnitude higher than the number of predicted Ice Nucleating Particles (INPs) (DeMott et al., 2010). This
rapid glaciation of convective clouds, coupled with inadequate measurement resolution is a major challenge to capturing first
ice particles in-situ. The origin of these first ice particles and the physico-chemical properties of the INPs that contribute to

their formation are thus poorly understood.

The Ice in Clouds Experiment — Dust (ICE-D) took place around the Cape Verde Archipelago, with the aim of studying the
influence of Saharan dust aerosol on the microphysics of developing convective clouds over the Atlantic Ocean. The location

is an ideal natural laboratory for conducting measurements of dust outflow from Africa and investigating its potential
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impacts on cloud microphysical properties. The Sahara is the largest desert in the world and the most significant source of
mineral dust in the atmosphere (Tanaka and Chiba, 2006). Mineral dust emission is driven by factors that produce wind
speed maxima at the surface, including the mixing of momentum towards the surface from the nocturnal low level jet
(NLLJ) at the top of the night time boundary layer, day time convection, (Fiedler et al., 2013) and cold pool outflow from
afternoon convection (Marsham et al., 2013). The Saharan Atmospheric Boundary Layer (SABL) reaches as high as 6 km
during the summer (Gamo, 1996). According to Marsham et al. (2013) the distribution of uplifted or Aeolian dust within the
SABL has three typical scenarios. Uplifted dust with clear air above, dust concentrated in an elevated layer with clearer air
underneath and dust profiles that are well mixed down to the ground. When Saharan dust advects away from the Sahara and
over the Atlantic ocean it rises over cooler moist air forming an elevated layer known as the Saharan Air Layer (SAL)
(Karyampudi and Carlson, 1988). This process results in a strong inversion, with warm dry air anomalies around 850 hPa
that increase the lifting condensation level (LCL) and Level of Free Convection (LFC) that often supresses deep convection
(Wong and Dessler, 2005). Mineral dust such as that transported from the Sahara Desert is an atmospherically important INP

that plays a crucial role in the formation of ice particles in clouds at temperatures below ~ -15 °C (Diehl, 2014)

In this paper we present measurements of an isolated, growing cumulus cloud. The first penetration was around the freezing
level close to cloud top, and further penetrations were conducted with increasing altitude/decreasing temperature as the cloud
grew. We describe the cloud particles observed and the thermodynamic environment that the convective cloud developed

within.

2. Measurements and Analysis

The Facility for Airborne Atmospheric Measurements (FAAM) British Aerospace-146 (BAe-146) aircraft was used during
the ICE-D experiment to penetrate developing cumulus clouds around the Cape Verde Archipelago. The aircraft aimed to
make an initial penetration as the cloud top was just below the freezing level. Subsequent penetrations were then made with
increasing altitude/decreasing temperature, a few hundred metres below cloud top, following the developing cloud upwards.
The microphysical properties at slightly supercooled temperatures in updraft regions of the clouds were studied, to look for
first ice particles. In-situ measurements of cloud microphysical and aerosol properties in each case were provided by a suite
of instruments that included: a 2 Dimensional-Stereo (2DS) probe, providing 10 pm resolution shadow images of
hydrometeors over the size range 10 < dp < 1280 um (SPEC Inc., Lawson et al., 2006); a Cloud Droplet Probe (CDP-100
Version-2, Droplet Measurement Technologies (DMT), Boulder, USA) (Lance et al., 2010) for measurement of the cloud
droplet size distribution over the range 3 <d, <50 um; a Passive Cavity Aerosol Spectrometer Probe (PCASP-100X, DMT)
measuring the aerosol size distribution over the particle size range 0.1 < d, <3 pum (Cai et al., 2013). The physical properties
of individual refractory absorbing particles were characterised using a Single Particle Soot Photometer (SP2) (DMT,
Boulder, USA) (Stephens et al. 2003). Water vapour measurements were made with the Water Vapour Sensing System 11
(WVSS-II, SpectraSensors) (Vance et al., 2015; Fleming and May, 2004), which uses a near-infrared tuneable diode laser
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absorption spectrometer to measure atmospheric water vapour. The range and accuracy given by the manufacturer is 50-
60000 +50 ppmv or £5%, of the measurement, whichever is greatest, though the lower limit of the instrument is unclear
(Vance et al. 2015). Data used in this analysis from core instruments on the aircraft included temperature, measured using
Rosemount/Goodrich type 102 temperature sensors (Stickney et al., 1994), and information about aircraft altitude, speed and

position provided by the GPS-aided inertial navigation system.

The 2DS shadow imaging probe was used for geometric analysis of particle shape and size. From this information
discrimination between spherical and irregular particles was possible for hydrometeors > ~ 100 pm using a circularity
criterion (Crosier et al., 2011). The categories generated using information about particle shape were; Low Irregular (LI,
shape factor between 1 and 1.2), indicating liquid droplets, or newly frozen liquid droplets that maintain a spherical shape;
Medium Irregular (M1, shape factor between 1.2 and 1.4), for increasingly irregular particles, possibly indicative of ice; High
Irregular (HI, shape factor > 1.4) indicating ice particles. The Optical Array Imaging Software (OASIS) package was used to
analyse data from the 2DS in the above way. The software was developed by the National Centre for Atmospheric Science
(NCAS) and DMT. Further discussion of this can be found in Crosier et al. (2011). The 2DS was fitted with Korolev anti-
shatter tips (Korolev et al., 2011) to reduce particle shattering artefacts and examination of Inter-Arrival Time (IAT)

histograms was also used to further identify and remove shattered particles, Field et al. (2006a).

Key to the analysis of cloud particles presented in this paper, was the use of a holographic imaging probe (HALOHolo) from
the Institute for Atmospheric Physics at the University of Mainz and Max Planck Institute for Chemistry, Mainz. This probe
has the ability to image small cloud particles at high resolution. The HALOHolo instruments is an improved development
based on the principle design introduced by Spuler and Fugal (2011) and Fugal and Shaw (2009). It has an effective pixel
size 0of 2.96 um on a 6576 % 4384 detector giving a sample volume of approximately 19 % 13 x 155 mm. The sample volume
was reduced slightly to remove potential shattering artefacts close to the windows. The resulting sample volume is 35.4 cm®.
With a sample rate of approximately 6 frames per second and typical airspeed of 140 m s™! at the cloud penetration altitudes,
a 3-D volume of cloud was provided every 23.3 metres with a total sample volume of 212.4 cm® s\ The retrievable size
range from the 3D samples is ~ 6 pm to 5 mm, which is constrained by detectability for small particles and the one particle
limit for large particles. Similar to the processing of the 2DS data, the distinction between frozen hydrometeors and droplets

is done by shape with the limitations expressed in Korolev et al. (2017).

2.1 Temperature Measurements

In-situ temperature measurements during science flights were made using de-iced and non de-iced Rosemount sensors. In
cloud these are subject to wetting, causing evaporative cooling that depresses the temperature measurement (Dearden et al.,
2014). Lenschow and Pennell (1974) found the wetting of exposed sensors during cloud penetrations depressed temperatures

by as much as 1 °C relative to protected sensors. Larger temperature anomalies > 1 °C from Rosemount sensors have also
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been reported (Heymsfield et al., 1979) and during ICE-D similar temperature decreases in cloud were observed. Due to
these potential problems measured water vapour mixing ratio measurements were used to derive ambient temperature in
cloud as described in Dearden et al. (2014). Of the hygrometers on the aircraft the WVSSII instrument operating on a flush
inlet (referred to as WVSSII-F) was used for this analysis. The reason for this is that the WVSSII-F is not susceptible to
artefact when penetrating liquid clouds (Vance et al. 2015). The performance of the WVSSII-F was compared to a second
WYVSSII instrument sampling through a Rosemount inlet (WVSSII-R). For this comparison only data out of cloud (CDP
LWC <0.01 g m3) was selected, as the WVSSII-R measurement is subject to contamination during cloud penetrations. We

found excellent agreement between the two instruments with an 7* of 0.99 (Fig. 1).

The vapour mixing ratio measured by the WVSSII-F, in the presence of liquid water, was assumed to be equal to the
saturation mixing ratio. This value was converted to a saturation vapour pressure using information from aircraft pressure
measurements and the temperature calculated using the Clausius—Clapeyron equation. The derived temperatures for each
penetration were compared to the in-situ measurements in cloud and out of cloud before penetrations (Fig. 2). In cloud
temperatures measured by the Rosemount sensor were seen to be very unreliable, often depressed by > 2 °C relative to the
measurement in dry air prior to the penetration and > 5°C relative to the derived temperature. Quite striking was the finding
that the derived temperature in cloud during one penetration with an updraft of 15 m s was, ~ 4.5 °C higher than the in-situ
out of cloud temperature and ~ 7 °C higher than the in-situ in cloud wetted temperature. This was the warmest penetration
during case 1 and in the strongest updraft. When calculating the saturated adiabatic curve for the measured atmospheric
conditions (Fig. 3 green dashed line) the derived temperature was seen to lay on the parcel curve suggesting that, in
principle, the high derived temperature was possible for a parcel lifted from the Level of Free Convection (LFC). Derived

temperatures for other penetrations were closer to the environmental temperature measured by a nearby dropsonde.

3. Results

3.1 Observations of cloud microphysics in a growing cumulus turret

A cloud-dust interaction flight (Flight No. b926) took place on 14" August 2015. The aircraft departed from Praia
International Airport, on the island of Santiago (14.9453° N, 23.4865° W) at 1423 UTC to investigate a line of convection ~
200 km south of the island. Eight straight and level penetrations were made into growing convective clouds with increasing
height/decreasing temperature. Video stills from six of these penetrations and associated in-situ out of cloud temperatures
(prior to penetration) can be seen in Figure 4. P1 (Fig. 4a) was the penetration with the highest temperature (lowest altitude).
The 10 second mean out of cloud temperature before the penetration was -5.3 °C, with a mean derived temperature in cloud
of just below freezing (-0.2 °C) (Fig. 5a). When calculating the saturated adiabatic temperature from the LCL (Fig. 2), the
derived temperature agrees well with the predicted temperature of a rising parcel of air (in-cloud) at that altitude level. We

analysed the forward facing camera (FFC) video from the aircraft and with information about the field of view, speed of the
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aircraft and distance from the cloud we estimated the cloud top to be ~ 440 metres above the altitude of the cloud
penetration. In a saturated environment this suggests that the temperature at cloud top may be ~ 2 °C lower than the
environment measured by the instruments on the aircraft. Vertical wind data measurements during the penetration peaked at
+ 15 m s! (Fig. 5b), the strongest updraft measured during this case. The uncertainty in temperature measurements in-cloud
can be seen in Figure 5a. Immediately before the penetration the out of cloud temperature measured by the Rosemount
temperature sensor is -5.3 °C. Soon after entering the cloud the problem of wetting and evaporative cooling depresses the
reading by several degrees. The derived temperature is calculated for in cloud conditions (for cloud Liquid Water Content
(LWC) > 0.01 g m™), and this quickly rises to a consistent mean value of -0.2 °C. The lag in derived temperature is related to
the response time of the WVSS-II (Vance et al. 2014). Peak cloud droplet concentrations, measured using the CDP were 43
cm® (Fig. 5¢) in P1 with peak LWCs of 0.6 g m™. Imagery from the HALOHolo showed the microphysics to be dominated
by liquid water (the mean HALOHolo cloud droplet concentration was 31 cm). Figure 6 shows images of liquid
hydrometeors for penetration 1. Although dominated by liquid hydrometeors, holograms revealed (Fig. 5c, 7a) small ice
crystals, some less than 50 pm in size, in strong updrafts. The mean HALOHolo ice concentration for penetration 1 (2.8 km
in length) were 6.6 L', with 1 second peak values sometimes as high as ~ 30 L (fig. 5¢). Although accurate determination
of the in-cloud temperature is difficult, the implication is that small ice particles just slightly below freezing can be seen in
this developing cumulus cloud. Size distributions (Fig. 8) for P1 and P3 show a small mode of ice crystals observed by the
holography. It is not possible to see these small ice particles in the 2DS imagery at this stage due to its limited resolution (10
um). After this initial penetration, imagery from later penetrations at lower temperatures showed increasing numbers of ice
particles (characterised as medium irregular or highly irregular particles in the analysis of 2DS, or high irregular for
HALOHolo). P4 (T-derived -6.5°C) contained many small ice particles together with bigger frozen drops (Fig. 7b) indicating
secondary ice processes becoming active. Size distributions show the increasing size and numbers of ice particles measured
by both the HALOHolo and the 2DS (Fig. 8). These penetrations at colder temperatures fell outside of suitable conditions for
the identification of any potential first ice particles in these clouds due to potential contamination from efficient secondary

ice particle production mechanisms.

3.2 Aerosol Properties

Figure 9 shows 1 Hz particle concentration data, binned as a function of altitude (250 m bin resolution) for all available ICE-
D cloud-aerosol interaction flights. The different concentrations of dust existed in air masses with different thermodynamic
properties. Included are profiles of cloud droplet concentrations (measured by the CDP), aerosol concentrations measured by
the (PCASP and Hematite sub-micron particle concentration derived from a single particle soot photometer (SP2). CDP data
were selected for in-cloud periods only (CDP Liquid Water Content (LWC) > 0.01 g m) and PCASP data were removed

from any in-cloud periods using the same threshold. The aerosol data were also carefully quality controlled for any
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anomalous data points that may have resulted from shattering of precipitation particles on the inlet, or any other interaction

with cloud hydrometeors.

The measurements of aerosol particles show elevated concentrations on a number of days between about 2 and 6 km. This is
likely to represent the Saharan Air Layer (SAL) and associated dust particles (e.g. Flight No. b929), Liu et al. (2017) showed
that hematite content derived from the SP2 was correlated with this layer and seen as a good tracer for dust aerosol. Hematite
content in the marine boundary layer was shown to not correlate well with enhanced concentrations of particles measured by
the PCASP where these were likely to be sea salt aerosol with no hematite contribution. There are large variations in the
PCASP concentrations in the SAL, but when dust plumes are present concentrations can be several 100 cm™ compared with
a few 10s cm? outside of these plumes. When comparing these dust concentrations with droplet numbers from the CDP
during cloud penetrations, we generally found much lower concentrations of droplets versus the concentrations of dust in the
SAL dust plumes. Price et al. (2018) presented information about the characteristics of dust collected on filter samples
during the flight presented in this paper (Flight No. b926). They found a mode particle diameter of ~ 10 um, which is smaller
than the ice particles observed by the HALOHolo.

4. Discussion and Conclusions

Measurements of a growing cumulus cloud in a strong updraft (+15 m s') showed the presence of small (< 100 um) ice
crystals measured with a holographic instrument that are likely to have formed close to the freezing level in a liquid
dominated updraft. Detailed analysis of the ambient temperature (Fig. 2, 5a) suggest that the in cloud temperature was very
likely higher than the out of cloud temperature (-5.2 °C) measured in-situ by a Rosemount de-iced sensor before penetration.
A derived temperature in cloud using water vapour mixing ratio measurements suggested a mean temperature of -0.2 °C with
an estimated error of ~ =+ 0.5 °C. The calculation of a derived temperature was carried out due to sensor wetting problems
with the in-situ measurement from the Rosemount thermometer making it unreliable in cloud (Figs. 3, 5a). Despite the
uncertainty in the derived temperature the true in-cloud temperature is thought to have been somewhere between the out of
cloud ambient temperature and the derived temperature, but is very likely to be significantly higher than the temperature
measured in clear air before penetration. The reasoning for this is that a saturated parcel of air rising in a strong updraft will
be warmer than its surroundings. Differences between out of cloud and in-cloud temperatures have been found during other
measurement campaigns. Lawson and Cooper (1990) found temperature differences of ~ 3.5 © C between the out of cloud
and in-cloud temperatures in convective clouds with the use of a radiometric thermometer. In our case all but one of the

penetrations had a temperature difference within this range.

Concentrations of ice particles measured by the HALOHolo were variable, with mean concentrations of 6.6 L and 1 second

peak values of ~ 30 L'!. Some of this variability is explained by the small sample volume and sampling statistics — Figure 5¢
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has sampling error shaded for the HALOHolo ice time series. The sampling error is often a significant percentage of the
measured concentration. Despite this, the measurements show concentrations of small ice particles that are higher than
would be expected through primary ice nucleation alone when viewed in the context of only slightly supercooled
temperatures (e.g. DeMott et al., 2010). Measurements of INPs during the campaign are reported by Price et al. (2018). They
collected samples of aerosol particles from close to the surface to 3.5 km. Using a droplet on filter technique they calculated
INP concentrations in immersion mode, with values varying from 0.1 L at -12 °C to 100 L' at -23 °C. The variability of the
measurements was about 2 orders of magnitude for a given temperature range. Welti et al. (2017) made measurements of
INPs over a four year period in the marine boundary layer. They found concentrations ranged from 0.0001 L™! at -5 °C to
1000 L' at -38 °C. They analysed the association between airmass and INPs finding that no source could be attributed to
INPs active at temperatures higher than -12 °C, while at lower temperatures concentrations were higher when the airmass

originated from the Sahara.

Potential seeding of the cloud from above was looked for through analysis of instrumentation before and after penetration,
with no evidence of this process taking place. Recirculation of ice particles was also thought unlikely due to the strong
updraft in close proximity to the freezing level. Dust particles that could be mistaken for ice particles were also ruled out due
to the measured aerosol size distribution during this flight being smaller than the ice crystals observed by the holography.
This conclusion is further supported by the morphology of the particles (Figs. 5c, 7), with some having the appearance of
liquid drops that had frozen, however there is some uncertainty about this assertion. In other cases we observed high
concentrations of ice in updraft regions, but they were more complex and we could not rule out some of the mechanisms of

cloud seeding highlighted above.

Measurements of acrosol properties around Cape Verde show the presence of the SAL after it is lifted over the MBL. This
layer varied from case to case, but higher concentrations of aerosol particles were often measured in this region between
about 4-6 km. Liu et al. (2017) found that hematite derived from the SP2 correlated well with this layer — and is a key
constituent of mineral dust particles. The cloud droplet concentrations found in growing convective clouds were just a few
10s cm, much lower than the aerosol concentrations in the SAL. Although this suggests the aerosol in this layer did not
contribute significantly as Cloud Condensation Nuclei (CCN) the presence of a background concentration of dust particles
outside of the enhanced plumes and is confirmed by a hematite signal at most levels (Fig. 9). Therefore, it is possible that
dust aerosol from the Sahara plays a role in the developing cumulus clouds around Cape Verde.

The INPs contributing to the primary ice nucleation here are unknown. Laboratory studies suggest similar dust to be active
at significantly lower temperatures than the aircraft penetration levels at which the first ice particles were seen, and for that
reason the dust is unlikely to be the INP active in this case. However, biological material, including bacterial cells, internally

mixed with the dust particles may possibly provide ice active sites on dust particles that are more likely to be active at the
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slightly supercooled temperatures in this case e.g. Obata et al (1999). However current measurements of INPs are not

consistent with the enhanced concentrations we observed in these clouds at only slightly supercooled temperatures.

Observations of the first ice particles that form in clouds are a significant measurement challenge. Here we have used
holography and highly targeted cloud penetrations at the freezing level, following developing clouds upwards, in an attempt
to understand where the first ice particles in tropical maritime convective clouds form. The high resolution imagery from the
holographic instrument has enabled us to observe small ice particles in the strong updraft of a growing cumulus cloud.
Current understanding would suggest that the concentrations of ice particles at the slightly supercooled temperatures in these
clouds should be limited. Concentrations peaking up to a few 10s L™ in the updraft we observed potentially highlight the
difficulty in observing in-situ first primary ice particles — primary ice may be inherently associated with the production of
secondary ice particles that enhance the concentration. There are multiple mechanisms of secondary ice production (Field et
al. 2017). The most studied mechanism of secondary ice production is through the rime-splintering process, known as the
Hallett-Mossop process (Hallett and Mossop, 1974). In this case at lower temperatures there is some evidence for this
mechanism being involved in the glaciation of the cloud, with images of graupel particles and columns observed. Other
production mechanisms do exist though and may take place simultaneously with the formation of first ice in these clouds.
One such mechanism is the production of secondary ice particles through droplet shattering during the freezing process
(Leisner et al. 2014). The holographic images (Fig. 7) are consistent with this theory, where particle morphology is a mix of
frozen drops and small irregular particles that would be produced during the shattering process together with larger rimed
hydrometeors. In the absence of evidence supporting primary ice nucleation as a mechanism to produce the concentrations of
ice we see in this case a combination of primary ice formation and production secondary ice at the same time is suggested as
the most likely explanation for the observations.

From the measurements presented in this paper we find that:

1) Ice particles are present in concentrations of a few 10s L' at derived temperatures in cloud between 0 °C and -2 °C.
2) The temperature of the cloud measured in this case was too high for dust to be active as an INP.

3) The concentrations of ice particles present exceed the estimated concentration of INPs that may be ice active at these
temperatures, such as biological material.

4) Observations could be explained by: i) more efficient INP; ii) recycling of ice in the downwelling mantle of the

convective cloud and iii) a secondary ice production process.

Data availability. The data presented in this paper is available through the Centre for Environmental Data Analysis (CEDA)
via the following URL: http://catalogue.ceda.ac.uk/uuid/b0348ba21b784ae783201200213d02f4
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Figure 1. Comparison between WVSSII water vapour mixing ratio (ppmv) on the flush inlet and on the Rosemount inlet.

Red line represents least squares fit to the data (1 0.99), black dashed line is the 1:1 line.

13



0 - © Mean Out Of Cloud Temp
§ @® Mean Derived Temp
© Mean In Cloud Temp

FOH10O
O O &+

Temperature [°C]
>
l

| | | | | | | [
1 2 3 4 5 6 7
Pass Number

Figure 2. Temperatures as a function of penetration number from the Rosemount de-iced sensor out of cloud prior to
penetration of cloud (blue markers), the wetted Rosemount de-iced sensor in cloud (red markers) and the derived
temperature (grey markers). Error bars for the derived temperature represent propagation of + 5% error in the WVSSII water

vapour mixing ratio measurement.

14



Pressure [hPa]

-10 0 10 20
Temp [°C]

Figure 3. Pressure (hPa) vs Temperature (°C) during Case 1 obtained from: dropsonde measurements of temperature (black
trace); dew point (red solid line); derived temperatures during cloud penetrations (blue symbols); calculated dry adiabatic

lapse rate (grey solid line) and saturated adiabatic lapse rate (green solid line).
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Figure 4. Images from the forward facing camera on the BAe-146 aircraft immediately before cloud penetrations (marked
by red circles). Penetrations P1 to P6 are shown (from top left to bottom right). Temperatures are from the in-situ
measurements out of cloud prior to each penetration. Image (a) P1 has the cloud top marked by a black box. The grey arrow

marks distance to cloud top from penetration of 440 metres.
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Figure 5. Time series from penetration 1. Axis (a): in-situ measured temperature from the Rosemount de-iced sensor (solid
red line); derived temperature (dashed red line); mean derived temperature in cloud (grey marker) and mean in-situ measured
temperature out of cloud before penetration (grey marker). Error bars show mean value integration period (x axis) and
5 measurement error where applicable (y axis). Axis (b): vertical wind speed velocity (grey line) and axis (c): Liquid drop
concentration from the HALOHolo (blue solid line); liquid drop concentration from the CDP (blue dashed line) and ice
crystal concentration (multiplied by 1000 for comparison with liquid concentrations) from the HALOHolo (red solid line).
Superimposed imagery is included for ice crystals measured by the HALOHolo at time points 16:45:12 (i) and 16:45:15 (ii)

and from the forward facing camera on the aircraft prior to penetration.
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Figure 6. Holographic imagery indicating liquid droplets from Penetration 1
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5 Figure 7 Holographic imagery, indicating ice crystals, from Penetrations 1 and 4 (case 1).
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Figure 8. Particle Size distributions for 2DS All Particles (green line), Low Irregular (Purple Line), Medium Irregular (Light
Blue Line), and High Irregular (Red Line) according to the characterised categories, and HALOHolo Spherical (Black Line)
and Irregular Particles (Grey Line) categories.
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Figure 9. Median concentration [cm™] as a function of altitude from the CDP (droplet concentrations, red circular symbols),
aerosol concentrations from PCASP (blue circular symbols) and mean Hematite concentrations (green square symbols) from
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SP2. Error bars represent lower and upper quartile ranges. Flight numbers b919 — b933 are labelled on each plot.
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