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Abstract. In this study we undertook quantitative source ap-
portionment for 32 volatile organic compounds (VOCs) mea-
sured at a suburban site in the densely populated North-
West Indo-Gangetic Plain using the US EPA PMF 5.0
Model. Six sources were resolved by the PMF model. In de-5

scending order of their contribution to the total VOC bur-
den these are “biofuel use and waste disposal” (23.2%),
“wheat-residue burning”(22.4%), “cars” (16.2%), “mixed
daytime sources”(15.7%) “industrial emissions and solvent
use”(11.8%) and “two-wheelers” (8.6%).10

Wheat residue burning is the largest contributor to the to-
tal ozone formation potential (32.4%). For the emerging con-
taminant isocyanic acid, photochemical formation from pre-
cursors (37%) and wheat residue burning (25%) were the
largest contributors to human exposure. Wheat residue burn-15

ing was also the single largest source of the photochemical
precursors of isocyanic acid, namely, formamide, acetamide
and propanamide, indicating that this source must be most
urgently targeted to reduce human concentration exposure to
isocyanic acid in the month of May. Our results highlight that20

for accurate air quality forecasting and modelling it is essen-
tial that emissions are attributed only to the months in which
the activity actually occurs. This is important for emissions
from crop residue burning which occur in May and from
Mid-October to the end of November.25

The SOA formation potential is dominated by cars
(36.9%) and two-wheelers (21.1%), which also jointly ac-
count for 47% of the human class I carcinogen benzene in the
PMF model. This stands in stark contrast to various emission
inventories which estimate only a minor contribution of the30

transport sector to the benzene exposure (∼10%) and con-
sider residential biofuel use, agricultural residue burning and
industries to be more important benzene sources. Overall it

appears that none of the emission inventories represent the
regional emissions in an ideal manner. Our PMF solution 35

suggests that transport sector emissions may be underesti-
mated by GAINSv5.0 and EDGARv4.3.2 and overestimated
by REASv2.1, while the combined effect of residential bio-
fuel use and waste disposal emissions as well as the VOC
burden associated with solvent use and industrial sources 40

may be overestimated by all emission inventories. The agri-
cultural waste burning emissions of some of the detected
compound groups (ketones, aldehydes and acids) appear to
be missing in the EDGARv4.3.2 inventory.

1 Introduction 45

Volatile organic compounds (VOCs) have diverse natu-
ral (760 Tg(C) y−1 (Sindelarova et al., 2014)) and anthro-
pogenic sources (127 Tg y−1 average value (IPCC)). Cer-
tain VOCs emitted primarily by anthropogenic sources such
as benzene and isocyanic acid, have direct adverse impacts 50

on human health even at low ppb concentration exposures
(Chandra and Sinha, 2016). In densely populated regions like
the Indo Gangetic Plain (IGP), reactive anthropogenic VOCs
contribute significantly towards the formation of health rel-
evant secondary pollutants such as ozone and secondary or- 55

ganic aerosol (Chandra and Sinha, 2016; Sarkar et al., 2016).
At our study site, a representative suburban site in the NW-
IGP, the 8 h average NAAQS (national ambient air quality
standard) for ozone limit of 100 µg m−3 was exceeded on 29
out of 31 days during May 2012 (Sinha et al., 2014), while 60

the 24 h average NAAQS for PM2.5 of 60 µg m−3 was ex-
ceeded during 27 out of 31 days in the same period. It has
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been shown that wheat residue burning results in significant
enhancement (by 19 ppb) of the daytime ozone mixing ra-
tios in pre-monsoon season (Kumar et al., 2016) and long
range transport in the form of dust storms from the Arabian
Peninsula brings extremely high PM2.5 mass loadings (with5

peak PM2.5 mass loadings of 950 µg m−3 on 17th of May
2012) (Sinha et al., 2014; Pawar et al., 2015) and enhances
the PM2.5 mass by ∼ 30 %.

However, ozone mixing ratios exceed the NAAQS even
during the non-fire influenced days of the pre-monsoon sea-10

son and the NAAQS for PM2.5 is exceeded 60 % of the time
for air masses with no history of long range transport (Ku-
mar et al., 2016; Pawar et al., 2015). This indicates that local
ozone and PM2.5 precursor emissions deserve further study.

Previous source receptor modelling studies of VOC emis-15

sion from India (Srivastava, 2004; Srivastava et al., 2005;
Majumdar et al., 2009) produced results that conflicted
strongly with the bottom up emission inventories, all of
which contain significant emissions from residential fuel us-
age even when filtered for the New Delhi National Capital20

Region (41-45 %), Greater Mumbai (32-36 %) and Greater
Kolkata (33-59 %). Transport sector emissions, according to
the bottom up emission inventories contribute only 15-35 %,
17-43 % and 6-14 % to the total VOC emissions in New
Delhi National Capital Region, Greater Mumbai and Greater25

Kolkata, respectively. All previous studies employed a chem-
ical mass balance (CMB) technique for ambient VOC source
attribution and identified the transport sector as the main
source in the form of evaporative emissions (40-87 %) in
Mumbai (Srivastava, 2004)), diesel internal combustion en-30

gines (26-58 %) in Delhi (Srivastava et al., 2005) and road-
way/refuelling exhaust (40 %) in Kolkata city (Majumdar
et al., 2009). Except for the study performed in Kolkata
which found a contribution of <10 % from wood combus-
tion, residential fuel usage was not identified as a poten-35

tial VOC source in those source receptor modelling stud-
ies. The observed discrepancy could be partially caused by
the fact a CMB is not necessarily an ideal tool for con-
ducting source receptor modelling study in understudied en-
vironments as the model needs to be initialized with lo-40

cally measured source profiles of all potentially significant
sources. However, it is unlikely that this is the only reason
for the discrepancies between source receptor modelling out-
comes and emission inventories. The only other source re-
ceptor modelling study in South Asia was conducted using45

a positive matrix factorisation model (EPA PMF5.0) with
data collected in the Kathmandu valley, Nepal, as part of the
SUSKAT campaign and attributed a negligible fraction of
the anthropogenic VOC burden to residential biofuel usage
( 14 %). Instead different industrial sources including brick50

kilns (jointly 52 %) and the transport sector (21 %) were
identified as the dominant VOC sources in the Kathmandu
valley.

Different bottom up emission inventories have large dis-
crepancies between each other when extracted for the NW- 55

IGP. For our study region (27.4-34.9 ◦N and 72-79.8 ◦E),
EDGAR v4.3.2 (Huang et al., 2017) estimates that the road
transport sector contributes only 18 % of the total anthro-
pogenic VOC emissions (440 Gg y−1), while REAS v2.1
(Kurokawa et al., 2013) attributes 35.8 % of the total anthro- 60

pogenic VOC emissions (1227 Gg y−1) to this sector. For in-
dustrial emissions and solvent use, GAINS (Amann et al.,
2011) has the lowest (540 Gg y−1) and EDGAR v4.3.2 the
highest absolute emissions (900 Gg y−1). Crop residue burn-
ing as VOC source is missing in REAS but accounted for 65

a 6 % (145 Gg y−1) and 7 % (163 Gg y−1) share of the an-
nual VOC emissions in EDGARv4.3.2 and GAINS, respec-
tively. Considering the large discrepancies between bottom
up inventories and different source receptor modelling stud-
ies, more source receptor modelling studies using robust sta- 70

tistical tools and better tracers for different biomass burning
sources are necessary.

In the present study, we applied the US EPA’s PMF 5.0
model in constrained mode for source apportionment of 32
VOCs measured at IISER Mohali Atmospheric Chemistry 75

Facility in May 2012 with the objective of quantifying the
most important sources of ozone and SOA precursors, the
human class I carcinogen benzene and the emerging con-
taminant isocyanic acid (Chandra and Sinha, 2016), so that
strategies for air pollution mitigation can benefit from quanti- 80

tative evidence concerning the contribution of major sources.
The month of May is of special interest, as it is affected
by widespread wheat residue burning in the NW-IGP. In
the present study, we quantify the contribution of this im-
portant area source to the VOC burden at a downwind site. 85

Our analysis includes several rarely reported nitrogen con-
taining compounds which appear to have strong pyrogenic
sources in this particular study region. Compounds such as
amines, amides and isocyanic acid are presently not included
in global emission inventories and the default atmospheric 90

chemistry mechanisms, despite their potential importance for
secondary aerosol formation and human health. We compare
our source-receptor modelling output with several emission
inventories such as REAS v2.1, EDGAR v4.3.2 and GAINS
v5 to assess which emission inventory is most consistent with 95

the results of our source receptor modelling study that em-
ploys in-situ observations.

2 Methods

2.1 Receptor site

The measurement facility is situated inside Indian Institute 100

of Science Education and Research Mohali (IISER Mohali)
campus (Figure 1a) which is a suburban site (30.667 ◦N,
76.729 ◦E, 310 m above mean sea level) in Mohali near
Chandigarh in India (Figure 1b). Collectively the metropoli-
tan area of Chandigarh-Mohali-Panchkula forms a tri-city 105

with a total population of 1,941,118 (Census, 2011). The
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main air transport toward the site was from the North West
and the period studied was impacted by wheat residue burn-
ing, a dust storm and strong photochemistry (Sinha et al.,
2014). Figure 1a shows 72 h HYSPLIT back trajectories ar-5

riving at the site. With average wind speeds of 5.6 m s−1

during the study period (range 1-20 m s−1) the meteorologi-
cal conditions were conducive for capturing the contribution
of regional emission sources. The measurement site, the me-
teorology and the primary dataset acquired during May 201210

have been discussed in detail elsewhere (Sinha et al., 2014).

2.2 VOCs and other Auxiliary measurements

We used hourly data of 32 measured organic ions which
were assigned to volatile organic compounds (Supplemen-
tary Table S1) based on PTR-TOF-MS studies conducted by15

our group within the South Asian environment (Sarkar et al.,
2016) to initialize the US EPA PMF 5.0 model and employed
CO, SO2, O3 and NOy as independent tracers to validate
the results. As described in greater detail in (Sinha et al.,
2014), ambient air sampling was performed continuously20

through a Teflon inlet line protected by an in-line Teflon filter.
A high sensitivity proton transfer reaction quadrupole mass
spectrometer PTR-QMS (HS Model 11-07HS-088, Ionicon
Analytik Gesellschaft, Austria) was operated at drift tube
pressure of 2.2 mbar, a drift tube temperature of 60 ◦C and25

a drift tube voltage of 600 V, which resulted in an operating
E/N ratio of ∼ 135. Carbon monoxide (CO), Sulphur dioxide
(SO2), Ozone (O3) and NOy (NO, NO2 and other nitrogen
species converted to NO by a molybdenum converter such
as nitric acid and PAN) were measured using Thermo Fis-30

cher Scientific 48i (IR filter correlation based spectroscopy),
43i (pulsed UV fluorescence), 49i (UV absorption photome-
try) and 42i trace level air quality analysers (chemilumines-
cence), respectively.

2.3 Positive Matrix Factorisation model35

In the current study, US EPA PMF 5.0 receptor model (Nor-
ris et al., 2014) was applied to the ambient VOC dataset (in
µg m−3) from May 2012 measured at the IISER-Mohali At-
mospheric chemistry facility comprising of data matrix of
721 samples (rows) and 32 species (columns). The EPA PMF40

5.0 receptor model (Paatero et al., 2014; Norris et al., 2014) is
a multivariate factor analysis tool (Paatero and Tapper, 1994;
Paatero, 1997), which decomposes the data matrix xij with
i number of samples and j number of measured VOCs into
two matrices, the factor contribution matrix gik (which pro-45

vides the mass g contributed by each factor to the individual
sample) and the factor profiles matrix fkj (which provides
the source profile/fingerprint of each individual source). Both
matrices are established for a user defined number of sources
p from the existing intrinsic variability in the dataset leaving50

behind a matrix of residuals eij .

Xij =

p∑
k=1

gikfkj + eij (1)

A detailed description of the model can be found elsewhere
(Paatero and Tapper, 1994; Paatero, 1997; Paatero et al.,
2014; Norris et al., 2014). The two primary advantages of the 55

PMF over other source receptor modelling tools are its inher-
ent non-negative constraints (Hopke, 2016) and its capabil-
ity of optimally weighing individual data points and assign-
ing uncertainties which makes it possible to include less ro-
bust species that can be useful for defining real sources. The 60

EPAv5.0 model is superior when compared to other source
receptor modelling tools as it contains advanced rotational
features (Paatero and Hopke, 2009) which allow to constrain
the rotational ambiguity in a manner that pushes the PMF
solution towards the real world space. 65

All 32 species were assigned a fixed 20 % in the uncer-
tainty , which represents the largest uncertainty estimated
for strong compounds, to avoid a situation where the differ-
ence in the assigned uncertainty drives the PMF to dedicate a
separate factor towards minimizing Q of a single compound 70

with low uncertainty (toluene) by taking it out of all other
source profiles and opening a separate factor profile contain-
ing just a single compound. 18 were identified as weak based
on the signal to noise ratio and the presence of potential iso-
baric interferences as detailed in table S2. For weak species, 75

the PMF model triples the stated uncertainty to reduce their
impact on the model’s solution. Designating sources with
isobaric interferences as weak is warranted, because when
two sources with different temporal profiles (night-time com-
bustion and daytime biogenic emission or night-time com- 80

bustion and daytime photochemistry) could potentially con-
tribute different compounds to the same m/z ratio, zero val-
ues are almost absent in that particular column of the ma-
trix and the tracer is affected by additional uncertainty not
appropriately expressed by merely looking at the instrumen- 85

tal measurement error and the signal to noise ratio. When
this column is made “weak” and given a higher uncertainty,
other “strong” tracers, representing a single compound, de-
fine source profiles and this reduces the rotational ambiguity
of the model. The “weak” compounds with isobaric interfer- 90

ences tend to be distributed among the source profiles avail-
able as per the solution that minimizes Q but they do not de-
fine any of the profiles. The extra modelling uncertainty was
kept to zero and missing values (< 5%) were excluded. For
every base model run, we used 20 runs with random seeds. 95

Stable Q-values were obtained for all runs. The model was
run with 3 to 7 factors, to identify the appropriate number of
factors as discussed in the supplementary text in greater de-
tail. Figure 2 shows the percentage contribution of the iden-
tified sources to the VOC burden for these runs. Figures S4 100

a, b and c show how the factor profile, percentage of each
VOC originating from a certain source, and the factor con-
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tribution change while increasing the number of factors in
the model. Figure 2 shows that a 7 Factor solution provides
little advantage over a 6 Factor solution while a 5 Factor solu-
tion does not resolve the wheat residue burning source which5

is independently verified by MODIS (Moderate Resolution
Imaging Spectroradiometer) fire counts over the region. The
residuals for all species for the 6 Factor solution depicted a
normal curve and fall within -3.3 sigma and +3.3 sigma for
all species indicating a good model fit. The constraints fea-10

ture of the 5.0 version of the model was utilised to improve
the performance of the model further as described in greater
detail in the supplementary text. The constrained model op-
eration of the PMF version 5.0 allows to reduce the rotational
ambiguity of the model using external knowledge. For exam-15

ple, if a source is inactive for a particular period (as is photo-
chemistry at night), then the source contribution (gik) due to
that factor during that time period can be pulled to zero in the
model to provide more robust output. Similarly, a compound
that is known to be present only in primary emissions can be20

pulled down in the source composition (fkj ) matrix of the
photochemistry factor. A list of the constraints applied is pro-
vided in the supplementary table S3. A detailed discussion of
the use of constraints in a receptor model has been provided
in previous studies (Paatero et al., 2002, 2014; Paatero and25

Hopke, 2009; Norris et al., 2014; Sarkar et al., 2016). Boot-
strap model runs (Brown et al., 2015) were performed to as-
sess the model uncertainty. Input parameters for the bootstrap
runs constituted random seed, 100 number of bootstraps and
default values for block size (10) and minimum correlation30

R-value (0.6) and there were no unmapped factors. Except
for the car and two-wheeler factor (R=0.6) for which a cer-
tain degree of co-linearity is expected, none of the other fac-
tors showed cross correlation with each other (R<0.3) and
the g-space plot even of this factor pair is well filled. The35

constraint mode was unable to force the PMF model to sep-
arate the wheat residue burning factor in a 5-factor solution
without imposing a split between the car and 2-wheeler fac-
tor, indicating that these two indeed represent distinct source
profiles.40

2.4 Validation of the PMF output

The PMF generates two matrices from the intrinsic variabil-
ity in the dataset. A factor contribution matrix and a factor
profile matrix.

Traditionally the PMF output has been validated by cross-45

correlating the factor contribution matrix with independent
tracers which were not used to initialize the model, but are
considered useful tracers for the respective source (Brown
et al., 2015; Leuchner and Rappenglück, 2010; Gaimoz et al.,
2011; Bon et al., 2011; Sarkar et al., 2016). We perform50

this validation step for all six source factors resolved by
the PMF model. These were identified as “biofuel use and
waste disposal”, “wheat-residue burning”, “four-wheelers”,
“two-wheelers”, “industrial emissions and solvent use” and

“mixed daytime sources”, respectively. The factor contribu- 55

tion for 4-wheelers (R=0.7) and 2-wheelers (R=0.6) corre-
lated best with the independent tracer NOy which is consid-
ered to be a vehicular exhaust marker (Ramanathan et al.,
1985). The factor contribution of the domestic fuel usage
and waste disposal factor correlated best with the indepen- 60

dent tracer CO (R=0.9), a proxy for inefficient combustion,
while the factor contribution of the industrial emission fac-
tor correlated best with the independent tracer SO2 (R=0.6).
The wheat residue burning factor days showed a moderate
cross correlation with MODIS fire counts with an R=0.4 and 65

a lag of 2 days. O3 (R=0.8) was the best independent tracer
for the mixed daytime factor.

However, our study goes one step further than all previ-
ous studies in validating the PMF output. For 5 out of 6 fac-
tors we validated the factor profiles generated by the PMF 70

model against grab samples collected at the source. Factor
profiles were cross-correlated with the fingerprints of source
samples collected from a number of potential sources in-
cluding wheat residue fires (Chandra et al., 2017; Kumar
et al., 2018), ambient air samples from a busy traffic junction 75

(Chandra et al., 2017) and an industrial area (this study), tail-
pipes of various vehicles (this study), waste burning (Sharma
et al., 2019), leaf litter burning (this study), domestic biofuel
use (Stockwell et al., 2016) and brick kilns (Zhong et al.,
2019) to identify the sources. Figure 3 shows the factor pro- 80

files obtained from the PMF run (in dark blue), the percent-
age of each species explained by the respective PMF factor
(red squares) and the source profiles of those sources which
best matched the factor profile (in various colors as indicated
in the legend). The factor profile of residential fuel usage 85

and waste disposal correlates most strongly with the mea-
sured VOC source speciation profiles of domestic cooking
(R=0.8), leaf-litter burning (R=0.7) and smoldering garbage
fires (R=0.6), the wheat residue burning factor with flam-
ing wheat residue burning (R=0.9), the 4-wheeler factor with 90

the tailpipe exhaust of petrol-fueled cars (R=0.5), gasoline
evaporation headspace for diesel (R=0.5) and urban traffic
junction grab samples (R=0.8) and the 2-wheeler factor with
the tailpipe exhaust of petrol-fuelled 4-stroke two-wheelers
(R=0.6). The industrial emissions correlated best with the 95

source profile of brick kilns (R=0.5) and ambient air sam-
ples collected in an industrial area (0.6). For mixed daytime
sources no source profile sampling is possible.

2.5 Conditional Probability Function analysis

We perform a conditional probability function (CPF) analy- 100

sis (Leuchner and Rappenglück, 2010) which aids in iden-
tifying physical locations of different PMF source factors
without using back trajectories (Xie and Berkowitz, 2006)
The CPF is computed using the factor contribution of the
PMF model in combination with the wind direction at the 105

receptor site. It quantifies the probability of factor contribu-
tions surpassing a certain threshold ( 75th percentile) for a
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particular wind direction sector thereby highlighting direc-
tional dependency of source factors and is defined as follows:

CPF =
m∆θ

n∆θ
(2)

Where m∆θ represents the number of data points in the wind5

direction bin ∆θ which exceeded the threshold criterion and
n∆θ represents the total number of data points from the same
wind direction bin. ∆θ was assigned a value of 30◦.

2.6 Calculation of the ozone formation potential and
SOA formation potential10

Ozone production potential (O3PP ) for each of the PMF de-
rived source factors was calculated based on the method used
by Sinha and co-workers (Sinha et al., 2012) using the fol-
lowing equation:

O3PP = (
∑
i

kV OCi+OH [V OCi])× [OH]×n (3)15

wherein n stands for the number of ozone molecules pro-
duces in the oxidation of VOCi using n = 2 and [OH] =
106 molecules cm−3. The values were summed up for all
the VOCs for obtaining the ozone production potential corre-
sponding to each of the PMF derived factors for the daytime20

hours (07:00-18:00 LT).
Secondary organic aerosol (SOA) potential was calcu-

lated for the PMF source factors using the literature SOA
yields (Derwent et al., 2010) under low NOX conditions for
benzene, toluene, ethylbenzene, trimethylbenzene, styrene,25

methanol, isoprene, formaldehyde, acetaldehyde, acetone,
formic acid and acetic acid using the equation given below
for 07:00-18:00 LT.

SOApotential = (
∑
i

[V OCi])× [SOAi] (4)

2.7 Methodology for the comparison of PMF source30

factors with existing emission inventories

Global Emission Database for Global Atmospheric Research
(EDGARv4.3.2) inventory for the year 2012 (Huang et al.,
2017) and two regional emission inventories: Regional Emis-
sion inventory in Asia (REAS v2.1) for the year 200835

(Kurokawa et al., 2013) and the Greenhouse Gas and Air Pol-
lution Interactions and Synergies model (GAINS) (Amann
et al., 2011) for the year 2010 (Stohl et al., 2015) were com-
pared with our PMF output. The gridded inventory was fil-
tered for Latitude: 27.4-34.9 ◦N and Longitude: 72-79.8 ◦E40

, i.e. the fetch region from which the air mass trajectories
reach the receptor site within one day. This filtering is re-
quired because compounds with photochemical lifetimes of
less than a day (e.g. styrene, C-8 and C-9 aromatics) feature
prominently in several source profiles indicating that most45

of the transport sector emission were less than a day old

when they reached the receptor site. Other compounds with
longer lifetimes such as toluene (2 days), benzene (6 days)
or acetonitrile (months) can reach the site from more distant
sources. The wheat residue burning source shows the highest 50

cross correlation with the regional fire counts for a lag time
of 2 days indicating that emissions from distant sources can
and do impact the site with a time lag. The chosen fetch re-
gion includes the areas where the maximum number of wheat
residue burning fire counts are observed while avoiding a size 55

that is too large to be consistent with the relatively unaltered
signature of some of the other PMF source profiles.

Annual emissions were available for EDGAR (2012) and
GAINS (2010), whereas, REAS provided monthly data (May
2008). However, Figure S6 shows that despite providing 60

monthly data, the REAS emission inventory has very little
seasonality for any of the sources.

To facilitate the comparison of the PMF output of the
month of May which is affected by a strongly seasonal source
(crop residue burning) with emission inventories that provide 65

only annual data as of now, we calculate hypothetical pie
charts which attribute annual crop residue burning emissions
over the region only to the 2.5 months when crop residue
burning actually occurs (middle of October to end of Novem-
ber and May). 70

3 Results and Discussion

3.1 Split up of VOC Emission Sources in Mohali and
their contribution to Ozone and SOA Formation
Potential

Figure 4 (a) shows the percent contribution of the different 75

sectors to ambient VOC mass concentration loadings dur-
ing May 2012 in Mohali, while Figure S7 shows a time
series of the total VOC mass contributed by the individ-
ual factors to the overall mass. The two traffic factors com-
bined together were found to be the strongest contribu- 80

tors to the total VOC mass concentration (25.1 %) followed
by biofuel use and waste disposal factor (23.2 %), wheat-
residue burning (22.4 %), the mixed daytime factor (15.7 %)
and industrial emissions (11.8 %), with the residual not ap-
portioned VOC mass only amounting to 1.7 % of the to- 85

tal. Early source receptor modelling studies from India at-
tributed a slightly larger share 26-58 % of the total VOC
mass to traffic related emissions (Srivastava, 2004; Srivastava
et al., 2005), suggesting that the progression to the emission
norms Bharat stage III & IV (which are equivalent to Euro 3 90

and Euro 4 norms, http://cpcb.nic.in/vehicular-exhaust/) may
have brought down VOC emissions from the traffic sector.

Figure 4 (b) shows the contribution of the different sec-
tors to the ozone formation potential during May 2012 in
Mohali. Wheat residue burning factor was found to be the 95

largest contributor to the ozone formation potential (32.4 %)
and has been shown to enhance ambient tropospheric ozone
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mixing ratios by 19 ppb (Kumar et al., 2016). Both traffic
sources combined, the mixed daytime sources, biofuel use
& waste disposal, and industrial emissions and solvent use
contributed 21.9 %, 20.3 %, 18.1 % and 7.3 %, respectively,5

to the ozone formation potential. It is clear that in order to
bring ozone levels into compliance with the NAAQS, the
wheat residue burning source of ozone precursors deserves
the largest attention at this point, but the transport sector and
biofuel use and waste disposal should not be neglected, ei-10

ther.
Figure 4 (c) shows the contribution of the different sec-

tors to the SOA formation potential (∼ 32 µg m−3) under
low NOx conditions. Traffic is the single largest contribu-
tor and is responsible for contributing 59.0 % of the SOA15

formation potential followed by biofuel use and waste dis-
posal (14.9 %), wheat residue burning (13.9 %), industrial
emissions and solvent use (10.1 %) and the mixed daytime
factor (2.2 %). While the calculated SOA formation poten-
tial particularly from transport sector emissions (Ensberg20

et al., 2014) and aromatic compounds (Li et al., 2017; Li and
Cocker III, 2018) is affected by large uncertainties and may
depend in a non-linear fashion on NOx and VOC concentra-
tions (Xu et al., 2015) our calculated SOA formation poten-
tial seem to indicate that SOA formation could contribute sig-25

nificantly to the average PM2.5 mass loading (104 µg m−3).

3.2 Factor 1 – Biofuel use & waste disposal

The biofuel use and waste disposal factor combines two
sources with similar source profiles and high spatio-temporal
overlap into one factor. As discussed previously for other30

South Asian atmospheric environments (Sarkar et al., 2017),
the source contributions of domestic biofuel use and domes-
tic waste burning are difficult to segregate. Figure 5 shows
a weak bimodal behaviour with an early morning and late
evening peak for this factor, as both domestic biofuel use35

and waste disposal fires peak in the early morning and in
the evening hours (Nagpure et al., 2015). The highest condi-
tional probability for this factor is from the North (>0.4), the
direction of the Dadu Majra landfill in Chandigarh, followed
by the wind direction NW where a large village (Mauli Baid-40

wan) can be found within 1 km of the receptor and NE, the
direction of Panchkula’s garbage dump in Sector 23. This
and the fact that the average contribution of this factor re-
mains above 56 µg m−3 throughout the night indicates that
garbage burning contributes significantly to the biofuel use45

& waste disposal factor.
Figure 3 and Figure 6 show that this factor explains a sig-

nificant share of the mass of acetonitrile (a biomass burning
tracer), aldehydes, ketones, acids, propyne and propene in the
PMF model. For propene (60%), aldehydes (85%) and ke-50

tones (68%) the residential sector is the dominant source in
the most recent speciated emission inventory EDGARv4.3.2.
The percentage share for aldehydes and ketones in the in-
ventory is higher than its share in the PMF because the agri-

cultural residue burning source of these compounds is cur- 55

rently missing in the inventory. For acids, however, the resi-
dential fuel usage source in the inventory (0.5%) is dwarfed
by solvent use associated emissions (96%), while in the PMF
the two biomass burning sources (residential biofuel use and
waste disposal and wheat residue burning) account for al- 60

most 69 % of the total acids in the model. High emission of
oxygenated VOCs have been reported previously for source
profiles of biofuel-stoves (Wang et al., 2009; Paulot et al.,
2011; Stockwell et al., 2016) open waste burning (Sharma
et al., 2019) and PMF factors’ results of residential biofuel 65

use and waste disposal factor in Kathmandu, Nepal (Sarkar
et al., 2017).

It should be noted, that this factor is responsible for ap-
proximately 25 % of the total benzene emissions in our PMF
model, while emission inventories attribute a larger share 70

(39-74%) of this compound to this source. Since benzene
is an identified Group-1 carcinogen (IARC, 1987) and emis-
sions occur within the household itself (domestic cooking) or
within close proximity of the house (waste disposal) this fac-
tor deserves special attention in programs targeted at emis- 75

sion reductions. However, the impact of such emission re-
ductions in the residential and waste management sector on
human benzene exposure are likely to be overestimated by
modelling studies using present day emission inventories, as
the inventories attribute 39-74% of the benzene emissions 80

to residential fuel usage and waste disposal, while the PMF
suggests the transport sector is the largest benzene source
(Figure S8a). Direct emission of isocyanic acid, a highly
toxic emerging contaminant and its photochemical precur-
sors (Alkyl amines and Amides) was observed from this 85

source and explained 18 % of the isocyanic acid mass con-
centration and 7-15 % of all the alkyl amines and amides in
the PMF model, respectively.

3.3 Factor 2 - Wheat Residue burning

Wheat residue burning takes place every year in the NW-IGP 90

in the post-harvest season and generally peaks in the month
of May. It has been shown that wheat residue burning has
a major impact on both ozone mixing ratios (Kumar et al.,
2016) and VOC mixing ratios and hydroxyl radical reactivity
(Kumar et al., 2018) and results in a large suite of unknown 95

(∼ 40 %) and poorly quantified reactive gaseous emissions.
Wheat residue burning emissions are transported to the re-
ceptor site from a large fetch region and often with a signifi-
cant lag time. Hence, there is no strong conditional probabil-
ity for enhancements from any specific wind direction (Fig- 100

ure 5).
Figure 3 and Figure 6 show that the wheat residue

burning factor explains a significant share of all acids,
amines/amides, several ketones, and aldehydes, iso-
prene/furan, monoterpenes, acetonitrile, propene, styrene 105

and phenol in the PMF model. This makes wheat residue
burning the largest contributor to the human exposure to
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isocyanic acid in the month of May both through direct
emissions of isocyanic acid and by virtue of being the largest
source for its photochemical precursors.

In the EDGARv4.3.2 the agricultural residue burning5

source of ketones,aldehydes and acids is missing. On
the other hand agricultural waste burning appears to be
the dominant anthropogenic isoprene source (94%) in the
EDGARv4.3.2 inventory while in our PMF model residen-
tial biofuel usage and the transport sector are equally impor-10

tant contributors to the isoprene/furan mass. The monoter-
pene emissions from agricultural residue burning (6%) in the
EDGARv4.3.2 inventory are dwarfed by emissions from sol-
vent use (90%), while in our PMF solution wheat residue
burning and the transport sector appear to be the dominant15

anthropogenic sources of signals at m/z 81 and 137.

3.4 Factor 3 - Industrial emissions and solvent use

The source fingerprint of the industrial emissions and solvent
use factor is dominated by methanol (7.3 µg m−3), acetic
acid (3.9 µg m−3) and acetone (2.9 µg m−3). This points20

towards solvent use (Gaimoz et al., 2011) and/or polymer
manufacturing (Sarkar et al., 2017) contributing to the in-
dustrial emission and solvent use factor. In addition, Figure
3 and Figure 6 show that this factor explains a significant
fraction of the benzene (20 %) and acetonitrile (17 %) mass25

in the PMF model. While both are known for their use as
solvents (Brown et al., 2007), they can also be emitted from
the combustion. The EDGARv4.3.2 emission inventory has
a strong industrial and solvent source of toluene, xylenes,
acids, formaldehyde and monoterpenes which is not reflected30

with equal strength in our PMF solution.
The correlation of the industrial emissions and solvent use

factor with the SO2 time series (R= 0.6), indicates that the
emissions of coal or biofuel burning in industrial units and/or
coal fired power plants may also be contributing to this factor35

profile. Figure 5 shows that the highest conditional probabil-
ity of this factor is to the South East direction (120 ◦ -150 ◦

wind sector). The receptor site is downwind of a 600 MW
coal fired power plant located in Jagadhri (80 km SE) as
well as downwind of several industrial areas and brick kiln40

clusters located around Dera Bassi (15 km), Lalru (20 km)
and Jagadhari (80 km) when the wind blows from this di-
rection. In the Kathmandu valley, biofuel co-fired brick kilns
explained a significant fraction of the benzene and acetoni-
trile mass (Sarkar et al., 2017) and the factor profile shows a45

moderate correlation with the source signature of brick kiln
emissions (R=0.5), hence a combustion contribution from
brick kilns to the factor profile cannot be ruled out. The diel
profile broadly reflects boundary layer dynamics with factor
contributions increasing continuously throughout the night50

indicating a buildup of constant emissions in the nocturnal
boundary layer. Factor contributions peak in the early morn-
ing (32-49 µg m−3 between 5-9 am local time) and the factor
contribution of this factor decreases from 9 am onwards after

the breakup of the nocturnal boundary layer. This factor has 55

higher average than the median factor contributions at night
due to strong plumes (∼ 375 µg m−3) reaching the receptor
when it is downwind of the industrial sector but not during
other nights when the wind direction is from rural Punjab
(NW) or the urban sector (NE). 60

3.5 Factor 4 and 5 - cars and two-wheelers

The factor profile of the 4-wheeler factor explains a signif-
icant share of all aromatic compounds in the PMF model.
The factor represents a mixture of multiple components con-
tributed by fuel exhaust and fuel evaporative running losses 65

from vehicles and resembles ambient air samples from a busy
traffic intersection. Similar profiles have been observed dur-
ing field measurements in Beirut, Lebanon (Salameh et al.,
2014, 2016) and Hong Kong (Ho et al., 2004). The highest
conditional probability (Figure 7) is observed for the Chandi- 70

garh wind sector (0-90 ◦). As reported previously from Mex-
ico City during the Milagro campaign (Bon et al., 2011), a
significant mass of methanol (4.3 µg m−3) and other oxy-
genated VOCs were present in the traffic emissions factor.
The fact that this factor explains 28 % of the total m/z 57 is 75

consistent with the gasoline additive MTBE (which is still
in use in India) being detected at this m/z ratio as an inter-
ference to acrolein/methylketone (Karl et al., 2003; Warneke
et al., 2003, 2005; Rogers et al., 2006). Signals at m/z 31,
47, 59, 61, 73, 87 in aged traffic plumes can be attributed 80

to formaldehyde, formic acid, glyoxal, acetic acid, methyl-
glyoxal and 2-butanedione which are products of the gas
phase oxidation of toluene, C-8 and C-9 aromatic compounds
(Bethel et al., 2000; Ervens et al., 2004). In addition, car ex-
haust also explained 34 % of the propyne mass in the model. 85

Factor 5, 2-wheeler exhaust, explains 50 % of the total
toluene mass as well as 17 %, 12 % and 9 %, of the total C-8
aromatics, benzene and C-9 aromatics in the PMF model,
respectively. The factor shows a signal at m/z 61 (acetic
acid) which may partially be due to fragmentation of oc- 90

tane or ethyl acetate (Warneke et al., 2003; Rogers et al.,
2006) which could be present in fuel. The mass has also
been attributed to acetic acid in a previous study of diesel
tailpipe emissions (Jobson et al., 2005). Nevertheless, it still
seems that the 2-wheeler factor profile has a higher contri- 95

bution from oxidised compounds compared to the car factor
profile indicating that the plumes are typically more aged.
Figure 7 shows that this factor displays higher conditional
probability than the car factor towards the towns Kharar (8
km N), Dera Bassi (15 km SE) and Lalru (20 km SE), and 100

a lower conditional probability than the car factor towards
Chandigarh (NE) indicating 2-wheelers are more abundant
in small towns, while cars dominate the traffic emissions
in urban Chandigarh. This is independently supported by
vehicle registration data (http://mospi.nic.in/statistical-year- 105

book-india/2018/189).
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Figure 7 illustrates that both the traffic factors show bi-
modal peaks in morning (19 µg m−3 at 5-9 am local time)
and evening (38 µg m−3 at 7-9 pm local time) during peak
traffic hours. Mass loadings during evening rush hour are
higher than during morning rush hour, because peak morn-5

ing traffic occurs after the breakup of the nocturnal boundary
layer, while in the evening emissions accumulate in the shal-
low nocturnal boundary layer. When the wind blows from
the urban sector (0-90 ◦) during peak traffic hour (7-9 pm)
peak factor contributions of >260 µg m−3 for cars and >15010

µg m−3 for 2-wheelers are observed.
As can be seen from Figure 6, the two traffic factors jointly

explain 47 %, 80 %, 70 % and 67 % of the total benzene,
toluene, C-8 and C-9 aromatic compounds in the model con-
sistent with findings from the Kathmandu valley that traf-15

fic, not residential biofuel use and waste disposal is the more
important source of aromatic compounds in South Asia. It
is also clear that despite stringent regulations, the transport
sector in the region is still the largest contributor to hu-
man benzene exposure. It can be seen from Figure S8 a-20

d that at present, various emission inventories consider the
transport sector to be a minor source of benzene (10-16%).
The EDGAR v4.3.2 emission inventory also considers the
transport sector to be only a minor source of, toluene (11-
15%) and xylenes (17-22%). Residential fuel usage, indus-25

tries and solvent use are considered to be the most signifi-
cant year around source of benzene, toluene and xylenes in
Edgar v4.3.2. Agricultural residue burning becomes the most
significant source of all aromatic compounds in the EDGAR
v4.3.2 emission inventory when crop residue burning emis-30

sions are treated as occurring during crop residue burning
season only, which may imply that the annual emissions of
aromatic compounds from the stubble burning may be over-
estimated. REAS v.2.1 appears to be overestimating the res-
idential fuel burning contribution to benzene and toluene35

emissions and the solvent usage contribution to toluene emis-
sions. However, it captures the contribution of the transport
sector to xylenes and trimethylbenzenes emissions well.

3.6 Factor 6 - mixed daytime sources

Figures 4 and 6 show that mixed daytime sources compris-40

ing of biogenic emissions and photochemically formed com-
pounds explained 22 % of the monoterpenes and 25 % of
the measured isoprene, respectively. Isoprene has a short
chemical lifetime of 1.5 hours during the day and 16 % and
11 % of its first generation oxidation products MVK and45

MEK (Kesselmeier and Staudt, 1999) were also attributed
to this factor . In addition, the mixed daytime factor explains
41 %, 44 %, 24 % and 22 % of the total formaldehyde, formic
acid/ethanol, methanol and acetone mass, respectively. Pho-
tochemically formed isocyanic acid, formamide, acetamide50

and propanamide explain a slightly lower fraction (27-37 %)
of the total mass concentration of these compounds com-
pared to what has been reported from wintertime Kathmandu

valley (36-41 %). Figure 7 illustrates that the mixed daytime
factor peaks between 9 am and 4 pm and shows a slightly en- 55

hanced conditional probability for the 180 ◦ -330 ◦ rural wind
sector (0.2-0.3) due to agroforestry plantations of poplar in
the rural landscape.

3.7 Comparison of PMF source factors with existing
Emission Inventories 60

Figure 8 shows pie charts depicting the contribution of dif-
ferent sectors to the total VOC mass burden for the emission
inventories and our PMF output. Biofuel use and waste dis-
posal were responsible for 28.1 % of the mass in our PMF
but 39 %, 44.2 % and 41.7 % of the mass in EDGARv4.3.2, 65

GAINS and REASv2.1 respectively. The contribution of crop
residue burning (27.1 %) to the VOC mass in the month
of May would be highly underestimated by both GAINS
(7 %) and EDGARv4.3.2 (6 %) if the annual emissions are
attributed equally to all months of the year. However, if 70

both emission inventories would attribute their annual crop
residue burning emissions over the region only to the 2.5
months when crop residue burning actually occurs (mid-
dle of October to end of November and May), these emis-
sion inventories could be reconciled with the PMF solu- 75

tion, as emissions in May would amount to 26.5 % and 23 %
of the monthly VOC emissions for the month of May for
GAINS and EDGARv4.3.2, respectively as shown in Fig-
ure 8. At the same time the percentage share of domestic
fuel use and waste disposal would drop to 32 % and 35 % 80

in EDGARv4.3.2 and GAINS, respectively and the contri-
bution of industrial emissions and solvent use would drop
to 18 % in GAINS and 30 % in EDGAR, respectively. Our
PMF (14.3 %) solution indicates that industrial emissions
and solvent usage (14.3%) are currently overestimated in all 85

emission inventories but are closest to GAINS (540 Gg y−1,
18%) for industrial emissions and solvent use . For domestic
biofuel use and waste disposal EDGARv4.3.2 (968 Gg y−1,
32%) appears to agree best with our PMF solution. For wheat
residue burning GAINS agrees well with our PMF output, 90

while the agricultural waste burning emissions of some of the
detected compound groups (ketones, aldehydes and acids)
appear to be missing in the EDGARv4.3.2 inventory. Our
PMF solution for road transport sector emissions (30.5 %)
lies in between the estimates of GAINS (558 Gg y−1, 24 %) 95

and REAS (1230 Gg y−1, 36.2 %), possibly, because not all
pre-2000 super-emitters for which the 20-year vehicle life-
time has been exceeded have been retired as planned.

Overall it appears that none of the emission inventories is
ideal at the present. Our PMF solution suggests that trans- 100

port sector emissions may be are underestimated by GAINS
and EDGARv4.3.2, while the combined effect of residential
biofuel use and waste disposal emissions as well as the VOC
burden associated with solvent use may be overestimated by
all emission inventories. Similar results have been reported 105

previously. Sarkar and co-workers (Sarkar et al., 2017) re-
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ported an underestimation of transport sector emissions for
the REAS and EDGAR emission inventory for the Kath-
mandu valley in Nepal and an overestimation of the resi-
dential biofuel use and waste disposal source in all emission
inventories, while Gaimoz and co-workers (Gaimoz et al.,5

2011) reported an overestimation of the VOC emissions from
solvent use in Paris.

4 Conclusions

Our results highlight that for accurate air quality forecast-
ing and modelling it is essential that emissions are attributed10

only to the months in which the activity actually occurs. This
is important for emissions from crop residue burning (which
occur in May and from Mid-October to the end of Novem-
ber). Annually averaged emissions are unlikely to yield accu-
rate air quality forecast in regions affected by such seasonal15

events. At present, more specialized fire emission invento-
ries such as FINN (Wiedinmyer et al., 2011) must be used
to account for the full seasonality and day to day variations
of open burning emissions. We also demonstrate, that the
source profiles obtained as PMF output can be validated and20

matched against samples collected at the potential sources to
validate the factor identification.

For the human class I carcinogen benzene, the traffic factor
alone contributed to 47 % of the total benzene mass at this re-
ceptor site followed by residential biofuel use and waste dis-25

posal (25 %) and industrial emissions and solvent use (20 %).
This stands in stark contrast to various emission inventories
which estimate the transport sector contribution to the ben-
zene exposure as ( 10%) and consider residential biofuel use,
agricultural residue burning and industries to be more impor-30

tant benzene sources. Since the annual NAAQS for benzene
is exceeded at this receptor site (Chandra and Sinha, 2016),
all three sectors must be targeted for emission reductions.

For the emerging contaminant isocyanic acid, photochem-
ical formation from precursors (37 %), wheat residue burn-35

ing (25 %) and biofuel usage and waste disposal (18 %) were
the largest contributors to human exposure. The monthly av-
erage isocyanic acid mixing ratio of 1.4 ppb exceeds con-
centrations that can, after dissociation at blood pH, result
in blood cyanate ion concentrations (Roberts et al., 2011)40

high enough to produce significant health effects in humans
(Wang et al., 2007) such as atherosclerosis, cataracts and
rheumatoid arthritis due to protein damage. Peak mixing ra-
tios of this compound exceed 3 ppb in some night time
wheat residue burning plumes. Wheat residue burning was45

also the single largest source of the photochemical precur-
sors of isocyanic acid, namely, formamide, acetamide and
propanamide, indicating that this source must be most ur-
gently targeted to reduce human concentration exposure to
isocyanic acid.50

Overall it appears that none of the emission inventories is
ideal at the present. Our PMF solution suggests that trans-

port sector emissions may be underestimated by GAINSv5.0
and EDGARv4.3.2, while the combined effect of residen-
tial biofuel use and waste disposal emissions as well as the 55

VOC burden associated with solvent use may be overesti-
mated by all emission inventories. Agricultural waste burn-
ing emissions of some of the detected compound groups
(ketones, aldehydes and acids) are currently missing in the
EDGARv4.3.2 inventory while aromatic emissions from the 60

same source appear to be overestimated. Thus, large im-
provements are required in existing emission inventories for
correct source attribution and inclusion of missing com-
pounds over this densely populated region of the world.
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Figure 1. (a) Mohali located on Indian Subcontinent with the over-
laid 72 h air mass back trajectories for May 2012 at 09:00 LT and
23:00 LT (UTC+5:30) (b) Precise location of IISER-Mohali At-
mospheric chemistry facility (30.667 ◦N, 76.729 ◦E, 310 m above
mean sea level) with nearby cities on Google Earth imagery. The
campus of IISER Mohali is outlined in white.
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Figure 2. Percentage contribution assignment for various PMF fac-
tor number solutions (3-7) to the corresponding VOC emission
sources.
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Figure 3. Factor profile composition for (6) PMF resolved factors at IISER-Mohali. It displays the normalized source fingerprints of the PMF
factors (dark blue) and samples collected at source (in various colours) in bar-chart form. The value of the normalized species contribution is
depicted on the left hand axis. The percentage of each species explained by each of the PMF factors is displayed in the form of a red square
to be read from the right hand axis.
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Figure 4. (a) Source contribution to the ambient VOC loading at the receptor site. (b) Ozone formation potential for PMF derived sources
(c) SOA potential for PMF factors.
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Figure 5. Factor contribution time series, factor diel variability and CPF plot for PMF Factor 1 (Biofuel use and waste disposal), PMF Factor2
(Wheat-residue burning) and PMF Factor3 (Industrial emissions and solvent use) for May2012. The time series of PMF factor’s hourly mass
in µgm−3 is plotted against independent tracer species CO (in ppbv) for the biofuel use and waste disposal factor, daily fire counts for the
wheat residue burning factor and SO2 (in ppbv) for the industrial emission and solvent use factor. The Diel box and whisker plot shows
the statistical parameters of factor’s hourly mass contribution in µgm−3 for every hour of the day plotted against the start time of the hour.
The width of the box gives 25th and 75th percentiles, 50th percentile partitions the box; whiskers represent 10th and 90th percentiles of the
dataset and average values are given by solid circles.
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Figure 6. Contribution of individual PMF derived source factors to
the total mass of different VOCs.
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Figure 7. Factor contribution time series, factor diel variability and CPF plot for PMF Factor 4 and Factor 5 (Cars and two-wheelers) and
PMF Factor 6 (Mixed daytime) for May2012. The time series of PMF factor’s hourly mass in µgm−3 is plotted against independent tracer
species NOy (in ppbv) for the car and two-wheeler factor and and O3 (in ppbv) for the mixed daytime factor. The Diel box and whisker
plot shows the statistical parameters of factor’s hourly mass contribution in µgm−3 for every hour of the day plotted against the start time of
the hour. The width of the box gives 25th and 75th percentiles, 50th percentile partitions the box; whiskers represent 10th and 90th percentiles
of the dataset and average values are given by solid circles.
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Figure 8. Comparison of PMF derived VOC source contribution to the EDGAR, REAS and GAINS Emission Inventory Database.


