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Reviewer comment:  

1 Overall comment 

This study focuses on the source apportionment of VOCs measurements at a suburban site in 

the North-West Indo-Gangetic Plain. The period studied is the month of May 2012. Authors 

use a Positive Matrix Factorization Model (PMF) to resolve source contributions to VOCs, 

perform a conditional probability functional analysis to locate the different sources and 

calculate the ozone and secondary organic aerosols formation potential. Moreover, results of 

PMF are compared with the source apportionment of three different emission inventory 

estimates. 

Overall, the analysis performed is interesting and valuable. However, the manuscript needs 

improvements in the logical framing of the work with respect to its contribution and 

implications to the field. Also the introduction and the results need to be improved in this sense. 

I recommend publication after the authors have addressed the following substantive 

concerns/comments on their manuscript. 

 

Author response: We sincerely thank the reviewer for his encouragement and the in-depth 

comments and suggestions which have greatly improved the clarity of the manuscript and have 

helped us to emphasize the implications of this study to the field more clearly.  

The detailed response to each comment and changes made in the manuscript are listed below.  

 

2 Major comments 

1. ABSTRACT - the abstract is a bit too technical. I recommend to focus more on the big 

picture and major findings and implication of the paper (as outlined in the conclusions). 

Author response: We appreciate this feedback and have revised the abstract in accordance 

with it. Revised abstract reads as follows: 

 

Changes in the manuscript: 
“In this study we undertook quantitative source apportionment for 32 volatile organic 

compounds (VOCs) measured at a suburban site in the densely populated North-West Indo-

Gangetic Plain using the US EPA PMF 5.0 Model. Six sources were resolved by the PMF 

model. In descending order of their contribution to the total VOC burden these are “biofuel 

use and waste disposal” (23.2%), “wheat-residue burning” (22.4%), “cars” (16.2%), “mixed 

daytime sources” (15.7%), “industrial emissions and solvent use” (11.8%) and “two-

wheelers” (8.6%).  

Wheat residue burning is the largest contributor to the total ozone formation potential 

(26.2%). For the emerging contaminant isocyanic acid, photochemical formation from 

precursors (37%) and wheat residue burning (25%) were the largest contributors to human 

exposure. Wheat residue burning was also the single largest source of the photochemical 

precursors of isocyanic acid, namely, formamide, acetamide and propanamide, indicating that 

this source must be most urgently targeted to reduce human concentration exposure to 

isocyanic acid in the month of May. Our results highlight that for accurate air quality 

forecasting and modelling it is essential that emissions are attributed only to the months in 



which the activity actually occurs. This is important both for emissions from crop residue 

burning (which occur in May and from Mid-October to the end of November). 

The SOA formation potential is dominated by “cars” (36.9%) and “two-wheelers” (21.1%), 

which also jointly account for 47% of the human class I carcinogen benzene in the PMF 

model. This stands in stark contrast to various emission inventories which estimate the 

transport sector contribution to the benzene exposure as (~10%) and consider residential 

biofuel use, agricultural residue burning and industries to be more important benzene sources. 

Overall it appears that none of the emission inventories represent the regional emissions in an 

ideal manner. Our PMF solution suggests that transport sector emissions may be 

underestimated by GAINSv5.0 and EDGARv4.3.2 and overestimated by REASv2.1, while 

the combined effect of residential biofuel use and waste disposal emissions as well as the 

VOC burden associated with solvent use and industrial sources may be overestimated by all 

emission inventories. The agricultural waste burning emissions of some of the detected 

compound groups (ketones, aldehydes and acids) are missing in the EDGARv4.3.2 

inventory.” 

 

Reviewer comment: 2. INTRODUCTION - the introduction should better frame the 

background of the study, its motivation and what is the new contribution of the work. In 

particular: 

• Only one source receptor modelling study that has been cited is in the region of the study 

(Srivastava et al., 2005). Are there any source receptor modelling or more general studies that 

focus on VOCs over the IGP? If yes, they should be acknowledged. If no, this should be 

underlined. 

 

Author response: We have cited all the source receptor modelling studies for VOC performed 

in India that are available in the peer reviewed literature. Beyond the studies we cited, there is 

one PMF study from the Kathmandu valley in Nepal (Sarkar et al. 2017) which represents a 

different environment and one attempted PMF study from the Eastern Himalayas (Sarkar et al. 

2014, acpd-14-32133-2014), which did not make it into ACP. We have now made it more clear 

that no other VOC Source apportionment study in the IGP exists.  

Changes in the manuscript: We inserted the following sentence after line 12 on page 2 

“The only other source receptor modelling study in South Asia was conducted using a positive 

matrix factorisation model (EPA PMF5.0) with data collected in the Kathmandu valley, Nepal, 

as part of the SUSKAT campaign and attributed a negligible fraction of the anthropogenic VOC 

burden to residential biofuel usage (~14%). Instead different industrial sources including brick 

kilns (jointly 52%) and the transport sector (21%) were identified as the dominant VOC sources 

in the Kathmandu valley.”  

 

Reviewer comment: VOCs source apportionment estimates for the region under study are 

presented for different emissions inventories. However, it is claimed ’Considering the large 

discrepancies between bottom up inventories and different source receptor modelling studies’, 

when 2/3 source receptor models studies presented so far are out of the understudied region. 

This claim need to be justified, or more appropriate studies need to be cited. 

Author response: We agree with the reviewer that comparing performance of emissions 

inventories for the entire NW-IGP with a source receptor model study conducted in a specific 

megacity could introduce a bias. Since we have no other source receptor studies to fall back 

on, we have now made the comparison between the inventory and the source receptor 

modelling studies more specific and spatially accurate limiting it to the Delhi National Capital 

Region, Greater Mumbai and Greater Kolkata, when comparing with the source receptor 



modelling studies of these cities, respectively and have revised the text from line 5-11 

accordingly.  

In response to a later comment by the same reviewer about the mismatch between the emission 

inventory year and the year of our study we have now substituted EDGAR v4.2 with the latest 

EDGAR v4.3.2 version (Huang et al. Atmos. Chem. Phys., 17, 7683–7701, 2017), with 

emissions for the year 2012, which appears to represent a significant improvement over the 

previous version. We have not included MIX Asia (Li et al. Atmos. Chem. Phys., 17, 935–963, 

2017) since the NMVOC data of this inventory for India has been sourced from REASv2.1 

without any changes. As a result of this update we have also revised the text of lines 11-17 in 

the introduction (not just the results and discussion section 3.8 and Figure 8). 

Changes in the manuscript: The revised paragraphs now read: 

“Previous source receptor modelling studies of VOC emission from India (Srivastava, 2004; 

Srivastava et al., 2005; Majumdar et al., 2009) produced results that conflicted strongly with 

the bottom up emission inventories, all of which contain significant emissions from 

residential fuel usage even when filtered for the New Delhi National Capital Region (41-

45%), Greater Mumbai (32-36%) and Greater Kolkatta (33-59%). Transport sector emissions, 

according the bottom up emission inventories contribute only 15-35%, 17-43% and 6-14% to 

the total VOC emissions in New Delhi National Capital Region, Greater Mumbai and Greater 

Kolkatta, respectively. All previous studies from India employed a chemical mass balance 

(CMB) technique for ambient VOC source attribution and identified the transport sector as 

the main source of NMVOCs in the form of evaporative emissions (40-87%) in Mumbai 

(Srivastava, 2004), diesel internal combustion engines (26-58%) in Delhi (Srivastava et al., 

2005) and roadway/refuelling exhaust (~40%) in Kolkata city (Majumdar et al., 2009). 

Except for the study performed in Kolkata which found a contribution of <10% from wood 

combustion, residential fuel usage was not identified as a potential VOC source in those 

source receptor modelling studies. The observed discrepancy could be partially caused by the 

fact a CMB is not necessarily an ideal tool for conducting source receptor modelling study in 

understudied environments as the model needs to be initialized with locally measured source 

profiles of all potentially significant sources. However, it is unlikely that this is the only 

reason for the discrepancies between source receptor modelling outcomes and emission 

inventories. 

Different bottom up emission inventories also have large discrepancies between each other 

when extracted for the NW-IGP. For our study region (27.4-34.9 °N and 72-79.8 °E), 

EDGAR v4.3.2 estimates that the road transport sector contributes only 18% of the total 

anthropogenic VOC emissions (440 Gg y−1), while REAS v2.1 (and MIX Asia) attribute 

35.8% of the total anthropogenic VOC emissions (1230 Gg y−1) to this sector. For industrial 

emissions and solvent use, GAINS has the lowest (540 Gg y−1) and EDGAR v4.3.2 the 

highest absolute emissions (900 Gg y−1). Crop residue burning as VOC source is missing in 

REAS but accounts for a 6% (145 Gg y−1) and 7% (163 Gg y−1) share of the annual VOC 

emissions in EDGAR and GAINS, respectively.” 

 

Reviewer comment: The study takes into consideration a specific month, May 2012. It is 

needed to explain why this month is important for the region under study and which general 

conclusions can be made from it. 

Author response: The month of May is of specific interest for the NW-IGP as it is strongly 

affected by a seasonal source in the form of wheat residue burning. Crop residue burning 

activity from the NW-IGP appear prominently in various fire count products such as MODIS 

or VIIRS fire counts. Our study provides the first in-situ observations which allow to assess 

whether VOC emissions from this pyrogenic source are properly represented in the available 

emission inventories. 



Changes in the manuscript: We have inserted the following sentence at the end of the 

paragraph: 

“The month of May is of special interest, as it is affected by widespread wheat residue burning 

in the NW-IGP. In the present study, we quantify the contribution of this important area source 

to the VOC burden at a downwind site. Our analysis includes several rarely reported nitrogen 

containing compounds which appear to have strong pyrogenic sources in this particular study 

region. Compounds such as amines, amides and isocyanic acid are presently not included in 

global emission inventories and the default atmospheric chemistry mechanisms, despite their 

potential importance for secondary aerosol formation and human health.” 

 

Reviewer comment: The aims of the paper need to be better outlined (e.g. in the last paragraph 

of the introduction the comparison with emissions inventories is not mentioned in the 

objectives).  

Changes in the manuscript:  We added the following at the end of the paragraph: 

“We compare our source-receptor modelling output with several emission inventories such as 

REAS v2.1, EDGAR v4.3.2 and GAINS v5 to assess which emission inventory is most 

consistent with the results of our source receptor modelling study that employs in-situ 

observations.” 

 

3. METHODS - The description of methods should be revised in its content. In particular: 

 

Reviewer comment: Why have authors chosen to use the US EPA PMF 5.0 model? A brief 

motivation and description of the model need to be provided along with relevant references.  

Changes in the manuscript:  We added the following brief description and motivation:  

“The EPA PMF 5.0 receptor model (Paatero et al. 2014, Norris et al. 2014) is multivariate 

factor analysis tool (Paatero & Tapper 1994, Paatero 1997), which decomposes the data matrix 

xij with i number of samples and j number of measured VOCs into two matrices, the factor 

contribution matrix gik (which provides the mass g contributed by each factor to the individual 

sample) and the factor profiles matrix fkj (which provides the source profile/fingerprint of each 

individual source). Both matrices are established for a user defined number of sources p from 

the existing intrinsic variability in the dataset leaving behind a matrix of residuals eij.  

 
The two primary advantages of the PMF over other source receptor modelling tools are its 

inherent non-negative constraints (Hopke 2016) and its capability of optimally weighing 

individual data points and assigning uncertainties which makes it possible to include less 

robust species that can be useful for defining real sources. The EPAv5.0 model is superior 

when compared to other source receptor modelling tools as contains advanced rotational 

features (Paatero & Hopke) which allow to constrain the rotational ambiguity in a manner 

that pushes the PMF solution toward the real world space.”  

 

Reviewer comment:  Almost the entire part of the methodology in Section 2.4 and 2.5 is left 

to the supplement or to other studies. Since it is a fundamental part of the methodology used in 

this the study, I would suggest to expand these sections. On the other hand, the detailed 

description in section 2.2. is not really relevant for this study, and should be cut/shortened. 

Author response: We have expanded section 2.4 and 2.5 in the main manuscript and removed 

the relevant sections from the supplement. We have also shortened section 2.2 but retained the 

technical details of how the input data was generated.  

Changes in the manuscript: Page 3 line 6 was shortened to: 



“Since the technical details of the measurements and the QA/QC protocol have already been 

As described in greater detail in Sinha et al.,( 2014), we provide only a quick summary here. 

ambient […]” 

Section 2.4 was expanded to:  
“2.4 Conditional Probability Function analysis 

We perform a conditional probability function (CPF) analysis (Leuchner and Rappenglück, 

2010) which aids in identifying physical locations of different PMF source factors without 

using back trajectories (Xie and Berkowitz, 2006). The CPF is computed using the factor 

contribution of the PMF model in combination with the wind direction at the receptor site. It 

quantifies the probability of factor contributions surpassing a certain threshold (75th 

percentile) for a particular wind direction sector thereby highlighting directional dependency 

of source factors and is defined as follows: 

𝐶𝑃𝐹 =  
𝑚∆𝜃

𝑛∆𝜃
                                                                (2) 

Here, mΔθ refers to number of samples exceeding the criterion value in a certain wind sector 

and nΔθ counts the total number of data points in that respective wind sector. Δθ was assigned 

a value of 30°. “ 

 

Section 2.5 was expanded to: 

“2.5 Calculation of the ozone formation potential and SOA formation potential 

Ozone production potential for each of the PMF derived source factors was calculated based 

on the method used in Sinha et al., (2012) using the following equation: 

𝑂𝑧𝑜𝑛𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =  (∑ 𝑘(𝑉𝑂𝐶𝑖 +𝑂𝐻) 𝑖 [𝑉𝑂𝐶𝑖]) ×  [𝑂𝐻] × 𝑛               (3) 

Here, n = 2 and [OH] = 106 molecules/cm3. The values were summed up for all the VOCs for 

obtaining the ozone production potential corresponding to each of the PMF derived factors for 

the daytime hours (07:00-18:00LT).  

 

Secondary organic aerosol (SOA) potential was calculated for the PMF source factors using 

the literature SOA yields (Derwent et al., 2010) under low NOx conditions for benzene, toluene, 

ethylbenzene, trimethylbenzene, styrene, methanol, isoprene, formaldehyde, acetaldehyde, 

acetone, formic acid and acetic acid using the equation given below for 07:00-18:00LT: 

𝑆𝑂𝐴 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =  (∑ [𝑉𝑂𝐶𝑖𝑖 ][𝑆𝑂𝐴𝑃𝑖])           (4) 

 

 

Reviewer comment:   The description of the methodology used to compare results of this 

study with the emission inventories estimates should be outlined. 

Author response: done 

Changes in the manuscript: We inserted a section 2.6 to describe this methodology which 

was earlier described in the results section (3.8) and have removed the method from section 3.8 

to avoid repetition. Now section 3.8 only discusses the results. 

 

“2.6 Methodology for the comparison of PMF source factors with existing emission 

inventories 

Global Emission Database for Global Atmospheric Research (EDGARv4.3) inventory for the 

year 2012 (Huang et al. 2017), and two regional emission inventories: Regional Emission 

inventory in Asia (REAS v2.1) for the year 2008 (Kurokawa et al., 2013) and the Greenhouse 

Gas and Air Pollution Interactions and Synergies model (GAINS) (Amann et al., 2011) for 

the year 2010 (Stohl et al., 2015) were compared with our PMF output. The gridded 

inventory was filtered for Latitude: 27.4-34.9 N and Longitude: 72-79.8 E, i.e. the fetch 

region from which the air mass trajectories reach the receptor site within one day. This 



filtering is required because compounds with photochemical lifetimes of less than a day (e.g. 

styrene, C-8 and C-9 aromatics) feature prominently in several source profiles indicating that 

most of the transport sector emission were less than a day old when they reached the receptor 

site. Other compounds with longer lifetimes such as toluene (2 days), benzene (6 days) or 

acetonitrile (months) can reach the site from more distant sources. The wheat residue burning 

source shows the highest cross correlation with the regional fire counts for a lag time of 2 

days indicating that emissions from distant sources can and do impact the site with a time lag. 

The chosen fetch region includes the areas where the maximum number of wheat residue 

burning fire counts are observed while avoiding a size that is too large to be consistent with 

the relatively unaltered signature of some of the other PMF source profiles.  

Annual emissions were available for EDGAR (2012) and GAINS (2010), whereas, REAS 

provided monthly data (May 2008). However, Figure S5 shows that despite providing 

monthly data, the REAS emission inventory has very little seasonality for any of the sources. 

To facilitate the comparison of the PMF output of the month of May which is affected by a 

strongly seasonal source (crop residue burning) with emission inventories that provide only 

annual data as of now, we calculate hypothetical pie charts which attribute annual crop 

residue burning emissions over the region only to the 2.5 months when crop residue burning 

actually occurs (middle of October to end of November and May).” 

 

Reviewer comment:   4. RESULTS AND DISCUSSIONS - 

Overall results are too descriptive, and there are repetitions of information that figures already 

provide. I suggest to focus more on what can be deduced from the analysis rather than on its 

description. 

Author response: We appreciate this advice by the anonymous reviewer #1 and have 

restructured our results and discussion section. The former section 3.1 has been combined 

with some details regarding the model output validation which were spread out over sections 

3.2-3.6 and has been shifted to a new section “2.4 Validation of the PMF output” in response 

to one of the comments of the anonymous reviewer #2. Our Results and discussion section 

now starts with the content of the former section 3.7 (now shifted to 3.1) “Split up of VOC 

Emission Sources in Mohali and their contribution to Ozone and SOA Formation Potential”.  

Sections 3.2-3.6 containing the description of the PMF results for the individual factors have 

been re-written to focus on what the analysis means rather than on describing the results.  

Changes in the manuscript: 

Section 3.2 now reads: 
“The biofuel use and waste disposal factor combines two sources with similar source profiles 

and high spatio-temporal overlap into one factor. As discussed previously for other South 

Asian atmospheric environments (Sarkar et al., 2017), the source contributions of domestic 

biofuel use and domestic waste burning are difficult to segregate. Figure 5 shows a weak 

bimodal behaviour with an early morning and late evening peak for this factor, as both 

domestic biofuel use and waste disposal fires peak in the early morning and in the evening 

hours (Nagpure et al., 2015).  

The highest conditional probability for this factor is from the North (>0.4), the direction of 

the Dadu Majra landfill in Chandigarh, followed by the wind direction NW where a large 

village (Mauli Baidwan) can be found within 1 km of the receptor and NE, the direction of 

Panchkula’s garbage dump in Sector 23. This and the fact that the average contribution of this 

factor remains above 30 μgm-3 throughout the night indicates that garbage burning 

contributes significantly to the biofuel use & waste disposal factor. 

Figure 3 and Figure 6 show that this factor explains a significant share of the mass of 

acetonitrile (a biomass burning tracer), aldehydes, ketones, acids, propyne, and propene in the 

PMF model. For propene (60%), aldehydes (85%) and ketones (68%) the residential sector is 



the dominant source in the most recent speciated emission inventory EDGARv4.3.2. The 

percentage share for aldehydes and ketones in the inventory is higher than its share in the 

PMF because the agricultural residue burning source of these compounds is currently missing 

in the inventory. For acids, however, the residential fuel usage source in the inventory (0.5%) 

is dwarfed by solvent use associated emissions (96%), while in the PMF the two biomass 

burning sources (residential biofuel use and waste disposal and wheat residue burning) 

account for almost 69% of the total acids in the model. High emission of oxygenated VOCs 

have been reported previously for source profiles of biofuel-stoves (Wang et al., 2009; Paulot 

et al., 2011; Stockwell et al., 2016) open waste burning (Sharma et al., 2019) and PMF 

factors’ results of residential biofuel use and waste disposal factor in Kathmandu, Nepal 

(Sarkar et al., 2017).  

It should be noted, that this factor is responsible for approximately 25% of the total benzene 

emissions in our PMF model, while emission inventories attribute a larger share (39-74%) of 

this compound to this source. Since benzene is an identified Group-1 carcinogen (IARC, 

1987) and emissions occur within the household itself (domestic cooking) or within close 

proximity of the house (waste disposal) this factor deserves special attention in programs 

targeted at emission reductions. However, the impact of such emission reductions in the 

residential and waste management sector on human benzene exposure are likely to be 

overestimated by modelling studies using present day emission inventories, as the inventories 

attribute 39-74% of the benzene emissions to residential fuel usage and waste disposal, while 

the PMF suggests the transport sector is the largest benzene source. Direct emission of 

isocyanic acid, a highly toxic emerging contaminant and its photochemical precursors (Alkyl 

amines and Amides) was observed from this source and explained 18% of the isocyanic acid 

mass concentration and 7-15% of all the alkyl amines and amides in the PMF model, 

respectively.” 

Section3 3.3 now reads: 

Wheat residue burning takes place every year in the NW- IGP in the post-harvest season and 

generally peaks in the month of May. It has been shown that wheat residue burning has a 

major impact on both ozone mixing ratios (Kumar et al., 2016) and VOC mixing ratios and 

hydroxyl radical reactivity (Kumar et al., 2018), and results in a large suite of unknown 

(40%) and poorly quantified reactive gaseous emissions. Wheat residue burning and 

emissions are transported to the receptor site from a large fetch region and often with a 

significant lag time. Hence, there is no strong conditional probability for enhancements from 

any specific wind direction (Figure 5). 

Figure 3 and Figure 6 shows that the wheat residue burning factor explains a significant share 

of all acids, amines/amides, several ketones, and aldehydes, isoprene/furan, monoterpenes, 

acetonitrile, propene, styrene and phenol in the PMF model. This makes wheat residue 

burning the largest contributor to the human exposure to isocyanic acid in the month of May 

both through direct emissions of isocyanic acid and by virtue of being the largest source for 

its photochemical precursors.  

In the EDGARv4.3.2 the agricultural residue burning source of ketones, aldehydes and acids 

is missing. On the other hand, agricultural waste burning appears to be the dominant 

anthropogenic isoprene source (94%) in the EDGARv4.3.2 inventory while in our PMF 

model residential biofuel usage and the transport sector are equally important contributors to 

the isoprene/furan mass. The monoterpene emissions from agricultural residue burning (6%) 

in the EDGARv4.3.2 inventory are dwarfed by emissions from solvent use (90%), while in 

our PMF solution wheat residue burning and the transport sector appear to be the dominant 

anthropogenic monoterpene sources. 

Section3 3.4 now reads: 



“The source fingerprint of the industrial emissions and solvent use factor is dominated by 

methanol (7.3 μgm-3), acetic acid (3.9 μgm-3) and acetone (2.9 μgm-3). This points towards 

solvent use (Gaimoz et al., 2011) and/or polymer manufacturing (Sarkar et al., 2017) 

contributing to the industrial emission and solvent use factor. In addition, Figure 3 and Figure 

6 show that this factor explains a significant fraction of the benzene (20%) and acetonitrile 

(17%) mass in the PMF model. While both are known for their use as solvents (Brown et al., 

2007), they can also be emitted from the combustion. The EDGARv4.3.2 emission inventory 

has a strong industrial and solvent source of toluene, xylenes, acids, formaldehyde and 

monoterpenes which is not reflected with equal strength in our PMF solution.  

The correlation of the industrial emissions and solvent use factor with the SO2 time series 

(R=0.6), indicates that the emissions of coal or biofuel burning in industrial units and/or coal 

fired power plants may also be contributing to this factor profile. Figure 5 shows that the 

highest conditional probability of this factor is to the South East direction (120° -150° wind 

sector). The receptor site is downwind of a 600 MW coal fired power plant located in Jagadhri 

(80 km SE) as well as downwind of several industrial areas and brick kiln clusters located 

around Dera Bassi (15 km), Lalru (20 km) and Jagadhari (80 km) when the wind blows from 

this direction. In the Kathmandu valley, biofuel co-fired brick kilns explained a significant 

fraction of the benzene and acetonitrile mass (Sarkar et al., 2017) and the factor profile shows 

a moderate correlation with the source signature of brick kiln emissions (R=0.5), hence a 

combustion contribution from brick kilns to the factor profile cannot be ruled out. The diel 

profile broadly reflects boundary layer dynamics with factor contributions increasing 

continuously throughout the night indicating a buildup of constant emissions in the nocturnal 

boundary layer. Factor contributions peak in the early morning (32-49 μg m-3 between 5-9 am 

local time) and the factor contribution of this factor decreases from 9 am onwards after the 

breakup of the nocturnal boundary layer. This factor has higher average than the median factor 

contributions at night due to strong plumes (max 375 μgm-3) reaching the receptor when it is 

downwind of the industrial sector but not during other nights when the wind direction is from 

rural Punjab (NW) or the urban sector (NE).” 

Section3 3.5 now reads: 

The factor profile of the 4-wheeler factor explains a significant share of all aromatic 

compounds in the PMF model. The factor represents a mixture of multiple components 

contributed by fuel exhaust and fuel evaporative running losses from vehicles and resembles 

ambient air samples from a busy traffic intersection. Similar profiles have been observed during 

field measurements in Beirut, Lebanon (Salameh et al., 2014, 2016) and Hong Kong (Ho et al., 

2004). The highest conditional probability is observed for the Chandigarh wind sector (0-90°). 
As reported previously from Mexico City during the Milagro campaign (Bon et al., 2011), a 

significant mass of methanol (4.3 μgm-3) and other oxygenated VOCs were present in the 

traffic emissions factor. The fact that this factor explains 28% of the total m/z 57 is consistent 

with the gasoline additive MTBE being detected at this m/z ratio as an interference to 

acrolein/methylketone (Karl et al., 2003; Warneke et al., 2003, 2005; Rogers et al., 2006). 

Signals at m/z 31, 47, 59, 61, 73, 87 in aged traffic plumes can be attributed to formaldehyde, 

formic acid , glyoxal,  acetic acid, methylglyoxal and 2-butanedione which are products of the 

gas phase oxidation of toluene, C-8 and C-9 aromatic compounds (Bethel et al., 2000; Ervens 

et al., 2004). In addition, car exhaust also explained 34% of the propyne mass in the model. 

Factor 5, 2-wheeler exhaust, explains 50% of the total toluene mass as well as 17%, 12% and 

9%, of the total C-8 aromatics, benzene and C-9 aromatics in the PMF model, respectively. 

The factor shows a signal at m/z 61 (acetic acid) which may partially be due to fragmentation 

of octane or ethyl acetate (Warneke et al., 2003; Rogers et al., 2006) which could be present in 

fuel. The mass has also been attributed to acetic acid in a previous study of diesel tailpipe 

emissions (Jobson et al., 2005). Nevertheless, it still seems that the 2-wheeler factor profile has 



a higher contribution from oxidised compounds compared to the car factor profile indicating 

that the plumes are typically more aged. Figure 7 shows that this factor displays higher 

conditional probability than the car factor towards the towns Kharar (8 km N), Dera Bassi (15 

km SE) and Lalru (20 km SE), and a lower conditional probability than the car factor towards 

Chandigarh (NE) indicating 2-wheelers are more abundant in small towns, while cars dominate 

the traffic emissions in urban Chandigarh.  

Figure 7 illustrates that both the traffic factors show bimodal peaks in morning (10.3 μgm-3 at 

5-9 am local time) and evening (20 μgm-3 at 7-9 pm local time) during peak traffic hours. 

When the wind blows from the urban sector (0-90°) during peak traffic hour (7-9 pm) peak 

factor contributions of >260 μgm-3 for cars and > 150 μgm-3 for 2-wheelers are observed. 

As can be seen from Figure 6, the two traffic factors jointly explain 47%, 80%, 70% and 67% 

of the total benzene, toluene, C-8 and C-9 aromatic compounds in the model consistent with 

findings from the Kathmandu valley that traffic, not residential biofuel use and waste disposal 

is the more important source of aromatic compounds in South Asia. It is also clear that despite 

stringent regulations, the transport sector in the region is still the largest contributor to human 

benzene exposure. It can be seen from Figure S8a-d that various emission inventories consider 

the transport sector to be a minor source of benzene (10-16%). The EDGAR v4.3.2 emission 

inventory also considers the transport sector to be only a minor source of toluene (11-15%) and 

xylenes (17-22%). Residential fuel usage, industries and solvent use are considered to be the 

most significant year around source of benzene, toluene and xylenes. Agricultural residue 

burning becomes the most significant source of all aromatic compounds in the EDGAR v4.3.2 

emission inventory, when crop residue burning emissions are treated as occurring during crop 

residue burning season only, which may imply that the annual emissions of aromatic 

compounds from the stubble burning may be overestimated. REAS v.2.1 appears to be 

overestimating the residential fuel burning contribution to benzene and toluene emissions and 

the solvent usage contribution to toluene emissions. However, it captures the contribution of 

the transport sector to xylenes and trimethylbenzenes well.” 

Section3.3.6 now reads: 

“Figures 4 and 6 show that mixed daytime sources comprising of biogenic emissions and 

photochemically formed compounds explained 22% of the monoterpenes and 25% of the 

measured isoprene, respectively. Isoprene has a short chemical lifetime of 1.5 hours during the 

day and 16% and 11% of its first generation oxidation products MVK and MEK (Kesselmeier 

and Staudt, 1999) were also attributed to this factor. In addition, the mixed daytime factor 

explains 41%, 44%, 24% and 22% of the total formaldehyde, formic acid/ethanol, methanol 

and acetone mass, respectively. Photochemically formed isocyanic acid, formamide, acetamide 

and propanamide explain a slightly lower fraction (27-37%) of the total mass concentration of 

these compounds compared to what has been reported from wintertime Kathmandu valley (36-

41%). Figure 7 illustrates that the mixed daytime factor peaks between 9 am and 4 pm and 

shows a slightly enhanced conditional probability for the 180 -330° rural wind sector (0.2-0.3) 

due to agroforestry plantations of poplar in the rural landscape.” 

 

 

Reviewer comment:   • Section 3.8 presents the comparison between the source apportionment 

study and emission inventories estimates, i.e. a point vs gridded data. Is it sufficient to filter 

gridded data for LAT LONG from which air mass trajectories reach the site within one day to 

make the comparison reliable?  

Author response: Air is a rapidly moving medium, in particular in May when the average 

wind speed is 5.6 ms-1. Hence, the comparison of a receptor point with a much larger gridded 

area of an emission inventory should not be a concern. In fact, Sofowote et al. 2015 (Atmos. 

Environ. 108:151–57) used the PMF to source apportion the impact of distant sources on the 



PM2.5 aerosol burden at 5 remote locations in Ontario, Canada. We think that the more pertinent 

question is: How large should that gridded area be for a meaningful comparison? Many of the 

very specific tracers have short photochemical lifetimes of less than a day (e.g. styrene, C-8 

and C-9 aromatics). Since these short lived compounds feature prominently in several source 

profiles, rather than being absent, this indicates that e.g. the 4-wheeler emissions on average 

have been subjected to photochemical aging for less than 4-10 hours prior to reaching the site. 

On the other hand, other compounds e.g. toluene (2 days), benzene (6 days) or acetonitrile 

(months) could have been transported much further away. The wheat residue burning source 

shows the greatest cross correlation for a lag time of 2 days indicating that emissions from 

distant sources can and do impact the site with a time lag. Hence we chose a compromise 

between the two sets of compounds in terms of lifetimes and delineated a fetch region of 1 day 

for the comparison with the emission inventories. This fetch region includes the areas where 

the maximum number of wheat residue burning fire counts are observed by satellites while 

avoiding a size that is too large to be consistent with the relatively unaltered signature of some 

of the other PMF source profiles.  

Changes in the manuscript: We have inserted the following text into the newly created 

section 2.6 

 

 “This filtering is required because compounds with photochemical lifetimes of less than a 

day (e.g. styrene, C-8 and C-9 aromatics) feature prominently in several source profiles 

indicating that most of the transport sector emission were less than a day old when they 

reached the receptor site. Other compounds with longer lifetimes such as toluene (2 days), 

benzene (6 days) or acetonitrile (months) can reach the site from more distant sources. The 

wheat residue burning source shows the greatest cross correlation for a lag time of 2 days 

indicating that emissions from distant sources can and do impact the site with a time lag. The 

fetch region chosen for comparison with the emission inventories includes the areas where 

the maximum number of wheat residue burning fire counts are observed by satellites while 

avoiding a size that is too large to be consistent with the relatively unaltered signature of 

some of the other PMF source profiles. “ 

 

Reviewer comment:   Moreover, the study considers May 2012, while emissions inventory 

data are for 2008/2010. Which are the uncertainties in using these approaches in the 

comparison? Authors should justify and better describe these choices. 

Author response: We have reduced the uncertainties of the comparison by switching from 

EDGARv4.2 to the more recent version 4.3.2 for the year 2012. As far as REASv2.1 for the 

year 2008 is concerned, we could not improve the comparison as the NMVOC dataset of the 

MIX Asia 2010 inventory is identical to the NMVOC dataset of the REAS 2008 inventory.  

When it comes to the uncertainties introduced by comparing one month’s data with an annual 

average emission inventory is concerned there are two parts to the answer.  

 

1)The first part of the answer is that at present the only inventory that gives monthly data is in 

no way better than the inventories which provide only annual average data as the monthly 

data hardly differs from the sum of annual emissions divided by 12. Methane emissions from 

rice paddies in Punjab persist in the REAS emission inventory throughout the year even in 

months in which rice is not grown. Other sources do not appear to have been treated 

differently. Hence de facto there is no seasonality in any of the emission inventories available 

at present, a short coming that must be overcome in the long run but is beyond the scope of 

this work.  

 



2) For emission inventories that do not provide monthly data, we have facilitated the 

comparison of the PMF output of the month of May which is affected by a strongly seasonal 

source (crop residue burning). To do so, we calculate hypothetical pie charts which attribute 

annual crop residue burning emissions over the region only to the 2.5 months when crop 

residue burning actually occurs (middle of October to end of November and May). This 

should reduce the uncertainty of the comparison. It allows to assess whether the model has 

the correct annual total emissions of the crop residue burning source and just lacks the proper 

distribution in the form of monthly data or is off with respect to the total annual emissions 

itself.  

 

Changes in the manuscript: The following two text segments have been included in section 

2.6 

“Annual emissions were available for EDGAR (2012) and GAINS (2010), whereas, REAS 

provided monthly data (May 2008). However, Figure S6 shows that despite providing 

monthly data, the REAS emission inventory has very little seasonality for any of the 

sources.” 

“To facilitate the comparison of the PMF output of the month of May which is affected by a 

strongly seasonal source (crop residue burning) with emission inventories that provide only 

annual data, we calculate hypothetical pie charts which attribute annual crop residue burning 

emissions over the region only to the 2.5 months when crop residue burning actually occurs 

(middle of October to end of November and May).” 

 

Figure 8 has been changed – so has the accompanying text. 

 
Figure 8 has been revised and now includes EDGAR v4.3.2 (2012) instead of v4.2 (2008) and 

have updated the discussion accordingly. The latest EDGAR represents a significant 

improvement over the EDGAR HTAP and v4.2.  

 

We have also added supplementary figures to compare speciated emission inventories with the 

PMF output for individual aromatic compounds 
 



 

Figure S8a: Comparison of the PMF output with benzene emission inventories for the study region. 

 

 

Figure S8b: Comparison of the PMF output with toluene emission inventories for the study region. 



 

Figure S8c: Comparison of the PMF output with xylenes in the emission inventories for the study 

region. 

 

Figure S8d: Comparison of the PMF output of C-9 aromatic compounds with the class “other 

aromatic compounds” in the emission inventories for the study region. 

 

 

Reviewer comment:  5. CONCLUSIONS - It would be more valuable for the reader if the 

authors focused more on the achievements and implications of the results. The last paragraph 

of 3.8 may be included in the conclusions rather than in results. 

 

Done we have shifted the paragraph and have re-written the conclusions. It now reads as 

follows: 



“Our results highlight that for accurate air quality forecasting and modelling it is essential 

that emissions are attributed only to the months in which the activity actually occurs. This is 

important both for emissions from crop residue burning (which occur in May and from Mid-

October to the end of November). Annually averaged emissions are unlikely to yield accurate 

air quality forecast in regions affected by such seasonal events. At present, more specialized 

fire emission inventories such as FINN (Wiedinmyer et al., 2011) must be used to account for 

the full seasonality and day to day variations of open burning emissions. We also 

demonstrate, that the source profiles obtained as PMF output can be validated and matched 

against samples collected at the potential sources to validate the factor identification. 

For the human class I carcinogen benzene, the traffic factor alone contributed to 47% of the 

total benzene mass at this receptor site followed by residential biofuel use and waste disposal 

(25%) and industrial emissions and solvent use (20%). This stands in stark contrast to various 

emission inventories which consider domestic biofuel usage (39%), agricultural residue 

burning (19%) and industries (24%) to be the most important sources of benzene emissions. 

Since the annual NAAQS for benzene is exceeded at this receptor site (Chandra and Sinha, 

2016), all three sectors must be targeted for emission reductions. 

For the emerging contaminant isocyanic acid, photochemical formation from precursors (37%), 

wheat residue burning (25%) and biofuel usage and waste disposal (18%) were the largest 

contributors to human exposure. The monthly average isocyanic mixing ratio of 1.4 ppb 

exceeds concentrations that can, after dissociation at blood pH, result in blood cyanate ion 

concentrations (Roberts et al., 2011) high enough to produce significant health effects in 

humans (Wang et al., 2007) such as atherosclerosis, cataracts and rheumatoid arthritis due to 

protein damage. Peak mixing ratios of this compound exceed 3 ppb in some night time wheat 

residue burning plumes. Wheat residue burning was also the single largest source of the 

photochemical precursors of isocyanic acid, namely, formamide, acetamide and propanamide, 

indicating that this source must be most urgently targeted to reduce human concentration 

exposure to isocyanic acid. 

Overall it appears that none of the emission inventories is ideal at the present. Our PMF solution 

suggests that transport sector emissions may be underestimated by GAINSv5.0 and 

EDGARv4.3.2, while the combined effect of residential biofuel use and waste disposal 

emissions as well as the VOC burden associated with solvent use may be overestimated by all 

emission inventories. Agricultural waste burning emissions of some of the detected compound 

groups (ketones, aldehydes and acids) are missing in the EDGARv4.3.2 inventory while 

aromatic emissions from the same source appear to be overestimated. Thus, large 

improvements are required in existing emission inventories for correct source attribution and 

inclusion of missing compounds over this densely populated region of the world.” 

 

3 Minor comments 

Reviewer comment:  1. First author name (Pallavi) is missing. 

Pallavi is a single name author. Her orcid is https://orcid.org/0000-0003-3664-6260 

 

Reviewer comment:  2. Page 2 line 5 ’...deserve further study’ this sentence need citation. 

Author response: This sentence refers to the previous sentence. Citations have been added to 

the previous sentence (Pawar et al. 2015, Sinha et al. 2014, Kumar et al. 2016) 

 

Reviewer comment:  3. Page 2 line 31 ’...and strong photochemistry’ this sentence need 

citation.  

Author response & changes in the manuscript: A citation to Sinha et al. 2014 has been added 

 

https://orcid.org/0000-0003-3664-6260


Reviewer comment:  4. Section 2.3: need to add cross references to Table S3, Figure S4 a, b 

c. 

Author response: done, we have added the cross reference in line 26 page 3  

Figures S4 a, b c show how the factor profile, percentage of each VOC originating from a 

certain source, and the factor contribution change while increasing the number of factors in the 

model. 

and line 1 page 4 

 

A list of the constraints applied is provided in the supplementary table S3 

 

Reviewer comment:  5. Page 9 line 16 ’However, Figure S5..’. It is Figure S6 in the 

Supplement. 

Author response: we have changed the numbering of several figures in the supplement as 

Reviewer #2 asked us to include an additional plot. The numbers are now consistent with the 

numbering in the manuscript. 

Reviewer comment:  6. Figure 1 (b): add lat - long grid. It may be worth to add in the caption 

the exact coordinates of the site.  

Author response: We have added the exact coordinates of the site instead.  

We don’t agree that adding a grid to the bottom figure is a good idea. It becomes a mess since 

Google Earth does not seem to allow us to define the grid spacing. It doesn’t even seem to 

allow us to choose a different font size for the location labels and the grid labels. We are dealing 

with an area of less than 1 x 1 degree, so the figure with grid on looks ugly.  

Figure 1b with grid on: 

 
 

Other minor corrections: While preparing the new supplementary Figure S7 a small mistake 

in the calculation of the factor time series in μg/m3 was spotted and corrected in Figure 5,7, 

S5c and throughout the manuscript. 



Response to Anonymous Referee #2 
 

Reviewer comment: The article titled “Source apportionment of volatile organic compounds 

in the northwest Indo–Gangetic Plain using positive matrix factorisation model” by Pallavi et 

al., is generally well written and contains some useful information. VOC source 

apportionment studies are sparse in India, and this study could encourage more such studies 

in future which is required to understand the VOCs impact on air quality. However, on many 

occasions, authors seem to over-interpret the results and have drawn some rather farfetched 

conclusions. I would recommend publication provided my concerns are being addressed 

satisfactorily. 

Author response: 
We thank the anonymous reviewer for his/her critical feedback and have addressed the 

comments individually as detailed below.  

 

Abstract: 

Discussion paper 

Reviewer comment: Numbers can be presented in a better way for ease of reading. Authors 

can put the percentage contribution of different factors/parameters in the parenthesis beside 

them. 

Author response: We thank the anonymous reviewer for this valuable suggestion. The 

anonymous reviewer #1, suggested to focus the abstract more on the big picture. In response 

to both comments we have reduced the numbers in the abstract and added the percentage 

contribution of different factor/parameters in parenthesis beside them. It now reads as 

follows: 

Changes in the manuscript:   

“In this study we undertook quantitative source apportionment for 32 volatile organic 

compounds (VOCs) measured at a suburban site in the densely populated North-West Indo-

Gangetic Plain using the US EPA PMF 5.0 Model. Six sources were resolved by the PMF 

model. In descending order of their contribution to the total VOC burden these are “biofuel 

use and waste disposal” (23.2%), “wheat-residue burning” (22.4%), “cars” (16.2%), “mixed 

daytime sources” (15.7%), “industrial emissions and solvent use” (11.8%) and “two-

wheelers” (8.6%).  

Wheat residue burning is the largest contributor to the total ozone formation potential 

(32.4%). For the emerging contaminant isocyanic acid, photochemical formation from 

precursors (37%) and wheat residue burning (25%) were the largest contributors to human 

exposure. Wheat residue burning was also the single largest source of the photochemical 

precursors of isocyanic acid, namely, formamide, acetamide and propanamide, indicating that 

this source must be most urgently targeted to reduce human concentration exposure to 

isocyanic acid in the month of May. Our results highlight that for accurate air quality 

forecasting and modelling it is essential that emissions are attributed only to the months in 

which the activity actually occurs. This is important for emissions from crop residue burning 

(which occur in May and from Mid-October to the end of November).  

The SOA formation potential is dominated by “cars” (36.9%) and “two-wheelers” (22.1%), 

which also jointly account for 47% of the human class I carcinogen benzene in the PMF 

model. This stands in stark contrast to various emission inventories which estimate the 

transport sector contribution to the benzene exposure as (~10%) and consider residential 

biofuel use, agricultural residue burning and industries to be more important benzene sources. 

Overall it appears that none of the emission inventories represent the regional emissions in an 

ideal manner. Our PMF solution suggests that transport sector emissions may be 

underestimated by GAINSv5.0 and EDGARv4.3.2 and overestimated by REASv2.1, while 



the combined effect of residential biofuel use and waste disposal emissions as well as the 

VOC burden associated with solvent use and industrial sources may be overestimated by all 

emission inventories. Agricultural waste burning emissions of some of the detected 

compound groups (ketones, aldehydes and acids) are missing in the EDGARv4.3.2 

inventory.” 

 

 

Reviewer comment: Methods: 

Sec 2.3: Line 20, why 20%? Please explain and incorporate in the manuscript as well.  

Author response: We chose to assign 20% uncertainty to all masses to avoid a situation where 

the difference in the assigned uncertainty drives the PMF to dedicate a disproportionate number 

of a factors towards minimizing Q of a few compounds at the expense of others which may be 

equally useful as tracers of specific activities. The lower reported uncertainty of some 

compounds (8-12%) in Sinha et al. 2014 can be primarily attributed to the fact that the 

instrument has been calibrated with more than one independently sourced calibration gas 

bottles for that particular compound and the fact that the respective m/z has a good signal to 

noise ratio and high signals. For some other compounds the sensitivity had to be derived from 

theory, because no calibration gas is available, hence they carry a larger error.  

 

We have followed the advice of Paatero et al. 2014, Atmos. Meas. Tech., 7, 781–797 and 

performed sensitivity studies to better understand how errors and their handling can impact the 

PMF output in our specific case. 

  

In our specific case the fact that toluene has one of the smallest reported measurement errors 

(8.6 % in Sinha et al. 2014) in combination with the fact that there is a genuine and abundant 

source with a normalized source profile that is dominated by toluene (tailpipe exhaust of petrol 

fuelled 2-wheelers) can result into a serious modelling error. This problematic behaviour is 

observed for this particular dataset, because the second most abundant compound in the same 

tailpipe exhaust source profile (the xylenes) carries a larger uncertainty (11.8 %) and can be 

accommodated in other source profiles with a smaller penalty on Q. Most real world traffic 

contains a mixture of 4-wheelers and 2-wheelers and the ratio of these two vehicle classes in 

the traffic varies as a function of air mass origin and time of the day. At the same time the 

benzene/toluene ratio of all aged plumes varies with the photochemical age of the air mass. 

When all these factors are combined the situation becomes such that while running the model 

with differential errors the lowest Q for the equation  

 
is obtained by creating a separate toluene factor and removing toluene from the factor profile 

of all combustion source profiles. In other words, in this specific dataset assigning correct but 

different random errors to different m/z triggers a serious modelling error which appears 

already in a 4 factor solution and is retained through any higher number of factors. Assigning 

equal random errors to all m/z prevents this modelling error from occurring. Hence, we 

assigned an error of 20% to all masses even though in reality only few strong m/z ratios 

(formaldehyde, propyne, styrene and phenol) carry such a large error. The reviewer is, 

however, correct that this choice of using the largest error for all compounds is somewhat 

arbitrary and one could instead use the average uncertainty of all the strong compounds errors 



(i.e. assigning ~10% uncertainty to all compounds would also prevent the modelling error). 

The magnitude of the chosen error will impact the magnitude of Q (which will increase by a 

factor of ~4 when 10% instead of 20% uncertainty is assigned) but will not change the model 

output as long as equal uncertainty is assigned to all masses. However, considering the 

accuracy and precision error while initializing the PMF may not actually be the right approach 

at all, considering that the software treats the errors as random. One could argue that only the 

precision error should be considered while assigning errors in the software. However, as long 

as equal uncertainty is assigned to all strong m/z the assigned uncertaintyt will not change the 

model output and conclusions. 

 

Changes in the manuscript: We have incorporated this reason and the section now reads 

“All 32 species were assigned a fixed 20% in the uncertainty, which represents the largest 

uncertainty estimated for strong compounds,  to avoid a situation where the difference in the 

assigned uncertainty drives the PMF to dedicate a separate factor towards minimizing Q of a 

single compound with low uncertainty (toluene) by taking it out of all other source profiles 

and opening a separate factor profile containing just a single compound.”  

 

Reviewer comment: Line 20, more than 50% of the measured species (18 of 32) are weak, 

isn’t that going to influence the robustness & reliability of the PMF output? 

Author response: This is definitely going to impact the robustness and reliability of the PMF 

output in a positive manner. A poor signal to noise ratio indicates that the measured values of 

a species throughout most of the time series are very close to the detection limit. All 

instruments have a higher precision error close to the detection limit. This is why the manual 

recommends assigning masses with low S/N ratio “weak” and we have followed this 

instruction for all compounds that have a poor S/N ratio and do not show any strong peaks. 

However, in our opinion S/N ratio should not be blindly used as a criterion to make masses 

weak. Let us consider the hypothetical scenario of a compound emitted only by a single 

source impacting the site. There can be a situation where such a source impacts the site only 

rarely (say less than 5% of the time) but when it does the plume brings a very high 

concentration of that tracer compound. In such a case that specific tracer could be extremely 

precious for constraining the rotational ambiguity of the PMF solution, even though its 

average S/N ratio would be very poor (because 95% of the values in the time series are noise 

around the detection limit). Hence one always needs to look at every species of the input 

dataset carefully to assess whether it should be made weak just because of its S/N ratio.  

 

There can be reverse cases of masses with a high S/N ratio (for which the average 

concentration is always far above the detection limit throughout the time serious), which can 

negatively impact the PMF rotational ambiguity when not labelled as weak. This is the case 

for all masses with potential isobaric interferences. Let us consider an m/z where one of the 

compounds falling onto the mass to charge ratio is of pyrogenic origin and the other one a 

tracer for biogenic emissions or a product of daytime photochemistry and discuss how this 

will impact the PMF model output depending on whether the species is a strong or weak 

species. Any peak in the concentration observed can be due to either of the contributors i.e. 

due to a combustion source alone or due to biogenic emissions/daytime photochemistry alone 

or due to a mixture of both. The most serious impact of this on the model performance is that 

it can make resolving the rotational ambiguity difficult and can cause modelling errors. 

Resolving rotational ambiguity requires that the matrix contains a sufficient number of zero 

values where a source is totally absent. When two sources with different temporal profiles 

(night-time combustion and daytime biogenic emission or night-time combustion and 

daytime photochemistry) contribute different compounds to the same m/z ratio, zero values 



are almost absent in that particular column of the matrix. When this column is made “weak” 

and given a higher uncertainty, other “strong” tracers with genuine zero values and strong 

peaks that can be attributed to a specific sources define source profiles and this reduces the 

rotational ambiguity of the model. The “weak” compounds with isobaric interferences are 

distributed among the source profiles available as per the solution that minimizes Q but they 

do not define any of the profiles. In our opinion, this is the most appropriate way to treat m/z 

ratios with potential isobaric interferences. As already described in the supplement and the 

main text we have made such masses weak in the PMF to improve the quality of the PMF 

output. 

Changes in the manuscript: We have added a clarification that this makes the model more 

robust.  

“Designating sources with isobaric interferences as weak is warranted because when two 

sources with different temporal profiles (night-time combustion and daytime biogenic 

emission or night-time combustion and daytime photochemistry) could potentially contribute 

different compounds to the same m/z ratio, zero values are almost absent in that particular 

column of the matrix and the tracer is affected by additional uncertainty not appropriately 

expressed by merely looking at the instrumental measurement error and the signal to noise 

ratio. When this column is made “weak” and given a higher uncertainty, other “strong” 

tracers, representing a single compound, define source profiles and this reduces the rotational 

ambiguity of the model. The “weak” compounds with isobaric interferences tend to be 

distributed among the source profiles available as per the solution that minimizes Q but they 

do not define any of the profiles.” 

 

Reviewer comment: Line 24, Why the authors chose to remove missing values instead of 

replacing them with some other values as mentioned in the literature? Is this the standard 

practice? what is the % of missing values in the total sampled points? 

Author response: Replacing missing values with the median while assigning it a greater 

uncertainty in the PMF helps a lot when the PMF is run with different tracers measured with 

different sets of instruments, each of which has a different set of missing values. The default 

setting of the EPA PMF model described in the literature was developed for such a scenario.  

To illustrate let us consider using a dataset with data from 10 different instruments each of 

which individually has less than 10% downtime in a situation where unfortunately problems 

rotate. In that scenario for > 50% of the data points a few variables would be missing. Using 

the exclude missing value option in such a case would mean throwing out more than half of 

the dataset as the model removes all lines (=points in time) with a missing value, even if only 

a single column has a missing value. In such cases lines with missing values still have a lot of 

data (because one instrument is down the other instruments are running) and only a small 

subset of species is missing for each point to be potentially excluded. Hence the default 

model setup suggests filling in missing values with the median of the time series while 

assigning a greater uncertainty to that point. 

However, we are dealing with measurements of a single instrument and <5% of missing 

values in a month. Filling missing values does not improve the quality of the model output in 

our case. When the PTR-MS is undergoing calibration or ion source cleaning, there is no 

ambient data at all available for the gap. Hence the gap filling is unnecessary. It serves no 

purpose and would hardly affect the model output as all parameters would be filled in with 

their respective median for that particular point in time.  

Changes in the manuscript: added ( <5%) after “missing values” 

 

Reviewer comment: Sec 3.3 



Line 1-3, R= 0.4 is not a good correlation, at best it can be termed as moderate. Please rewrite 

the explanation on why fire count is the best tracer for factor 2. 

Author response: With best we simply meant that the R was better than that of other 

potential independent tracers such as NOx (which correlated more with transport sector 

emissions) and CO (which correlated best with the more regular open burning activities such 

as biofuel use and waste disposal). However, we understand now, that this could be 

misunderstood and have revised the sentence.  

Changes in the manuscript: “Figure 3 shows that the factor profile correlates most strongly 

with flaming wheat residue burning (R=0.9). The average contribution of wheat residue 

burning to the total NMVOC mass at the receptor site and the daily fire counts over the NW-

IGP show a moderate cross correlation of R=0.4 with a lag of 2 days (Figure 5).” 

 

Reviewer comment: Sec 3.7 

Line 7, in PM2.5, 2.5 should be subscript 

Author response: Done this section has become Sec 3.1 in the restructured manuscript 

 

Reviewer comment: Line 7, I don’t think the way SOA being calculated enable the authors 

to make such strong quantitative assertion about the SOA contribution to PM2.5 in Mohali. 

At best, the adopted method can provide a qualitative and comparative assessment of SOA 

production efficiency among different PMF factors. I would suggest to remove or modify. 

line 6-8 to reflect this. 

Author response: We understand that the SOA formation potential as calculated has its 

limitations and depends on the NOX regime and may even show a non-linear dependence on 

VOC and NOx concentration for some compounds (Xu et al., 2015, Atmospheric 

Environment 101, 217-225). However, we believe that providing a boundary condition may 

be useful. We have modified lines 6-8. We now explicitly mention that we applied the “SOA 

yields for the low NOx regime” in the relevant section of the materials and methods, which 

the reviewer #1 asked to extend and in this section. We also now put the calculated SOA 

formation potential (i.e. the ~17 μg/m3) in brackets behind its first mention in the paragraph 

as we believe that despite all short comings this number provides an important perspective. In 

support, we have also qualified the estimate by citing more studies.  

Changes in the manuscript: 
“While the calculated SOA formation potential particularly from transport sector emissions 

(Ensberg et al., 2014) and aromatic compounds (Li et al., 2017, Li et al., 2018) is affected by 

large uncertainties and may depend in a non-linear fashion on NOx and VOC concentrations 

(Xu et al, 2015) our calculated SOA formation potential seem to indicate that SOA formation 

could contribute significantly to the overall PM2.5 burden (104 μgm-3).  

 

Reviewer comment: Sec 3.8 

I am not sure about the utility or purpose of this section. Are authors trying to use this 

comparison as another tool for PMF results validation? Or to suggest which inventory is 

better? Every emission inventory is developed based on some underlying assumptions and 

approximations. I would rather be very surprised if a single site based study can reproduce or 

match the emission inventory values. It is quite expected that differences will be there and 

even a perfect match doesn’t necessarily validate emission inventories or the PMF results, 

especially in a complex source environment as in India. Several assumptive statements were 

made to explain the mismatch/less match between PMF results and emission inventory 

values. So, based on this comparison one can’t really assert which inventory is better or more 

representative than others. Authors should remove or rephrase the section to reflect those 

concerns.  



Author response: This section is meant to identify which of the currently used emission 

inventory represents the regional sources best. This is the major motivation behind any 

source-receptor modelling study. The anonymous reviewer is correct that every emission 

inventory is developed based on some underlying assumptions and approximations. Some of 

these assumptions and approximations can be awfully wrong and the purpose of source 

receptor modelling studies is to point out such discrepancies. For example, several PMF 

based source receptor modelling studies in Europe found that the solvent source could be 

overestimated in most emission inventories while the transport sector may be underestimated 

(Gaimoz et al. 2011 Environ. Chem. 2011, 8, 91–103., Niedojadlo et al. 2007 Atmos. Environ. 

2007, 41, 7108., Lanz, et al. 2008 Atmos. Chem. Phys. 2008, 8, 2313.). Such discrepancies 

between inventories and source receptor modelling results which got replicated in several 

studies in different countries ultimately triggered a new series of road tunnel studies and on-

road emission factor measurements to re-evaluate the assumptions and approximations used 

while building the transport sector emission inventories. These efforts not only resulted in a 

significant upward revision of transport sector emission estimates for NMVOCs while 

shifting from the EDGARv4.2 inventory for the year 2010 to EDGARv4.3.2 for the year 

2012 but also exposed the diesel cheat software that switched off pollution control devices 

when the vehicles were driving on the road. Therefore, we believe that reality checks bases 

on source receptor modelling of ambient data perform an important role. Their potential 

significance is even larger in a complex environment where activity data for informal sector 

industries and activities that officially don’t happen (e.g. open waste burning) is hard to 

obtain while at the same time proper emission factor measurements for many sources are 

lacking. We, therefore, insist that this section is important to retain. 

 

The validation of PMF results in all prior studies has been performed by cross correlating one 

or several columns of one of the two matrices produced during the factor decomposition, 

namely the factor contribution matrix, with independent variable in the form of the time 

series of compounds that were not used to drive the model. We performed this cross 

verification step for all six identified factors using the species NOy (cars & 2-wheelers), SO2 

(industrial emissions), CO (domestic fuel usage and waste disposal), fire counts (wheat 

residue burning) and O3 (mixed daytime factor). However, our study, to the best of our 

knowledge, is the first one to add an additional verification step in the form of grab samples 

collected at the source which were used to independently verify the factor profiles (i.e. the 

second matrix) that the PMF model created during the matrix decomposition. This validation 

was performed using samples collected at the source for five of the six factor profiles (wheat 

residue burning, domestic fuel usage and waste disposal, industrial emissions and solvent use, 

car tailpipe emissions, and 2-wheeler tailpipe emissions). It appears that this validation 

procedure was not described clearly enough, hence we have now added a section describing 

the procedure to the materials and methods section. We added a section 2.4 Validation of the 

PMF output. Some of the text in this section has been shifted from section 3.1 to this section. 

We also added a new reference since the source signature of brick kilns has recently been 

published and has now been included. 

We have also switched to a new version of EDGAR (v4.3.2) which has recently become 

available and have added more depth to the comparison by looking at individual compound 

classes of the speciated emission inventory rather than just at the total VOC mass. We have 

also removed some of the quantitative statements. 

 

Changes in the manuscript:  

“2.4 Validation of the PMF output 



The PMF generates two matrices from the intrinsic variability in the dataset. A factor 

contribution matrix and a factor profile matrix.  

Traditionally the PMF output has been validated by cross-correlating the factor contribution 

matrix with independent tracers which were not used to initialize the model, but are 

considered useful tracers for the respective source (Brown et al. 2007, Leuchner et al. 2011, 

Bon et al. 2011, Gaimoz et al. 2011, Sarkar et al. 2017). We perform this validation step for 

all six source factors resolved by the PMF model. These were identified as “biofuel use and 

waste disposal”, “wheat-residue burning”, “four-wheelers”, “two-wheelers”, “industrial 

emissions and solvent use” and “mixed daytime sources”, respectively. The factor 

contribution for 4-wheelers (R=0.7) and 2-wheelers (R=0.6) correlated best with the 

independent tracer NOy which is considered to be a vehicular exhaust marker (Ramanathan 

et al., 1985). The factor contribution of the domestic fuel usage and waste disposal factor 

correlated best with the independent tracer CO (R=0.9), a proxy for inefficient combustion, 

while the factor contribution of the industrial emission factor correlated best with the 

independent tracer SO2. (R=0.6). The wheat residue burning factor days showed a moderate 

cross correlation with MODIS fire counts with an R=0.4 and a lag of 2 days. Ozone (R=0.8) 

was the best independent tracer for the mixed daytime factor.  

However, our study goes one step further than all previous studies in validating the PMF 

output. For 5 out of 6 factors we validated the factor profiles generated by the PMF model 

(Figure 3) against grab samples collected at the source. Factor profiles were cross-correlated 

with the fingerprints of source samples collected from a number of potential sources 

including wheat residue fires (Chandra et al., 2017; Kumar et al., 2018), ambient air samples 

from a busy traffic junction (Chandra et al., 2017) and an industrial area (this study), tail-pipe 

exhaust of various vehicles (this study), waste burning (Sharma et al., 2019), leaf litter 

burning (this study) and domestic biofuel use (Stockwell et al., 2016) and brick kilns (Zhong 

et al., 2019) to identify the sources. Figure 3 shows the factor profiles obtained from the PMF 

run (in dark blue), the percentage of each species explained by the respective PMF factor (red 

squares) and the source profiles of those sources which best matched the factor profile (in 

various colors as indicated in the legend). The factor profile of residential fuel usage and 

waste disposal correlated most strongly with the measuredVOC source speciation profiles of 

domestic cooking (R=0.8), leaf-litter burning (R=0.7) and smoldering garbage fires (R=0.6), 

the wheat residue burning factor with flaming wheat residue burning (R=0.9), the 4-wheeler 

factor with petrol-fueled cars (R=0.5) and urban traffic junction grab samples (R=0.8) and the 

2-wheeler factor with the tailpipe exhaust of petrol-fuelled 4-stroke two-wheelers (R=0.6). 

The industrial emissions correlated moderately with the source profile of brick kilns (R=0.5) 

and ambient air samples collected in an industrial area (0.6). For mixed daytime no source 

profile sampling is possible. “ 

 

The revised section 3.8 now reads: 

 

“Figure 8 shows pie charts depicting the contribution of different sectors to the total VOC 

mass burden for the emission inventories and our PMF output. Biofuel use and waste disposal 

were responsible for 28.1% of the mass in our PMF but 39%, 44% and 42% of the mass in 

EDGARv4.3.2, GAINS and REASv2.1 respectively. The contribution of crop residue 

burning (27.1%) to the VOC mass in the month of May would be highly underestimated by 

both GAINS (7%) and EDGARv4.3.2 (4.76%) if the annual emissions are attributed equally 

to all months of the year. However, if both emission inventories would attribute their annual 

crop residue burning emissions over the region only to the 2.5 months when crop residue 

burning actually occurs (middle of October to end of November and May), these emission 

inventories could be reconciled with the PMF solution, as emissions in May would amount to 



26.5% and 23% GAINS and EDGARv4.3.2, respectively as shown in Figure 8. At the same 

time the percentage share of domestic fuel use and waste disposal would drop to 32% and 

35% in EDGARv4.3.2 and GAINS, respectively and the contribution of industrial emissions 

and solvent use would drop to 18% in GAINS and 30% in EDGAR, respectively. Our PMF 

solution indicates that industrial emissions and solvent usage (14.3%) are currently 

overestimated in all emission inventories but are closest to GAINS (540 Gg y-1, 18%) for 

industrial emissions and solvent use. For domestic biofuel use and waste disposal 

EDGARv4.3.2 (968 Gg y-1, 32%) appears to agree best with our PMF solution. For wheat 

residue burning GAINS agrees well with our PMF output, while the agricultural waste 

burning emissions of some of the detected compound groups (ketones, aldehydes and acids) 

appear to be missing in the EDGARv4.3.2 inventory. Our PMF solution for road transport 

sector emissions (30.5%) lies in between the estimates of GAINS (558 Gg y-1, 24%) and 

REAS (1230 Gg y-1, 36.2%), possibly, because not all pre-2000 super-emitters for which the 

20-year vehicle lifetime has been exceeded have been retired as planned. 

Overall it appears that none of the emission inventories is ideal at the present. Our PMF 

solution suggests that transport sector emissions may be are underestimated by GAINS and 

EDGARv4.3.2, while the combined effect of residential biofuel use and waste disposal 

emissions as well as the VOC burden associated with solvent use may be overestimated by all 

emission inventories. Similar results have been reported previously. Sarkar and co-workers 

(Sarkar et al., 2017) reported an underestimation of transport sector emissions for the REAS 

and EDGAR emission inventory for the Kathmandu valley in Nepal and an overestimation of 

the residential biofuel use and waste disposal source in all emission inventories, while 

Gaimoz and co-workers (Gaimoz et al., 2011) reported an overestimation of the VOC 

emissions from solvent use in Paris.” 

 

Reviewer comment: Figures: 

I want to see Q/Qexp plot in SI. 

done 

 

Reviewer comment: Fig. 7: Why the evening peaks in Car & Two-wheeler contributions are 

significantly more pronounced than morning hours? 

Author response: Because more traffic activity happens in shorter timespan in the evening 

and in addition the boundary layer is more shallow during that evening rush hour. In the 

mornings various activities associated with vehicular movement are spread out over a longer 

time period (e.g. schools tend to start earlier (8 am) than offices (9 am) and most markets 

open only at 11 am). In addition, the sun rises before 6 am and hence peak morning traffic 

occurs after the daytime boundary layer has been well established. This results in greater 

dilution and lower mixing ratios. We have included the explanation in the revised manuscript 

Changes in the manuscript: Inserted 

“Mass loadings during evening rush hour are higher than during morning rush hour, because 

peak morning traffic occurs after the breakup of the nocturnal boundary layer, while in the 

evening emissions accumulate in the shallow nocturnal boundary layer.” 
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Abstract. In this study we undertook quantitative source ap-
portionment for 32 volatile organic compounds (VOCs) mea-
sured at a suburban site in the densely populated North-West
Indo-Gangetic Plain using the US EPA PMF 5.0 Model.
Six sources were resolved by the PMF model. In descend-5

ing order of their contribution to the total VOC burden
these are namely “biofuel use and waste disposal”(23.2%),
“wheat-residue burning”(22.4%), “cars”(16.2%), “mixed
daytime sources”(15.7%) “industrial emissions and solvent
use”(11.8%) and “two-wheelers” (8.6%) and .10

Wheat residue burning is the largest contributor to the to-
tal ozone formation potential (32.4%). For the emerging con-
taminant isocyanic acid, photochemical formation from pre-
cursors (37%) and wheat residue burning (25%) were the
largest contributors to human exposure. Wheat residue burn-15

ing was also the single largest source of the photochemical
precursors of isocyanic acid, namely, formamide, acetamide
and propanamide, indicating that this source must be most
urgently targeted to reduce human concentration exposure to
isocyanic acid in the month of May. Our results highlight that20

for accurate air quality forecasting and modelling it is essen-
tial that emissions are attributed only to the months in which
the activity actually occurs. This is important both for emis-
sions from crop residue burning (which occur in May and
from Mid-October to the end of November).25

The SOA formation potential is dominated by cars
(36.9%) and two-wheelers (21.1%), which also jointly ac-
count for 47% of the human class I carcinogen benzene in
the PMF model. This stands in stark contrast to various emis-
sion inventories which estimate only a minor contribution30

of the transport sector to the benzene exposure (∼10%) and
consider residential biofuel use, agricultural residue burning
and industries to be more important benzene sources. Over-

all it appears that none of the emission inventories repre-
sent the regional emissions in an ideal manner. Our PMF 35

solution suggests that transport sector emissions may be un-
derestimated by GAINSv5.0 and EDGARv4.3.2 and over-
estimated by REASv2.1, while the combined effect of resi-
dential biofuel use and waste disposal emissions as well as
the VOC burden associated with solvent use and industrial 40

sources may be overestimated by all emission inventories.
The agricultural waste burning emissions of some of the de-
tected compound groups (ketones, aldehydes and acids) ap-
pear to be missing in the EDGARv4.3.2 inventory. The bio-
fuel and waste disposal, wheat residue burning, industrial emissions 45

and solvent use, combined traffic sources, mixed daytime sources
accounted for 23.2%, 22.4%, 11.8%, 25.1%, and 15.7% of the total
VOC mass concentration respectively; 18.1%, 32.4%, 7.3%, 21.9%,
and 20.3% of the total O3 formation potential respectively; and
14.9%, 13.9%, 10.1%, 59.0%, and 2.2% of the SOA formation po- 50

tential, respectively. Further the factors contributed 24.6%, 8.5%,
20.1%, 46.8%, and 0%, respectively, to the human class I carcino-
gen benzene and 18.4%, 25.4%, 5.9%, 13.3%, and 36.9%, respec-
tively, to the toxic emerging contaminant isocyanic acid. Evaluation
of emission inventories using the in-situ data derived PMF solution 55

revealed that among EDGARv4.2, REASv2.1 and GAINSv5.0, the
GAINSv5.0 emission inventory for year 2010, best agreed with the
in-situ data derived PMF results for May 2012.

1 Introduction

Volatile organic compounds (VOCs) have diverse natu- 60

ral (760 Tg(C) y−1 (Sindelarova et al., 2014)) and anthro-
pogenic sources (127 Tg y−1 average value (IPCC, 2013)).
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Certain VOCs emitted primarily by anthropogenic sources
such as benzene and isocyanic acid, have direct adverse im-
pacts on human health even at low ppb concentration expo-
sures (Chandra and Sinha, 2016). In densely populated re-
gions like the Indo Gangetic Plain (IGP), reactive anthro-5

pogenic VOCs contribute significantly towards the formation
of health relevant secondary pollutants such as ozone and
secondary organic aerosol (Chandra and Sinha, 2016; Sarkar
et al., 2016). At our study site, a representative suburban site
in the NW-IGP, the 8 h average NAAQS (national ambient10

air quality standard) for ozone limit of 100 µg m−3 was ex-
ceeded on 29 out of 31 days during May 2012 (Sinha et al.,
2014), while the 24 h average NAAQS for PM2.5 of 60
µg m−3 was exceeded during 27 out of 31 days in the same
period. It has been shown that wheat residue burning results15

in significant enhancement (by 19 ppb) of the daytime ozone
mixing ratios in pre-monsoon season (Kumar et al., 2016)
and long range transport in the form of dust storms from
the Arabian Peninsula brings extremely high PM2.5 mass
loadings (with peak PM2.5 mass loadings of 950 µg m−3 on20

17th of May 2012) (Sinha et al., 2014; Pawar et al., 2015)
and enhances the PM2.5 mass by ∼ 30 %.

However, ozone mixing ratios exceed the NAAQS even
during the non-fire influenced days of the pre-monsoon sea-
son and the NAAQS for PM2.5 is exceeded 60 % of the time25

for air masses with no history of long range transport (Ku-
mar et al., 2016; Pawar et al., 2015). This indicates that local
ozone and PM2.5 precursor emissions deserve further study.

Previous source receptor modelling studies of VOC emis-
sion from India (Srivastava, 2004; Srivastava et al., 2005;30

Majumdar et al., 2009) produced results that conflicted
strongly with the bottom up emission inventories, all of
which have contain significant emissions from residential
fuel usage even when filtered for the New Delhi National
Capital Region (41-45 %), Greater Mumbai (32-36 %) and35

Greater Kolkatta (33-59 %). Transport sector emissions, ac-
cording the bottom up emission inventories contribute only
15-35 %, 17-43 % and 6-14 % to the total VOC emissions
in New Delhi National Capital Region, Greater Mumbai
and Greater Kolkatta, respectively. (43 % - 68 %) as their40

largest VOC source. All previous studies employed a chemi-
cal mass balance (CMB) technique for ambient VOC source
attribution and identified the transport sector as the main
source in the form of evaporative emissions (40-87 %) in
Mumbai (Srivastava, 2004)), diesel internal combustion en-45

gines (26-58 %) in Delhi (Srivastava et al., 2005) and road-
way/refuelling exhaust (40 %) in Kolkata city (Majumdar
et al., 2009). Except for the study performed in Kolkata
which found a contribution of <10 % from wood combus-
tion, residential fuel usage was not identified as a poten-50

tial VOC source in those source receptor modelling stud-
ies. The observed discrepancy could be partially caused by
the fact a CMB is not necessarily an ideal tool for con-
ducting source receptor modelling study in understudied en-
vironments as the model needs to be initialized with lo-55

cally measured source profiles of all potentially significant
sources. However, it is unlikely that this is the only reason
for the discrepancies between source receptor modelling out-
comes and emission inventories. The only other source re-
ceptor modelling study in South Asia was conducted using 60

a positive matrix factorisation model (EPA PMF5.0) with
data collected in the Kathmandu valley, Nepal, as part of the
SUSKAT campaign and attributed a negligible fraction of
the anthropogenic VOC burden to residential biofuel usage
( 14 %). Instead different industrial sources including brick 65

kilns (jointly 52 %) and the transport sector (21 %) were
identified as the dominant VOC sources in the Kathmandu
valley.

Different bottom up emission inventories have large dis-
crepancies between each other when extracted for the 70

NW-IGP in this understudied region. For our study region
(27.4-34.9 ◦N and 72-79.8 ◦E), EDGAR v4.23.2 (Huang
et al., 2017) estimates that the road transport sector con-
tributes only 10.918 % of the total anthropogenic VOC
emissions (220440 Gg y−1), while REAS v2.1 (Kurokawa 75

et al., 2013) attributes 35.8 % of the total anthropogenic
VOC emissions (1227 Gg y−1) to this sector. For indus-
trial emissions and solvent use, EDGAR v4.2 again GAINS
(Amann et al., 2011) has the lowest (277540 Gg y−1) and
REASv2.1EDGAR v4.3.2 the highest absolute emissions of 80

(900736 Gg y−1 ). Crop residue burning as VOC source is
missing in REAS but accounted for a 4.76 % (95145 Gg y−1)
and 7 % (163 Gg y−1) share of the annual VOC emissions
in EDGARv4.3.2 and GAINS, respectively. Considering the
large discrepancies between bottom up inventories and dif- 85

ferent source receptor modelling studies, more source recep-
tor modelling studies using robust statistical tools and better
tracers for different biomass burning sources are necessary.

In the present study, we applied the US EPA’s PMF 5.0
model in constrained mode for source apportionment of 32 90

VOCs measured at IISER Mohali Atmospheric Chemistry
Facility in May 2012 with the objective of quantifying the
most important sources of ozone and SOA precursors, the
human class I carcinogen benzene and the emerging con-
taminant isocyanic acid (Chandra and Sinha, 2016), so that 95

strategies for air pollution mitigation can benefit from quanti-
tative evidence concerning the contribution of major sources.
The month of May is of special interest, as it is affected
by widespread wheat residue burning in the NW-IGP. In
the present study, we quantify the contribution of this im- 100

portant area source to the VOC burden at a downwind site.
Our analysis includes several rarely reported nitrogen con-
taining compounds which appear to have strong pyrogenic
sources in this particular study region. Compounds such as
amines, amides and isocyanic acid are presently not included 105

in global emission inventories and the default atmospheric
chemistry mechanisms, despite their potential importance for
secondary aerosol formation and human health. We compare
our source-receptor modelling output with several emission
inventories such as REAS v2.1, EDGAR v4.3.2 and GAINS 110
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v5 to assess which emission inventory is most consistent with
the results of our source receptor modelling study that em-
ploys in-situ observations.

2 Methods

2.1 Receptor site5

The measurement facility is situated inside Indian Institute
for Science Education and Research Mohali (IISER Mohali)
campus (Figure 1a) which is a suburban site (30.667 ◦N,
76.729 ◦E, 310 m above mean sea level) in Mohali near
Chandigarh in India (Figure 1b). Collectively the metropoli-10

tan of Chandigarh-Mohali-Panchkula forms a tri-city with a
total population of 1,941,118 (Census, 2011). The main air
transport toward the site was from the North West and the pe-
riod studied was impacted by wheat residue burning, a dust
storm and strong photochemistry (Sinha et al., 2014). Fig-15

ure 1a shows 72 h HYSPLIT back trajectories arriving at
the site. With average wind speeds of 5.6 m s−1 during the
study period (range 1-20 m s−1) the meteorological condi-
tions were conducive for capturing the contribution of re-
gional emission sources. The measurement site, the meteo-20

rology and the primary dataset acquired during May 2012
have been discussed in detail elsewhere (Sinha et al., 2014).

2.2 VOCs and other Auxiliary measurements

We used hourly data of 32 measured organic ions which
were assigned to volatile organic compounds (Supplemen-25

tary Table S1) based on PTR-TOF-MS studies conducted by
our group within the South Asian environment (Sarkar et al.,
2016) to initialize the US EPA PMF 5.0 model and employed
CO, SO2, O3 and NOy as independent tracers to validate
the results. Since the technical details of the measurements and30

the QA/QC protocol have already been As described in greater
detail in (Sinha et al., 2014), we provide only a quick summary
here. A ambient air sampling was performed continuously
through a Teflon inlet line protected by an in-line Teflon filter.
A high sensitivity proton transfer reaction quadrupole mass35

spectrometer PTR-QMS (HS Model 11-07HS-088, Ionicon
Analytik Gesellschaft, Austria) was operated at drift tube
pressure of 2.2 mbar, a drift tube temperature of 60 ◦C and
a drift tube voltage of 600 V, which resulted in an operating
E/N ratio of ∼ 135. Carbon monoxide (CO), Sulphur dioxide40

(SO2), Ozone (O3) and NOy (NO, NO2 and other nitrogen
species converted to NO by a molybdenum converter such
as nitric acid and PAN) were measured using Thermo Fis-
cher Scientific 48i (IR filter correlation based spectroscopy),
43i (pulsed UV fluorescence), 49i (UV absorption photome-45

try) and 42i trace level air quality analysers (chemilumines-
cence), respectively.

2.3 Positive Matrix Factorisation model

In the current study, US EPA PMF 5.0 receptor model (Nor-
ris et al., 2014) was applied to the ambient VOC dataset (in 50

µg m−3) from May 2012 measured at the IISER-Mohali At-
mospheric chemistry facility comprising of data matrix of
721 samples (rows) and 32 species (columns). The EPA PMF
5.0 receptor model (Paatero et al., 2014; Norris et al., 2014)
is multivariate factor analysis tool (Paatero and Tapper, 1994; 55

Paatero, 1997), which decomposes the data matrix xij with
i number of samples and j number of measured VOCs into
two matrices, the factor contribution matrix gik (which pro-
vides the mass g contributed by each factor to the individual
sample) and the factor profiles matrix fkj (which provides 60

the source profile/fingerprint of each individual source). Both
matrices are established for a user defined number of sources
p from the existing intrinsic variability in the dataset leaving
behind a matrix of residuals eij .

Xij =

p∑
k=1

gikfkj + eij (1) 65

A detailed description of the model can be found elsewhere
(Paatero and Tapper, 1994; Paatero, 1997; Paatero et al.,
2014; Norris et al., 2014). The two primary advantages of the
PMF over other source receptor modelling tools are its inher-
ent non-negative constraints (Hopke, 2016) and its capabil- 70

ity of optimally weighing individual data points and assign-
ing uncertainties which makes it possible to include less ro-
bust species that can be useful for defining real sources. The
EPAv5.0 model is superior when compared to other source
receptor modelling tools as contains advanced rotational fea- 75

tures (Paatero and Hopke, 2009) which allow to constrain the
rotational ambiguity in a manner that pushes the PMF solu-
tion toward the real world space.

All 32 species were assigned a fixed 20 % in the uncer-
tainty , which represents the largest uncertainty estimated for 80

strong compounds, to avoid a situation where the difference
in the assigned uncertainty drives the PMF to dedicate a sep-
arate factor towards minimizing Q of a single compound with
low uncertainty (toluene) by taking it out of all other source
profiles and opening a separate factor profile containing just 85

a single compound. and 18 were identified as weak based on
the signal to noise ratio and the presence of potential iso-
baric interferences as detailed in table S2. For weak species,
the PMF model triples the stated uncertainty to reduce their
impact on the models solution.Designating sources with iso- 90

baric interferences as weak is warranted, because when two
sources with different temporal profiles (night-time com-
bustion and daytime biogenic emission or night-time com-
bustion and daytime photochemistry) could potentially con-
tribute different compounds to the same m/z ratio, zero val- 95

ues are almost absent in that particular column of the ma-
trix and the tracer is affected by additional uncertainty not
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appropriately expressed by merely looking at the instrumen-
tal measurement error and the signal to noise ratio. When
this column is made “weak” and given a higher uncertainty,
other “strong” tracers, representing a single compound, de-
fine source profiles and this reduces the rotational ambiguity5

of the model. The “weak” compounds with isobaric interfer-
ences tend to be distributed among the source profiles avail-
able as per the solution that minimizes Q but they do not de-
fine any of the profiles. The extra modelling uncertainty was
kept to zero and missing values (< 5%) were excluded. For10

every base model run, we used 20 runs with random seeds.
Stable Q-values were obtained for all runs. The model was
run with 3 to 7 factors, to identify the appropriate number of
factors as discussed in the supplementary text in greater de-
tail. Figure 2 shows the percentage contribution of the iden-15

tified sources to the VOC burden for these runs. Figures S4
a, b and c show how the factor profile, percentage of each
VOC originating from a certain source, and the factor con-
tribution change while increasing the number of factors in
the model. Figure 2 shows that a 7 Factor solution provides20

little advantage over a 6 Factor solution while a 5 Factor solu-
tion does not resolve the wheat residue burning source which
is independently verified by MODIS (Moderate Resolution
Imaging Spectroradiometer) fire counts over the region. The
residuals for all species for the 6 Factor solution depicted a25

normal curve and fall within -3.3 sigma and +3.3 sigma for
all species indicating a good model fit. The constraints fea-
ture of the 5.0 version of the model was utilised to improve
the performance of the model further as described in greater
detail in the supplementary text. The constrained model op-30

eration of the PMF version 5.0 allows to reduce the rotational
ambiguity of the model using external knowledge. For exam-
ple, if a source is inactive for a particular period (as is photo-
chemistry at night), then the source contribution (gik) due to
that factor during that time period can be pulled to zero in the35

model to provide more robust output. Similarly, a compound
that is known to be present only in primary emissions can be
pulled down in the source composition (fkj ) matrix of the
photochemistry factor. A list of the constraints applied is pro-
vided in the supplementary table S3. A detailed discussion of40

the use of constraints in a receptor model has been provided
in previous studies (Paatero et al., 2002, 2014; Paatero and
Hopke, 2009; Norris et al., 2014; Sarkar et al., 2016). Boot-
strap model runs (Brown et al., 2015) were performed to as-
sess the model uncertainty. Input parameters for the bootstrap45

runs constituted random seed, 100 number of bootstraps and
default values for block size (10) and minimum correlation
R-value (0.6) and there were no unmapped factors. Except
for the car and two-wheeler factor (R=0.6) for which a cer-
tain degree of co-linearity is expected, none of the other fac-50

tors showed cross correlation with each other (R<0.3) and
the g-space plot even of this factor pair is well filled. The
constraint mode was unable to force the PMF model to sep-
arate the wheat residue burning factor in a 5-factor solution
without imposing a split between the car and 2-wheeler fac-55

tor, indicating that these two indeed represent distinct source
profiles.

2.4 Validation of the PMF output

The PMF generates two matrices from the intrinsic variabil-
ity in the dataset. A factor contribution matrix and a factor 60

profile matrix.
Traditionally the PMF output has been validated by cross-

correlating the factor contribution matrix with independent
tracers which were not used to initialize the model, but are
considered useful tracers for the respective source (Brown 65

et al., 2015; Leuchner and Rappenglück, 2010; Gaimoz et al.,
2011; Bon et al., 2011; Sarkar et al., 2016). We perform
this validation step for all six source factors resolved by
the PMF model. These were identified as “biofuel use and
waste disposal”, “wheat-residue burning”, “four-wheelers”, 70

“two-wheelers”, “industrial emissions and solvent use” and
“mixed daytime sources”, respectively. The factor contribu-
tion for 4-wheelers (R=0.7) and 2-wheelers (R=0.6) corre-
lated best with the independent tracer NOy which is consid-
ered to be a vehicular exhaust marker (Ramanathan et al., 75

1985). The factor contribution of the domestic fuel usage
and waste disposal factor correlated best with the indepen-
dent tracer CO (R=0.9), a proxy for inefficient combustion,
while the factor contribution of the industrial emission fac-
tor correlated best with the independent tracer SO2 (R=0.6). 80

The wheat residue burning factor days showed a moderate
cross correlation with MODIS fire counts with an R=0.4 and
a lag of 2 days. O3 (R=0.8) was the best independent tracer
for the mixed daytime factor.

However, our study goes one step further than all previ- 85

ous studies in validating the PMF output. For 5 out of 6 fac-
tors we validated the factor profiles generated by the PMF
model against grab samples collected at the source. Factor
profiles were cross-correlated with the fingerprints of source
samples collected from a number of potential sources includ- 90

ing wheat residue fires (Chandra et al., 2017; Kumar et al.,
2018), a ambient air samples from a busy traffic junction
(Chandra et al., 2017)and an industrial area (this study), tail-
pipes of various vehicles (this study), waste burning (Sharma
et al., 2019), leaf litter burning (this study), domestic biofuel 95

use (Stockwell et al., 2016) and brick kilns (Zhong et al.,
2019) to identify the sources. Figure 3 shows the factor pro-
files obtained from the PMF run (in dark blue), the percent-
age of each species explained by the respective PMF factor
(red squares) and the source profiles of those sources which 100

best matched the factor profile (in various colors as indicated
in the legend). The factor profile of residential fuel usage
and waste disposal correlates most strongly with the mea-
sured VOC source speciation profiles of domestic cooking
(R=0.8), leaf-litter burning (R=0.7) and smoldering garbage 105

fires (R=0.6), the wheat residue burning factor with flam-
ing wheat residue burning (R=0.9), the 4-wheeler factor with
the tailpipe exhaust of petrol-fueled cars (R=0.5), gasoline
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evaporation headspace for diesel (R=0.5) and urban traffic
junction grab samples (R=0.8) and the 2-wheeler factor with
the tailpipe exhaust of petrol-fuelled 4-stroke two-wheelers
(R=0.6). The industrial emissions correlated best with the
source profile of brick kilns (R=0.5) and ambient air sam-5

ples collected in an industrial area (0.6). For mixed daytime
sources no source profile sampling is possible.

2.5 Conditional Probability Function analysis

We perform a conditional probability function (CPF) analy-
sis (Leuchner and Rappenglück, 2010) which aids in iden-10

tifying physical locations of different PMF source factors
without using back trajectories (Xie and Berkowitz, 2006)
The CPF is computed using the factor contribution of the
PMF model in combination with the wind direction at the re-
ceptor site. It quantifies the probability of factor contributions15

surpassing a certain threshold by calculating the probability of
observing mass concentrations above the ( 75th percentile) for
a particular wind direction sector thereby highlighting direc-
tional dependency of source factors and is defined as follows:
of a given factor contribution for every wind direction. This aids in20

identifying physical locations of different PMF source factors with-
out using back trajectories.

CPF =
m∆θ

n∆θ
(2)

Wherem∆θ represents the number of data points in the wind
direction bin ∆θ which exceeded the threshold criterion and25

n∆θ represents the total number of data points from the same
wind direction bin. ∆θ was assigned a value of 30◦.

2.6 Calculation of the ozone formation potential and
SOA formation potential

Ozone production potential (O3PP ) for each of the PMF de-30

rived source factors was calculated based on the method used
by Sinha and co-workers (Sinha et al., 2012) as described in
the supplementary text in greater detail using the following equa-
tion:

O3PP = (
∑
i

kV OCi+OH [V OCi])× [OH]×n (3)35

using n = 2 and [OH] = 106 molecules cm−3. The values
were summed up for all the VOCs for obtaining the ozone
production potential corresponding to each of the PMF de-
rived factors for the daytime hours (07:00-18:00 LT).

Secondary organic aerosol (SOA) potential was calcu-40

lated for the PMF source factors using the literature SOA
yields (Derwent et al., 2010) under low NOX conditions for
benzene, toluene, ethylbenzene, trimethylbenzene, styrene,
methanol, isoprene, formaldehyde, acetaldehyde, acetone,
formic acid and acetic acid using the equation given below45

for 07:00-18:00 LT as described in the supplementary text.

SOApotential = (
∑
i

[V OCi])× [SOAi] (4)

2.7 Methodology for the comparison of PMF source
factors with existing emission inventories

Global Emission Database for Global Atmospheric Research 50

(EDGARv4.3.2) inventory for the year 2012 (Huang et al.,
2017) and two regional emission inventories: Regional Emis-
sion inventory in Asia (REAS v2.1) for the year 2008
(Kurokawa et al., 2013) and the Greenhouse Gas and Air Pol-
lution Interactions and Synergies model (GAINS) (Amann 55

et al., 2011) for the year 2010 (Stohl et al., 2015) were com-
pared with our PMF output. The gridded inventory was fil-
tered for Latitude: 27.4-34.9 ◦N and Longitude: 72-79.8 ◦E
, i.e. the fetch region from which the air mass trajectories
reach the receptor site within one day. This filtering is re- 60

quired because compounds with photochemical lifetimes of
less than a day (e.g. styrene, C-8 and C-9 aromatics) feature
prominently in several source profiles indicating that most
of the transport sector emission were less than a day old
when they reached the receptor site. Other compounds with 65

longer lifetimes such as toluene (2 days), benzene (6 days)
or acetonitrile (months) can reach the site from more distant
sources. The wheat residue burning source shows the highest
cross correlation with the regional fire counts for a lag time
of 2 days indicating that emissions from distant sources can 70

and do impact the site with a time lag. The chosen fetch re-
gion includes the areas where the maximum number of wheat
residue burning fire counts are observed while avoiding a size
that is too large to be consistent with the relatively unaltered
signature of some of the other PMF source profiles. 75

Annual emissions were available for EDGAR (2012) and
GAINS (2010), whereas, REAS provided monthly data (May
2008). However, Figure S6 shows that despite providing
monthly data, the REAS emission inventory has very little
seasonality for any of the sources. 80

To facilitate the comparison of the PMF output of the
month of May which is affected by a strongly seasonal source
(crop residue burning) with emission inventories that provide
only annual data as of now, we calculate hypothetical pie
charts which attribute annual crop residue burning emissions 85

over the region only to the 2.5 months when crop residue
burning actually occurs (middle of October to end of Novem-
ber and May)

3 Results and Discussion

3.1 Identification of PMF factors Six source factors were resolved 90

by the PMF model. These were identified as “biofuel use and waste
disposal”, “wheat-residue burning”, “four-wheelers”, “two-wheel-
ers”, “industrial emissions and solvent use” and “mixed daytime
sources”, respectively. Factor profiles were cross-correlated with
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the fingerprints of source samples collected from a number of poten-
tial sources including wheat residue fires (Chandra et al., 2017;
Kumar et al., 2018), a busy traffic junction (Chandra et al.,
2017), tail-pipes of various vehicles (this study), waste burning
(Sharma et al., 2019), leaf litter burning (this study) and domestic5

biofuel use (Stockwell et al., 2016) to identify the sources. Fig-
ure 3 shows the factor profiles obtained from the PMF run (in dark
blue), the percentage of each species explained by the respective
PMF factor (red squares) and the source profiles of those sources
which best matched the factor profile (in various colors as indicated10

in the legend). The identification of the factors is further supported
by independent tracers such as the criteria air pollutants (NOy , CO,
SO2, O3) and MODIS (Moderate Resolution Imaging Spectrora-
diometer) fire counts as discussed in detail below.

3.1 Split up of VOC Emission Sources in Mohali and15

their contribution to Ozone and SOA Formation
Potential

Figure 4 (a) shows the percent contribution of the different
sectors to ambient VOC mass concentration loadings dur-
ing May 2012 in Mohali, while Figure S7 shows a time20

series of the total VOC mass contributed by the individ-
ual factors to the overall mass. The two traffic factors com-
bined together were found to be the strongest contribu-
tors to the total VOC mass concentration (25.1 %) followed
by biofuel use and waste disposal factor (23.2 %), wheat-25

residue burning (22.4 %), the mixed daytime factor (15.7 %)
and industrial emissions (11.8 %), with the residual not ap-
portioned VOC mass only amounting to 1.7 % of the to-
tal. Early source receptor modelling studies from India at-
tributed a slightly larger share 26-58 % of the total VOC30

mass to traffic related emissions (Srivastava, 2004; Srivastava
et al., 2005), suggesting that the progression to the emission
norms Bharat stage III & IV (which are equivalent to Euro 3
and Euro 4 norms, http://cpcb.nic.in/vehicular-exhaust/) may
have brought down VOC emissions from the traffic sector.35

Figure 4 (b) shows the contribution of the different sec-
tors to the ozone formation potential during May 2012 in
Mohali. Wheat residue burning factor was found to be the
largest contributor to the ozone formation potential (32.4 %)
and has been shown to enhance ambient tropospheric ozone40

mixing ratios by 19 ppb (Kumar et al., 2016). Both traffic
sources combined, the mixed daytime sources, biofuel use
& waste disposal, and industrial emissions and solvent use
contributed 21.9 %, 20.3 %, 18.1 % and 7.3 %, respectively,
to the ozone formation potential. It is clear that in order to45

bring ozone levels into compliance with the NAAQS, the
wheat residue burning source of ozone precursors deserves
the largest attention at this point, but the transport sector and
biofuel use and waste disposal should not be neglected, ei-
ther.50

Figure 4 (c) shows the contribution of the different sec-
tors to the SOA formation potential (∼ 32 µg m−3 ) under
low NOx conditions. Traffic is the single largest contribu-

tor and is responsible for contributing 59.0 % of the SOA
formation potential followed by biofuel use and waste dis- 55

posal (14.9 %), wheat residue burning (13.9 %), industrial
emissions and solvent use (10.1 %) and the mixed daytime
factor (2.2 %). While the calculated SOA formation poten-
tial particularly from transport sector emissions (Ensberg
et al., 2014) and aromatic compounds (Li et al., 2017; Li and 60

Cocker III, 2018) is affected by large uncertainties and may
depend in a non-linear fashion on NOx and VOC concentra-
tions (Xu et al., 2015) our calculated SOA formation po-
tential seem to indicate that SOA formation could contribute
significantly Total SOA formation potential amounting to ∼ 17 65

µg m−3 , a resultant from all VOC source sectors indicates that at
least 16% of to the average PM2.5 mass loading (104 µg m−3)
for May2012 at IISER-Mohali could be secondary organic aerosols
and that transport sector VOC emissions need to be targeted to re-
duce SOA formation. 70

3.2 Factor 1 - Biofuel use & waste disposal

Figure 4 shows that biofuel use & waste disposal contributes 23.2%,
18.1% and 14.9% of the total VOC mass, ozone formation potential
and SOA formation potential, respectively. The factor profile corre-
lates most strongly with the measured VOC source speciation pro- 75

files of domestic cooking (R=0.8), leaf-litter burning (R=0.7) and
smoldering garbage fires (R=0.6).The biofuel use and waste dis-
posal factor combines two sources with similar source pro-
files and high spatio-temporal overlap into one factor. As
discussed previously for other South Asian atmospheric en- 80

vironments (Sarkar et al., 2017), the source contributions of
domestic biofuel use and domestic waste burning are difficult
to segregate due to the high spatio-temporal overlap of the two ac-
tivities. As can be seen in Figure 5, the factor shows a weak
bimodal behaviour with an early morning and late evening 85

peak for this factor, as both domestic biofuel use and waste
disposal fires peak in the early morning and in the evening
hours (Nagpure et al., 2015). CO serves as the best independent
tracer (Figure 5) indicating that this factor represents a low temper-
ature combustion with a low combustion efficiency. Figure 5 shows 90

that The highest conditional probability for this factor is from
the North (>0.4), the direction of the Dadu Majra landfill
in Chandigarh, followed by the wind direction NW where
a large village (Mauli Baidwan) can be found within 1 km
of the receptor and NE, the direction of Panchkula’s garbage 95

dump in Sector 23. This and the fact that the average contri-
bution of this factor remains above 3056 µg m−3 throughout
the night indicates that garbage burning contributes signifi-
cantly to the biofuel use & waste disposal factor.

Figure 3 and Figure 6 show that this factor explains 100

a significant share of the mass of acetonitrile (a biomass
burning tracer), aldehydes, ketones, acids, explains 35%,
35%, 29%, 42%, 37%, 34% and 37% of the total acetonitrile,
acrolein, methanol, acetaldehyde, methyl vinyl ketone, propyne
and propene mass concentration, respectively, in the PMF 105

model. For propene (60%), aldehydes (85%) and ketones



0 Pallavi et al.: Source apportionment of VOCs in the north-west Indo-Gangetic Plain using US EPA PMF 5.0

(68%) the residential sector is the dominant source in the
most recent speciated emission inventory EDGARv4.3.2.
The percentage share for aldehydes and ketones in the in-
ventory is higher than its share in the PMF because the agri-
cultural residue burning source of these compounds is cur-5

rently missing in the inventory. For acids, however, the resi-
dential fuel usage source in the inventory (0.5%) is dwarfed
by solvent use associated emissions (96%), while in the PMF
the two biomass burning sources (residential biofuel use and
waste disposal and wheat residue burning) account for al-10

most 69 % of the total acids in the model. Most of the NMVOC
mass in this factor was contributed by methanol (∼ 10.6 µg m−3 ),
formic acid (1.9 µg m−3 ) and acetic acid (7.4 µg m−3 ). High
emission of oxygenated VOCs have been reported previ-
ously for source profiles of biofuel-stoves (Wang et al., 2009;15

Paulot et al., 2011; Stockwell et al., 2016) open waste burn-
ing (Sharma et al., 2019) and PMF factors’ results of resi-
dential biofuel use and waste disposal factor in Kathmandu,
Nepal (Sarkar et al., 2017).

It should be noted, that this factor is responsible for ap-20

proximately 25 % of the total benzene emissions in our PMF
model, while emission inventories attribute a larger share
(39-74%) of this compound to this source. Since benzene
is an identified Group-1 carcinogen (IARC, 1987) and emis-
sions occur within the household itself (domestic cooking) or25

within close proximity of the house (waste disposal) this fac-
tor deserves special attention in programs targeted at emis-
sion reductions. However, the impact of such emission re-
ductions in the residential and waste management sector on
human benzene exposure are likely to be overestimated by30

modelling studies using present day emission inventories, as
the inventories attribute 39-74% of the benzene emissions
to residential fuel usage and waste disposal, while the PMF
suggests the transport sector is the largest benzene source
(Figure S8a). Direct emission of isocyanic acid, a highly35

toxic emerging contaminant and its photochemical precur-
sors (Alkyl amines and Amides) was observed from this
source and explained 18 % of the isocyanic acid mass con-
centration and 7-15 % of all the alkyl amines and amides in
the PMF model, respectively.40

3.3 Factor 2 - Wheat Residue burning

Wheat residue burning takes place every year in the NW-
IGP in the post-harvest season and generally peaks in the
month of May. It has been shown that wheat residue burn-
ing has a major impact on both ozone mixing ratios (Kumar45

et al., 2016) and VOC mixing ratios and hydroxyl radical
reactivity (Kumar et al., 2018) , and resultsing in a large
suite of unknown (∼ 40 %) and poorly quantified reactive
gaseous emissions. Figure 4 shows that wheat residue burning,
contributes 22.4% of the total VOC mass concentration, 32.4% of50

the total ozone formation potential and 13.9% of the total SOA for-
mation potential. Figure 3 shows that the factor profile correlates
most strongly with flaming wheat residue burning (R=0.9) and Fig-

ure 5 illustrates that the best independent tracer for the average con-
tribution of wheat residue burning to the total NMVOC mass are 55

the daily fire counts with a cross correlation of R=0.4 and a lag
of 2 days. Since wheat residue burning is an area source wWheat
residue burning and emissions are transported to the recep-
tor site from a large fetch region and often with a significant
lag time. Hence, there is no strong conditional probability for 60

enhancements from any specific wind direction (Figure 5).
Figure 3 and Figure 6 shows that the four largest contributors

to the total NMVOC mass in the wheat residue burning factor
explains a significant share of all acids, amines/amides, sev-
eral ketones, and aldehydes, isoprene/furan, monoterpenes, 65

acetonitrile, propene, styrene and phenol in the PMF model.
are acetic acid (11.4 µg m−3 ), methanol (3.3 µg m−3 ) acetalde-
hyde (2.1 µg m−3 ) and acetone (1.1 µg m−3 ). Figure 3 and Fig-
ure 6 demonstrate that more than 55% of the hydroxyacetone, 37%
of the acetic acid, 32% of the total methyl ethyl ketone and 28- 70

39% of the amides/amines as well as 28% of the isocyanic acid
mass in the model can be explained by this factor. This makes
wheat residue burning the largest contributor to the human
exposure to isocyanic acid in the month of May both through
direct emissions of isocyanic acid and by virtue of being the 75

largest source for its photochemical precursors.
In the EDGARv4.3.2 the agricultural residue burning

source of ketones,aldehydes and acids is missing. On
the other hand agricultural waste burning appears to be
the dominant anthropogenic isoprene source (94%) in the 80

EDGARv4.3.2 inventory while in our PMF model residen-
tial biofuel usage and the transport sector are equally impor-
tant contributors to the isoprene/furan mass. The monoter-
pene emissions from agricultural residue burning (6%) in the
EDGARv4.3.2 inventory are dwarfed by emissions from sol- 85

vent use (90%), while in our PMF solution wheat residue
burning and the transport sector appear to be the dominant
anthropogenic sources of signals at m/z 81 and 137.

3.4 Factor 3 - Industrial emissions and solvent use

Figure 4 shows that The source fingerprint of the industrial 90

emissions and solvent use factor jointly contribute 11.8% of
the total VOC mass concentration, 7.3% of the total ozone for-
mation potential and 10.1% of the total SOA formation potential.
is dominated by Mmethanol (7.3 µg m−3), acetic acid (3.9
µg m−3) and acetone (2.9 µg m−3) are the largest contributors 95

to this factor profile. This points towards solvent use (Gaimoz
et al., 2011) and/or polymer manufacturing (Sarkar et al.,
2017) contributing to the industrial emission and solvent use
factor. In addition, Figure 3 and Figure 6 show that this fac-
tor explains a significant fraction of the benzene (20 %) and 100

acetonitrile (17 %) mass in the PMF model. While both are
known for their use as solvents (Brown et al., 2007), they
can also be emitted from the combustion. Figure 5 shows that
the factor contribution The EDGARv4.3.2 emission inventory
has a strong industrial and solvent source of toluene, xylenes, 105
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acids, formaldehyde and monoterpenes which is not reflected
with equal strength in our PMF solution.

-The correlation of the industrial emissions and solvent
use factor correlated with the SO2 time series (R= 0.6), in-
dicates that the emissions of coal or biofuel burning in in-5

dustrial units and/or coal fired power plants may also be con-
tributing to this factor profile. Figure 5 shows that the highest
conditional probability of this factor is to the South East di-
rection (120 ◦ -150 ◦ wind sector). The receptor site is down-
wind of a 600 MW coal fired power plant located in Jagadhri10

(80 km SE) as well as downwind of several industrial ar-
eas and brick kiln clusters located around Dera Bassi (15
km), Lalru (20 km) and Jagadhari (80 km) when the wind
blows from this direction. In the Kathmandu valley, biofuel
co-fired brick kilns explained a significant fraction of the15

benzene and acetonitrile mass (Sarkar et al., 2017) and the
factor profile shows a moderate correlation with the source
signature of brick kiln emissions (R=0.5), hence a combus-
tion contribution from brick kilns to the factor profile cannot
be ruled out. The diel profile broadly reflects boundary layer20

dynamics with factor contributions increasing continuously
throughout the night indicating a buildup of constant emis-
sions in the nocturnal boundary layer. Factor contributions
peak in the early morning (32-4917-26 µg m−3 between 5-9
am local time) and the factor contribution of this factor de-25

creases from 9 am onwards after the breakup of the nocturnal
boundary layer. This factor has higher average than the me-
dian factor contributions at night due to strong plumes (max
∼ 200 ∼ 375 µg m−3) reaching the receptor when it is down-
wind of the industrial sector but not during other nights when30

the wind direction is from rural Punjab (NW) or the urban
sector (NE).

3.5 Factor 4 and 5 - cars and two-wheelers

Figure 4 shows that cars and two-wheelers contribute 16.2%, 8.9%
of the total VOC mass concentration, 16.5%, 5.4% of the total ozone35

formation potential and 36.9%, 22.1% of the total SOA formation
potential, respectively, at the receptor site.

As can be seen in Figure 3, factor 4 was identified as a fac-
tor dominated by car exhaust because it correlated best with the
tailpipe exhaust of petrol-fueled cars (R=0.5), urban traffic junc-40

tion grab samples (R=0.8) and the independent tracer NOy (R=0.7)
which is considered to be a vehicular exhaust marker (Ramanathan
et al. 1985). The factor profile of the 4-wheeler factor explains
a significant share of all aromatic compounds in the PMF
model. is characterized by elevated concentration levels of benzene45

(1.4 µg m−3 ), toluene (2.3 µg m−3 ), sum of C-8 aromatics (3.5
µg m−3 ) and sum of C-9 aromatics (2.7 µg m−3 ) and explained
35%, 30%, 53% and 58% of the total benzene, toluene, C-8 aromat-
ics and C-9 aromatics mass in the PMF model, respectively.Features
of car’s factor profile also resemble gasoline evaporation headspace50

for diesel (R=0.5) collected at a petrol pump. This indicates that the
factor profile consists The factor represents a mixture of multi-
ple components contributed by fuel exhaust and fuel evap-

orative running losses from vehicles and resembles ambi-
ent air samples from a busy traffic intersection. Similar pro- 55

files have been observed during field measurements in Beirut,
Lebanon (Salameh et al., 2014, 2016) and Hong Kong (Ho
et al., 2004). The toluene to benzene ratio of this profile (1.4) is
typical for traffic emissions (1.5-2.3) (Som et al., 2007; Hoque et
al., 2008; Chandra et al., 2018) and the highest conditional prob- 60

ability (Figure7) is observed for the Chandigarh wind sector
(0-90 ◦). As reported previously from Mexico City during the
Milagro campaign (Bon et al., 2011), a significant mass of
methanol (4.3 µg m−3) and other oxygenated VOCs were
present in the traffic emissions factor. The fact that this fac- 65

tor explains 28 % of the total m/z 57 is consistent with the
gasoline additive MTBE being detected at this m/z ratio as
an interference to acrolein/methylketone (Karl et al., 2003;
Warneke et al., 2003, 2005; Rogers et al., 2006). Signals at
m/z 31, 47, 59, 61, 73, 87 in aged traffic plumes can be at- 70

tributed to formaldehyde, formic acid, glyoxal, acetic acid,
methylglyoxal and 2-butanedione which are products of the
gas phase oxidation of toluene, C-8 and C-9 aromatic com-
pounds (Bethel et al., 2000; Ervens et al., 2004). In addition,
car exhaust also explained 34 % of the propyne mass in the 75

model.
Factor 5, was identified as 2-wheeler exhaust, as the fac-

tor profile showed the highest correlation with the tailpipe exhaust
of petrol-fuelled 4-stroke two-wheelers (R=0.6) and the indepen-
dent tracer NOy (R=0.6). Toluene (3.9 µg m−3 ), acetic acid (4.2 80

µg m−3 ) and methanol (2.4 µg m−3 ) feature as the most abun-
dant compounds in this factor profile, which explains 50 % of
the total toluene mass as well as 17 %, 12 % and 9 %, of
the total C-8 aromatics, benzene and C-9 aromatics in the
PMF model, respectively. The factor shows a While part of 85

the signal at m/z 61 (acetic acid) which may partially be due
to fragmentation of octane or ethyl acetate (Warneke et al.,
2003; Rogers et al., 2006) which could be present in fuel.,
tThe mass has also been attributed to acetic acid in a previ-
ous study of diesel tailpipe emissions (Jobson et al., 2005). 90

Nevertheless, it still seems that the 2-wheeler factor profile
has a higher contribution from oxidised compounds com-
pared to the car factor profile indicating that the plumes are
typically more aged. Figure 7 shows that this factor displays
higher conditional probability than the car factor towards the 95

towns Kharar (8 km N), Dera Bassi (15 km SE) and Lalru
(20 km SE), and a lower conditional probability than the
car factor towards Chandigarh (NE) indicating 2-wheelers
are more abundant in small towns, while cars dominate the
traffic emissions in urban Chandigarh. 100

Figure 7 illustrates that both the traffic factors show bi-
modal peaks in morning (10.319 µg m−3 at 5-9 am local
time) and evening (2038 µg m−3 at 7-9 pm local time) dur-
ing peak traffic hours. Mass loadings during evening rush
hour are higher than during morning rush hour, because peak 105

morning traffic occurs after the breakup of the nocturnal
boundary layer, while in the evening emissions accumulate in
the shallow nocturnal boundary layer. When the wind blows
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from the urban sector (0-90 ◦) during peak traffic hour (7-9
pm) peak factor contributions of >140260 µg m−3 for cars
and >0150 µg m−3 for 2-wheelers are observed.

As can be seen from Figure 6, the two traffic factors jointly5

explain 47 %, 80 %, 70 % and 67 % of the total benzene,
toluene, C-8 and C-9 aromatic compounds in the model con-
sistent with findings from the Kathmandu valley that traf-
fic, not residential biofuel use and waste disposal is the more
important source of aromatic compounds in South Asia. It10

is also clear that despite stringent regulations, the transport
sector in the region is still the largest contributor to human
benzene exposure. It can be seen from Figure S8a-d that
at present, various emission inventories consider the trans-
port sector to be a minor source of benzene (10-16%). The15

EDGAR v4.3.2 emission inventory also considers the trans-
port sector to be only a minor source of, toluene (11-15%)
and xylenes (17-22%). Residential fuel usage, industries and
solvent use are considered to be the most significant year
around source of benzene, toluene and xylenes in Edgar20

v4.3.2. Agricultural residue burning becomes the most sig-
nificant source of all aromatic compounds in the EDGAR
v4.3.2 emission inventory when crop residue burning emis-
sions are treated as occurring during crop residue burning
season only, which may imply that the annual emissions of25

aromatic compounds from the stubble burning may be over-
estimated. REAS v.2.1 appears to be overestimating the res-
idential fuel burning contribution to benzene and toluene
emissions and the solvent usage contribution to toluene emis-
sions. However, it captures the contribution of the transport30

sector to xylenes and trimethylbenzenes emissions well. and
C-9 aromatic compounds.

3.6 Factor 6 - mixed daytime sources

Figures 4 and 6 shows that mixed daytime sources com-
prising of biogenic emissions and photochemically formed35

compounds contribute 15.7% of the total VOC mass, 20.3% of
the total ozone formation potential and 2.2% of the total SOA for-
mation potential. Figure 7 illustrates that the mixed daytime fac-
tor correlates most strongly with the independent tracer O3 (R=
0.8). It can be seen from Figure 6 that biogenic daytime emis-40

sions explained 22 % of the monoterpenes and 25 % of the
measured isoprene, respectively. Isoprene has a short chem-
ical lifetime of 1.5 hours during the day and 16 % and
11 % of its first generation oxidation products MVK and
MEK (Kesselmeier and Staudt, 1999) were also attributed45

to this factor . In addition, the mixed daytime factor ex-
plains 41 %, 44 %, 24 % and 22 % of the total formaldehyde,
formic acid/ethanol, methanol and acetone mass, respec-
tively. Photochemically formed isocyanic acid, formamide,
acetamide and propanamide explain a slightly lower frac-50

tion (27-37 %) of the total mass concentration of these com-
pounds compared to what has been reported from wintertime
Kathmandu valley (36-41 %). Methanol (8.9 µg m−3 ), formic
acid (4.4 µg m−3 ), acetic acid (2.5 µg m−3 ) were the most im-

portant contributors to the factor fingerprint. Figure 7 illustrates 55

that the mixed daytime factor peaks between 9 am and 4 pm
and shows a slightly enhanced conditional probability for the
180 ◦ -330 ◦ rural wind sector (0.2-0.3) due to agroforestry
plantations of poplar in the rural landscape.

3.7 Comparison of PMF source factors with existing 60

Emission Inventories

Global Emission Database for Global Atmospheric Research
(EDGARv4.2) inventory for the year 2008 (EDGARv4.2, 2011)
and two regional emission inventories: Regional Emission inventory
in Asia (REAS v2.1) for the year 2008 (Kurokawa et al., 2013) 65

and the Greenhouse Gas and Air Pollution Interactions and Syn-
ergies model (GAINS) (Amann et al., 2011) for the year 2010
(Stohl et al., 2015) were compared with our PMF output. The
gridded inventory was filtered for Latitude: 27.4-34.9 ◦N and Lon-
gitude: 72-79.8 ◦E, i.e. the fetch region from which the air mass tra- 70

jectories reach the receptor site within one day. Annual emissions
were available for EDGAR (2008) and GAINS (2010), whereas,
REAS provided monthly data (May 2008). However, Figure S5
shows that despite providing monthly data, the REAS emission in-
ventory has very little seasonality for any of the sources. 75

Figure 8 shows pie charts depicting the contribution of dif-
ferent sectors to the total VOC mass burden for the emission
inventories and our PMF output. Biofuel use and waste dis-
posal were responsible for 28.1 % of the mass in our PMF but
67.939 %, 44.2 % and 41.7 % of the mass in EDGARv4.3.2, 80

GAINS and REASv2.1 respectively. The contribution of crop
residue burning (27.1 %) to the VOC mass in the month
of May would be highly underestimated by both GAINS
(7 %) and EDGARv4.3.2 (4.76 %) if the annual emissions
are attributed equally to all months of the year. However, if 85

both emission inventories would attribute their annual crop
residue burning emissions over the region only to the 2.5
months when crop residue burning actually occurs (middle
of October to end of November and May), these emission
inventories could be reconciled with the PMF solution, as 90

emissions in May would amount to 26.5 % and 19.223 %
of the monthly VOC emissions for the month of May for
GAINS and EDGARv4.3.2, respectively as shown in Figure
8. At the same time the percentage share of domestic fuel
use and waste disposal would drop to 5432 % and 35 % in 95

EDGARv4.3.2 and GAINS, respectively and the contribu-
tion of industrial emissions and solvent use would drops to
18 % in GAINS and 1130 % in EDGAR, respectively. Our
PMF (14.3 %) lies in between the estimate of these two emis-
sion inventories solution indicates that industrial emissions 100

and solvent usage (14.3%) are currently overestimated in all
emission inventories but are closest to GAINS (540 Gg y−1 ,
18%) for industrial emissions and solvent use . For domestic
biofuel use and waste disposal EDGARv4.3.2 (968 Gg y−1 ,
32%) appears to agree best with our PMF solution. but closer 105

to GAINS Ffor wheat residue burning GAINS agrees well
with our PMF output, while the agricultural waste burn-
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ing emissions of some of the detected compound groups
(ketones, aldehydes and acids) appear to be missing in the
EDGARv4.3.2 inventory and domestic biofuel use and waste dis-
posal. REAS overestimate the contribution of industrial activity and5

solvent use in the month of May (22%). Our PMF solution for
road transport sector emissions (30.5 %) lies in between the
estimates of GAINS (558 Gg y−1, 24 %) and REAS (1230
Gg y−1, 36.2 %), possibly, because not all pre-2000 super-
emitters for which the 20-year vehicle lifetime has been ex-10

ceeded have been retired as planned.
Overall it appears that GAINS, the emission inventory with

the lowest absolute emissions from residential and commercial bio-
fuel use shows the best agreement with our PMF solutionnone of
the emission inventories is ideal at the present. Our PMF so-15

lution suggests that transport sector emissions may be are
underestimated by approximately a factor of 1.5 in GAINS and
EDGARv4.3.2, while the combined effect of residential bio-
fuel use and waste disposal emissions as well as the VOC
burden associated with solvent use may be overestimated by20

a factor of 1.3 in the same all emission inventoryies. Similar
results have been reported previously. Sarkar and co-workers
(Sarkar et al., 2017) reported an underestimation of transport
sector emissions for the REAS and EDGAR emission inven-
tory for the Kathmandu valley in Nepal and an overestima-25

tion of the residential biofuel use and waste disposal source
in all emission inventories, while Gaimoz and co-workers
(Gaimoz et al., 2011) reported an overestimation of the VOC
emissions from solvent use in Paris.

REAS and EDGAR overestimated residential bio fuel usage30

emissions even more than GAINS. EDGAR underestimated trans-
port sector emissions and industrial emissions and solvent usage
while REAS overestimates the importance of the same two sources.
REAS also fails to include agricultural residue burning as a source.

Our results highlight that for accurate air quality forecasting and35

modelling it is essential that emissions are attributed only to the
months in which the activity actually occurs. This is important both
for emissions from crop residue burning (which occur in May and
from Mid-October to the end of November) and emissions from
wildfires (which are restricted to the dry season and peak in April40

and May). Annually averaged emissions are unlikely to yield accu-
rate air quality forecast in regions affected by such seasonal events.
At present, more specialized fire emission inventories such as FINN
(Wiedinmyer et al., 2011) must be used to account for the full
seasonality and day to day variations of open burning emissions.45

We also demonstrate, that the source profiles obtained as PMF out-
put can be validated and matched against samples collected at the
potential sources to validate the factor identification.

We find that the GAINSv5.0 emission inventory for the year
2010 agreed best with the in-situ data derived PMF solution for May50

2012.

4 Conclusions

Our results highlight that for accurate air quality forecast-
ing and modelling it is essential that emissions are attributed
only to the months in which the activity actually occurs. This 55

is important for emissions from crop residue burning (which
occur in May and from Mid-October to the end of Novem-
ber). Annually averaged emissions are unlikely to yield accu-
rate air quality forecast in regions affected by such seasonal
events. At present, more specialized fire emission invento- 60

ries such as FINN (Wiedinmyer et al., 2011) must be used
to account for the full seasonality and day to day variations
of open burning emissions. We also demonstrate, that the
source profiles obtained as PMF output can be validated and
matched against samples collected at the potential sources 65

to validate the factor identification. Six VOC emission sources
were extracted via PMF simulations from the dataset comprising of
32 VOC species measured online at primary temporal resolution of
1 minute at a sub-urban site in Mohali in the summer of 2012. US
EPA PMF 5.0 Model was used for source apportionment of VOCs 70

and PMF-resolved factors included traffic exhaust, biofuel use and
waste disposal, wheat-residue burning and mixed daytime sources
(comprising of biogenic emissions and photochemical formation),
industrial emissions and solvent use, which along with the residu-
als,accounted for 25.1%, 23.2%, 22.4%, 15.7%, 11.8% and 1.7%, 75

respectively, of the total VOC mass concentration.
For the human class I carcinogen benzene, the traffic factor

alone contributed to 47 % of the total benzene mass at this re-
ceptor site followed by residential biofuel use and waste dis-
posal (25 %) and industrial emissions and solvent use (20 %). 80

This stands in stark contrast to various emission inventories
which estimate the transport sector contribution to the ben-
zene exposure as ( 10%) and consider residential biofuel use,
agricultural residue burning and industries to be more impor-
tant benzene sources. Since the annual NAAQS for benzene 85

is exceeded at this receptor site (Chandra and Sinha, 2016),
all three sectors must be targeted for emission reductions.

For the emerging contaminant isocyanic acid, photochem-
ical formation from precursors (37 %), wheat residue burn-
ing (25 %) and biofuel usage and waste disposal (18 %) were 90

the largest contributors to human exposure. The monthly
average isocyanic mixing ratio of 1.4 ppb exceeds con-
centrations that can, after dissociation at blood pH, result
in blood cyanate ion concentrations (Roberts et al., 2011)
high enough to produce significant health effects in humans 95

(Wang et al., 2007) such as atherosclerosis, cataracts and
rheumatoid arthritis due to protein damage. Peak mixing ra-
tios of this compound exceed 3 ppb in some night time
wheat residue burning plumes. Wheat residue burning was
also the single largest source of the photochemical precur- 100

sors of isocyanic acid, namely, formamide, acetamide and
propanamide, indicating that this source must be most ur-
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gently targeted to reduce human concentration exposure to
isocyanic acid.

Our results highlight that for accurate air quality forecasting and 105

modelling it is essential that emissions that are both large in terms
of their absolute contribution and display a significant seasonality
in their occurrence are attributed only to the months in which the
activity actually occurs. This is important both for emissions from
crop residue burning (which occur in May and from Mid-October
to the end of November) and emissions from wildfires (which are
restricted to the dry season and peak in April and May). Annually5

averaged emissions are unlikely to yield accurate air quality fore-
cast in regions affected by such seasonal events. We find that the
GAINSv5.0 emission inventory for the year 2010 was best agreed
with the in-situ data derived PMF solution for May 2012, as long
as crop residue burning emissions were attributed to 2.5 months of10

the year only, and emissions from domestic biofuel use and sol-
vent use were scaled down by a factor of 1.3 and transport sec-
tor emissions were scaled up by a factor of 1.5. The quantitative
source apportionment results reported in this study for benzene,
isocyanic acid and ozone and SOA precursors will provide much15

needed information for targeted mitigation efforts to improve the
regional air quality. Overall it appears that none of the emis-
sion inventories is ideal at the present. Our PMF solution sug-
gests that transport sector emissions may be underestimated
by GAINSv5.0 and EDGARv4.3.2, while the combined ef-20

fect of residential biofuel use and waste disposal emissions
as well as the VOC burden associated with solvent use may
be overestimated by all emission inventories. Agricultural
waste burning emissions of some of the detected compound
groups (ketones, aldehydes and acids) are currently miss-25

ing in the EDGARv4.3.2 inventory while aromatic emissions
from the same source appear to be overestimated. Thus, large
improvements are required in existing emission inventories
for correct source attribution and inclusion of missing com-
pounds over this densely populated region of the world.30
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Figure 1. (a) Mohali located on Indian Subcontinent with the over-
laid 72 h air mass back trajectories for May 2012 at 09:00 LT and
23:00 LT (UTC+5:30) (b) Precise location of IISER-Mohali At-
mospheric chemistry facility (30.667 ◦N, 76.729 ◦E, 310 m above
mean sea level) with nearby cities on Google Earth imagery. The
campus of IISER Mohali is outlined in white.
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Figure 2. Percentage contribution assignment for various PMF fac-
tor number solutions (3-7) to the corresponding VOC emission
sources.
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Figure 3. Factor profile composition for (6) PMF resolved factors at IISER-Mohali. It displays the normalized source fingerprints of the PMF
factors (dark blue) and samples collected at source (in various colours) in bar-chart form. The value of the normalized species contribution is
depicted on the left hand axis. The percentage of each species explained by each of the PMF factors is displayed in the form of a red square
to be read from the right hand axis.
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Figure 4. (a) Source contribution to the ambient VOC loading at the receptor site. (b) Ozone formation potential for PMF derived sources
(c) SOA potential for PMF factors.
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Figure 5. Factor contribution time series, factor diel variability and CPF plot for PMF Factor 1 (Biofuel use and waste disposal), PMF Factor2
(Wheat-residue burning) and PMF Factor3 (Industrial emissions and solvent use) for May2012. The time series of PMF factor’s hourly mass
in µgm−3 is plotted against independent tracer species CO (in ppbv) for the biofuel use and waste disposal factor, daily fire counts for the
wheat residue burning factor and SO2 (in ppbv) for the industrial emission and solvent use factor. The Diel box and whisker plot shows
the statistical parameters of factor’s hourly mass contribution in µgm−3 for every hour of the day plotted against the start time of the hour.
The width of the box gives 25th and 75th percentiles, 50th percentile partitions the box; whiskers represent 10th and 90th percentiles of the
dataset and average values are given by solid circles.
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Figure 6. Contribution of individual PMF derived source factors to
the total mass of different VOCs.
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Figure 7. Factor contribution time series, factor diel variability and CPF plot for PMF Factor 4 and Factor 5 (Cars and two-wheelers) and
PMF Factor 6 (Mixed daytime) for May2012. The time series of PMF factor’s hourly mass in µgm−3 is plotted against independent tracer
species NOy (in ppbv) for the car and two-wheeler factor and and O3 (in ppbv) for the mixed daytime factor. The Diel box and whisker
plot shows the statistical parameters of factor’s hourly mass contribution in µgm−3 for every hour of the day plotted against the start time of
the hour. The width of the box gives 25th and 75th percentiles, 50th percentile partitions the box; whiskers represent 10th and 90th percentiles
of the dataset and average values are given by solid circles.
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Figure 8. Comparison of PMF derived VOC source contribution to the EDGAR, REAS and GAINS Emission Inventory Database.
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Supplementary text: 

Description of the PMF model: PMF is a multivariate factor analysis tool which decomposes 

the data matrix xij into two matrices, the factor contribution matrix gik and the factor profiles 

matrix fkj both of which are established from the existing intrinsic variability in the dataset 

leaving behind a matrix of residuals eij.  

𝑥𝑖𝑗 =  ∑ 𝑔𝑖𝑘
𝑝
𝑘=1 𝑓𝑘𝑗 +  𝑒𝑖𝑗                                             (1) 

The PMF aims at finding non-negative values of gik and fkj for a given p that best reproduce xij 

while minimizing eij. The uncertainty weighted residuals are minimized using the parameter Q  

𝑄 =  ∑ ∑  (  
𝑥𝑖𝑗− ∑ 𝑔𝑖𝑘𝑓𝑘𝑗

𝑝
𝑘=1

𝑢𝑖𝑗
  )

2
𝑚
𝑗=1

𝑛
𝑖=1                                     (2) 

wherein uij represents the matrix of measurement uncertainties for each data point and each 

species. Here, n and m represents the number of samples and number of species respectively. 

This method is described in  more detail in Paatero & Tapper (1994)1; Paatero (1997)2. It is 

extensively employed in environmental air quality studies for source apportionment and air 

quality management. 

Identification of the optimum number of factors: It is clear from Figure 2 in the main text and 

figure S4 that traffic emissions and photochemistry appear as separate sources even in a 3 

Factor solution thanks to strong plumes from the urban sector and a distinct diurnal profile, 

respectively. Other combustion sources continue to be mixed till the model is run with a 6 

Factor solution. A very distinct source, the wheat residue burning, which can be verified using 

MODIS fire counts appears first in the 6 Factor solution, indicating that at least 6 Factors are 

required to properly resolve the sources present. When the number of Factors is increased 

further to 7, the percentage contribution of all previously identified factors remains almost 

constant and an ‘Unresolved Factor’ accounting for only 2.5% of the total VOC mass appears. 

Since this factor could not be matched against any known VOC source, had no distinct diurnal 



patterns and its contribution to the overall VOC burden was small we decided to retain the 6 

Factor solution. The Q/Qexp plot Figure S4 also shows little improvement beyond 6 factors. 

Figure S5a shows how the concentration of different species in different factor profiles changes 

with increasing number of factors, while Figure S5b shows how the percentage of each species 

explained by each of the different factors changes with increasing number of factors. Figure 

S5c shows the evolution of the factor contribution time series with increasing number of 

factors. 

Application of the constraint mode: Since wheat residue burning emits large quantities of 

oxygenated VOCs including methanol and acetic acid, clear separation of combustion derived 

and photochemically formed oxygenated compounds during daylight hours was an issue with 

some biomass burning emissions were attributed to the mixed daytime factor in the original 

solution. To improve the separation between photochemical formation and primary emissions, 

marked by compounds such as benzene, toluene, xylenes and trimethylbenzene, acetonitrile 

and styrene (which cannot be formed photochemically), these compounds were pulled down in 

the mixed daytime factor. In addition, the source contribution of the mixed daytime factor was 

pulled down between 2am and 4am at night. For a better separation of different combustion 

sources, strong plumes which represented the emission signature of the respective source were 

pulled up for the wheat residue burning, biofuel use and waste disposal, industrial and four 

wheeler source as detailed in supplementary table S3.   

Normalization of factor and source profiles: 

To facilitate the comparison, factor profiles comprising of the concentration of different species 

in µg/m³ and emission factors reported in g/kg of fuel were normalized using the following 

equation: 

𝑥′ =  
𝑥

max(𝑥)
 



Table S1. For each m/z used in PMF model, the table lists the major compound identifications and the 

references supporting such assignments from previous works along with detection limits and 

sensitivities. 

Proto-

nated 

mass 

(m/z) 

Compound assignment 

(most likely) 

Chemical 

formula 
References 

Sensitivity 

(ncps/ppb) 

Detection 

limit 

(µg/m³) 

Average mixing 

ratio (stddev) 

(µg/m³) 

31 Formaldehyde HCHO 7-9  16.3 0.472 3.414 (0.906) 

33 Methanol CH3OH 10, 11  10.1 0.514 37.163 (16.049) 

41 Propyne C3H4 9, 12 16.5 0.630 3.270 (2.307) 

42 Acetonitrile CH3CN 11, 13 20.7 0.065 1.745 (1.015) 

43 
Propene and fragment of 

acetic acid 1 
C3H6 9, 12, 14, 15 16.6 0.661 14.082 (7.236) 

44 Isocyanic acid HNCO 9, 16 16.6 0.677 1.839 (0.405) 

45 Acetaldehyde CH3CHO 11, 17 20.2 0.125 9.123 (4.730) 

46 Formamide/Dimethylamine 
CH3NO/ 

(CH3)2NH 
9, 17, 18  16.6 0.708 8.626 (2.612) 

47 Formic acid and ethanol HCOOH 9, 10, 19  16.6 0.724 10.262 (2.243) 

57 Acrolein/Methylketene C3H4O 9, 12 16.5 0.881 5.990 (4.419) 

59 Acetone C3H6O 20 22.8 0.109 10.447 (5.603) 

60 Acetamide/Trimethylamine 
C2H5NO/ 

C3H9N 
12, 14 16.5 0.929 1.962 (0.664) 

61 Acetic acid CH3COOH 11 16.4 0.944 18.453 (9.551) 

63 Dimethyl sulfide C2H6S 11 16.4 0.976 0.920 (0.296) 

68 Pyrrole C4H5N 19, 21  16.2 1.055 0.528 (0.231) 

69 Isoprene and Furan C5H8 11 9.0 0.278 4.004 (1.710) 

71 Methyl vinyl ketone C4H6O 11, 12 16.0 1.102 2.577 (1.395) 

73 Methyl ethyl ketone C4H8O 11, 12 15.9 1.133 3.159 (1.578) 

74 Propanamide/Butylamine 
C3H7NO/ 

C4H11N 
22 15.9 1.149 1.091 (0.331) 

75 Hydroxyacetone C3H6O2 9, 10, 21  15.8 1.165 4.523 (2.791) 

79 Benzene C6H6 11, 19 13.5 0.196 4.105 (3.320) 

83 Assorted Hydrocarbons C6H10 21 15.3 1.291 2.531 (1.423) 

85 Assorted Hydrocarbons C6H12 21 15.1 1.322 2.686 (1.571) 

87 

2,3-Butanedione, 

2-methyl-Butanal or 

pentanone 

C4H6O2 

C5H10O 
21, 22 15.0 1.354 3.407 (2.025) 

93 Toluene C7H8 11, 19 14.3 0.261 7.805 (6.977) 

95 Phenol C6H5OH 9, 19 14.2 1.480 1.766 (1.167) 

101 

2,3-Pentanedione, acetyl 

acetone , 2-butenoic acid 

methyl ester or hexanal, 

C5H8O2 

C6H12O 
22 13.5 1.574 2.935 (1.273) 

105 Styrene C8H8 11, 12, 21 13.1 1.637 1.477 (1.112) 

107 Ethyl benzene + p-xylene C8H10 11, 19 13.8 0.501 6.724 (6.381) 

121 1,2,4-Trimethylbenzene C9H12 11, 19 11.2 0.453 4.677 (4.102) 

137 Sum of Monoterpenes C10H16 11, 13 7.9 2.141 3.779 (1.577) 

 

 

 

                                                           
1 Correction applied to the input concentration data for propene being the potential fragment of acetic acid with 

~68% contribution. 



 

Table S2. Input data statistics for PMF Model runs. 

VOC Species Category S/N Min 25th Median 75th Max 

Isoprene/Furan Weak 3.89 1.25 2.78 3.48 4.82 11.48 

Benzene Strong 3.87 0.57 1.83 3.21 5.15 24.64 

Toluene Strong 3.93 0.82 3.48 5.54 9.07 49.95 

Ethyl benzene + p-xylene Strong 3.72 0.80 2.99 4.72 8.07 62.51 

1,2,4-Trimethylbenzene Strong 3.61 0.54 2.31 3.38 5.53 31.45 

Methyl vinyl ketone/hydrocarbon fragments Weak 2.10 0.56 1.53 2.13 3.44 8.01 

Methyl ethyl ketone/butanal Weak 2.43 0.88 1.88 2.77 4.02 9.54 

Acetic acid Strong 3.97 5.54 18.64 28.18 38.53 107.72 

Dimethyl sulfide Weak 0.74 0.32 0.67 0.95 1.10 2.41 

Pyrrole Weak 0.14 0.09 0.37 0.54 0.66 2.50 

Propanamide/Butylamine Weak 0.75 0.37 0.86 1.07 1.24 2.32 

Hydroxyacetone Strong 2.81 0.98 2.50 3.91 5.75 16.24 

Assorted Hydrocarbons Weak 1.79 0.66 1.38 2.20 3.19 8.82 

Assorted Hydrocarbons Weak 1.85 0.55 1.50 2.32 3.37 9.36 

C4H6O2 
Weak 2.18 0.77 1.90 2.95 4.34 11.88 

Phenol Strong 1.02 0.54 1.21 1.54 2.06 16.50 

C5H8O2 
Weak 1.83 1.13 2.08 2.64 3.39 11.64 

Styrene Strong 0.62 0.20 0.92 1.21 1.65 9.73 

Methanol Strong 4.00 14.98 24.28 33.86 45.96 129.91 

Acetonitrile Strong 3.95 0.51 0.97 1.50 2.27 7.23 

Acetaldehyde Strong 3.99 2.30 5.13 7.83 12.16 24.69 

Acetone Strong 4.00 3.58 6.74 9.14 12.54 54.48 

Monoterpenes Weak 1.73 0.72 2.63 3.88 4.62 10.35 

Formaldehyde Strong 3.68 1.68 2.69 3.21 4.07 6.28 

Propyne Strong 3.11 0.70 1.63 2.63 3.98 16.63 

Propene Weak 3.56 0.94 2.92 4.71 6.79 17.32 

Isocyanic acid Weak 2.61 0.98 1.57 1.79 2.04 3.21 

Formamide/Dimethylamine Weak 3.87 3.01 6.91 8.42 9.90 21.52 

Formic acid Weak 3.91 5.22 8.74 9.99 11.58 18.55 

Acrolein/Methylketene Weak 3.29 1.07 2.63 4.90 7.63 32.31 

Acetamide/Trimethylamine Weak 2.10 0.66 1.52 1.82 2.25 4.78 

Total VOC Weak 4.00 64.00 124.77 171.23 230.51 515.52 

 

 

 

 

 

 

 

 



Table S3. List of constraints applied to the wheat residue burning, biofuel use and waste disposal, 

industrial and four wheeler source. 

PMF SOURCE FACTOR DATE 

(May2012) 

TIME CONSTRAINT 

APPLIED 

    

Wheat residue burning 12 19:00-20:59 Pull up 

 13 22:00-23:59 Pull up 

 18 3:00-3:59, 6:00-7:59 Pull up 

 19 2:00-2:59 Pull up 

    

Cars 1 20:00-21:59 Pull up 

 4 19:00-21:59 Pull up 

    

Industrial emissions and 

solvent use 

6 4:00-5:59 Pull up 

 7 8:00-8:59 Pull up 

    

Biofuel use and waste 

disposal 

22 22:00-22:59 Pull up 

 23 12:00-12:59, 6:00-6:59, 

22:00-23:59 

Pull up 

 24 2:00-4:59, 21:00-22:59 Pull up 

 25 7:00-7:59 Pull up 

    

 

 

 

 

Figure S4 Q/Qexp plot with increasing number of factor. The absolute Q is relatively low indicating that 

it may be more appropriate to only consider the 10% precision error of the PTR-MS instead of including 

the accuracy error while specifying the uncertainty in the PMF input. However, since equal uncertainty 

was applied to all strong m/z this only affects the absolute Q value and not the model output. 
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Figure S5a. Evolution of PMF factor profiles from 3 to 7 factor number solutions. 



 

Figure S5b. Evolution of percentage contribution of different VOC species from 3 to 7 PMF factor 

solutions. 



 

Figure S5c. Evolution of PMF factor contributions from 3 to 7 factor solutions. 



 

 

 

 

Figure S6. REAS database comparison to VOC source sectors on monthly and yearly resolution 

scales. 

 

 

Figure S7. Time series of the total mass contributed by the different sources to the overall VOC mass 

 

 



 

Figure S8a: Comparison of the PMF output with benzene emission inventories for the study region. 

 

 

Figure S8b: Comparison of the PMF output with toluene emission inventories for the study region. 



 

Figure S8c: Comparison of the PMF output with xylenes in the emission inventories for the study 

region. 

 

Figure S8d: Comparison of the PMF output of C-9 aromatic compounds with the class “other 

aromatic compounds” in the emission inventories for the study region. 
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