
On the distinctiveness of observed oceanic raindrop distributions
David Ian Duncan1, Patrick Eriksson1, Simon Pfreundschuh1, Christian Klepp2, and Daniel C. Jones3

1Department of Earth, Space, and Environment, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
2CliSAP/CEN, Meteorological Institute, Universität Hamburg, 20146 Hamburg, Germany.
3British Antarctic Survey, CB3 0ET Cambridge, United Kingdom

Correspondence: David Ian Duncan (david.duncan@chalmers.se)

Abstract. Representation of the drop size distribution (DSD) of rainfall is a key element of characterizing precipitation in

models and retrievals, with a functional form necessary to calculate the precipitation flux and the drops’ interaction with

radiation. With newly available oceanic disdrometer measurements, this study investigates the validity of commonly used

DSDs, potentially useful a priori constraints for retrievals, and the forward model impacts of DSD variability. These data are

also compared with leading satellite-based estimates of oceanic DSDs, indicating that the disdrometers observe more small5

drops and more variable number concentrations. Forward model errors due to DSD variability are shown to be significant for

both active and passive sensors. The modified gamma distribution is found to be generally adequate to describe rain DSDs, but

may cause systematic errors for high latitude or stratocumulus rain retrievals; depending on the application, an exponential or

generalized gamma function may be preferable for representing oceanic DSDs. An unsupervised classification algorithm finds

a variety of DSD shapes that differ from commonly used DSDs, but does not find a singular set that best describes the global10

variability.

1 Introduction

A challenge shared by atmospheric models and remote sensing retrievals alike is the representation of precipitation micro-

physics. Raindrops can be modeled using a variety of functional forms, simple relations between drop size and number density

that attempt to capture the overall behavior in a way sufficient to represent the processes of interest. The radiative characteris-15

tics and precipitation flux through an atmospheric volume containing precipitation depend on the size and resulting terminal

velocities of the rain drops, defined via that volume’s drop size distribution (DSD). In this way, the DSD acts as a necessary

conduit to represent precipitation processes, one common to climate models, radar retrievals, and data assimilation schemes.

Various functional forms have been employed to describe rain DSDs. Exponential DSDs (Marshall and Palmer, 1948) have

been used in radar meteorology for decades, and different versions of the modified gamma distribution (MGD; Eq. 1) have20

gained popularity for remote sensing (Ulbrich, 1983). Simplifications of the MGD to three, two, or single parameter versions

yield the gamma, exponential, and power law relations (Petty and Huang, 2011), respectively, all of which are used to represent

DSDs in various applications. Note that the four parameter MGD is sometimes called the generalized gamma distribution (Petty

and Huang, 2011; Thurai and Bringi, 2018). Between those who use the MGD to describe DSDs, disagreement exists on how

many free parameters to use (Smith, 2003; Thurai and Bringi, 2018), whether it is best to normalize the distribution (as in25
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Eq. 3) in some way (Testud et al., 2001), or if the separation of parameters in the MGD is either physically meaningful or

outperformed by simpler methods (Williams et al., 2014; Tapiador et al., 2014).

The below equations will be referred to throughout the text as the generic MGD function (Eq. 1) and normalized gamma

(NG) function (Eq. 3), with NG a normalized and 3-parameter version of the MGD. Here N(D) is the number of drops per

volume per size as a function of the drop diameter, D (with D given in mm and N(D) in mm−1 m−3). The so-called shape5

parameter is µ while N0 and Nw are intercept parameters, with Nw (Eq. 5) a normalized intercept parameter scaled by the

water content (Testud et al., 2001). The mass-weighted mean diameter is Dm (Eq. 2), the ratio of the fourth and third moments

of the distribution (Eq. 2). Denoting the gamma function is Γ, ρw is the density of water, and RWC is the rain water content

in kgm−3.
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Scattering of radiation is highly dependent on particle size, and thus the DSD is a crucial component of remote sensing

retrievals, whether it is assumed or retrieved. Depending on the application, the specific choice of DSD may or may not make

much difference (Smith, 2003; Illingworth and Blackman, 2002). For instance, erroneous assumptions about small drops may

not impact the broadband radiative fluxes or precipitation characteristics of a volume, but a more accurate DSD representa-20

tion may be necessary when considering additional frequencies or polarized measurements. The under-constrained nature of

precipitation retrieval means that the DSD is either assumed completely or needs to be constrained to allow tractable solutions.

A lack of global DSD data has hampered the retrieval of precipitation from satellites. Satellite retrievals rely heavily on

a priori knowledge to constrain the solution space, and regional differences in meteorology and microphysics can manifest

as regional biases in satellite retrievals (Berg et al., 2006). Whereas ground radar networks and arrays of disdrometers over25

land have helped to characterize the variability of raindrops from continental precipitation (Bringi et al., 2003; Williams and

Gage, 2009; Thurai and Bringi, 2018), observations of DSDs over ocean have mostly been limited to field campaigns, a few
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small tropical islands and atolls, and coastal radar retrievals. Because of the different aerosol loading, convective strength, and

underlying humidity of airmasses over land, oceanic drop populations can be distinct from those over land (Dolan et al., 2018),

with the different microphysics influencing satellite retrievals. It is thus desirable to have measurements of DSDs over ocean,

and crucial that these measurements are globally representative rather than skewed toward one region or another.

It is expedient to condense the variability of DSDs into a few distinct classes, either to narrow the possible solution space5

of remote sensing retrievals or for interpretation of results. Separation of stratiform and convective precipitation has long been

common, as stratiform precipitation tends to have a more peaked distribution of fewer, smaller drops versus the more expo-

nential distribution of precipitation from convective clouds (Thurai et al., 2010; Thompson et al., 2015). However, partitioning

stratiform and convective rainfall is done in various ways and may differ depending on location. A little further, Dolan et al.

(2018) argue for six dominant modes of DSDs globally, separated via principal component analysis but linked to meteorology10

and attendant microphysical regimes. As many studies of drop distributions are from land-based disdrometers and radars, DSD

variability has been studied less over open ocean where a majority of global precipitation occurs, though advances are being

made in this area (Thompson et al., 2018).

In remote sensing applications, one can attempt to solve for all, some, or none of the parameters that define a functional

form such as Eq. 1, depending on the information content available. A normalized distribution such as Eq. 3 is used in many15

precipitation retrievals to separate the water content from the spectrum’s shape. In that formulation with RWC separate, this

leaves two free parameters to define the distribution since RWC is directly related to Nw through Dm. While passive-only

retrievals may need to assume one of these parameters because of the limited signal available (Duncan et al., 2018), radar or

combined radar/radiometer retrievals may solve for these parameters in a constrained way (Munchak et al., 2012; Grecu et al.,

2016). Precipitation retrievals thus handle the complexity of the DSD differently depending on their instruments’ sensitivities,20

but necessarily using a predefined functional form to limit the inverse problem’s degrees of freedom.

To investigate the distinctiveness of raindrop size distributions over the global oceans, and how this may impact retrievals

both in terms of prior constraints and radiative transfer modeling, the study proceeds as follows. Data and methods are de-

scribed in the next section, introducing the disdrometer and satellite data examined, as well as the machine learning technique

used to classify drop regimes. Section 3 presents a holistic view of global disdrometer measurements with respect to the nor-25

malized gamma distribution, including a comparison to the leading satellite-based, near-global DSD data set. Results from

the application of a machine learning technique to the disdrometer data are discussed in Section 4. In Section 5 the radiative

aspects of DSD variability are addressed in the context of satellite retrievals with radiative transfer modeling. Then follows a

discussion section, critically examining the disdrometer data versus a commonly used functional form. The paper closes with

a summary and some conclusions.30
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Table 1. Center drop diameters for OceanRAIN size bins, given in mm. Note that the bins of up to 5 mm diameter are given here for brevity

and because these bins contain the vast majority of drop counts, but larger size bins also exist. The values are rounded to 3 digits. For full

details see Klepp et al. (2017).

.392 .427 .462 .498 .535 .573 .612 .652 .693 .735

.778 .823 .868 .914 .961 1.01 1.06 1.11 1.16 1.22

1.27 1.33 1.39 1.45 1.51 1.57 1.63 1.70 1.76 1.83

1.90 1.97 2.05 2.12 2.20 2.28 2.36 2.45 2.53 2.62

2.71 2.80 2.89 2.99 3.09 3.19 3.30 3.40 3.51 3.62

3.74 3.86 3.98 4.10 4.23 4.36 4.49 4.62 4.76 4.91

2 Data and Methods

2.1 OceanRAIN

The Ocean Rainfall And Ice-phase precipitation measurement Network (OceanRAIN) coordinates disdrometer measurements

and acquired ancillary data aboard research ships across the global oceans (Klepp et al., 2018). The data set begins in 2010 and

collection is ongoing, with observations spanning 8 vessels and over 6 million minutes covering all ocean latitudes. Ocean-5

RAIN data contain raw counts integrated for each minute of rain, snow, or mixed-phase precipitation, with derived rainfall

DSD parameters (Eq. 3), and various ancillary fields. The large and growing size of the data set make statistical analysis pos-

sible due to its consistent application across various ships. The disdrometer data are integrated per minute and separated into

logarithmically-spaced size bins (Table 1), permitting analysis of DSDs without the assumption of a functional form. Specif-

ically, the OceanRAIN-M (“OceanRAIN Microphysics”) data are used primarily in the study (Klepp et al., 2017), in which10

drop counts from the disdrometer are converted to number concentrations per size (i.e. drops per volume per size), the form in

which DSDs are often given. DSD assumptions commonly made in the literature can thus be assessed against the observations.

Underpinning OceanRAIN is the ODM470 optical disdrometer, a sensor with sensitivity to hydrometeors of diameter 0.4 to

22 mm (Klepp, 2015). The disdrometer is deployed on the superstructure of ships in a package including a cup anemometer

and a precipitation detector to activate the disdrometer. A wind vane turns the disdrometer to keep the optical path normal to15

the wind direction, and the disdrometer’s cylindrical volume ensures that the incident angle of hydrometeors does not affect

the measurement. These work in concert to minimize impacts of turbulence from local up- and down-drafts, to limit under-

catchment and drops impacting the sensor from various directions (Klepp, 2015). Only data points marked as rain definite,

with 50 or more measured drops, and with a probability of precipitation of 100% were used in the following analysis. To be

consistent, only data points with measurements in ten or more size bins are used (Klepp et al., 2018), as these provide the20

parameters from the NG fit to Eq. 3. A visualization of the OceanRAIN sampling used in this study is found in Fig. 1, with

raining minutes shown on a near-global regular grid.
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This study also makes use of simulated reflectivites in Section 5. Simulated reflectivites from the ODM470 disdrometer have

demonstrated high correlation and a near-zero bias when compared against co-located, vertically-oriented radar observations

(Klepp et al., 2018, Fig. 6). In comparisons with co-located rain gauges, the optical disdrometer performs better in high

wind speeds, as under-catch is a significant problem for traditional rain gauges that can result in underestimation of rainfall

accumulation by 50% (Grossklaus et al., 1998; Klepp et al., 2018), though accumulations match within 2% for low wind speeds5

(Klepp, 2015). The ODM470 has been used in a variety of conditions and shown no difference in accuracy between oceanic

and continental cases (Bumke and Seltmann, 2011).

Figure 1. Raining minutes from OceanRAIN, selected by the sampling criteria of this study as described in Section 2.2, viewed on a regular

5◦ grid. Grid cells in white signify that no data points were used.

The accuracy of disdrometer-derived DSD parameters (following Eq. 3) will depend somewhat on the parameter discussed

and the type of rain. For instance, derived Dm should be accurate for all but the weakest rain rates as it is simply defined

(Eq. 2) and requires no fitting. The accuracy of derived Nw may be suspect for cases with high rain rates and a low Dm value,10

as drops below the sensitivity threshold may constitute a non-negligible fraction of total drops, though this depends on the

type of rainfall and is an issue faced by all disdrometers (Thurai et al., 2017). To be clear, there can be significant number

concentrations below this sensitivity limit, but voltages corresponding to drop diameters of less than 0.36 mm are disregarded

as these can be contaminated by vibrations from the ship (Klepp et al., 2018) and this is a key drawback of the data set. The

derived shape parameter, µ, is the least reliable of the three as it depends on a curve fitting which may not be optimal for15

light rain rates or spectra that do not conform to the expected general shape. In other words, the accuracy of DSD parameters

reported by OceanRAIN may exhibit bias in regimes with many drops below the disdrometer’s sensitivity threshold, or for

distributions with a shape unlike that assumed.

In this study, the default way of discussing the OceanRAIN data is using the 3-parameter normalized gamma distribution

(Eq. 3), but a strength of this data set is that number concentrations are provided for every observed size bin (Table 1), allowing20

investigation of different DSD types, including other varieties of the MGD. Later in the study the 3-parameter MGD (i.e. NG,

as all DSDs discussed are normalized) is contrasted with 1- and 2-parameter MGD versions as well as DSDs not conforming to
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the MGD but instead derived from a machine learning technique. In the context used here, the 1-parameter MGD is equivalent

to single moment microphysics in model parlance, with a fixed shape (i.e. prescribed Dm and µ) and Nw simply scaling with

RWC. The 2-parameter MGD is defined by a calculated Dm (via Eq. 2) but a prescribed µ, whereas the 3-parameter MGD

includes calculated Dm and µ, with Nw determined via Dm and RWC (Eq. 5).

2.2 GPM Combined Radar-Radiometer Algorithm5

The Global Precipitation Measurement (GPM) Core Observatory (Hou et al., 2014) holds two sensors designed to measure

precipitation: the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). GMI is a passive mi-

crowave radiometer measuring from 10 to 190 GHz and the DPR is a phased array radar measuring at KU and KA bands (13.6

and 35.5 GHz, respectively). The dual frequencies of DPR set it apart from other satellite-borne sensors as far as the capacity

to solve for the DSD. The GPM core satellite’s combination of passive and active sensors provides sensitivity to a large range10

of precipitating hydrometeors, with information on their emission and scattering characteristics. However, DPR has limited

sensitivity to small drops and low number concentrations due to its minimum detectable signal of 12 to 13dBZ.

The GPM Combined Radar-Radiometer Algorithm (Grecu et al., 2016), hereafter referred to as GPM CORRA, is a retrieval

that uses data from both radar and radiometer to solve for profiles of hydrometeors that optimally fit the observations. As

the GPM satellite represents the best observational platform yet flown for measuring near-global precipitation, the combined15

retrieval from DPR and GMI is included in this study as the state of the art for calculating global DSD statistics. Via the same

DSD formulation given in Eq. 3, GPM CORRA first uses theKU band reflectivities to solve for theDm profile. It then retrieves

Nw at a reduced vertical resolution to match the KA band reflectivities, DPR path integrated attenuation, and de-convolved

GMI brightness temperatures (TBs) using optimal estimation. The shape parameter is fixed at µ= 2 for all cases. For further

details about this retrieval, see Grecu et al. (2016).20

In this study, gridded level 3 GPM CORRA data are used (Olson, 2017), comprising monthly and daily files from GPM

version V06. This data set provides statistics of pixel-level derived DSD parameters from Eq. 3 at 5◦ and 0.25◦ horizontal

resolution. The values used in this study are from the lowest altitude bin and include oceanic pixels only so as to best match

the surface-based data from OceanRAIN-M. Because GPM CORRA receives most of its information content from DPR, the

DSD parameters derived are representative of individual segments of the atmospheric column and not a column average, a key25

difference from passive-only retrievals. This is significant, as comparison with surface-based observations (Petersen et al., in

press) should be as close in altitude as possible, as DSDs will vary with altitude as evaporation, coalescence, collisions, or

other processes modify the spectra (Williams, 2016). The 250 m vertical resolution of DPR means that multiple observations

exist below 1 km altitude, though some of these will be affected by surface clutter and so the lowest bin without clutter is

chosen here. Note that the GPM CORRA retrievals were performed at the native DPR pixel size, which has a 5 km horizontal30

resolution.

To assess the similarity between GPM estimates and the in situ disdrometer measurements of OceanRAIN, in Section 3.2 the

retrieved results forNw andDm are compared, as GPM CORRA assumes a constant µ value. To perform this comparison, level

3 GPM CORRA data were used, spanning 12 months from 2017. Due to the uneven sampling of the ship-borne disdrometers,
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GPM data included in the analysis are from months with valid OceanRAIN data points in each box and defined as ocean

pixels by DPR. No attempt was made to match observations exactly in space and time due to the difficulty of point-to-area

comparisons with ship-borne data and GPM (Burdanowitz et al., 2018; Loew et al., 2017).

2.3 Gaussian Mixture Modeling

Gaussian Mixture Modeling (GMM) is an unsupervised, probabilistic classification technique that attempts to represent a5

data set using a linear combination of multidimensional Gaussians in a chosen parameter space (Pedregosa et al., 2011). The

dimensions (or “features”) of the parameter space and the maximum number of classes, NGMM , are set by the user. GMM

assigns each data point to the class, represented by a multidimensional Gaussian function, with the highest posterior probability

for that data point. For further technical details on GMM and its use in other Earth science applications, see Maze et al. (2017)

and Jones et al. (2019).10

GMM generalizes to a wide variety of data distributions and can thus identify structures in the DSD data that might be missed

by more traditional classification methods. This frees the analysis from explicit assumption of a DSD shape such as Eq. 3. In

the approach used here, the dimensions given to the GMM module are the size bins used by the OceanRAIN disdrometers and

thus the input data are an array of approximately 90000 raining minutes with 60 size bins. These data are unchanged other

than being normalized so that DSD “shape” variability in the data set is not weighted by the total number of drops observed,15

and cut off at 60 size bins as very few drops over 5 mm are ever measured. Because the shapes are independent of the total

number of drops, this is analogous to the normalized DSD approach typified by Eq. 3. GMM thus finds common shapes of the

observed DSDs and determines the posterior probability of every data point (DSD for each raining minute) falling into each of

the various classes. Each observed DSD is assigned to the GMM class for which it has the highest posterior probability. The

resultant classes provide insight into dominant structures of the input data, with this approach exemplified in Section 4.20

The number of GMM classes is set a priori, with the degree of complexity described by the GMM decomposition dependent

on the number of states set by the user. Determining an optimal value for NGMM is thus important but somewhat subjective

because the desired level of complexity retained after the decomposition will vary for different applications. One method for

estimating a suitable range for the number of classes is to use the Bayesian Information Criterion (Schwarz, 1978). Shown in

Eq. 6, this metric (BIC) contrasts the log likelihood (L) against a cost for the number of classes (K) to provide an objective25

measure of how many classes should optimally describe the data, where Nf (K) =K − 1 +KD+KD(D− 1)/2, with D

the dimension of the data space and n the number of data points used in model training. The first term in Eq. 6 becomes

more negative with increased likelihood, while the second term acts to penalize overfitting. The minimum BIC thus signifies

the optimal K value, maximizing the variability explained with the fewest possible classes. A plateau of BIC values versus

K would signify no distinctly optimal K to describe the data’s variability, but rather a range of solution spaces in which the30

addition of further states provides marginal additional complexity.

BIC(K) = −2L(K) +Nf (K)log(n) (6)
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3 Global results

3.1 Disdrometer results

Viewing the OceanRAIN data all together can provide a sense of the variability in DSD populations over the world’s oceans.

From the perspective of global retrievals, constraints on the DSD that depend on the location or environmental regime, rather

than, say, partitioning stratiform and convective precipitation a priori, are useful for independent satellite-based products that5

do not ingest detailed model data, such as the operational retrievals for the GPM constellation radiometers (Kummerow et al.,

2015). To this end, the derived parameters of Eq. 3 are given for all raining disdrometer observations, separated by latitude and

SST in Fig. 2 and representing all data points shown in Fig. 1. As this is the DSD form most used in rainfall retrievals currently,

it is presented here.

Figure 2. Distribution of DSD parameters following Eq. 3. The boxes define the standard deviations (±1σ), the whiskers define the 10%

and 90% bounds, orange lines denote the median, and blue diamonds the mean. Observations are divided according to latitude with 20◦ bins

(left) and sea surface temperature with 5◦C bins (right).
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As seen in Fig. 2, the normalized gamma DSD parameters exhibit a wide range of variability that is not strongly tied to

latitude or SST. The strongest trend visible is that higher number concentrations occur over warmer ocean surfaces, with the

mean log10(Nw) increasing from about 3.5 to 4.0, as may be expected due to the Clausius-Clapeyron equation. This is roughly

in line with the a priori Nw used for rain by Mason et al. (2017) of 3.9e3, or 3.59 in log space. It is noted that the distributions

of Dm and µ are not Gaussian, with the means and medians separate, and Nw only moderately Gaussian in log space.5

It is stressed that OceanRAIN observations are not evenly distributed around the global oceans and thus the values seen are

dependent on the sampling (i.e. where the ships sailed, see Fig. 1), so these values are not fully representative of each ocean

latitude band. As surface-based observations, they do not provide information as to any vertical DSD variability, a topic that

requires radar observations (Williams, 2016). However, it is possible to pick out some meteorological regimes of interest from

the derived DSD parameters in OceanRAIN. For instance, the ships’ heavy sampling of Southern Hemisphere stratocumulus10

regions (Fig. 1 shows up in these plots as a regime characterized by a higher number of small drops and a more peaked

distribution (seen in the 20◦S to 40◦S band in Fig. 2). From the perspective of satellite rainfall retrievals, such location- or

cloud regime-dependent a priori constraints are much preferable to a global prior and useable within existing algorithms.

Figure 3. Probability density function of all raining OceanRAIN data points, visualized using the scaled DSD, N(D)/NW , against the

diameter normalized by Dm. Various curves with prescribed µ values are plotted for comparison. Areas in gray indicate no data.

Without applying any sorting methods or functional forms to the OceanRAIN data, it is worth viewing the data as a whole

to see how closely the overall behavior resembles the MGD, as this is commonly used in the literature. Figure 3 shows a two-15
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dimensional probability density function (PDF) of drop diameter normalized by Dm versus number concentration normalized

by Nw. This is a view of drops’ overall behavior often used to justify usage of the NG for precipitation (Bringi et al., 2003;

Leinonen et al., 2012), as it permits visualization of in situ data points with the NG for various µ values including the exponen-

tial DSD. Figure 3 indicates that much of the spectral power within OceanRAIN lies near the exponential (µ=0) line or near

the lines with near-zero shape parameters. This is consistent with the enduring popularity of exponential DSDs and the µ= 25

assumption of GPM CORRA.

3.2 Comparison to GPM CORRA

Figure 4. Probability histograms for OceanRAIN (a) and GPM CORRA (b) for observations of the normalized intercept parameter (Nw)

and the mass-weighted mean diameter (Dm). Areas in white indicate no data.

Figure 4 shows two-dimensional histograms of Nw versus Dm for both OceanRAIN and GPM CORRA. Both datasets

exhibit an inverse relationship between Nw and increasing Dm and show maximum probabilities of occurrence in the same

area, namely near Dm = 1mm and log10(Nw) = 3.8. The disdrometers show greater spread in both parameters, but especially10

in Nw. Whereas both data sets observe most occurrences of Dm between about 0.6 to 1.8 mm, the range of Nw observed by

the disdrometers is easily twice as large, even in log space. This behavior is also seen in Fig. 5.

The left panel of Fig. 5 shows histograms of derived Dm from the disdrometers compared with GPM CORRA, separated by

latitude, with each latitude band 20 degrees wide. Given the limited sensitivity of DPR to small drops, it is unsurprising to note

that OceanRAIN observes a wider distribution of Dm that is clearly different from GPM results for small drops. Another key15

feature of these histograms is that while the maxima inDm distributions are relatively similar for the two data sets, OceanRAIN

observes a less peaked distribution in most latitude bands. The disdrometers observe more small drops in all latitude bands, but

this is especially pronounced in the Southern Ocean. For all latitudes GPM exhibits a peak near Dm = 1mm or just below.
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Figure 5. Normalized histograms of Dm (left) and log10(Nw) (right) for GPM CORRA and OceanRAIN, separated by latitude. All his-

tograms use a linear y-axis of height 20%. GPM data are from the 3B CMB monthly gridded product.

The right panel of Fig. 5 follows the same format but for derived Nw. The most striking aspect of these histograms is the

strongly peaked distribution retrieved by GPM in all latitude bands. In contrast, the disdrometers observe many cases with Nw

values an order of magnitude greater or smaller than those of the GPM distributions. The peakNw values from the disdrometers

are similar to those of GPM CORRA in the northernmost latitude band, but are significantly wider and flatter in every latitude

band shown.5

4 GMM-derived states

As shown in Fig. 3, the NG with a low µ value lies near the highest probability densities of the observed PDF. However, a great

deal of spread exists that is not captured by any one curve. With this in mind, GMM was employed to investigate if a finite

number of DSD shapes without a predefined functional form could better capture this variability.

To provide a visualization of how the GMM states attempt to fit the observed DSD from the disdrometer, and how these10

states compare with various MGD forms, Fig. 6 contains randomly sampled data points from OceanRAIN. These four data

points have quite different rain rates and RWCs. The GMM curves shown are from iterations with NGMM of 6 and 14, two

of the panels given in the subsequent figure; these are the states with the highest posterior probability from GMM, indicating

the best match to the observed distribution. No fitting was performed (other than scaling by the observed RWC), just the most

similar GMM curve was chosen, judged by the highest posterior probability. Also provided for reference are MGD curves with15

1-, 2-, and 3-parameter fits. The 1-parameter MGD fits represent RWC-only fits, with µ= 3 and Dm = 1.18mm prescribed.
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For the 2-parameter MGD fit, Dm is calculated via Eq. 2 and µ= 3 is prescribed. All the curves in Fig. 6 conserve total RWC

as measured by the disdrometer.

Figure 6 shows a variety of observed DSDs from different locations and SST regimes. In these plots the size bins below

0.4 mm are greyed out to signify the disdrometers’ insensitivity to these drop sizes. The discontinuities between size bins

are noticeable in some panels at larger drop diameters, especially the fourth panel. The second panel is the most exponential5

distribution of the four shown, while the first panel shows a DSD that fits well with the MGD with µ= 3 and a small Dm.

The third panel shows a heavy tropical rainfall case with bimodal characteristics, as a high concentration of drops smaller than

D = 0.8mm is observed but significant concentrations of drops larger than D = 2mm also exist. In this particular case the

GMM-derived curves appear to provide the best fit but are still imperfect.

Figure 6. Each panel gives an OceanRAIN observed DSD, seen in the solid bars. Various fitted curves with identical RWCs are also given,

including GMM-derived DSDs for NGMM of 6 and 14, and 3 MGD curves. For the 1-parameter MGD and GMM curves only RWC is

provided, and for the 1- and 2-parameter MGD curves µ= 3. The 2-parameter MGD has the calculated Dm while the 3-parameter MGD

(i.e. NG) also has the fitted µ. Each data point is identified by its RWC and rain rate. The light gray shaded region indicates an area of no

OceanRAIN sensitivity.

In contrast to the example plots of Fig. 6, Fig. 7 shows the mean GMM curves that arise from running GMM with a few10

different NGMM values. Again, this is from running GMM on the full disdrometer size bin data, with only the number of

classes set a priori. For comparison, reference lines of NG distributions with sample µ and Dm values are also given. Note that

for each panel in Fig. 7, a majority of the GMM-derived DSDs feature more small drops than given by even the exponential

(µ= 0) line. In the simplest case with only two classes possible (first panel of Fig. 7), the DSD shape that best captures the

majority of the OceanRAIN data set’s variability (at least in terms of frequency of occurrence) is a shape that is more sloped15

than the exponential DSD, with many small drops and few large drops. This particular shape is common to all the GMM

realizations, with even steeper curves found as GMM states are added. Indeed, the distributions produced by GMM seldom

resemble a pure exponential DSD. It is an indication that a second shape parameter may be useful for describing oceanic DSDs,

in line with the generalized gamma approach argued for by Thurai and Bringi (2018).
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Figure 7. Panels show resultant DSDs for different GMM realizations (dashed lines) ranging from NGMM of 2 to 14. The last panel shows

only odd numbered GMM states to reduce clutter. Each panel has an identical set of NG curves with different µ and Dm values (solid lines)

for the sake of comparison. All curves have equal RWC. The frequency of occurrence for each GMM shape is given in the legend.

It is noteworthy that most of the GMM states shown in Fig. 7 are not similar to the given NG curves across the full range

of drop diameters. So while some of the GMM states are quite like a particular NG curve over part of the domain, it is rare

to observe DSD shapes from individual minutes that resemble a 3-parameter MGD (i.e. NG) across the whole size domain.

In many cases the GMM method prefers states with more steeply sloped DSDs and more small drops than the sample NG

curves given. In fact, it takes higher values of NGMM (such as in Fig. 7 with NGMM=14) before strongly peaked DSD shapes5
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reminiscent of NG with a large µ value emerge. In other words, DSDs featuring a strong peak near Dm, and for which an

exponential is a poor approximation, are infrequent. This can also be seen in Fig. 3, as the PDF is relatively weak in the bottom

left of that plot.

Figure 8. Bayesian Information Criterion (BIC) for different NGMM choices applied to OceanRAIN. The mean BIC is shown in red with

the standard deviation in black. Gray lines indicate GMM tests with limited samples, each a randomly chosen subset making up a third of

the total data set.

The GMM framework as applied to the DSD problem seems to offer the promise of finding a finite number of distinct shapes

with which global DSD variability can be described, a la Dolan et al. (2018), without constraining the type of shapes found.5

To investigate this, GMM was used in many iterations for randomly sampled subsets of the data to assess if an optimal number

of states exist that describe the global shape variability. In this experiment NGMM was varied from 2 to 14. The Bayesian

Information Criterion (Eq. 6) gauges whether addition of further states provides a better description of the data, shown in

Fig. 8. BIC plateaus and continues a slight decrease for GMM states beyond about NGMM = 8, indicating that there is no

singular set of GMM-derived DSD shapes that outperforms the others. Instead, oceanic DSD shape variability proves to be a10

true continuum that is not easily decomposed into a linear combination of a finite set of curves.

A corollary of the finding that a singular, optimal set of GMM-derived curves does not exist is that the observed DSD

shapes do not display predictable regional patterns. The shapes observed are not distinct when normalized by RWC, whether

considering the DSDs regionally or across SST regimes. The GMM-derived shapes are not tied to one region or another, a

finding that echoes Fig. 2. This is in contrast to some studies’ success in pulling regional attributes out of large data sets via15

GMM without including location information, as was done here (Jones et al., 2019). The only area of OceanRAIN sampling

that appears as distinct in the distribution of GMM states is from observations in stratocumulus regions, which are dominated
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by the GMM states with steeply sloped DSD curves and a large number of small drops. Otherwise, the GMM states are not

strongly tied to particular sampling regions. This tendency changes if DSD is not normalized by RWC, as RWC regimes are

more tied to regional meteorology. But with respect to the retrieval problem, where it is convenient to separate the DSD shape

from RWC as in Eq. 3, the GMM approach does not provide a magic bullet.

5 Radiative transfer impacts5

An overlooked aspect of assuming a DSD a priori, or even just assuming the general shape of the DSD a priori, is that this

will introduce forward model errors in retrievals and data assimilation. These errors can be strongly correlated across nearby

frequencies and can thus cause systematic biases in variational systems (e.g. 1DVAR, 3DVAR) if not taken into account. An

example of including this type of forward model error into a variational rainfall retrieval for GPM was presented by Duncan

et al. (2018). Instead, the focus in this section is investigating the extent of forward model response inherent to variations in10

natural drop populations, without fitting a functional form to the observed drop counts. Because RWC or rain rate is usually

the sought parameter from remote sensing retrievals, the results are separated along those lines.

Figure 9. Simulated brightness temperatures (TB) through a modeled atmosphere for warm rain, with a liquid cloud layer of 0.2 kgm−2

from 1 to 2 km altitude and rain in the lowest kilometer. The RWC in the rain layer and the DSD are directly from disdrometer observations

and constant in the rain layer. Given are the means (dots) and standard deviations (±1σ, shown as bars) of ∆TB per rain water path (RWP)

bin, where the difference in TB is defined relative to RWP = 0. The left panel (a) uses all OceanRAIN observations, the right panel (b)

shows results when averaging over consecutive 6 minute observation windows to approximate a satellite footprint.

Forward model simulations of the radiative transfer were performed using the Atmospheric Radiative Transfer Simulator

(ARTS) version 2.3 (Eriksson et al., 2011; Buehler et al., 2018). The ARTS model can handle custom particle size distributions
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(such as observational size bin data) as well as prescribed DSDs such as the MGD. Thus with the full size bin data from

OceanRAIN it is possible to simulate the interaction of radiation with drop populations without making any simplifications

involving the drops’ functional form. To approximate the impact on a sensor such as GMI on GPM, simulations were run

using the GMI geometry and three GMI frequencies: 18.7, 36.64, and 89.0 GHz. Because the surface-based disdrometer data

inherently lack vertical information, hydrometeor and humidity profiles need to be assumed. To avoid complications from5

inclusion of any ice scattering species, the setup is for warm rain: a 1 km rain layer defined by the RWC and DSD observed,

with a 1 km liquid cloud layer of 0.2 kgm−2 above, characteristic of a raining warm cloud (Lebsock et al., 2008). Here we

differentiate between cloud water and rainwater due to their different radiative characteristics, with the total liquid water path

being the sum of the two. The surface properties and humidity profile are typical of a tropical scene, with the surface emissivity

calculated using the Tool to Estimate Sea-Surface Emissivity from Microwaves to sub-Millimeter waves (TESSEM2), which10

is embedded in ARTS (Prigent et al., 2017). DSD properties are constant within the rain layer and the cloud layer is also

homogeneous. Cloud droplets are monodisperse with diameter 15 µm, whereas the rain drops are about two orders of magnitude

larger in diameter, hence their differing scattering properties. Simulation code is available (Duncan, 2019).

Figure 9(a) shows the results of the GMI simulations using native disdrometer data, with rain water path (RWP) simply

RWC vertically integrated over the 1 km rain layer, given in kgm−1. The change in top of atmosphere radiance in Kelvin,15

∆TB , is defined relative to the non-raining case of RWP = 0 and for unpolarized radiation. With no mixed phase or ice

phase hydrometeors in the atmospheric column, the three GMI channels chosen all exhibit a net increase in TB . The 89 GHz

shows little sensitivity to either DSD variability or an increase in RWP; its signal is mainly from cloud water emission, and

the scattering signal from rain largely cancels out its emission signal from rain. In contrast, the lower frequency channels show

large increases in TB with RWP as emission dominates and the cloud is more transparent, with the wide range of scattering20

response showing the strong dependence on drop size. The 18 GHz TB especially shows large variability for a given RWP, with

the standard deviation of the TB response usually about half of the mean value. This is a significant error source for warm rain

estimation, as the difference between a RWP of 0.2 and 0.3 kgm−2 would be difficult to distinguish using these frequencies

alone due to the overlapping forward model error bounds.

To address the point-to-area issue of comparing OceanRAIN observations integrated every minute with those of a spaceborne25

passive microwave or radar footprint, which is 5 km in the best case, Fig. 9(b) shows a sample result if the disdrometer data

are averaged in time. Averaging in time is performed because it approximates a spatial average, absent other observing points.

Specifically, a nominal 16 minute window was used to average consecutive raining disdrometer measurements, in that a ship

at 10 kn would take about 16 minutes to traverse 5 km. Observations with zero rain rates were not included if the OceanRAIN

points were discontinuous in time. Fig. 9(b) shows that the results are quite similar to the native disdrometer data used in30

panel (a), with standard deviations slightly smaller for lower RWP values. The maximum forward model errors observed by

a sensor such as GMI may not be markedly different than those presented with the time averaging performed, however most

GMI channel footprints are larger than that of DPR.

Without needing to assume a model atmosphere, the variability of radar reflectivities can be simulated with the measured

volume of drops alone and the T-matrix method (Klepp et al., 2018). Figure 10 gives the simulated radar reflectivity response35
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Figure 10. Simulated radar reflectivities at the two DPR frequencies, KU and KA bands, shown as means (dots) and standard deviations

(±1σ, shown as bars) binned by rain rate. The rain rate and the DSD are directly from OceanRAIN observations.

over a range of rain rates using the OceanRAIN observations. As with the passive sensor simulations, this demonstrates that

DSD variability can cause significant differences in the radiative properties of a volume of drops even for equivalent rain rates

or RWCs. As with Fig. 9, the range of scattering response is larger for the lower frequency channels, with KU showing greater

variability in modeled reflectivity, as the specifics of the DSD determine whether the drops’ scattering is wholly in the Rayleigh

regime or partly in the Mie regime. The KA band is less affected by DSD variations in both the passive and active simulations5

while scaling mostly linearly with increasing RWC or rain rate.

6 Discussion

6.1 Comparison with GPM

The discrepancies between OceanRAIN and GPM histograms of retrievedDm andNw (Figs. 4 and 5) deserve some discussion.

The distributions of Dm and Nw from disdrometer measurements are wider than those from GPM CORRA retrievals in most10

latitude bands, significantly so for Nw. GPM has limited sensitivity to small drops and lower number concentrations due

to the minimum detectable signal from DPR, which may explain the small drops underestimated relative to the disdrometer

measurements, especially in the Southern Ocean.

The highly peaked GPM distributions of Nw, in stark contrast to OceanRAIN’s much flatter Nw distributions at all latitudes,

would appear to have two leading, plausible explanations. First, OceanRAIN is expected to observe more variability in the15

number of drops because it is a point measurement integrated over one minute and precipitation characteristics can vary widely
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over multiple kilometers, whereas DPR has a 5 km footprint. Second, DSD retrieval from GPM is an under-constrained problem

(more unknowns than information) despite the unique capabilities of DPR. While the altitude mismatch between surface-based

disdrometers and the GPM data at a few hundred meters altitude may cause some systematic differences, say due to evaporation

unseen by GPM, this does not explain the limited range of Nw values retrieved by GPM. The strongly peaked Nw distributions

seem indicative of the significant influence of the a priori state on retrieval of Nw, in addition to the limited sensitivity to small5

number concentrations dictated by the instrument sensitivity of DPR.

6.2 Applicability of the modified gamma distribution

To examine the applicability of the MGD to observed ocean DSDs, we can compare the observed PDF (Fig. 3 and Fig. 11(a))

with the PDF of the same data but constrained by the NG fit (Fig. 11(c)). This is shown in Fig. 11(e), with sample NG

curves given for extreme values of the shape parameter. The NG-derived PDF overestimates the frequency of points near the10

exponential line and displays less spread; blue areas indicate over-representation from the NG fit, red areas indicate under-

representation from the NG fit. As with comparison between the PDF and NG curves in Fig. 3, this shows an underestimation

of small drops at high number concentrations through virtue of being constrained by the NG fit.

To see if there is some latitudinal dependence within the overall OceanRAIN PDF, Fig. 11(b,d) divides the data into observa-

tions from high latitude (latitudes greater than 50◦) and tropical (latitudes less than 20◦) locations. It appears that whereas the15

NG with a shape parameter ranging roughly between µ= 0 to µ= 3 suffices for many tropical cases, high latitude observations

are not always well represented by the 3-paramter MGD. For high latitude oceanic rainfall, Fig. 11(f) demonstrates that small

drops are underestimated and medium drops overestimated if using the 3-parameter MGD.

One concern raised by the results of Fig. 11 is whether the use of the 3-parameter MGD, and its limited representation of

the full PDF of drop sizes, can cause biases in modeled or retrieved rain rates. To examine this is quite straightforward, in20

that a size-dependent terminal velocity (Atlas and Ulbrich, 1977) can be assigned for drops of each size bin, with the rain

rate calculated as the integral product of the velocity distribution and the third moment of N(D). The calculated rain rate can

then be compared between DSD representations. Using all OceanRAIN observations shown in Fig. 1 we calculated rain rates

manually using the size bin data and assuming terminal velocities for all drops, allowing comparison of the rain rates that arise

from the PDFs shown in Fig. 11 panels (a) and (c). The distributions resultant from the NG fit was found to result in a small25

mean overestimation of rain rates, by 0.06 mmh−1 or 1.9%. Using the same definitions as above, this underestimation was

slightly less pronounced at high latitudes than for tropical latitudes, 1.5% versus 2.1%. This is due to underestimation of small

drops by the NG fit, as small drops have lower terminal velocities than larger drops, and with RWC being equal this can have

a minor impact on resultant fluxes of precipitation.

Much of the spread that exists in the full OceanRAIN PDF is due to the use of unsmoothed observational data that contain30

discontinuities between size bins and some degree of instrument error. It is clear, however, that much of the spectral power

in Fig. 3 is not captured by any one NG curve. While the exponential line and µ= 3 curves do a reasonable job at matching

the PDF for larger drop sizes, the µ= −2 curve performs much better for smaller diameters. This suggests that a 4-parameter

“generalized gamma” fit might be optimal for oceanic DSDs, a finding echoed in another recent study of disdrometer data

18



Figure 11. Panel (a) duplicates the result in Fig. 3. Panel (c) shows the data from (a) but after fitted to the NG distribution. The bottom left

(e) shows the NG-fitted PDF subtracted from the full PDF. The right panels show OceanRAIN PDFs from high latitude (b) and tropical (d)

latitudes, viz. PDF>50◦ and PDF20◦N−20◦S , with their difference given in (f). Areas in gray indicate no data. The low and high µ curves

given approximately bound the PDF space for the fitted data. Panels (a)-(d) share the same color scale and panels (e) and (f) also share the

same anomaly color scale.

19



(Thurai and Bringi, 2018). Use of the 3-parameter MGD can lead to some systematic biases in drop size representation as seen

in Fig. 11(e). These biases can be regionally dependent, as shown by the higher number concentrations of small drops seen in

high latitudes relative to the tropics, as seen in Fig. 11(f), and consistent with findings from Dolan et al. (2018).

7 Summary and conclusions

This study has investigated the variability of raindrop size distributions over the global oceans in a variety of contexts relevant5

to retrievals and atmospheric modeling. Methods to attach a functional form to raindrop populations vary, but have largely been

predicated on limited land-based observations in the past. The OceanRAIN observation network of disdrometers provides an

opportunity to move towards better understanding of global raindrop populations, with ramifications in aid of satellite retrievals

and model parameterizations, which are necessarily global in scope.

The disdrometer data were shown to have limited dependence on latitude or SST (Fig. 2) when quantified using parameters of10

the normalized gamma distribution (Eq. 3). The mean and median of Dm tend to vary within 0.1 mm across all latitudes, with

±σ of about 0.2 mm. Most observations of log10(Nw) fall within 3.0 to 4.3 (Fig. 4), with a weak correlation exhibited between

Nw and SST (Fig. 2). These parameters from OceanRAIN were also compared to the leading estimates from a satellite platform

(Fig. 5); comparisons with GPM matched relatively well for distributions of Dm but less so for Nw. Both parameters appear

to be too peaked from the GPM retrieval, likely a result of strong influence from that retrieval’s a priori state as DSDs with15

approximately Dm = 1.0mm and log10(Nw) = 3.9 were frequent. The data sets exhibit similar spreads in the distributions of

Dm, but the disdrometers show significantly more variability in Nw than seen by GPM; the middle 90% of GPM Nw retrievals

fall within one order of magnitude, whereas the middle 90% of disdrometer observations span over 2 orders of magnitude. It

was speculated that the GPM retrievals may be over-constrained, although it was expected that the point measurements of the

disdrometer would display greater variability than those from satellite sources due to spatial and temporal considerations alone.20

Usage of the normalized gamma distribution to describe all observed DSD behavior was questioned (Section 6.2), as it

appears more applicable in the Tropics than for higher latitude populations. High latitude cases exhibit larger concentrations

of small drops that are outside the state space specified by the 3-parameter MGD (Fig. 11). The 3-parameter MGD can cause

systematic biases in rain rate estimation relative to using the observed size bin data, quantified to be a -2% error in the mean

relative to total accumulation calculated from the disdrometers. This is a relatively small error for total accumulation because25

the drops that are most misrepresented by the normalized gamma formalism account for relatively little of the total mass flux;

however, for about 3% of cases this is an error of −0.5 mmh−1 or more, and can thus be significant. For many applications,

an exponential DSD may be simpler and more appropriate than a NG distribution for oceanic rainfall (Fig. 3), but of course

does not encapsulate the range of variability that exists, which may be better represented by a generalized gamma approach

with four parameters (Thurai and Bringi, 2018).30

Radiative properties of raindrop populations can vary rapidly for low frequency microwaves, manifest in Fig. 9 as the

standard deviation magnitude is approximately half of the net radiative signal at 18 GHz but is much less at higher frequencies

such as 89 GHz. This is because the presence of a few larger drops can cause non-negligible Mie scattering that impacts
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the otherwise emission-dominated radiative signal and Rayleigh scattering from smaller drops, an effect that diminishes as

frequency increases. Fig. 10 also showed this effect, with lower frequencies exhibiting greater variability for a given RWC or

rain rate due to observed DSD variability. Whereas the radiative variability is similar for light rain rates, modeled variability

can be 2-3 times greater at KU rather than KA band. This observed TB variability caused by DSD variability is seen in both

passive and active simulations. These ranges of forward model variability however represent a worst case scenario for satellite5

retrievals or data assimilation, as any skill in assuming or retrieving the DSD would shrink these ranges. This passive forward

model variability can even be viewed favorably, as it demonstrates sensitivity to the DSD at low microwave frequencies that

may aid DSD retrievals. Simulations comparing forward model errors caused by using a GMM-derived or MGD state compared

to the true DSD state showed that a high NGMM value was needed for the GMM states to outperform the 3-parameter MGD

for forward model errors (not shown). This is in line with Fig. 8, but also indicative that it is hard for a single-moment scheme10

such as GMM to compete without having a large number of possible states.

This exploration of DSD shape “distinctiveness” was motivated by the remote sensing and modeling communities’ need for

simple but accurate parameterizations of rainwater’s size distribution. For instance, if a region or meteorological regime tends

to exhibit one or two DSD shapes, this simplifies a multidimensional problem considerably. The results, however, demonstrate

that simple separation of DSD shapes by latitude and SST, or by other variables such as dewpoint temperature and RWC (not15

shown), does not significantly simplify the DSD problem. The limited spatiotemporal sampling of OceanRAIN meant that

further subdivision of regional data for seasonal shifts in DSD was not possible. The conclusion is then that global oceanic

DSD variability, though more uniform than over land surfaces, is complex and not easily reduced to a single moment parame-

terization or a small set of possible shapes.
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