Table S1: Chemistry and Physics options used in WRF-chem

Physics options		
Microphysics	Thompson	(Thompson et al., 2008)
Longwave/Shortwave	RRTMG	(lacono et al., 2008)
radiation		
Land Surface Physics	NOAH	
Planetary Boundary layer	MYNN 2.5	(Nakanishi and Niino,
		2006)
Cumulus	GRELL 3D	(Grell, 2002)
parameterizations		
Chemistry Options		
Gas-phase chemistry	MOZART	(Emmons et al., 2010)
Aerosols	MOSAIC	(Zaveri et al., 2008)
Anthropogenic Emissions	EDGAR-	(Janssens-Maenhout et
	HTAP2	al., 2015)2
Biogenic Emissions	MEGAN	(Guenther et al., 2006)

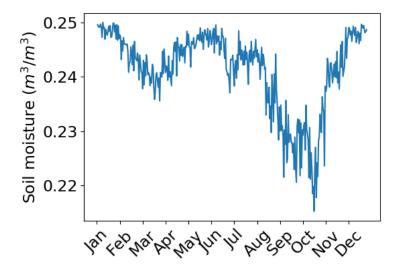
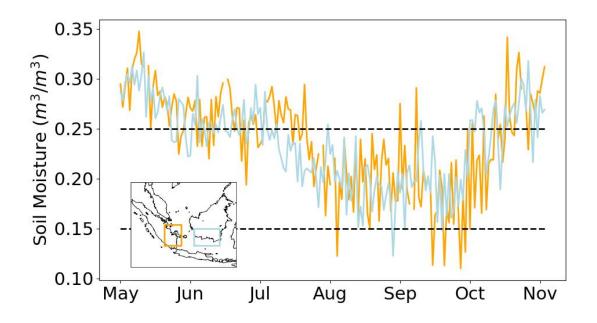



Figure S1: Daily average soil moisture for peat across the study area (95-120 $^{\circ}E$ and 10 $^{\circ}S$ -10 $^{\circ}N$) for 2015.

 $Figure \ S2: \ Soil\ moisture\ over\ high\ fire\ peatland\ regions\ (shown\ inset).\ The\ upper\ and\ lower\ soil\ moisture\ limits\ used$ to calculate depth are shown by the dotted lines.

Equation S1

Fractional bias, FB, is defined by

$$FB = \frac{1}{N} \sum \frac{(M_i - O_i)}{(M_i + O_i)/2}$$

Where N is the number of pairs of modelled (M) and observed (O) values.

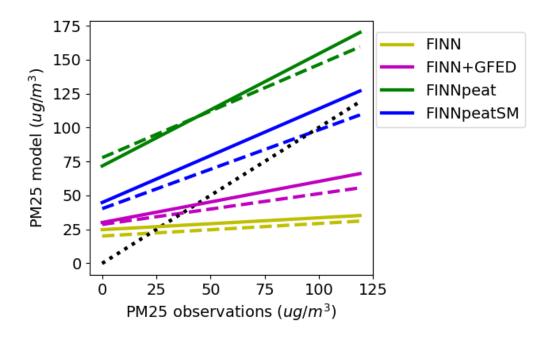


Figure S3: 24 hour mean PM_{2.5} from observations and model simulations with different fire emissions datasets and injection options. Solid lines are simulations with surface injections, dashed lines and simulations with boundary layer injection. 1:1 relationship shown by black dotted line.

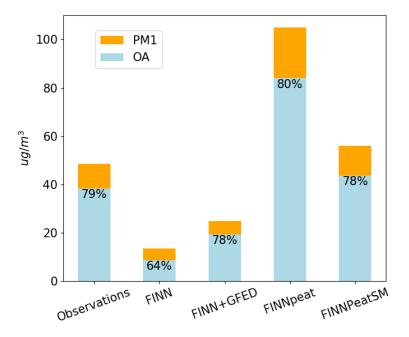


Figure S4: Average PM_1 and OA in Singapore for October 10^{th} - 31^{st} , for observations and WRF-chem runs with the boundary layer injection option and different fire emissions datasets. The percentage contribution of OA to PM_1 is shown on each bar. PM_1 observations are a sum of Cl, NH4, NO3, SO4 and OA. PM_1 from the model is NH4, NO3, SO and OA.

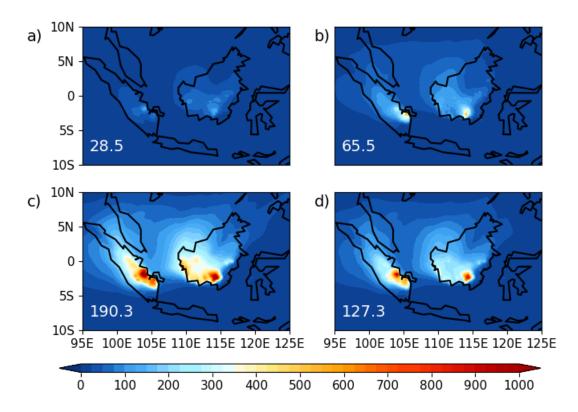


Figure S5: Mean model surface $PM_{2.5}$ concentration ($\mu g \ m^{-3}$) from fires for Sep-Oct 2015 with the boundary layer injection and (a) FINN emissions, (b) FINN+GFEDpeat, (c) FINNpeat and (d) FINNpeatSM. On each plot is the surface $PM_{2.5}$ from fires averaged over Sumatra and Borneo for September and October

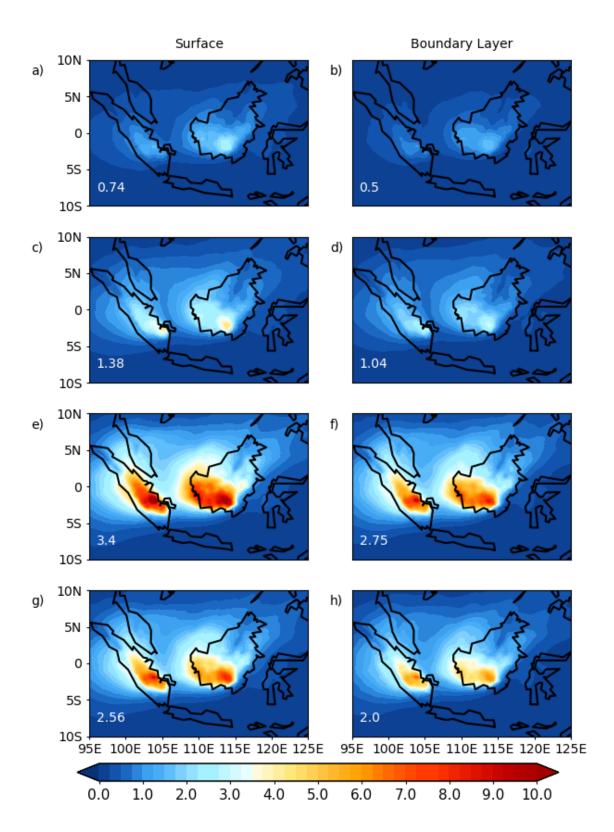


Figure S6: Mean AOD from fires for Sep-Oct 2015 with the surface (a,c,e,g) and boundary layer injection (b,d,f,h) and FINN emissions (a-b), FINN+GFEDpeat (c-d), FINNpeat (e-f) and FINNpeatSM (g-h). On each plot is the average AOD from fires for September and October.