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Abstract. Since the publication of the compilation of biomass burning emission factors by Andreae and Merlet (2001), a large
number of studies has greatly expanded the amount of available data on emissions from various types of biomass burning.
Using essentially the same methodology as Andreae and Merlet (2001), this paper presents an updated compilation of emission
factors. The data from over 370 published studies were critically evaluated and integrated into a consistent format. Several
new categories of biomass burning were added, and the number of species for which emission data are presented was increased
from 93 to 121. Where field data are still insufficient, estimates based on appropriate extrapolation techniques are proposed.
For key species, the updated emission factors are compared with previously published values. Based on these emission factors
and published global activity estimates, | have derived estimates of pyrogenic emissions for important species released by the

various types of biomass burning.

1 Introduction

Biomass burning, in the form of open vegetation fires and indoor biofuel use, is one of the largest sources of many
trace gases and aerosols to the global atmosphere. For some important atmospheric pollutants, like black carbon (BC) and
primary organic aerosol (POA), biomass burning is the dominant global source; based on the estimates of Bond et al. (2013),
it accounts for 59% of BC emissions and 85% of POA emissions worldwide. Open vegetation fires alone represent about one-
third to one-half of global carbon monoxide (CO) and 20% of nitrogen oxide (NOy) emissions (Olivier et al., 2005; Wiedinmyer
et al., 2011). Fires are also a major source of greenhouse gases, including carbon dioxide (CO-), methane (CH4), and nitrous
oxide (N20) (Ciais et al., 2013; Tian et al., 2016; Le Quéré et al., 2018). While a significant fraction of the emitted COy is
taken up again by vegetation regrowth, much of it remains in the atmosphere for years and potentially even up to centuries,
e.g., in the case of tropical deforestation fires or peat soil burning (van der Werf et al., 2017). Model simulations suggest that
in the absence of fires, atmospheric CO; concentrations would be about 40 ppm lower, indicating the importance of fires for
the atmospheric carbon budget and climate (Ward et al., 2012). Biomass burning is the second largest global source of non-
methane organic gases (NMOGs, also referred to as volatile organic compounds, VOCs) (Yokelson et al., 2008; Akagi et al.,

2011). Numerous other studies have reached similar conclusions about the importance of biomass burning for atmospheric
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composition (e.g., Crutzen and Andreae, 1990; Andreae and Rosenfeld, 2008; Andreae et al., 2009; Kaiser et al., 2012; van
der Werf et al., 2017).

The resulting perturbations of the atmospheric burdens of trace gases and aerosols have important consequences for
climate, biogeochemical cycles, and human health. Aerosols from biomass burning affect the regional and global radiation
balance and impact cloud properties and precipitation (Andreae et al., 2004; Andreae and Rosenfeld, 2008; Rosenfeld et al.,
2008; Ward et al., 2012; Tosca et al., 2013; Rosenfeld et al., 2014; Jiang et al., 2016; Braga et al., 2017; Cecchini et al., 2017
Hamilton et al., 2018; Thornhill et al., 2018). By shifting the proportions of direct and indirect solar radiation, they also influ-
ence primary productivity and thereby forest growth and agricultural production (Artaxo et al., 2009; Rap et al., 2015;
Malavelle et al., 2019; McKendry et al., 2019). Fires mobilize nutrients, such as nitrogen, phosphorus, and potassium, which
can deplete local ecosystem nutrient reservoirs on one hand and provide nutrients to other ecosystems by atmospheric transport
on the other (Andreae, 1991; Andreae et al., 1998; Mahowald et al., 2008; Chen et al., 2010b). The VOCs and NOx in biomass
smoke undergo smog photochemistry in the atmosphere, leading to the production of ozone, secondary organic aerosols, and
other pollutants, which impact plant productivity (Crutzen and Andreae, 1990; Andreae, 1991; Robinson et al., 2007; Jaffe
and Wigder, 2012; May et al., 2013; Pacifico et al., 2015; Hatch et al., 2017; Yue and Unger, 2018). These gaseous pollutants,
and even more so the particulate matter from biomass burning, pose grave risks to human health (Naeher et al., 2007; Akagi
et al., 2014; Dennekamp et al., 2015; Knorr et al., 2017; Apte et al., 2018). Recent estimates of global excess mortality from
outdoor air pollution range from 4.2 to 8.9 million annually (Cohen et al., 2017; Lelieveld and P&schl, 2017; Shiraiwa et al.,
2017; Burnett et al., 2018; Lelieveld et al., 2019), with smoke from open vegetation burning accounting for up to 600,000
premature deaths per year globally (75th percentile of model estimates; Johnston et al., 2012). In addition to outdoors exposure,
pollution from indoor solid fuel use, much of it biofuel burning, has been estimated to cause 2.8 million premature deaths
annually (Kodros et al., 2018).

In view of the immense impact of biomass burning emissions on climate, ecosystem function, and human well-being,
it is disconcerting that large uncertainties persist regarding the amounts emitted and their spatial and temporal distribution. For
bottom-up emissions estimates, two basic types of information are required: the amount of the various types of biomass burned
as a function of time and space, and the emission factors for the various emitted species, i.e., the amount of a given species
emitted per unit mass of biomass burned. Considerable effort has gone into quantifying the magnitude of open biomass burning
by remote sensing approaches (Mouillot et al., 2006; Reid et al., 2009; Mieville et al., 2010; Wiedinmyer et al., 2011; Kaiser
etal., 2012; Ichoku and Ellison, 2014; Darmenov and da Silva, 2015; Chuvieco et al., 2016; van der Werf et al., 2017), but the
estimates in these studies of the annual amounts of carbon released still range over a factor of three from 1.5 to 4.7 Pg a™. A
model intercomparison based on state-of-the-art dynamic global vegetation models (DVVGMs) yielded an even wider range of
1.0t0 4.9 Pg a! (Li et al., 2019a).

Efforts to narrow the uncertainties in the emission factors for the large number of species emitted from the diverse
types of burning are ongoing in the form of numerous field campaigns and laboratory studies. The results of these studies are,

however, widely dispersed among hundreds of papers in a large number of journals, each dealing with a particular campaign
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or experiment. Over the last two decades, there have been two efforts to synthesize these data on a global scale, one by Andreae
and Merlet (2001; below referred to as A&M?2001) and the other by Akagi et al. (2011). The latter included more recent data

and additional species and burning types, and is available in updated form at http://bai.acom.ucar.edu/Data/fire/. As part of the

The Fire INventory from NCAR (FINN) model, Wiedinmyer et al. (2011) selected data from these two sources into a “best
estimate” set of emission factors. In the present study, | am presenting an updated set of emission factors, which includes the
results of studies published since the writing of the two previous compilations. It provides emission estimates for 28 more
chemical species, for which a sufficient amount of field data has become available since A&M?2001, as well as an extended
set of burning types. The extratropical forest category is differentiated into boreal and temperate forest burning, domestic
biofuel use is separated into non-dung and dung burning, and peat fires and domestic waste burning are added as new catego-
ries. Based on these emission data and recent activity estimates, | present a compilation of global emission amounts and make

some recommendations regarding priorities for future investigations.

2 Methods
2.1 Data selection

This paper applies the same methodological approach as A&M2001, and therefore the methods section will only
provide a brief overview of the definitions and calculation methods used, and highlight those points where the present approach
differs from the previous one. For all other details, the reader is referred to A&M2001. The original data, which form the basis
of the emission factor averages presented in Table 1, can be found in an Excel spreadsheet in the Supplement.

With few exceptions, and consistent with the approach used in A&M2001, | only used results from field measure-
ments in young fire plumes for the compilation of the emission factor data in Table 1. Ideally, these measurements had been
made within minutes after the smoke was released from the fires to avoid significant chemical changes during atmospheric
aging, especially in the case of reactive trace gases. This is only possible, however, when sampling at the ground or from
aircraft very close to the fire. In many other cases, aircraft were sampling at some distance from the fires, often without actually
knowing the exact location of the fire. In such cases, | have rejected the data for the more reactive trace gases. A special case
is presented by emission data calculated from remote sensing by either satellite measurements or ground-based solar Fourier
Transformation Infrared (FTIR) spectrometry. Here, the authors have often included a correction for atmospheric transfor-
mations, using model calculations involving transport times and reaction rates of the species concerned. Because of their large
spatial and temporal coverage, such measurements are quite valuable, and | have therefore included some of them in this
assessment, as long as they were either dealing with long-lived species or used appropriate correction methods (i.e., chemistry-
transport model calculations to correct for atmospheric transformations) (Rinsland et al., 2007; Mebust et al., 2011; Tereszchuk
et al., 2011; Tereszchuk et al., 2013; Schreier et al., 2015; Viatte et al., 2015; Lutsch et al., 2016; Adams et al., 2019). They

can be compared with in-situ measurement results by referring to the original data in the Supplement spreadsheet.
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Another special case are the emission factors for gaseous elemental mercury (Hg®). Here, only relatively few actual
field emission measurements are available for most of the combustion types listed in Table 1. Therefore, | have followed the
approach of Friedli et al. (2009) and included Hg® emission factors from studies that are based on the Hg content of the fuels
and the assumption of total volatilization of Hg from the fuel during combustion, which appears well justified for this volatile
element.

Generally, the results from laboratory combustion studies have not been included in the emission factor averages for
the different fire types in Table 1, but they are given for comparison in a separate column in Table 1. The reason for this
decision is that such experiments often do not reproduce realistic burning conditions in the field. For example, it has been
shown that the emissions of many trace gases are strongly dependent on fuel moisture, temperature, wind, and other fire
environment parameters (e.g., Chen et al., 2010a; Robertson et al., 2014; Liu et al., 2017; Thompson et al., 2019). The fuels in
lab experiments, however, may be well aged and dried, and thus have a much lower moisture content than fuels in the field,
and the wind conditions in the field are impossible to reproduce in the lab. This can be seen in the values of the modified
combustion efficiency [MCE; the ratio of ACO,/(ACO>+ACO)] in many lab studies, which are much higher than those typical
of field burns, an extreme example being the study by Sirithian et al. (2018), who reported a mean MCE of 0.9996 in a lab
study on biofuel burning. Therefore, lab results are only used in some special cases, where little or no field data are available
and where the lab data appear representative based on their MCE (e.g., Christian et al., 2003), or had been adjusted to reflect
field conditions using “overlap species”, ERs, or MCE as discussed in Yokelson et al. (2013b). Some lab values are also used
as estimates in Table 1; they are shown in italics and indicated as “LV” in the last column.

The studies on emissions from biofuel burning for cooking or heating represent a borderline case, as they are often
conducted in a laboratory environment, but with an effort to simulate the actual fuel use conditions and stove setups used in
households. Here, | have favored studies performed in actual households, but also included results from lab studies that ap-
peared to realistically emulate field conditions. Results from modern residential biofuel combustion units, such as automated
pellet burners or modern low-emission stoves, etc., have not been included. A more detailed analysis of emissions from dif-
ferent types of domestic biofuel use can be found in Akagi et al. (2011), albeit without the benefit of the numerous papers that
have been published on these emissions in the last decade. A special review on this issue would be desirable, but is beyond the
scope of this paper.

In contrast to gaseous compounds, which are chemically well defined, aerosols are complex and variable mixtures of
organic and inorganic species and comprise particles across a wide range of sizes. This affects in particular the measurements
of organic aerosol, black/elemental carbon, and size fractionated aerosol mass. Organic aerosol is usually measured either by
a variety of thermochemical or mass spectrometric methods, both of which may have positive and negative artefacts, for which
different authors have applied different corrections. Since some techniques report the result as organic aerosol mass and others
as organic carbon mass concentrations, a conversion had to be applied. To convert between organic carbon and organic matter
(OM), a default OM/OC mass ratio of 1.6 is used in the absence of specific information. This value is based on the data from

fresh biomass smoke aerosol in the literature (Turpin and Lim, 2001; Aiken et al., 2008; Yokelson et al., 2009; Takahama et
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al., 2011; Kostenidou et al., 2013; Brito et al., 2014; Collier et al., 2016; Fang et al., 2017; Tkacik et al., 2017; Ahern et al.,
2019; Lim et al., 2019). Where only O/C ratios were given, they were converted to OM/OC ratios using the relationship given
in Aiken et al. (2008).

Black carbon (BC) and elemental carbon (EC) are an even more problematic category. Various definitions for these
species have been used (Andreae and Gelencsér, 2006), but most commonly BC refers to carbon with specific optical properties
(light absorption) and is measured by optical techniques, whereas EC is defined by its chemical properties and determined by
a variety of thermochemical methods. Not all authors, however, adhere to these definitions, and the terms soot, EC, and BC
are often used interchangeably. Unfortunately, while some techniques have been shown to have less bias than others (Li et al.,
2019b), there is no general answer as to which technique is best, and which property, optical or chemical, is more representa-
tive. In view of the lack of a better alternative, both BC and EC data have been merged in the “BC” category here.

The size distribution of biomass smoke aerosols is a continuum ranging from tens of nanometers to millimeters (Reid
et al., 2005), with most of the mass present in a mode at a few hundred nanometers. Mass concentration measurements are
typically reported as PMy, PM2s, PM1g, or TPM, referring to the size ranges below 1, 2.5, and 10 pm, and total mass, respec-
tively. For convenience, data reported as PM; and PM; s have been grouped together in the PM s category, which in view of
the typical BB aerosol size distribution is not expected to result in significant bias. The same applies to the PM1o and TPM
data, which were grouped together in the TPM category.

Emission data for ionic species and trace metals are not included in this data set. They are tabulated in Akagi et al.
(2011), and additional information can be found in a number of papers (e.g., Goetz et al., 2018; Jayarathne et al., 2018a;
Jayarathne et al., 2018b).

Another problematic “species” is the total concentration of non-methane organic gases (NMOG), also referred to as
volatile organic compounds (VOCs). The diverse methods used for these compounds measure different sets of NMOG, which
in some instances may quite incomplete. In general, the more recent studies from the last 5-7 years are much more compre-
hensive and show that the early studies were severely underestimating the amounts of NMOG emitted. Regrettably, these
techniques have been so far used mostly in lab studies, and could therefore not be considered for the combustion category
emission estimates. To highlight this issue, | have added the NMOG emission factors from the online updates to Akagi et al.
(2011) in Tables 1 and 3.

2.2 Definitions

In the literature, emission information is generally found as either emission ratios (ER) or emission factors (EF).
Strictly speaking, most data presented as “emission ratios” are actually enhancement ratios (EnR), often also referred to as
normalized excess mixing ratios (NEMR; Akagi et al., 2011). They are defined as the ratio of the excess mixing ratio of the
species of interest in the plume, (AX), to the excess mixing ratio of a reference species, e.g., carbon monoxide (ACO),

EnR = AX — (X)plume - (X)backgr
e Aco (CO)Plume - (Co)backgr
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where A stands for the difference between the mixing ratio in the plume and in the background atmosphere (in molar units).
Because of its abundance in fire emissions and its relatively low ambient background concentration, CO is most commonly
used as reference species, but other gases, such as carbon dioxide (CO;), methane (CHs.), or acetonitrile have also been used.
The use of CO; can introduce large errors because it also has strong surface sources and sinks, which can lead to erroneous
estimates of the background concentration, as discussed in detail in Yokelson et al. (2013a). A statistical method using multiple
fire tracers (Mixed Effects Regression Emission Technique, MERET), which can resolve the problems associated with variable
CO; background concentrations, has recently been developed (Chatfield et al., 2019).

An enhancement ratio can be interpreted as an emission ratio when it is assured that the concentrations of both species
X and the reference species have not been affected by chemical production or loss since the emission, and that both concen-
trations have changed proportionally during dilution of the plume with background air. In the case of very long-lived sub-
stances, e.g., acetonitrile, EnRs can be very close to ERs even after days, while for reactive compounds, e.g., nitric oxide (NO),
significant changes can occur in minutes. For very rapidly reacting species, it becomes difficult to define an appropriate time
after emission at which an EnR can be treated as an effective ER. A good example is the emission of primary organic aerosol
mass, where the apparent EnR decreases substantially (by about a factor of two) over the first few minutes to hours as a result
of the evaporation of semivolatile compounds during plume dilution (May et al., 2013; Konovalov et al., 2019). Whether the
ER at the moment of emission or the EnR after cooling and dilution to typical ambient conditions is the more meaningful value
will depend on the intended application. In general, field measurements are likely to represent somewhat more aged conditions
(tens of minutes to a few hours), whereas lab measurements often represent very fresh emissions. For further discussion of the
advantages and disadvantages of the different reference gases, the effects of flaming vs. smoldering combustion, and ground-
based vs. airborne sampling, see A&M?2001, Burling et al. (2011), and Akagi et al. (2011).

While the measurement of ERSs is relatively straightforward in the field, because it requires only the measurement of
the atmospheric concentrations of target and reference species, it is generally desirable to obtain the amount of a species
emitted per unit mass of fuel burnt, i.e., the emission factor, EF. For biomass burning, this is usually expressed as the mass of
target species X released per mass of dry fuel burnt, in units of g kg™. This, however, requires knowledge of the mass of fuel
burned, which can be measured in the lab, but difficult to obtain in the field. As an alternative, the mass balance method can
be used, where the mass of fuel burned is approximated by the sum of carbon contained in the emitted carbon species (CO,
CO, CHgy, volatile organic compounds [VOC], organic aerosol carbon [OC], and elemental carbon [EC] or black carbon [BC]),
divided by the carbon fraction in the fuel. Often, the carbon mass is approximated by the sum of CO, and CO, and a default
fuel carbon content of 45% is assumed.

To provide a uniform representation of the various types of data found in the literature in the form most useful to
modelers, all emission data was converted to emission factors, in units of g kg dry fuel burnt. Where emission factors relative
to other fuel mass indicators were given, e.g., the mass of carbon burned or released, | applied appropriate conversion factors,
such as the known or assumed carbon content of the fuel. Very frequently in the literature, only EnRs or ERs in units of

mol/mol are provided. These can in principle be easily converted to EFs by the following equation:
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Wy
EFX = ER(X/Y) MW. EFY
Y

where EFx is the emission factor for species X, ERxy) is the emission ratio of species X relative to the reference species Y,
MWx and MWy are the molecular weights of the species X and the reference species Y, and EFy is the known or assumed
emission factor of the reference species (often CO or CH4). When the value of EFy was not known for a specific study, the

mean EFv for the appropriate type of fire (forest, savanna, etc.) was applied to derive an estimate of EFx.

2.3 Estimates where no data are available

For some combinations of fire type and emitted species, no suitable field data is available to provide a basis for
estimating EFs. Where possible, | have used appropriate methods to derive estimates (shown in italic font in Table 1) based
on other information. For each species, the estimation method is given in column EM. For species predominantly emitted
during smoldering combustion, e.g., most VOCs, | have based the estimate on the assumption that their emission factors for
the various fire categories are proportional to those of CO for the same categories. The estimate was then obtained by calcu-
lating the mean of the ratios EFx/EFco for the fire categories with available data and multiplying this mean ratio by the EFco
of the fire category for which an estimate was needed (labeled CO in column EM). Where no suitable ratios ERx/ERco were
available from field studies, the lab ratio was used instead (labeled LV). For some species containing heteroelements (N2O,
SOz, DMS, and HCI), the mean of the ERs from fire categories with available data, weighted by the amounts of biomass
globally burned in those categories, was used (labeled AV). Subjective “best estimates” are labeled BE. Specifically, for miss-
ing values of total particulate carbon emissions, the sum of OC and EC emissions was used, and for aerosol potassium emis-

sions in boreal forest fires | used the temperate forest value.

3 Results and discussion
3.1 Combustion process and pyrogenic emissions

Our fundamental understanding of the biomass combustion process remains unchanged since the 1990s, as reviewed
in A&M2001 and other papers (Lobert and Warnatz, 1993; Yokelson et al., 1996; Yokelson et al., 1997; Akagi et al., 2011),
and will thus be summarized here only briefly. As the flaming or glowing front of a fire moves towards the uncombusted fuel,
the fuel is heated by radiative and sensible heat transfer, leading first to evaporation of water and other volatiles, then to
pyrolytic decomposition and the release of volatile and semivolatile (tar) decomposition products (Collard and Blin, 2014).
When this released mixture ignites, flame chemistry sets in, which breaks down the more complex pyrolysis compounds to
small molecules and radicals, but also produces new larger molecules by radical chemistry, such as alkynes, polycyclic aro-
matic hydrocarbons (PAH), soot, and organohalides. In addition to volatile matter being consumed by flaming combustion,
char undergoes gas-solid reactions between oxygen and other gases and solid carbon at the fuel surface, called gasification or

“glowing” combustion, in which a large fraction of the fuel carbon is released as CO, part of which is further oxidized to COs.
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In a typical vegetation fire, all these processes occur simultaneously as the fire propagates through the fuel, so that the fire
plumes at any place and time contain mixtures of flaming and smoldering (vernacular for a changing mix of distillation, py-
rolysis, and glowing) combustion products in variable proportions.

Depending on the vegetation type and burning conditions, the relative amounts of fuel consumed by flaming and
smoldering combustion can vary considerably. Dry grassland fires, for example, are dominated by flaming combustion and a
rapid passage of the fire front, with little residual smoldering. Forest fires, on the other hand, especially those in fuels with
relatively high fuel moisture and large diameters, have a long phase of residual smoldering combustion (RSC), during which
larger-diameter fuels are consumed over time spans of up to several days (Ward and Hardy, 1991; Ward et al., 1992; Yokelson
et al., 1997; Bertschi et al., 2003; Hao and Babbitt, 2007; Burling et al., 2011; Akagi et al., 2013; Geron and Hays, 2013;
Urbanski, 2014; Reisen et al., 2018). The smoldering mode of combustion can become dominant in peat fires, which often
proceed without a flaming phase and below ground (Bertschi et al., 2003; Stockwell et al., 2016b).

Since the rate of heat release during RSC is relatively low and much of it occurs during nighttime, the resulting
emissions tend to accumulate close to ground in the boundary layer. At nighttime, emissions are confined in a nocturnal
boundary layer, often less than 100 m thick, where the fire-emitted CO, becomes mixed with CO- from biological respiration.
This presents serious problems for measuring accurate and representative fire-integrated emission factors for fires where RSC
emissions are important (Bertschi et al., 2003). Ground-based studies during the RSC phase can obtain EFs of trace species,
but these are difficult to relate to the corresponding amount of fuel burned. Aircraft studies have trouble measuring the RSC
component of these emissions, as they are not lofted in the form of discrete plumes to aircraft altitudes, but only mixed upward
during daytime convection (or fire blow-ups) where they get distorted by mixing in the ambient atmosphere (Guyon et al.,
2005). The mixing of biogenic and pyrogenic CO- in fire plumes that entrain such boundary layer air into a deeper mixed
layer present serious problems for deriving fire-integrated ERs and EFs from aircraft measurements (Yokelson et al., 2013a),
which can potentially be addressed by the multi-tracer MERET approach (Chatfield et al., 2019)..

Because the flaming phase is characterized by CO, being the dominant combustion product by far, while the smol-
dering phase yields relatively large amounts of CO (up to about 30% of carbon burned), the MCE has been established over
the last two decades as the key metric representing the relative role of flaming vs. smoldering combustion in vegetation fires,
spanning a range of 0.77 in peat fires to 0.98 in some grassland fires (see Supplement). Mean MCE values for the different
combustion categories are presented in Table 1.

Since the MCE was introduced by Ward and Radke (1993), numerous papers have used this metric and have shown
significant negative correlations for many trace gases between emission factors and MCE, especially for the various VOCs
that are emitted predominantly during smoldering combustion (e.g., Korontzi et al., 2003; Yokelson et al., 2003; Yokelson et
al., 2008; Soares Neto et al., 2009; Urbanski et al., 2009; Burling et al., 2011; Urbanski, 2013; Yokelson et al., 2013b; Liu et
al., 2014; Urbanski, 2014; Collier et al., 2016; Coffey et al., 2017; Fortner et al., 2018; Hodgson et al., 2018; Reisen et al.,
2018; Jen et al., 2019). However, the correlation slopes between EFs and MCE vary considerably between studies in different

fuels and burning environments, so that a global parameterization of all EFs based on observed or modeled MCE remains
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problematic. As an illustration, | show in Fig. 1a and 1b plots of the EFs of ethene (C2H.) and ethane (C2Hs) vs MCE, based
on the average values from the individual studies in the supplemental spreadsheet. In both cases, the results scatter widely, and
especially the data from the lab studies, biofuel burning, peat fires, and RSC-dominated fires introduce a large amount of
scatter. The limitations in correlation between EFs and MCE have been noted previously (Yokelson et al., 1997; Bertschi et
al., 2003; Burling et al., 2011; Urbanski, 2014). In the case of ethene, the correlation using all data points is not significant (R?
= 0.07). However, when only the data from open vegetation fires are included (and after removing three outliers), the correla-
tion improves to an R? of 0.27. For ethane, the correlation coefficient is R? = 0.38 for all data, but does not improve substantially
by removing the peat fire data. These results suggest that the level of aggregation at which MCE is useful as a meaningful, but
rough predictor of EFs for at least some species is yet to be determined. This approach is not pursued further here, but the data
in the original studies listed in the supplement can be used by investigators to derive such relationships for specific compounds
and combustion types of interest. An interesting and novel approach to generalizing VOC emissions is provided by Sekimoto
et al. (2018), who showed that most of the variability in VOC emissions measured in a lab study using a wide variety of fuels
was explained by just two factors, related to low and high temperature pyrolysis, respectively.

Using MCE as a predictor variable may be an alternative to providing separate EFs for smoldering and flaming com-
bustion, which has been frequently requested by the modeling community, but for which there is still not enough data to
provide robust estimates, as we had already remarked previously in A&M2001. However, once vegetation fire models are able
to provide estimates of the contribution of flaming and smoldering combustion from a given fire, the resulting MCE could be
predicted. This could then form the basis of a more fire-specific prediction of trace gas and aerosol emissions based on MCE
correlations. An alternative approach was proposed by Hoffa et al. (1999) and further developed by Korontzi et al. (2003),
who showed a correlation between vegetation greenness and MCE, which allowed the prediction of seasonally-dependent
emissions from African savanna fires (Ito and Penner, 2004; Korontzi et al., 2004; Korontzi, 2005). In view of the limitations
seen with regard to more general parametrizations, it appears that for now one can keep using the category-average EFs, but

be aware they can vary considerably from region to region and from fire to fire.

3.2 Emission factors for chemical species from the various combustion categories

In Table 1, | present the updated estimates of emission factors for the combustion categories, savanna/grassland,
tropical forest, temperate forest, boreal forest, peat fires, open agricultural waste burning (in the fields), biofuels (excluding
dung), dung cakes, charcoal making, charcoal burning, and garbage burning. As more data have become available, it was now
possible to split the extratropical forest category into temperate and boreal forest burning. The transition between these two
types is not always clear, but in general, | have followed the authors’ choice of category; where this was not possible | have
taken a latitude of 60 °N as boundary.

The large number of studies on residential biomass burning, which have been published in the last two decades, has

made it possible to separate dung cakes from the other biofuels, such as fuel wood and agricultural residues. As mentioned
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above, | only included studies that used fireplaces and traditional or simple “improved” stoves, as are used in developing
countries, and not modern appliances, such as automated pellet stoves.

The publication of a few papers that provide emissions data for open garbage burning, still quite prevalent in many
countries and a serious source of pollution especially in urban areas (Wiedinmyer et al., 2014), has made it possible to provide
EFs for this category.

Obviously, the categories used here are still quite highly aggregated, but they correspond closely to the fire types used
in many global modeling studies, such as those involved in the Fire Modeling Intercomparison Project (FireMIP) (Li et al.,
2019a) and in model- or satellite-based emission inventories (Wiedinmyer et al., 2011; Kaiser et al., 2012; Ichoku and Ellison,
2014; Darmenov and da Silva, 2015; van der Werf et al., 2017). Should a reader require less highly aggregated data, they can
use the Supplement to split the data into subcategories or even use the supplemental references to get back to the original
literature. Valuable detail about the various burning types and further breakdown of some categories, e.g., biofuel use, into
relevant subcategories can be found in Akagi et al. (2011).

For information purposes, | also include a column summarizing the results of laboratory studies. The averages in this
column can only be seen as general indication of the magnitude of emission factors found in the lab studies, since all types of
fuels and burning methods are included in the statistics presented here. However, the original data and references are provided
in the Supplement for readers interested in the details.

As in A&M2001 and in Akagi et al. (2011), the amount of information for any given combination of species and fire
category varies greatly - for some combinations we have no measurements at all and for others there are as many as 50 values.
Accordingly, the uncertainty of the estimates is also highly variable. In Table 1, I am using the same convention as in
A&M?2001 to represent the uncertainty: When three or more values (based on independent references) are available for a given
table cell, the results are given as means and standard deviations (x £ s). In the case of two available measurements, they are
given as a range, and where only a single measurement is available, it is given without an uncertainty estimate. For single
measurements, it can usually be assumed that the uncertainty is no less than a factor of three.

In spite of the fact that this paper is based on data from over 370 publications, rather than the 130 papers that formed
the basis for A&M?2001, Table 1 shows that there are still many species for which there are little or no field data available. For
example, there are still no field measurements of the emission factors for the alkyl amines, which have recently become im-
plicated in aerosol nucleation and new particle formation (Smith et al., 2010; Almeida et al., 2013; Kiirten et al., 2014). In
view of the importance of the number concentrations of aerosol particles (CN), especially cloud condensation nuclei (CCN),
for climate change, it is unfortunate that there have only been a few additional measurements of their emission factors in the
last two decades. The rapid coagulation of particles very near the source makes it difficult to choose the most appropriate
plume age for such a measurement (Hobbs et al., 2003; Sakamoto et al., 2016; Hodshire et al., 2019). However, a survey of
available measurements suggests that the ratio of excess particle number concentration (ACN or ACCN) to ACO stabilizes at

the scale of typical aircraft measurements in plumes, as a consequence of the sharp decrease of the coagulation rate with
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increasing dilution (Janhall et al., 2010). More field studies on the evolution of aerosol number concentrations and size distri-
butions as a function of plume age under different conditions (fire size, wind speed, flux density, etc.) are warranted.

Another climate-relevant component, for which we have no field emission data at this time, is brown carbon (BrC)
(Andreae and Gelencsér, 2006), which has been shown to account for about half of the aerosol light absorption by biomass
smoke at 401 nm (Selimovic et al., 2019) and 25-45 % at 550 nm (Tian et al., 2019). Providing EFs for this species is prob-
lematic because of the very complex and variable mixture of compounds that make up BrC, as well as its potential for rapid
change in abundance and optical properties during plume evolution (Forrister et al., 2015; Fleming et al., 2019). To some
extent, data on the optical properties of BB aerosols can substitute for direct measurements of BrC (Stockwell et al., 2016a;
Stockwell et al., 2016b; Goetz et al., 2018; Selimovic et al., 2018).

Regarding the role of vegetation fires in the global carbon cycle, the most problematic uncertainty pertains to the
emission factors of CO, and CO from forest fires, which is surprising in view of the many available estimates. This uncertainty
stems from the inadequate knowledge of the contribution from RSC, which has already been referred to above, and which may
significantly contribute to large mismatches between bottom-up predictions of CO emissions and remote-sensing measure-
ments from satellite (Pechony et al., 2013; Deeter et al., 2016). A representative measurement of fire-average ACO/ACO;
emission ratios from large forest fires is very difficult if not impossible, as ground-based measurements in such violent fires
are not possible and aircraft measurements are prone to undersampling the smoldering emissions, especially the contributions
from RSC. The uncertainty regarding the ACO/ACO- emission ratio also seriously hampers our ability to separate the influence
of the emissions from deforestation burning from those of biological carbon fluxes in regional carbon budgets (Andreae et al.,
2012). For example, the uncertainty of the ACO/ACO ratios of tropical forest burning is large enough that it can even change
the inferred sign of the net carbon flux between the Amazon forest and the atmosphere (Gatti et al., 2014). A novel multi-tracer
statistical technique (MERET; Chatfield et al., 2019) may be able to provide improved estimates of the CO ERs and EFs from
such fires.

Figure 2 presents a comparison between selected EFs from this study with those published in Akagi et al. (2011) in
the form of ratios between the EFs from these studies. For this comparison, | have selected species that are of major climatic
or chemical significance or are important BB tracers, and for which there are enough data to allow a meaningful comparison.
Data are presented for the combustion types with the largest total global emissions, i.e., savanna/grassland, tropical, temperate,
and boreal fires, and biofuel use. In the case of biofuel use, the comparison is made with Akagi et al.’s “open cooking” category,
because its MCE shows good agreement with that for the “biofuel use” category in this paper. Figure 2 shows close agreement
for the main carbon species CO; and CO as well as for MCE, suggesting that both species capture comparable combustion
conditions. For most other species, the EF ratios fall within a factor of two, with no obvious systematic shift for either the
individual species or for the combustion types. A slight exception are the EFs for savanna/grassland, which tend to be some-
what higher in the present study. In one case (isoprene) this is the result of higher values from an individual study, i.e., the lab-
adjusted-to-field EFs from Stockwell et al. (2015), but generally the differences appear to be the result of including a larger

set of studies from this category in the present study. The lower EFs for glycolaldehyde in this study are the result of corrections
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made by the Yokelson group to their data based on improved spectral data (see https://www.atmos-chem-phys-dis-
cuss.net/12/C11864/2013/acpd-12-C11864-2013.pdf), which have been incorporated here and in the online updates to Akagi

et al. (2011), but for consistency the values from the original paper were used for Fig. 2. The largest and most systematic

difference is seen for the NMOG category, where the values from Akagi et al. (2011) are as much as a factor of 10 higher than
the averages from the published field studies in Table 1. This is largely due to differences in the analytical techniques used in
the original studies. Most of the older studies, especially in field campaigns, were measuring only a very limited subset of
NMOG (e.g., non-methane hydrocarbons), whereas Akagi et al. in the original paper and in the subsequent updates used tech-
niques that measured practically all NMOG, including unidentified species. To address this issue, | am including both the field
study averages (labeled VOCs) and the corresponding values from the online updates to Akagi et al. (2011) (labeled NMOGS)

in Table 1. The latter values may be more appropriate as input for modeling studies that require an estimate of total NMOGs.

3.3 Emissions from global biomass burning

In 2001, we estimated the total amount of biomass burned by all combustion types to be 8.6 Pg dry matter annually,
with an uncertainty of £50% (A&M?2001). This estimate was based on bottom-up inventories and had not yet benefitted from
remote-sensing detection and quantification of fires. At present, there are several operational fire detection and emission esti-
mation products based on remote sensing. Three of them (for example) use an approach based on burnt area and hotspot
detection: Fire INventory from NCAR (FINN; Wiedinmyer et al., 2011), Fire Locating and Modeling of Burning Emissions
(FLAMBE; Reid et al., 2009), and Global Fire Emissions Database (GFED; van der Werf et al., 2017). The other three products
are based on fire radiative power (FRP): Quick Fire Emission Dataset (QFED; Darmenov and da Silva, 2015), Global Fire
Assimilation System (GFAS; Kaiser et al., 2012), and Fire Energetics and Emissions Research (FEER; Ichoku and Ellison,
2014). The amounts of biomass burned annually in open fires estimated by these systems still spans a wide range, from 4.3 Pg
(GFAS) to 11.6 Pg (FLAMBE) (for the FRP-based products, which do not use biomass burnt in their calculations, the biomass
estimate was based on the stated emission of carbon compounds and an assumed carbon fraction of 45 % in the biomass).

For domestic biofuel use, there are three recent global estimates: 2.1 Pg a* (Fernandes et al., 2007), 2.5 Pg a* [S. J.
Smith, personal communication, 2019, based on the Community Emissions Data System (CEDS) model (Hoesly et al., 2018)]
and 2.3 Pg a’* [Z. Klimont, personal communication, 2019, based on the methodology in Klimont et al. (2017)]. These recent
estimates are all somewhat lower than those of A&M?2001 (2.9 Tg a*) and Yevich and Logan (2003) (3.1 Tg a%). For charcoal
burning, | am also using the estimate of 53 Tg a™* given for 2014 by FAO (2015), and for charcoal making | am assuming a
25% vyield of charcoal relative to dry wood (Yevich and Logan, 2003).

Combining these estimates of open and domestic burning yields a mean estimate of 8.8 Pg (with a range of 6.4 to
14.1 Pg) dry biomass burned annually. Interestingly, this is almost identical to the values given in A&M2001: 8.6 Pg a’%, with
an estimated range of 4.3 to 12.9 Pg a. Table 2 summarizes these emission estimates. For the various categories of open

burning, the satellite-derived emission estimates vary greatly, in some cases by an order of magnitude. Differences in the
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definitions of the burning categories between the different retrieval algorithms, differing ability to detect small fires, and the
fundamental difference between the burnt-area and FRP-based techniques may all play a role here.

In Table 3, I use the average of the available estimates from the different inventories shown in Table 2 as activity
estimates for the combustion categories to derive emission values for major species emitted from biomass burning. For com-
parison, the last column in Table 3 shows the global total emissions estimated in A&M2001. The totals of the major emitted
carbon species and many minor species remain fairly close to those in our previous assessment. Given the large number of
measurements for the emission factors for the major species, CO,, CO, and CHa, the standard error of the mean is much smaller
than the standard deviation, and thus the relative uncertainties of the mean for these emission factors are quite small, 1-3% for
CO,, 4-9% for CO, and 6-18% for CH,4 from the major burning categories savanna, forests, and biofuel. Consequently, the
global emission uncertainties for these species are completely dominated by the large uncertainties in the activity estimates.

The best independent “reality check” for these emissions may still come from the inverse modeling of the CO budget.
This species is the most appropriate for such a comparison, because its emission factors are well constrained, biomass burning
is a large fraction of all global sources, and there is a large body of measurements both from ground stations and remote
sensing. Estimates of CO emissions from the various inversion models range from 190 to 560 Tg a from biofuel burning and
360 to 610 Tg a* from open burning for the years around 2000 (Park et al., 2015, and references therein). The model of Park
et al. (2015), which uses a joint inversion of CO concentrations and oxygen isotopic composition and therefore is likely to be
the most reliable in separating the different source types, predicts CO emissions of 380 to 610 Tg a* from open burning, 400
to 520 Tg a™* from biofuel use, and 780 to 1130 Tg a™* for all biomass burning. Using the EFs from Table 1 and the activity
estimates from Table 2, we obtain a range of 390 to 1210 Tg a** for the CO emissions from open burning, in reasonable
agreement with the inverse results. The range of biofuel CO emissions estimated from Tables 1 and 2 is only 181-196 Tg a™*,
accounting for less than one-half of the inverse estimate. This suggests either that the amount of biofuel use is significantly
underestimated in present bottom-up budgets, or that the inversions attribute some of the open burning inaccurately to biofuel
use. This could likely be the case for agricultural burning, which uses similar fuels and takes place in similar regions as biofuel
use. The inverse analyses may also be useful to indicate unlikely estimates based on remote-sensing techniques. For example,
the burning of 8750 Tg dm in tropical forests estimated by FLAMBE, combined with the corresponding EFco (105 g kg?)
would produce CO emissions of 900 Tg a* from this biome alone, well above the range of inverse CO emission estimates for
all open burning (see also the comments by Reviewer 1, https://doi.org/10.5194/acp-2019-303-RC1).

Major differences between the present emission estimates and A&M2001 are seen for the oxygenated volatile organic
compounds and for HCN (as already noted in Akagi et al., 2011), which all are significantly greater in the present assessment
than in A&M2001. This is due to the large number of new and more accurate emission factor measurements for these com-

pounds, which have been made possible by improvements in analytical techniques since the 1990s.
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4 Conclusions

We are left with the somewhat frustrating conclusion that, in spite of the great progress in emission factor measure-
ments and detection and quantification of fires, the overall uncertainty of global biomass burning emissions has not decreased
significantly for most substances since our analysis of almost twenty years ago. Evidently, there is a great need for improved
accuracy in the activity estimates, both for open burning and especially for biofuel use. For open burning, coordinated regional
CO studies in regions and at times of high biomass burning activity, including both FRP and burnt-area based remote sensing
approaches as well as inversions, may be a way to resolve discrepancies and improve accuracy. This would be of great benefit
for testing and improving fire emission models, which also give quite divergent results and have difficulties in capturing
interannual variations and temporal trends. For example, the modelled estimates of carbon emitted from open burning in the
nine models participating in the FireMIP project spans from 1.0 to 4.9 Pg a** (Li et al., 2019a).

With regard to emission factors, Table 1 can serve as a guide to prioritizing future research activities. Photochemically
active species and toxic compounds for which there are only a few measurements from important fire types deserve more
intense study. An example is the emission of PAHSs, where we have only one study from boreal fires and none at all from
tropical forest fires. Given the toxicity of these compounds and the increasing exposure of populations in these regions to
biomass smoke as a result of climate change and population growth, this seems an important knowledge gap. Another example
are the emissions of semivolatile and intermediate-volatile compounds (I/SVOCs), which are important in the context of or-
ganic aerosol from biomass burning, but for which at this time only laboratory measurements are available (Hatch et al., 2018).
I have already referred to the lack of field measurements of alkyl amine emissions, which may be of importance for new
particle formation. In view of the grave health risk associated with aerosol particles (see, e.g., Lelieveld et al., 2019, and
references therein) and the growing exposure to wildfire smoke in areas like the western U.S.A., the accuracy and fire condition
dependence of PM emissions need to be improved. Emphasis should be on field measurements under a variety of representative
conditions, to represent the influence of parameters like fuel moisture and fire weather. While the approach in this paper is
focused on global averages, future work should also emphasize regional and seasonal differences in order to better support
more highly geographically resolved modeling.

A spreadsheet containing Table 1, the data on which the averages in Table 1 are based, and the corresponding refer-

ences is available at http://dx.doi.org/10.17617/3.26 . This spreadsheet will be updated periodically.
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Figure Captions

Figure 1: Scatter plots of the emission factors of ethene (a) and ethane (b) against MCE, based on studies in the different
combustion categories.
5 Figure 2: Comparison between the emission factors for selected species between this study and the values in Akagi et el.,
(2011).
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Table 1: Emission factors for pyrogenic species emitted from various types of biomass burn®

Species Savanna and grassland Tropical forest Temperate forest Boreal forest Peat Fires Agricultural residues (open)
average std.dev. N average std.dev. N average std.dev. N average std.dev. N average std.dev. N average std.dev. N
MCE 0.94 0.02 49 091 0.03 16 0.90 0.05 45 0.89 0.04 21 0.80 0.02 6 0.92 0.06 36
CO, 1660 90 31 1620 70 9 1570 130 39 1530 140 14 1590 150 6 1430 230 29
(e[¢] 69 20 50 104 39 16 113 50 47 121 47 22 260 23 6 76 55 39
CH, 2.7 22 49 6.5 1.6 13 52 2.8 37 5.5 2.5 20 9.1 1.5 6 5.7 6.0 20
vocC* 5.1 59 14 5.6 1.5 4 13.4 11.8 13 6.0 2.9 8 21 - 0 7.6 8.0 12
Total NMOG, including unidentified 30 - - 52 - - 39 18 - 59 - - 136 - 0 51 - -
CH, 0.31 0.29 29 0.35 0.39 6 0.31 0.09 21 0.28 0.13 12 0.11 0.05 3 0.27 0.24 11
CH, 0.83 0.38 26 1.11 0.24 5 1.11 0.29 21 1.54 0.66 7 1.47 0.72 3 1.00 0.49 14
C,Hs 0.42 0.32 29 0.88 0.23 7 0.69 0.56 21 0.97 0.37 14 1.85 1.5-2.2 2 0.79 0.62 11
C;H, 0.071 0.111 8 0.013 - 1 0.05 0.02 7 0.062 0.031 3 0.006 - 1 0.18 0.01-0.34 2
C;Hg 0.46 0.45 26 0.86 0.41 5 0.60 0.40 20 0.67 0.45 7 1.14 1.07-1.21 2 0.47 0.36 16
C;Hg 0.13 0.18 20 0.53 0.15-0.91 2 0.28 0.18 15 0.29 0.10 8 0.99 - 1 0.17 0.07 9
1-Butene 0.082 0.049 13 0.073 0.020-0.125 2 0.12 0.061 9 0.16 0.143 4 0.46 0.18-0.74 2 0.083 0.043 8
i-Butene 0.041 0.019 6 0.109 - 1 0.086 0.074 9 0.052 0.032 3 0.31 - 1 0.079 0.040 3
trans-2-Butene 0.020 0.012 11 0.033 0.016-0.050 2 0.037 0.031 9 0.030 0.018 3 0.078 - 1 0.036 0.014 6
cis-2-Butene 0.017 0.010 11 0.031 0.020-0.042 2 0.038 0.039 9 0.023 0.016 3 0.062 - 1 0.027 0.010 6
Butadiene 0.095 0.057 13 0.15 - 0 0.125 0.068 12 0.089 0.030 4 0.22 0.19-026 2 0.16 0.24 10
n-Butane 0.021 0.011 14 0.041 - 1 0.080 0.057 12 0.111 0.059 7 0.32 - 1 0.043 0.029 7
i-Butane 0.007 0.005 13 0.015 - 1 0.031 0.026 11 0.052 0.051 6 0.090 - 1 0.016 0.017 7
1-Pentene 0.022 0.009 6 0.058 - 1 0.048 0.024 7 0.046 0.025 3 0.110 - 1 0.015 0.011 5
2-Pentenes 0.014 0.020 4 0.026 - 0 0.043 0.023 5 0.011 0.006-0.016 2 0.062 - 1 0.023 0.005 4
n-Pentane 0.007 0.008 11 0.014 - 1 0.034 0.026 10 0.050 0.015 6 0.24 - 1 0.042 0.057 7
Methyl-butenes 0.025 0.037 7 0.075 - 1 0.056 0.045 6 0.051 - 0 0.125 - 1 0.026 0.012 5
2-Methyl-butane 0.008 0.009 10 0.008 - 1 0.017 0.011 8 0.032 0.016 6 0.123 - 1 0.019 0.014 5
n-Pentadienes 0.048 - 1 0.042 - 0 0.035 0.016 4 0.049 - 0 0.10 - 0 0.031 - 0
Isoprene 0.101 0.158 10 0.22 0.016-0.42 2 0.10 0.05 9 0.074 - 1 0.52 0.05-0.98 2 0.17 0.26 7
Cyclopentene 0.019 0.016 4 0.022 - 0 0.041 0.019 5 0.03 - 0 0.025 - 1 0.007 0.002 3
Cyclopentadiene 0.026 - 1 0.035 - 0 0.027 0.025-0.029 2 0.041 - 0 0.010 - 1 0.001 - 1
4-Methyl-1-pentene 0.049 - 1 0.049 - 1 0.040 - 0 0.043 - 0 0.09 - 0 0.004 0.005 4
2--Methyl-1-pentene 0.018 0.032 4 0.037 - 0 0.058 0.027 3 0.043 - 0 0.11 - 1 0.027 - 0
1-Hexene 0.043 0.018 6 0.065 - 1 0.084 0.022 3 0.109 - 1 0.14 - 0 0.011 0.005 3
Hexadienes 0.006 - 1 0.007 - 0 0.006 0.006-0.006 2 0.009 - 0 0.018 - 0 0.005 - 0
n-Hexane 0.018 0.028 10 0.032 - 0 0.032 0.040 10 0.054 0.035 3 0.14 - 1 0.032 0.059 4
Isohexanes 0.019 0.028 3 0.048 - 0 0.026 0.038 8 0.013 0.008-0.018 2 0.054 - 1 0.067 0.115 4
Heptanes 0.016 0.019 6 0.024 - 0 0.029 0.026 8 0.021 0.018-0.024 2 0.112 - 1 0.031 0.033 4
Octenes 0.021 0.027 3 0.012 - 1 0.036 0.023 5 0.021 - 0 0.065 - 1 0.002 - 1
Terpenes 0.104 0.096 5 0.15 - 0 1.17 1.95 9 1.53 - 1 0.08 0.005-0.16 2 0.027 0.026 4
Benzene 0.33 0.22 19 0.38 0.05 4 0.42 0.17 17 0.57 0.21 7 0.87 0.78-0.95 2 0.27 0.19 17
Toluene 0.19 0.14 17 0.23 0.04 4 0.27 0.15 16 0.35 0.11 6 0.45 0.37-0.52 2 0.17 0.10 17
Xylenes 0.086 0.077 8 0.086 0.049 3 0.16 0.090 9 0.11 0.016 3 0.23 - 1 0.10 0.12 10
Ethylbenzene 0.022 0.010 8 0.043 0.034 3 0.041 0.018 10 0.038 0.011 3 0.042 - 1 0.044 0.049 7
Styrene 0.056 0.029 6 0.028 - 0 0.066 0.028 8 0.13 - 0 0.055  0.027-0.082 2 0.043 0.027 7
PAHs 0.012 0.016 4 0.15 - 0 0.017 0.019 6 0.72 - 1 0.42 - 0 0.056 0.071 6
Methanol 1.35 0.47 14 2.8 0.5 4 22 0.9 20 2.33 1.45 13 2.5 0.4 3 33 2.7 11
Ethanol 0.036 0.017-0.055 2 0.067 - 0 0.076 0.089 7 0.058 0.063 3 0.17 - 0 0.05 - 0
1-Propanol 0.025 - 1 0.038 - 0 0.041 - 0 0.044 - 0 0.094 - 0 0.028 - 0
2-Propanol 0.08 - 0 0.12 - 0 0.13 - 0 0.14 - 0 0.30 - 0 0.09 - 0
Butanols 0.11 0.008-0.21 2 0.009 - 1 0.064 0.029-0.098 2 0.071 - 0 0.15 - 0 0.008 - 1
Cyclopentanol 0.033 - 1 0.032 - 1 0.035 - 0 0.038 - 0 0.081 - 0 0.012 - 1
Phenol 0.43 0.19 7 0.23 0.006-0.45 2 0.25 0.09 3 0.75 - 0 0.47 0.42-0.51 2 0.89 0.96 5
Formaldehyde 1.23 0.65 16 2.40 0.63 3 2.04 0.70 16 1.75 0.40 4 1.07 0.44 3 1.8 0.6 8
Acetaldehyde 0.84 0.65 9 2.26 1.55-2.97 2 1.21 0.56 14 0.81 0.23 4 1.16 0.70-1.63 2 1.8 1.0 5
Hydroxyacetaldehyde (glycolaldeh.) 0.13 0.08 5 0.33 - 0 0.39 - 1 0.38 - 0 0.11 - 1 32 2.3-4.1 2
Glyoxal 0.33 - 0 0.50 - 0 0.54 - 0 0.59 - 0 13 - 0 0.24 - 1
Methylglyoxal 0.40 0.15-0.64 2 0.49 - 0 0.27 - 1 0.57 - 0 0.23 - 1 0.55 - 1
Acolein (Propenal) 0.48 0.25 6 0.65 - 1 0.34 0.13 7 0.33 - 1 0.27 - 1 0.62 0.39 5



Propanal
Butanals
Methacrolein

Crotonaldehyde (2-butenal)

Hexanals
Heptanals
Acetone
2-Butanone
2,3-Butanedione

1-Butene-3-one (Methylvinyl ketone)

Pentanones
Hexanones
Heptanones
Octanones
Benzaldehyde
Acetol (hydroxyacetone)
Furan
2-Methyl-furan
3-Methyl-furan
2-Ethylfuran
2,4-Dimethyl-furan
2,5-Dimethyl-furan
Tetrahydrofuran
2,3-Dihydrofuran
Benzofuran
Furfural (2-Furaldehyde)
Methyl formate
Methyl acetate
Acetonitrile
Acrylonitrile
Propionitrile
Pyrrole
Trimethylpyazole
Methylamine
Dimethylamine
Ethylamine
Trimethylamine
n-Pentylamine
2-Methyl-1-butylamine
Formic acid

Acetic acid

H,

NOy (as NO)
HONO

N,O

NH;

HCN

Cyanogen, (CN)
N,

SO,

Dimethyl sulfide (DMS)
Cos

HCI

CH;ClI

CH;Br

CH;l

Hg0

PM; 5

TPM

TC

0.053
0.11
0.10
0.24
0.048
0.003
0.47
0.13
0.35
0.23
0.014
0.048
0.006
0.015
0.102

0.97
2.5
0.47
0.17
0.89
0.44

2.6
0.47
0.008
0.025
0.13
0.063
0.0027
0.0007

4.8E-05

0.009-0.097
0.054-0.220

0.068
0.001-0.005
0.18

0.097
0.3
0.14
0.14
0.004
0.001-0.009
0.067
0.002-0.016
0.013-0.015
0.040
0.74
0.059-0.26
0.07
0.009
0.012-0.042

0.10
0.13
0.15
0.24
0.021
0.004
0.63
0.50
0.73
0.39
0.059
0.057
0.002
0.019
0.027
1.81
0.33
0.28
0.055
0.003
0.024
0.085
0.017
0.014
0.016

0.051

28
0.85
0.20
133
0.44
26
0.77
0.0022
0.050
0.13
0.029
0.0078
0.0068
1.0E-04
8.3
10.9
5.5

0.073-0.18

0.010-0.031

0.028-0.090

0.25-0.41
0.28
0.030-0.080

0.78
0.21

0.37

0.047

0.02-0.04
0.005-0.010

4.7E-5-1.7E-4
33
53
1.6

BAA O — N MNDOWMEK LWL O O0L p Ok Q9QWwWhAhOOODOOOO iU OO0 = —mmO i = m—IPMNWIMNO = = O N — o = N = = N —

0.087
0.11
0.14
0.39
0.038
0.005
0.76
0.23
0.89
0.165
0.066
0.045
0.005
0.023
0.132

3.0
0.33
0.25
0.98
0.64
26
0.70

0.014
0.035
0.039
0.042
0.0015
0.0005
2.0E-04
18.5
18.4
8.4

0.040
0.07
0.18

0.033
0.50
0.21
0.86

0.109

0.033

0.043-0.046

0.077

0.26
0.21
0.016
0.012
0.070
0.0005-0.0017
0.001-0.004
0.071
0.81
0.022-0.027
0.058
0.17
0.014
0.011-0.012
0.085

0.17
0.12
0.69
0.39

0.48
0.015
0.044
0.031
0.055
0.0010
0.0004-0.001
1.8E-04
14.4
8.3
22

AP OOOCO0OO0O0O0LNATVUNTIWRNNULUOULWULE—=WOONULULULO GO RO uu N

0.24
0.15
0.11
0.42
0.038
0.005
1.59
0.16
0.34
0.099
0.074
0.066
0.005
0.025
0.096
21
0.36
0.42
0.052
0.008
0.012
0.10
0.011
0.012
0.060
0.61
0.024
0.087
0.31
0.068
0.11
0.14

1.6
1.18
0.41
0.24

2.5
0.53
2.6
0.75

0.0023
0.058
0.13
0.060

0.0029

0.0004

2.3E-04
18.7
15.3
9.8

1.61
0.04

0.097-0.10

0.86

0.06
1.75
0.30

0.14-0.31

0.031

0.033
0.0011

3.0E-04
159
12.3-18.3

XA O OO0 OO OO0 O0O0ON === 00000000 NODO0ODO0ODODOO0ON—WnadO0O0O0wo —

—_
—_

O UL m A RAOWH—NOOZD A~ U —

0.34
0.02
0.39
0.90
0.08
0.011
0.91
0.34
0.32
0.057
0.075
0.14
0.011
0.053
0.056
0.64
1.07
0.31
0.11
0.017
0.026
0.14
0.023
0.026
0.032

0.35
42
44

43
0.045
0.110
0.008
0.15
0.010
0.012
18.9
275
143

0.69-1.12
0.14-0.54

0.42-0.86
0.74-1.4
0.12-0.50

0.14
0.97
0.31-2.2
0.21-0.49
32
1.2

0.003-0.088

2.3

OO LWO = = = = =N = O O0WwWOPMN  —~WWOODODODODODODODOO —~—O0O0O0NN—O0O0O0 —~—00O0PWNN—O0OO0OO =~ MNNOOOO ~O0O

0.18
0.17
0.28
0.42
0.019
0.001
0.71
0.58
1.17
0.48
0.10
0.042
0.002
0.015
0.038
3.12
0.90
0.53
0.076
0.0003
0.002
0.098
0.004
0.004
0.023
1.03
0.04
0.10
0.25
0.094

24
0.37
0.09
0.99
0.42
2.6
0.80
0.05
0.059
0.18
0.17
0.0011
0.0002
5.1E-05
8.2
12.9
53

0.01-0.32

0.008-0.03
0.47
0.31
0.14
0.25-0.70
0.005-0.20

0.006-0.07
3.24
0.88
0.521

0.002-0.15

0.71
0.03-0.07
0.070
0.255
0.14

5.0E-05
44
72
39

N O OVWOO0OO0ODO0ODO0OOO = —=W-UOO =N mmE;eE =N WERONO = OMNNWL WV — N — - N —

553
S



ocC 3.0 1.5 15 44 1.9 5 10.9 7.2 13 59 2.5 3 14.2 12.4-16.0 2 49 3.6 20
BC or EC 0.53 0.35 18 0.51 0.34 8 0.55 0.36 14 0.43 0.21 4 0.10 0.09 3 0.42 0.28 24
Levoglucosan 0.05 - 1 0.42 - 1 1.33 1.21 6 1.3 - 1 0.57 - 1 0.61 0.60 8
K 0.40 0.24 12 0.32 0.22 4 0.17 0.16 4 0.17 - 0 0.004 - 1 0.48 0.43 9
CN 2.3E+16 2.3E+16 5 3.9E+15 1.3E+15 3 9.2E+15 - 0 4.2E+15 - 1 - - 0 4.9E+15 2.0E+15 4
CCN (0.5% SS) 7.9E+14 - 1 1.7E+15 1.64E+15-1.68E+1: 2 2.0E+15 3.4E+15 3 1.6E+15 - 0 - - 0 1.0E+15 - 0
N(>~ 0.12 pm diameter) 1.2E+15 8.5E+14 4 2.7E+15 - 1 1.0E+15 - 0 1.0E+15 - 0 - - 0 1.0E+15 - 0

) Emission factors are given in gram species per kilogram dry matter burned. See text for the conventions used for reporting uncertainties. Abbreviations
are as follows: PM, 5, particulate matter <2.5 mm diameter; TPM, total particulate matter; TC, total carbon; BC, black carbon; CN, condensation nuclei;

CCN(0.5% SS), cloud condensation nuclei at 0.5% supersaturation; and N(>~0.12 mm diam), particles > ~0.12 um diameter. Values in italics represent estimates for

emission factors that have not been measured directly.

l’) Estimation method for emission factors for which no measurements are available. See text section 2.4 for detz
) based on field measurements that only include varying (often incomplete) sets of identified species (see text for discussi

d) Sum of chemically identified and unidentified species, from online updates to Akagi et al. (20



Table 1 (continued)

Species Biofuels (without dung) Dung Charcoal making Charcoal burning Garbage burning Lab studies EM®
average std.dev. N average std.dev. N average std.dev. N average std.dev. N average std.dev. N average std.dev. N

MCE 0.92 0.03 39 0.88 0.04 9 0.79 0.04 8 0.88 0.04 15 0.93 0.02 3 0.90 0.10 48 ---

CO, 1550 170 36 1050 230 9 490 70 7 2500 350 14 1400 180 3 1590 330 42 ---

(e[¢] 83 29 61 89 42 14 93 39 9 207 63 17 66 20 3 93 61 45 ---

CH, 6.8 6.0 28 8.9 49 8 19.0 19.9 8 6.0 2.6 9 42 0.6 3 59 4.8 33 ---

Total VOC 7.8 5.0 23 14.4 10.0-18.8 2 26.4 18.1 4 6.6 49 6 8.2 - 1 18.0 16.4 10 Cco
Total NMOG, including unidentifie® 58 - - 98 - - 321 - - 11 - - 23 - - - - - -

CH, 0.68 0.37 14 0.68 0.41 3 0.28 0.24 3 0.27 0.18 4 0.52 0.13 3 0.35 0.31 26 ---

CH,y 1.33 0.90 15 2.25 1.36 4 1.51 0.78 4 0.51 0.34 6 22 0.8 3 1.6 0.8 29 ---

C,Hs 0.63 0.61 13 1.28 0.70 3 2.4 1.3-3.4 2 0.76 0.34 5 1.6 1.5-1.7 2 1.12 1.18 11 ---

C;H, 0.13 0.14 3 0.11 0.06 3 0.09 - 0 0.21 - 0 0.54 0.09-0.99 2 0.54 0.41 7 (e[¢]
C;Hs 0.40 0.29 13 1.45 0.46 4 1.03 0.32 4 0.53 0.19 3 1.6 0.3 3 0.85 0.75 24 ---

C;Hg 0.24 0.25 7 0.50 0.31 3 0.53 - 1 0.17 0.12 3 0.75 0.59-090 2 0.27 0.22 8 ---

1-Butene 0.23 0.24 9 0.31 0.131 3 - - 0 0.12 0.040-0.20 2 1.07 1.05-1.09 2 0.27 0.30 12 (e[¢]
i-Butene 0.26 0.33 6 0.26 0.11 3 - - 0 0.091 0.026-0.16 2 0.63 - 1 0.18 0.15 5 Cco
trans-2-Butene 0.05 0.03 3 0.12 0.06 3 - - 0 0.040 0.016-0.063 2 0.17 0.17-0.17 2 0.123 0.152 7 (e[e]
cis-2-Butene 0.04 0.02 3 0.081 0.041 3 - - 0 0.025 0.016-0.034 2 0.13 0.12-0.14 2 0.158 0.295 7 (e[e]
Butadiene 0.15 0.10 9 0.30 0.10 3 - - 0 0.11 0.09 3 0.20 0.14-027 2 0.17 0.10 14 (e[¢]
n-Butane 0.19 0.41 7 0.18 0.12 3 - - 0 0.074 0.053-0.095 2 0.40 0.28-0.51 2 0.188 0.192 7 Cco
i-Butane 0.15 0.22 3 0.10 0.10 3 - - 0 0.012 0.010-0.013 2 0.09 0.06-0.12 2 0.444 0.783 6 CcOo
1-Pentene 0.03 0.03 6 0.11 0.06 3 - - 0 0.028 - 1 0.47 0.21-0.73 2 0.136 0.315 8 (e[¢]
2-Pentenes 0.02 0.02-0.02 2 0.090 0.071 3 - - 0 0.051 - 0 0.23 0.16-0.30 2 0.090 0.091 7 (e[e]
n-Pentane 0.018 0.021 8 0.093 0.088 3 - - 0 0.096 - 1 0.74 0.39-1.08 2 0.076 0.075 9 (e[e]
Methyl-butenes 0.014 0.012 3 0.036 0.021 3 - - 0 0.015 - 1 0.041 - 1 0.202 0.356 7 (e[e]
2-Methyl-butane 0.045 0.043 4 0.34 0.41 3 - - 0 0.071 - 1 0.22 0.04-039 2 0.096 0.080 4 (e[¢]
n-Pentadienes 0.017 0.015 4 0.039 0.02-0.06 2 - - 0 0.084 - 0 0.026 - 0 0.171 0.266 5 Cco
Isoprene 0.06 0.05 10 0.20 0.12 3 - - 0 0.12 0.017-0.22 2 0.10 0.07-0.13 2 0.34 0.397 18 Cco
Cyclopentene 0.008 - 1 0.018 - 0 - - 0 0.035 - 1 0.014 - 0 0.055 0.044 7 (e[e]
Cyclopentadiene 0.061 0.047 4 0.030 - 0 - - 0 0.071 - 0 0.022 - 0 0.038 0.038 6 (e[e]
4-Methyl-1-pentene 0.015 - 1 0.032 - 0 - - 0 0.074 - 0 0.023 - 0 0.005 0.002-0.008 2 CcOo
2--Methyl-1-pentene 0.029 - 0 0.031 - 0 - - 0 0.073 - 0 0.023 - 0 0.019 - 1 (e[e]
1-Hexene 0.018 0.007 5 0.11 0.06-0.17 2 - - 0 0.11 - 0 0.036 - 0 0.045 0.040 8 (€0)
Hexadienes 0.006 - 0 0.006 - 0 - - 0 0.01 - 0 0.005 - 0 0.061 0.066 5 CO
n-Hexane 0.009 0.006 6 0.12 0.15 3 - - 0 0.185 0.063-0.31 2 0.23 0.17-0.28 2 0.026 0.023 8 (€0)
Isohexanes 0.065 0.084 3 0.18 0.28 3 - - 0 0.09 - 0 0.17 0.05-0.28 2 0.062 0.095 6 (€0)
Heptanes 0.005 0.003 6 0.11 - 1 - - 0 0.047 - 0 0.23 - 1 0.080 0.097 6 (€0)
Octenes 0.007 0.014 4 0.015 - 0 - - 0 0.036 - 0 0.011 - 0 0.044 0.038 3 CO
Terpenes 0.10 0.14 7 0.12 0.199 3 - - 0 - - 0 0.092 - 1 0.46 0.51 14 (€0)
Benzene 0.95 0.89 17 1.25 0.63 3 - - 0 1.23 0.72-1.7 2 1.9 0.8 3 0.60 0.79 24 (€0)
Toluene 0.45 0.51 14 0.87 0.39 3 - - 0 0.41 0.20-0.62 2 0.60 0.22 3 0.40 0.54 24 CO
Xylenes 0.13 0.15 10 0.32 0.282 3 - - 0 0.16 0.099-0.23 2 0.30 0.27 3 0.14 0.10 11 (€0)
Ethylbenzene 0.10 0.10 7 0.17 0.18 3 - - 0 0.053 0.033-0.074 2 0.33 0.16 3 0.086 0.141 10 (€0)
Styrene 0.18 0.19 8 0.13 0.11 3 - - 0 0.14 0.066-0.22 2 0.30 0.07-0.53 2 0.064 0.062 15 (€0)
PAHs 0.09 0.10 13 0.023 - 1 - - 0 0.53 0.41-0.66 2 0.028  0.011-0.045 2 0.061 0.119 11 (€0)
Methanol 2.0 1.1 9 32 1.1 4 13.0 6.1 3 1.0 0.72-1.24 2 1.54 1.18 3 2.17 2.30 30 ---

Ethanol 0.075 0.02-0.13 2 0.23 0.29 3 0.060 - 0 0.13 - 0 0.09 - 1 0.084 0.072-0.097 2 (€0)
1-Propanol 0.030 - 0 0.032 - 0 - - 0 0.07 - 0 0.024 - 0 0.25 - 1 (e[¢]
2-Propanol 0.10 - 0 0.10 - 0 - - 0 0.24 - 0 0.076 - 0 0.11 0.005-0.21 2 LV
Butanols 0.051 0.01-0.10 2 0.052 - 0 - - 0 0.12 - 0 0.039 - 0 0.015 0.006 5 (e[e]
Cyclopentanol 0.026 - 0 0.028 - 0 - - 0 0.06 - 0 0.020 - 0 - - 0 (e[e]
Phenol 0.72 1.15 7 1.58 1.0-2.2 2 4.7 2.8-6.6 2 2.0 - 1 0.30 0.16 3 1.06 1.42 18 Cco
Formaldehyde 0.87 1.00 13 2.42 - 1 1.1 - 1 0.51 0.19 3 0.9 1.0 4 1.37 0.73 30 ---

Acetaldehyde 0.41 0.32 13 1.46 0.58 3 - - 0 0.13 - 1 2.1 1.6 3 1.62 1.47 21 (e[e]
Hydroxyacetaldehyde (glycolaldeh.) 0.33 0.11 3 0.50 - 1 - - 0 0.6 - 0 24 - 1 0.63 0.68 9 CcO
Glyoxal 0.58 - 1 0.43 - 0 - - 0 1.0 - 0 0.32 - 0 0.41 0.43 8 (e[¢]
Methylglyoxal 0.39 0.18-0.60 2 0.42 - 0 - - 0 1.0 - 0 0.31 - 0 0.33 0.26 11 CcOo
Acolein (Propenal) 0.085 0.093 11 0.24 0.19-030 2 - - 0 1.0 - 0 0.36 0.027-0.70 2 0.55 0.37 15 (e[e]
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Table 2: Estimates of biomass burned (Tg dry matter) annually in the various fire categories

Source Savanna/  Tropical Temperate Boreal Peat  Agricultural  Total Years

grassland forest forest forest residues  open fires
FINN* 1920 3200 260 137 --- 210 5730 2005-2010
GFED4.1s" 2980 690 100 330 161 290 4550 2005-2015
GFAS1.2° 2540 910 110 460 183 63 4260 2003-2018
QFED' 3690 850 280 200 --- --- 5560 2003-2012
FEER® --- --- --- --- --- --- 9330 2000-2012
FLAMBE' 870 8750 750 1120 --- 99 11580 2005-2015
ECLIPSE V6a® 530 - 2005-2010
Average 2400 2880 300 450 172 240 6440

Wood etc. Charcoal Charcoal Agricultural Dung Total

making burning waste biofuel

Fernandes” 1350 156 39 500 75 2120 2000
FAO' 53 2014
ECLIPSE Vé6a® 1780 -- 44 350 89 2270  2005-2010
CEDS' 1590 --- 46 580 88 2490 2010
Average 1570 180 45 480 84 2360
Grand total from all biomass burning 8800

"Wiedinmyer et al. (2011)

b)from http://www.geo.vu.nl/~gwerf/GFED/GFED4/tables/GFED4.1s_C.txt assuming 45% C in biofuel

“)I. Hiiser, personal communication 2019, based on methodology in Kaiser et al. (2012)

d)A. Darmenov, personal communication 2019, based on methodology in Darmenov and da Silva (2015). Emissions
from boreal fires were calculated from extratropical fires north of 50 °N, and temperate emissions were calculated by
subtracting boreal from extratropical emissions; emissions from crop residue burning fires are included in the
grassland fire category.

“)Ichoku and Ellison (2014), not included in category averages because breakdown not available

f)E. Hyer, personal communication 2019, based on methodology in Reid et al. (2009). Temperate and boreal
emissions were calculated by splitting extratopical burning 40%/60%.

£)Z. Klimont, personal communication 2019, based on methodology in Klimont et al. (2017)
h)Fernandes et al. (2007)

HFAO (2015)

j)S. Smith, personal communication 2019, based on methodology in Hoesly et al. (2019)



Table 3: Global emission of selected species based on the emission factors in Table 1 and the biomass burning estimates in Table 2 (Tg a '1).

Savanna Tropical =~ Temperate Boreal Peat  Agricultural Biofuel = Charcoal Charcoal Total A&M2001
and grassland  forest forest forest fires residues burning making burning

Tg dm burned 2400 2880 300 450 172 240 2134 180 45 8800 8600
CO, 3980 4670 470 690 270 340 3310 90 110 13900 13400
CO 170 300 34 55 45 18 180 17 9.4 820 690
CH, 6.5 19 1.6 2.5 1.6 1.4 15 34 0.27 50 39
Total VOC 12.2 16 4.0 2.7 3.7 1.8 17 4.8 0.3 62 49
Total NMOG" 72 149 11.7 26 23 12.3 123 58 0.5 480 49
CH, 0.75 1.0 0.09 0.13 0.02 0.07 1.4 0.05 0.012 3.6 3.7
Methanol 32 8.1 0.7 1.0 0.4 0.8 43 23 0.04 21 12.7
Formaldehyde 29 6.9 0.6 0.8 0.2 0.4 1.9 - 0.02 14 55
Acetaldehyde 2.0 6.5 0.36 0.37 0.20 0.43 0.87 -—- 0.01 10.8 3.5
Acetone 1.1 1.81 0.23 0.72 0.16 0.17 0.74 0.05 0.07 5.1 3.0
Acetonitrile 0.40 1.42 0.07 0.14 0.10 0.06 0.21 -—- -—- 2.4 1.3
Formic acid 0.5 1.4 0.3 0.5 0.1 0.1 0.49 0.03 0.00 33 5.9
Acetic acid 5.5 9.5 0.8 1.7 0.8 1.5 8.4 8.4 0.08 37 12.6
H, 23 8.9 0.6 0.7 0.2 0.6 3.9 - 0.21 18 153
NO, 6.0 8.1 0.9 0.5 0.2 0.6 2.7 0.04 0.11 19 21
N,O 0.41 0.58 0.08 0.11 - 0.02 0.15 0.00 0.016 1.36 1.31
NH; 2.1 3.8 0.29 1.11 0.71 0.2 0.9 0.68 0.03 10.0 10.3
HCN 1.06 1.26 0.19 0.24 0.76 0.10 0.83 0.02 - 4.5 0.9
N, 6.3 7.6 0.8 1.2 - 0.6 5.6 - - 22 26
SO, 1.1 2.21 0.21 0.34 0.73 0.19 1.20 - 0.026 6.0 3.5
COS 0.06 0.14 0.01 0.03 0.02 0.01 0.04 - - 0.31 0.27
CH;C1 0.15 0.08 0.01 0.03 0.03 0.04 0.39 - 0.0005 0.73 0.65
CH;Br 0.007 0.022 0.000 0.001 0.002 0.000 0.001 - - 0.034 0.029
CH;l 0.0017 0.0196 0.0001 0.0002 0.0021 0.0000 0.0002 - - 0.024 0.014
Hg 0.0001 0.0003 0.00006 0.00010 - 0.00001 0.0001 - - 0.0007 0.0008
PM, 5 16 24 55 8.4 32 2.0 14.5 3.6 0.14 77 58
TPM 21 31 55 6.9 0.0 3.1 14.9 2.5 0.09 85 82
TC 7.6 16 2.5 4.4 2.5 1.3 7.3 - 0.09 41 42
oC 7.3 12.8 33 2.7 2.4 1.2 6.6 - 0.10 36 36
BC 1.3 1.46 0.17 0.19 0.02 0.10 1.7 - 0.01 4.9 4.8
K 0.95 0.93 0.05 0.08 0.001 0.12 0.28 - 0.03 2.4 1.9
CN 5.5E+28 1.1E+28 2.8E+27 1.9E+27 --- 1.2E+27  6.3E+27 --- 2.2E+26  7.9E+28 2.9E+28
CCN (1% SS) 1.9E+27 4.8E+27 6.0E+26 7.3E+26 -—- 2.5E+26  2.4E+27 --- --- 1.1E+28 1.7E+28
N(acc) 3.0E+27 7.9E+27 3.0E+26 4.5E+26 --- 24E+26  2.1E+27 - --- 1.4E+28 9.0E+27

") using EFs from online updates to Akagi et al. (2011)
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Figure 1: Scatter plots of the emission factors of ethene (a) and ethane (b)
against MCE, based on studies in the different combustion categories.
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Figure 2: Comparison between the emission factors for selected species between this study and the values in Akagi et el., (2011).
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