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Abstract. Data assimilation algorithms rely on a basic assumption of an unbiased observation error. However, the
presence of inconsistent measurements with nontrivial biases or inseparable baselines is unavoidable in practice.
Assimilation analysis might diverge from reality, since the data assimilation itself cannot distinguish whether the
differences between model simulations and observations are due to the biased observations or model deficiencies. Un-
fortunately, modeling of observation biases or baselines which show strong spatiotemporal variability is a challenging5

task. In this study, we report how data-driven machine learning can be used to perform observation bias correction
for data assimilation through a real application, which is the dust emission inversion using PM10 observations.
PM10 observations are considered as unbiased, however, a bias correction is necessary if they are used as a

proxy for dust during dust storms since they actually represent a sum of dust particles and non-dust aerosols. Two
observation bias correction methods have been designed in order to use PM10 measurements as proxy for the dust10

storm loads under severe dust conditions. The first one is the conventional chemical transport (CTM) model that
simulates life cycles of non-dust aerosols. The other one is the machine learning model that describes the relations
between the regular PM10 and other air quality measurement. The latter is trained by learning using two years of
historical samples. The machine learning based non-dust model is shown to be in better agreements with observations
compared to the CTM. The dust emission inversion tests have been performed, either through assimilating the raw15

measurements, or the bias-corrected dust observations using either the CTM or machine learning model. The emission
field, surface dust concentration and forecast skill are evaluated. The worst case is when we directly assimilate the
original observations. The forecasts driven by the posterior emission in this case even results in larger errors than the
reference prediction. This shows the necessities of bias correction in data assimilation. The best results are obtained
when using the machine learning model for bias correction, with the existing measurements used more precisely and20

the resulting forecasts close to reality.

1 Introduction

For centuries, East Asia experienced regular dust storms in the spring time. Those dust events mainly originated from
the dust source regions of the Gobi and Taklamakan deserts. Annually, thousands tons of "yellow sands" are blown
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eastward over the densely populated areas in China, the Korean peninsula, and Japan by the prevailing winds. Dust
storms can also carry irritating spores, bacteria, viruses and persistent organic pollutants (WMO, 2017). Next to
the human health, the resulting low visibility can cause a severe disruption of transportation systems. For example,
more than 1,100 flights have been delayed/canceled in Beijing after the city was struck by a choking dust storm in
early May 2017.5

A large number of dust simulations models has been developed over the past decades (Wang et al., 2000; Gong
et al., 2003; Liu et al., 2003). These chemical transport models help to understand the life cycles of the dust storms,
and are also used for dust forecasts and to aid early warning systems. Apart from advances in simulation of dust
storms, progress has also been made in the monitoring of dust or general aerosol loads. Field station networks
are constructed to observe the in-situ particulate matter (PM) levels over densely populated regions (Li et al.,10

2017a). Ground-based sun photometers, e.g., the global Aerosol Robotic Network (AERONET) (Cesnulyte et al.,
2014), are widely used to monitor column-integrated aerosol profiles. Satellite onboard instruments such as Moderate
Resolution Imaging Spectroradiometer (MODIS) (Remer et al., 2005), Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) (Sekiyama et al., 2010), and Advanced Himawari Imager/Himawari-8 (Yoshida
et al., 2018) provide the measurements of airborne particles with further wide coverages. These measurements could15

be used to calibrate the parametrization in the dust simulation models and to evaluate their ability to forecast
dust concentrations. Moreover, the observations could be combined with a dust modeling system through data
assimilation to improve the forecast skills.
A wide variety of data assimilation techniques have been used with dust simulation models, including variational

methods (Yumimoto et al., 2008; Niu et al., 2008; Gong and Zhang, 2008; Jin et al., 2018) and ensemble-based20

sequential methods (Lin et al., 2008; Sekiyama et al., 2010; Khade et al., 2013; Di Tomaso et al., 2017). In these
systems, the available observations are either used to estimate the model states (dust concentrations) or to reduce
uncertainties in the emissions and/or other model parameters. Challenges for dust assimilations include development
of more and more accurate dust simulations, and use of new types of observations including vertical profiles from
Lidars and latest satellite observations. A further challenge for any assimilation system is the proper definition of25

the observation and representation errors, as well as characterization of biases.
In general, the commonly used data assimilation schemes all rely on the basic assumption of an unbiased ob-

servation. In real applications, however, measurement biases are often unavoidable. In the presence of biases, it is
impossible to determine whether a difference between an a prior simulation and an observation are due to the biased
observations or model deficiencies. The biases might lead to assimilations that diverge from reality (Lorente-Plazas30

and Hacker, 2017). A well known example of observation biases is in radiance observation assimilation systems in
presence of clouds (Eyre, 2016; Berry and Harlim, 2017). To avoid problems with these biases, up to 99% of cloudy
observed measurements are discarded although they may also contain valuable information. If dust storms are co-
incident with clouds, it is also possible that in satellite retrieval algorithms clouds are mistaken for dust, leading to
strong biases in the data to be assimilated (Jin et al., 2019).35
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Another example where observation biases are important is when ground-based PM10 measurements are assim-
ilated in dust simulation models. Due to the high temporal resolutions and the rather dense observation network,
the ground-based air quality observing network has become a powerful source of measurements on dust aerosols.
The records, mainly the PM10 feature, were widely used to calibrate, assess or estimate the dust model (Lin et al.,
2008; Wang et al., 2008; Huneeus et al., 2011; Yumimoto et al., 2016; Benedetti et al., 2018). However, the observed5

PM10 concentrations do not only consist of dusts, but are actually the sum of the dust and other regular particles.
The latter one are emitted not only from anthropogenic activities such as industries, vehicles, and households, but
also from natural sources such as wild fires and sea spray. In this paper we will simply refer to these particles as the
non-dust fraction of the total PM10. The concentrations of non-dust aerosols in urbanized areas could be substantial,
reaching values up to 500 µg/m3 (Shao et al., 2018).10

Although PM10 observations include a nontrivial bias, the wide spread availability makes them still useful in dust
storm assimilation system. During dust storm events, extreme high peaks of more than 1000-2000 µg/m3 PM10 are
recorded which can be attributed mainly to dust. If these would be assimilated directly in dust simulation model,
ignoring the fact that at least some part represents non-dust, the assimilation system would diverge to states that
overestimate the dust load. In case of less severe dust events, the dust analysis divergence would then become15

extremely critical.
However, modeling of observation biases is very challenging when they have strong spatial and temporal variabil-

ities. Little progress has been made in bias correction of full-aerosol measurements for their use in dust storm data
assimilation. Lin et al. (2008) selected only PM10 observations for assimilation when at least one occurrence of dust
clouds was reported by the local stations. In Jin et al. (2018), it was found that on sites with both PM10 and PM2.520

observations, only the PM10 concentration increased during a dust episode, while the PM2.5 concentrations were
not affected and remained at a constant level. Besides, Xu et al. (2017) and Jin et al. (2018) suggested a strong
correlation between PM2.5 and non-dust PM10. Therefore, a very simple non-dust PM10 baseline removal (called
observation bias correction) was proposed, in which the available PM2.5 was used to approximate the non-dust PM10

(or baseline) during a dust event by:25

PMnon-dust
10 = b + r×PM2.5 (1)

where the b and r > 1 are linear regression parameters based on a 24-hour history of measurements before arrival
of the dust storm. The aforementioned methods either exclude a selection of the measurements, which may still
contain useful information, or work under ideal circumstance only when a simple correlation R between PM10 and
PM2.5 is valid. For instance, in the dust event studied in Jin et al. (2018) the application of Eq.1 in many sites failed30

since R is weak. To have a quality-assured bias correction, Eq.1 is performed only when the Pearson correlation
coefficient R > 0.8. Consequently, measurements in around 45% sites are rejected in that case. To fully exploit the
dust information present in total PM observations, a more advanced method is needed. In this paper we proposed
two methods, either using a conventional chemistry transport model, or a machine learning model.
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A chemistry transport model (CTM) implements all available knowledge on emission, transport, deposition, and
other physical processes in order to simulate concentrations of trace gases and, important here, aerosols. Daily air
quality forecasts are often provided using such CTMs. A simulation model for dust storm events is usually just a CTM
with all tracers removed except dust; by using the full CTM, an estimate of the non-dust part of the aerosol load
could be made. In this study, the LOTOS-EUROS CTM is used to simulate the dust as well as the non-dust aerosol5

concentrations. If the non-dust model was perfect, the difference between simulation and observed PM10 would be
unbiased, and assimilation could be applied to the combined dust and non-dust concentrations. In case of a dust
storm event, it remains necessary to distinguish between the dust and non-dust part of the simulations since the two
parts will have very different error characteristics. The dust part is quickly varying and has a large uncertainty, while
the non-dust part is more smooth but very persistent in time and has a relatively small uncertainty. An assimilation10

system on the combined simulations should be able to handle these differences. However, the error attribution to
their proper sources (dust and non-dust error) then becomes extremely critical as explained in Section 2.4. Since
this paper focuses on dust during a severe event only, we will not explore the error characteristics of the non-dust
part of the model. Therefore we will not apply an assimilation on the combined aerosol (dust and non-dust) model.
Instead, the non-dust simulations will solely be used to remove the non-dust baseline from PM10 observations.15

Similar to the air quality forecast, the accuracy of a CTM for non-dust aerosols is hampered by lack of accurate
input data. For example, the timely update of anthropogenic emission inventories is always a key issue for air quality
forecasts. With the ever-increasing complexity and resolution, the CTMs are now becoming highly nonlinear and
time-consuming. However, they may still not be able to identify explicit representations of the non-dust aerosol
dynamics, especially regarding fine-scale processes.20

In addition to the conventional CTM, we propose a new method for removing the non-dust part of the PM10

observations which is based on machine learning (ML). Data-driven methods have already been proved to be a
powerful tool to provide air quality forecasts for horizons of a few days, (e.g., Li et al. (2016); Fan et al. (2017); Li
et al. (2017b); Chen et al. (2018)). Different from the chemical transport models which simulate the aerosol physical
processes, machine learning models describe mathematical relations of input-output and trained by learning a large25

number of samples from historical records. Our machine learning system used a neural network, namely long short
term memory (LSTM). The input is formed by air quality indices for a number of relevant tracers (PM2.5, SO2,
NO2, CO, and O3), as well as meteorology data. The output of the system is an estimate of the non-dust PM10

concentration. The input features are to a large extent independent of the dust storms, even the PM2.5 concentrations
as shown in Jin et al. (2018); observations of PM10 are excluded since excessive dust loads are visible mainly in30

this component. Recent development and the availability of open source machine learning tools provide a good
opportunity to estimate the air quality indices using a data-driven machine learning models.
Whereas these are previous studies on dust storm data assimilation using various kinds of combined aerosol

measurements, we are the first to investigate the necessities of bias correction for these full-aerosol observations in
order to use them as ’real’ dust measurements in a dust storm assimilation system. The adding values of observation35
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bias correction in dust emission inversion is explored through the ground-based PM10 measurement assimilation.
It can easily be applied to others general applications, e.g., remote sensing data assimilation. Our contributions
are threefold. Firstly, we present and examine the conventional CTM for removing the non-dust part from PM10

observations. Secondly, we design and examine a novel machine learning based bias correction which is data-driven
and free of the time-consuming numerical CTMs. Thirdly, we evaluate the two non-dust aerosol model simulations by5

comparing to the PM10 measurements during regular periods (rare dust events involved); we evaluate dust emission
fields, surface dust concentration simulation and forecast skills which are obtained by either assimilating the raw
PM10 data, or bias-corrected measurements either using the CTM or machine learning model.

The paper is organized as follows. A brief description of our dust simulation model (LOTOS-EUROS/Dust) and
the four dimensional variational data assimilation method for emission inversion are presented in Section 2. The10

biased observation representing error and its influence on the assimilation system are also explained. The two bias
correction methods, the non-dust aerosol regional chemical transport model and a machine learning model, are
discussed and the bias simulation is evaluated in Section 3. Section 4 reports the assimilation results using the two
bias correction methods, and evaluates the forecast skills using independent measurements. Section 5 discusses the
necessities of observation bias correction in assimilation works, highlights our key contributions.15

2 Dust storm data assimilation system

2.1 Dust model

The dust storm event studied in this paper took place in East Asia in April 2015, and has already been used as a
test case for assimilation experiments in Jin et al. (2018). The LOTOS-EUROS/Dust simulation model is used with
similar configurations to our previous studies, which is configured on a domain from 15°N to 50°N and 70°E to 140°E,20

but with a higher model resolution of 0.25◦. The model is driven by European Center for Medium-Ranged Weather
Forecast (ECMWF) operational forecasts for horizons of 3-12 hours. The dust load is described by 5 aerosol bins
within a diameter range 0.01 µm < Dp < 10 µm. Physical processes included are emission, advection, diffusion, dry
and wet deposition, and sedimentation. The dust emission scheme implemented in LOTOS-EUROS is mainly based
on the formulation of horizontal saltation flux (Marticorena and Bergametti, 1995) and sandblasting efficiency (Shao25

et al., 1996). A terrain preference parameter Fps was used in the dust emission in Jin et al. (2018). This geographic
dependent parameter was first introduced by Ginoux et al. (2001), and used to approximate the probability of having
accumulated sediments that can be resuspended. In this work, Fps is disabled since the preference factor was found
to limit the emission rate in some regions where the fine-scale topographic feature is actually unknown. Snapshots
of a reference simulation of the dust episode has been performed and is shown in Fig.8(a).30
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2.2 Observation network

The China Ministry of Environmental Protection (MEP) has commenced to release the hourly-average measurements
of atmospheric constituents including PM2.5, PM10, CO, O3, NO2 and SO2 since 2013. A huge number of ground
stations measuring these air quality indices have been established in densely populated areas. At the present, the
monitoring network has grown to 1,500 field stations covering all over China as shown in Fig.1.5

Figure 1. The China MEP air quality monitoring network and the potential dust storm source region. LSTM based non-dust
PM10 forecast are performed only in stations of blue dot (N=1351), while ones of black circles are skipped.

2.3 Reduced tangent linearization 4DVar

The assimilation system, which will be used to combine bias-corrected PM10 observations with simulations, is based
on a reduced-tangent-linearization four dimensional variational (4DVar) data assimilation. The goal of a 4DVar
technique is to find the maximum likelihood estimation of a state vector, which is here the dust emission field f ,
given the available observations over a time window. A common approach is to use an incremental formulation,10

which aims to find the optimal emission deviation δf as the minimum of the cost function:

J(δf) = 1
2 δf B−1 δf + 1

2

k∑
i=1

(HiMiδf +di)T R−1
i (HiMiδf +di) (2)

where k is the number of time steps within the assimilation window. The vector δf denotes a perturbation of the
emissions with respect to the background one. For an observation time i, the innovation vector (length mi) is defined
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as the difference between the simulations and observations:5

di =Hi( Mi(f) ) − yi (3)

where Mi denotes the LOTOS-EUROS/Dust transport model, Hi is the operator that converts state variables
into observation space, and yi is the vector with dust observations at this time step i. The operators Hi and Mi

denote linearizations of Hi andMi around the reference emission vector f b. Following Jin et al. (2018), the errors
in dust emission field were assumed to be only caused by the uncertainty in the friction velocity threshold in the10

dust windblown parametrization, and similar assumptions on the uncertainty are used to build an emission error
covariance B. The friction velocity threshold is perturbed with a spatially varying multiplicative factor β. β is
configured with a mean of 1 and a standard deviation of 0.1. In addition, an exponential profile of distance-based
spatial correlation is posed on βs (Jin et al., 2018). The observation error term is weighted by an observation error
covariance R, for which the individual elements will be described in Section 4.1.15

To reduce the computational cost in calculating the tangent linear model Mi, a reduced-tangent-linearized 4DVar
(Jin et al., 2018, 2019) is used. The simplified method is based on proper orthogonal decomposition (POD) of the
background covariance B which efficiently carries out model reduction by identifying the few most energetic modes:

B = UUT ≈ ŨŨT (4)

δf ≈ Ũ δw20

where U ∈RP×P is the background emission covariance square root, with P the size of the emission field of O(104)
elements. while Ũ ∈RP×p is the truncation of U based on POD, with p the reduced rank size of O(102). The vector
δw ∈Rp stores the transformed control variables.

The cost function of the reduced-tangent-linearization 4DVar is formulated as:

J(δw) = 1
2δw

T δw + 1
2

k∑
i=1

(
HiM̃iŨδw+di

)T R−1
i

(
HiM̃iŨδw+di

)
(5)25

where M̃i denotes the reduced tangent linear model with a rank p, which is approximated using the perturbation
method. More details about the reduced-tangent-linearization 4DVar algorithm can be found in Jin et al. (2018).

2.4 Biased observation representing error

In real applications, the observations inevitably have biases which cannot be attributed to the model simulation, as
following:

yi =Hi( Mi(f) ) + bi + σi (6)

where σi is the vector of Gaussian distributed observation errors which have zero means and a known covariance5

matrix Ri, and bi denotes the vector of observation bias. In our application, the vector yi contains the observed
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PM10 concentrations, while the aerosols released in the local anthropogenic activities and other non-dust related
processes are referred as bi. Note that the PM10 measurements themselves might also contain ’native’ biases due to
the incorrect sensor reading or systematic errors. However, this part of the bias in the PM10 observations is unknown
and not considered in this study.10

In the course of data assimilation, it is impossible to determine whether the departures (di) of the prior simulations
from the observations are due to the biased observations bi or emission errors δf . Thus, the assimilation result will
diverge from the true state when a bias is present. In complex dynamic models as the atmospheric transport model,
the biases (non-dust aerosols) could have high spatial and temporal variabilities and is therefore difficult to quantify.

In this work, we proposed two methods to quantify the bias levels for the observation bias correction. The first one15

is the non-dust parts of LOTOS-EUROS chemical transport model (CTM) which simulates the aerosol life cycles
including emission, transport and deposition. The second method is to describe the non-dust aerosol levels using a
data-driven machine machine model. Details of these two methods are illustrated in Section 3.
In fact, both LOTOS-EUROS CTM and machine learning model are imperfect, and some biases might still exist

after the correction. The former one is known to be limited by errors in the emission inventories, meteorological20

forecasts and all kinds of input sources. The latter is then hampered by the deficiency of the type model (e.g.,
insufficient to represent the complexity of the phenomenon), inadequate amount of training data. However, by
combining the bias-corrected observation with the dust model, the assimilation will adapt to posteriors which are
more close to reality.
There were a few studies that addressed both the model deficiency and uncertainty in observation bias simultane-25

ously using either variational data assimilation (Dee and Uppala, 2009) or sequential filters (Dee, 2005; Lorente-Plazas
and Hacker, 2017). Those assimilation schemes not only require a formulation of a model for the bias, but also need
a quality-assured reference to describe the uncertainty of the bias model. The need to attribute errors to their proper
sources is obviously a key part in any assimilation systems, but becomes especially critical when it involves bias
correction. This is because a wrong error attribution will force the assimilation to be consistent with a biased source.30

If the source of a known bias is uncertain, assimilation without considering the uncertainty of bias model is the
safest option (Dee, 2005). Therefore, these two non-dust models are solely set as references for the bias, and the
uncertainties are not explored here.

2.5 Assimilation Window

Fig.2 shows a time line for the assimilation experiment around the April 2015 dust event, which is very similar to
what was used in Jin et al. (2018). The dust event has a short duration, and therefore only a single assimilation
window with a length of 36 hours is used. The dust emissions take place at the start of the window, while the
observations become available at the end of the window since they are located downwind from the source region (see5

Fig.1). A long assimilation window is therefore necessary in order to estimate the correct emission parameters given
the observations.
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When we perform the assimilation analysis at April 15, 19:00, only the dust observations from April 15, 08:00 to
19:00 will be assimilated and they are calculated by subtracting the non-dust part (CTM based or ML based) from
the PM10 observations. After the analysis, the simulation model is used to perform a dust forecast for the next 1210

hours using the newly-estimated emission parameters. A full-aerosol PM10 forecast will then be calculated by adding
the dust forecast and non-dust aerosol forecast, where the later again originates from either the CTM and machine
learning model.

Figure 2. Timeline of observation availability, assimilation cycles and forecasts

3 Observation bias correction methods

Two systems are introduced to correct the non-dust bias when using PM10 observations in a dust assimilation. The15

first one is CTM LOTOS-EUROS/non-dust model that simulates the physical processes of the non-dust aerosols. The
latter is the machine learning model that estimates the non-dust aerosol based on historical records. The following
sections describe the two methods in more detail.

3.1 Chemistry transport model (LOTOS-EUROS/non-dust)

The regional CTM LOTOS-EUROS/non-dust is configured similar to the LOTOS-EUROS/Dust used in the assim-20

ilation, but now includes all trace gases and non-dust aerosols. The configuration is similar to what is used for daily
air quality simulations over China as described in (Timmermans et al., 2017). Anthropogenic emissions are taken
from the Multi-resolution Emission Inventory for China (MEIC) inventory (http://www.meicmodel.org). Natural
emissions included are the sea salts that are calculated online, biogenic emissions that are calculated online using
the MEGAN model (Guenther et al., 2006), and wild fires which were taken from the operational GRAS product25
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(Kaiser et al., 2012). The LOTOS-EUROS full aerosol operational forecast over this modeling domain are released
via the MarcoPolo-Panda projects through (www.marcopolo-panda.eu).

The operational CTM Lotos-Euros over China is in its early phase of development as well as the other six CTMs
used in the MarcoPolo-Panda project. The purpose of that project is to diagnose statistical differences between the
ensemble model simulations and observations. An important objective is to determine ways by which the models30

can be improved. These differences are mostly attributed to inaccuracy in the weather forecast and errors in the
adopted surface emissions (Brasseur et al., 2019; Petersen et al., 2019). Indeed, there is room for minimizing the
forecast-observation differences using nudging methods like data assimilation, which requires considerable efforts and
not yet exploited in that study.

3.2 Machine learning for non-dust PM10 simulation

Given a set of training data, a machine learning algorithm attempts to find the relation between input and output.5

When a proper model is used, the machine learning algorithm can lean to reproduce the complex behaviors of a
dynamic system. The description is purely based on the data, physical knowledge is not included. Machine learning
algorithms are popular tools to forecast the air quality indices using the history records (Li et al., 2016; Fan et al.,
2017; Chen et al., 2018; Lin et al., 2019). In this study, the machine learning algorithm used is the long short term
memory (LSTM) neural network, which has demonstrated its ability in predicting time series problems (Li et al.,
2017b).
The LSTM operator L, which is configured with parameters θ, for predicting non-dust PM10 can be described as:

bt0+t = Lθ(xt0 , xt0−1, ..., xt0−m+1) (7)5

where bt0+t represents the predictor, which is in this study the non-dust PM10 concentration forecast t hours in
advance. The temporal correlation between the input and output features declines when t increases. In our system,
the maximum forecast period t is 12 hours. The input vectors xt0 ,xt0−1, ...,xt0−m+1 are the observed data of the
past m hours, which is set as 18 hours empirically. The input vectors consist of:

– hourly observations of PM2.5, SO2, NO2, O3, and CO from the ground based air quality network described in10

Section 2.2;

– observations of PM2.5 at the nearby sites;

– local meteorological data (temperature and dew point at 2 m, wind speed at 10 m) which are taken from the
LOTOS-EUROS model input and originate from the European Center for Medium-Ranged Weather Forecast
(ECMWF).15
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The LSTM neural network parameters θ are determined by minimizing the objective function Jθ that represents
the mean squared error of predictors b with respect to the measured values yb:

Jθ = 1
m

m∑
i=1

(bi − ybi )2 (8)

The training dataset covers the period from January 2013 to March 2015. In other words, the LSTM model L is
trained to best fit the samples from this period. The two months April and May 2015 in which the studied dust20

event occurred is set as the testing period.
Dust storms themselves occur with very low frequency. To our knowledge, the studied dust event is the most

severe one since 2002, and there are no such large-scale dust events recorded in our training period. Note that cities
that are close to the Gobi and Mongolia deserts might have experienced several small-scale dust events with limited
increase of dust concentrations. However, the machine learning tries to find the global best fits for the whole training25

dataset. The default learning rate, which determines the weights are updated during training, on a simple sample
is 10−4 in our machine learning algorithm. Therefore, the PM10 records yb are very close to the non-dust PM10

concentrations, and the rare dust event records are not excluded from the training dataset for convenience and for
the expected little impact on the training result. The regression model L is thus assumed to reflect only the relation
between input features and the non-dust PM10.30

Note that including PM10 observations in the series of input vectors will certainly improve the skill of the machine
learning forecasts. However, the LSTM model would then lack the ability to discriminate between the dust and
non-dust fractions in PM10 during a dust event. Earlier studies showed that the input variables, including PM2.5,
are independent on the dust storm as illustrated in Jin et al. (2018).
For the non-dust PM10 machine learning forecasts in a given site, observations from its nearby sites are also vital5

and are used in two ways. First, missing data records are unavoidable in an air quality monitoring network, while
the LSTM model training requires an uninterrupted time series of features. In this study, data interpolations of
air quality measurements (PM10, PM2.5, SO2, NO2, O3 and CO) are performed using both a linear interpolation
and a k-Nearest-Neighbor algorithm (Zhang, 2012) if a site has no more than 30% of missing data. Otherwise, all
the measurements in the given sites are abandoned. Generally, more information available from the nearby sites10

will result in a more accurate interpolation. Second, learning in the presence of data errors is pervasive in machine
learning, and the measurements from nearby stations are used to limit their influence. Data errors occur due to
incorrect sensor readings, software bugs in the data processing pipeline, or even the inaccurate data interpolation.
Statistical analysis tests have been conducted which did not only indicate a strong correlation between the non-dust
PM10 and air quality measurements in the given sites, but also show that the predictor (non-dust PM10) is correlated15

to the observation indices (especially the PM2.5) at its nearby sites. In order to eliminating errors caused by incorrect
inputs at the modeling site, the measurements at the nearby stations are considered as the essential indices. In this
study, a data instance will only be selected for training the LSTM model if there is at least one nearby site within an
empirical radius 0.8◦(approx 80 km), and a maximum of 3 nearby sites will be randomly selected where observation
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stations are densely distributed. To save the computation costs on machine learning model training, only the PM2.520

from the nearby sites are included as one of the inputs in this study.
The machine learning model for non-dust PM10 forecast is trained site by site, with the hyper-parameters shown

in Table 1. With the following hyper-parameters, the machine learning model training takes several minutes for each
site. The training in each site is independent, hence, the whole workload is highly parallelizable.

Table 1. LSTM hyper-parameters.25

LSTM layers neurons per layer epochs batch size forecast length (hours)
2 30 50 64 0 or 12

Fig.1 presents the original field observation network (N≈1500) established by the China Ministry of Environmental
Protection (MEP) up to 2018, as well as the sites (N=1351) where LSTM based non-dust forecasts are performed.
It is clear that the LSTM forecast cannot be performed in each monitoring site. A part of the sites is skipped due
to the lack of nearby sites, the rest are caused by high data missing rate in the training period.30

3.3 Evaluation of non-dust PM10 bias corrections

Our two bias models, LOTOS-EUROS/non-dust and LSTM, could both be used for air quality forecast operationally
when there is no dust storm. Once a dust storm is observed, the dust emission inversion system will be enabled, the
two non-dust PM10 models will then be used in dust observation bias correction. The forecasts are expected to have
a good performance when dust is not present, and to underestimate the PM10 levels in case of dust storms.5

Both the CTM LOTOS-EUROS and LSTM are tested to forecast non-dust PM10 over April-May 2015. This
period includes the 2 to 3 days dust event that is used as test case for the assimilation. Fig.3(a)~(c) show density
plots comparing PM10 observations with either LOTOS-EUROS/non-dust forecasts, or with LSTM forecast 0 hour
and 12 hours in advance.
The CTM LOTOS-EUROS/non-dust in general underestimates the non-dust PM10. The forecast results in a10

relatively large root mean square error (RMSE) 89.4 µg/m3. This could be explained from the fact not all types
of particulate matters, such as secondary organic aerosols, are included in the model, and some aerosol emissions
are very difficult to estimate (e.g., wood burning by households). The two LSTM forecasts show on average a good
agreement with the observations. The RMSEs of the forecasts by the two machine learning models in the two years
of training period are reduced to 55.9 and 60.7 µg/m3, and in the two months of test period (excluding the dust15

event from April 14 to 16) they also stay at comparable low levels of 58.6 and 60.2 µg/m3. As expected, a smaller
forecast period t=0 hour gives a better result than the forecast over 12 hours.
The scatters in the dust period (April 14 to 16) are denoted using different markers in Fig.3. The underestimation

of PM10 during the dust period (April 14 to 16) is visible in the bottom right corners of these plots.
When we perform the assimilation analysis at April 15, 19:00, the short period of t=0 hour forecast will be treated20

as the non-dust levels in the bias correction of the original PM10 measurements. Note that here t=0 forecasts denote
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the forecasts valid at each specific snapshot of the observations, while the 12 hours forecasts are valid 12 hours in
advance, e.g., the non-dust PM10 forecast (12 h) at April 16 07:00 is valid at April 15 19:00. Subsequently, the
bias-corrected data are used to estimate the dust emissions over the past 36-hour window. Obviously, one important
aim of the assimilation is to make a better forecast, in this study, the forecast skills will be evaluated in the following25

12 hours from April 15, 19:00. Besides, the forecast is assessed by comparing the combined PM10 forecasts to PM10

observations. The LSTM forecast with t=12 hours in advance will be added to the dust storm forecast to build the
combined aerosol forecast.

Figure 3. Non-dust PM10 simulation evaluations. (a): LOTOS-EUROS/non-dust forecast vs. PM10 measurements; (b): LSTM
forecast 0 hour in advance vs. PM10 measurements; (c): LSTM forecast 12 hour in advance vs. PM10 measurements; (NOTE:
the solid circles show the 5% random samples over the non-dust period from April to May 2015 while the hollow ones denote
the 5% random ones from the dust period (April 14 to 16).
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3.3.1 Spatial patterns at observation sites

To assess our two non-dust PM10 models, Fig.4 shows the snapshots of the PM10 measurements, LOTOS-EUROS/non-30

dust simulations, LSTM forecasts, and the corresponding bias-corrected dust observations at three timestamps: April
15 08:00, 19:00 and 22:00. These first two moments are the start and end of the observation interval in the assimila-
tion window (only observations from the last 12 hours of the assimilation window are assimilated as shown in Fig.2),
and observations at 22:00 is treated as independent data for cross-validation. At 08:00, actually only few stations
close to the dust source area have already observed the dust storm. Some of the sites in central China observed high
PM10 concentrations which are believed to be caused by presence of non-dust aerosols. Nearly all the stations in
north China reported this dust storm at 19:00 and 22:00, as a band covering central and northeast China, see Fig.4
(a.2)~(a.3). Fig.4 (b.1)~(b.3) shows that the LOTOS-EUROS/non-dust model forecasts quite stable and constant5

non-dust PM10 levels, most of the simulated values are less than 100 µg/m3. Subsequently, the corresponding bias-
corrected dust measurements (see Fig.4 (c.1)~(c.3)) are very similar to the original PM10 observations. This could
be problematic when trying to measure the dust storm from the PM10 observations; for instance at 08:00 in Fig.4
(c.1), according to the bias-corrected observations the dust storm seems to have already reached central China which
was probably not the case. In comparison, the LSTM based bias-corrected dust observations (see Fig.4 (e.1)~(e.3)),10

which is calculated by subtracting the LSTM non-dust part (see Fig.4(d.1)~(d.3)) from the raw PM10 measurements,
are close to our expectations. Only for sites that are very close to the source regions high dust concentrations are
derived at 08:00, while for the other sites hardly any dust is derived. At 19:00, thus 11 hours later, at half of the
stations in the north of the domain high dust concentrations are derived. In the southeast of the domain, the derived
dust concentrations remain almost zero since the dust plume did not arrive there yet. At 22:00, the plume is moved15

further south, and the dust load closer to the source region started to decrease.

3.3.2 Time series

To further evaluate the two bias correction methods, Fig.5 shows the time series at the following selected cities:
Hohhot, Changchun, Beijing, Baoding, Xingtai and Yulin. The location of these cities/sites can be found in Fig.1.
These cities were selected because they all experienced a severe pollution and illustrated the general performance of20

the LOTOS-EUROS/non-dust and LSTM methods. In addition, each of these cities have at least 4 monitoring sites
which assured a high accuracy.
The LOTOS-EUROS grid cells with the selected sites all include other observation sites as well, and to illustrate

the spread in the observations the maximum and minimum observed values in the grid cell are added to the time
series too. Similarly, the LSTM non-dust PM10 simulation is given together with the spread within the grid cell.25

Before the dust storm arrived at these cites, the LSTM model reproduces the variations in PM10 rather well. Some
errors are present, for example as can be seen on April 14 from 12:00 to 23:00 in Yulin. After the arrival of the dust
storm, the PM10 observations strongly increase, while the LSTM non-dust fraction remains at a low level since it is
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Figure 4. Original PM10 measurements (a.1~a.3), LOTOS-EUROS/non-dust simulated PM10 (b.1~b.3) and the correspond-
ing bias-corrected dust observations (c.1~c.3), LSTM predicted non-dust PM10 (d.1~d.3) and the derived dust observations
(e.1~e.3) at three time snapshots: April 15, 08:00 (a.1~e.1), 19:00 (a.2~e.2) and 22:00 (a.3~e.3)
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independent of the dust storm. The real dust measurement is then calculated by subtracting the non-dust part from
the raw PM10 observations.30

The LOTOS-EUROS/non-dust simulations underestimate the non-dust PM10 at all the six locations. Thus, the
derived bias-corrected dust observations overestimate the actual dust load, and this will affect the dust assimilation
results.

Figure 5. Time series of PM10 measurements, LOTOS-EUROS/non-dust and LSTM predicted PM10 levels at six cities:
Hohhot, Changchun, Beijing, Baoding, Xingtai and Yulin. LE: LOTOS-EUROS; LSTM: long short-term memory.

4 Data assimilation experiments

Three different sets of observations are now available for assimilation in the dust model: the original PM10 ob-
servations, the PM10 observations with LOTOS-EUROS bias correction, and the PM10 observations with machine
learning bias correction. The results have been compared in terms of the posterior dust emission fields and surface
dust concentrations.5

16



A practical use of assimilated concentrations is to use them as a start point for a forecast. This could be used
to provide early information about the arrival of the dust plume and the expected dust level. The dust forecast
after the end of the assimilation window at April 15 19:00 uses the newly estimated emissions. Apart from the dust
concentrations, the forecast will also be evaluated in terms of skill scores for the total PM10 concentrations in Section
4.3.10

4.1 Observation error configuration

A key element of the data assimilation system is the observation error covariance matrix R. This covariance quantifies
the possible difference between simulations and observations. The observations with a smaller error have a higher
weight in the assimilation process.
In related works, the dust observation errors were usually empirically quantified. Lin et al. (2008) assumed that15

the observation error is proportional to the measurement with a constant factor of 10%. Jin et al. (2018) used a
similar error setting but also assigned a larger error to low valued measurements since the model might easily results
in relative large errors when simulating minor dust loads.
Theoretically, the observation uncertainties are due to the representation errors as well as the measurement errors,

while the former one is widely considered as the largest source. Limited by the computation resources, our dust model20

uses a spatial resolution of 25 km, while the in-situ measurements cover the much less of atmosphere surrounding
them (Schutgens et al., 2016). This of course limits our capability of resolving the fine-scale fields that are reflected
in observation spaces. Therefore, the spatial representation error is assumed to be the dominant error source and
taken into the account in approximating the observation uncertainties. In addition, the error due to the different
bias correction terms is indeed another source. It is not yet considered in this study but will be exploited for a more25

accurate assimilation operation in our future work.
The spatial representation error quantification itself is a complex task. It could be calculated through comparing

the model simulations at different scales of resolutions. In this study, the availability of multiple measurement sites in
a single model grid cell provides an alternative way to quantify the representation error. When multiple observations
are present, the statistical error in the observed values reflects the spatial representation uncertainty. An example30

is the grid cell covering the city of Beijing, where observations from 12 different field stations are available. Note
that it is the grid cell which has the most monitoring stations. The spread of the hourly measurements is shown in
Fig.5(c). For each hour, the standard deviation of the measured PM10 values is plotted against the mean in Fig.6,
where the red markers represent ’regular’ polluted conditions, and the blue markers the dust event. The result shows
that the spread in the observations closely agrees with the average pollution level during the dust event. Based on
this result, a simple linear regression is used to obtain a parametrization for the observation representation error:

σ = max( a · y + b , σmin ) [µg/m3] (9)
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where a = 0.12 and b = 55.7 are the linear regression parameters based on the dust event data (blue markers).5

It should be noted that the observation sites in Beijing truncate observations at a maximum of 1000 µg/m3, and
therefore observations close to this number are not used since the true values might have been much higher. A
minimum observation representation uncertainty of σmin = 100 µg/m3 is used for the ’dust’ observations (PM10

with bias correction) to avoid a too strong impact of low valued observations (hardly dust) on the estimation of dust
emissions. In case the simulation model estimates dust concentrations at the surface while in reality the plume is10

elevated, the low valued observations might lead to an unrealistic strong decrease of the dust emissions.
The representation uncertainty has already been validated to fluctuate in space (Schutgens et al., 2016). However,

for most other grid cells the number of observations sites is simply one, which makes it difficult to parametrize a
representation error in a similar way. Therefore, the representation error parametrized for Beijing is used for all
other locations too.15

Note that the raw PM10 and the bias-corrected dust measurements might have different uncertainties in represent-
ing the real dust storm level. This is not yet taken into account in our study, and the three types of the assimilated
measurements, raw PM10, bias-corrected dust observation either using the CTM or using the machine learning,
are all configured with the same observation error in Eq.9. In addition, all the measurements are assumed to be
independent, hence, the observation error covariance R is diagonal.20

Figure 6. Average vs. Standard deviation of the hourly PM10 observations range from April 14 08:00 to April 17 07:00 in
the grid cell of Beijing. See Fig.5(c) for the time series.

4.2 Dust emission estimation

To evaluate the posterior dust emission field that is obtained by assimilation of the bias corrected ’dust’ observations,
an emission index Fi (g/m2) is defined as in (Jin et al., 2018). The index represents the accumulated dust emission
in a cell i between April 14 08:00 and April 15 19:00. Fig.7 shows the emission index map of the a prior model, and
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posteriori emissions obtained from assimilation of either the original PM10 observations, or the LOTOS-EUROS or25

LSTM based bias-corrected ’dust’ measurements.

Figure 7. Accumulated dust emission map F between April 14 08:00 and April 15 19:00 of a priori model (a), or (b)
a posteriori estimates using the original PM10 observations, (c) LOTOS-EUROS or (d) LSTM based bias-corrected dust
measurements. BC: bias correction

As shown in Fig.7(a), the a prior emission was in general rather weak, which resulted in an underestimated surface
dust concentration simulation as can be seen for example in Fig.8(a.1)~(a.2). The posteriori emissions are almost
everywhere higher than the a prior. An exception is the black marked region, where the a prior emissions are higher.
The emissions from this black-dashed region contributed to a too-early arrival of the dust peak in the model cells30

over Hohhot and Xingtai as shown in Fig.9(a) and (c).
Fig.7 (b) shows the emission index F that results from directly assimilating the original PM10 measurements. As

expected the estimated emissions are higher than those obtained by assimilating the bias-corrected observations,
since all airborne aerosols observed are attributed to be dust. In comparison, the assimilation with LSTM baseline
removed data results in a modest emission level as shown in Fig.7(d). The emissions estimated with LOTOS-EUROS
based bias-corrected observations are in between, since the resulting ’dust’ observations also overestimate the actual
dust loads compared to the LSTM based bias-corrected dust measurements.

4.3 Dust simulation and forecast skill5

Fig.8 (a)~(d) show the dust simulations at the surface layer at the end of the assimilation window (April 15 19:00,
left column) and the forecast 3 hours later (22:00, right column) using the newly estimated emission field. Note that
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the average dust concentration over the affected downwind regions reached at a peak around 22:00. Compared to
background simulations in Jin et al. (2018), the a prior model simulations have been improved by disabling the
topography-based preference factor as mentioned in Section 2.1; however, a large difference from the bias-corrected10

PM10 observations in Fig. 4(e) is still present.
The posteriori concentrations in Fig.8(b.1)~(b.2) are the result of assimilating the original measurements PM10

observations shown in Fig.4(a.1)~(a.2). As expected, these lead to the highest simulated dust concentrations since
all the aerosols observed are assumed to represent dust. Especially in the center of the plume, the dust concentration
can be as large as 2000 µg/m3. Fig.8(c.1)~(c.2) show the results when using the LOTOS-EUROS/non-dust bias-
corrected PM10 observations as ’dust’, and although concentrations are lower, they are still likely to overestimate5

the real dust levels. The posteriori results using the LSTM bias-corrected measurements provide the lowest dust
concentrations as shown in Fig.8(d). Only in the grid cells that are close to the source region, the surface dust
concentration reach values as large as 2000 µg/m3, while in the downwind areas the maximum dust concentrations
are usually below 1200 µg/m3.
To illustrate the improvements of assimilating bias-corrected measurements, Fig. 9 shows the observed and simu-10

lated PM10 concentrations in the aforementioned grid cells covering Hohhot, Beijing, and Xingtai. These locations
are neither the best nor the worst examples, but illustrate typical results and challenges to be solved in future. For
a fair comparison with the PM10 observations, the non-dust aerosol concentrations obtained from either LOTOS-
EUROS/non-dust or LSTM were added to the dust simulations from the inversion system.

Site Hohhot is close to the main dust source region. The a prior model simulated the arrival of the dust plume
8 hours before it was actually visible in the PM10 observations. The assimilation of the observations is able to
produce simulations in which the dust plume arrives at the correct time. The assimilation with LSTM bias-corrected5

data has the best performance, with the peak of the simulated concentrations (dust plus bias) most close to the
observed PM10. During the forecast period (t>April 15, 19:00), all three assimilation based forecasts show a decline
in concentrations, which slightly overestimate the observations. This can be explained from the fact that the dust
storm is a strong flow-dependent phenomenon in which concentrations at a certain location are strongly correlated
to earlier concentrations at upwind locations. For Hohhot, only a limited number of observation sites is located10

upwind, and therefore hardly any data is available to constrain the concentrations at this location. To improve the
forecast at Hohhot it will be necessary to have additional observation data, for example from sites actually within
the source region, or from satellites observing the aerosol load over the source region (Jin et al., 2019).
For the grid cell Beijing, which is located further downwind from the dust source region, the arrival of the dust

peak is correctly simulated. However, the amplitude of the concentration peak is underestimated compared to the
average PM10 observations. As can be seen in Fig.8, the dust plume forms a rather small band over central and5

northeast China. In each of the three assimilations, the dust concentrations in the band are rather low around
Beijing. This suggests that the simulation model simply is not able to increase the dust concentrations here, for
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Figure 8. Surface dust concentration of a prior (a.1~a.2), posterior using no bias-corrected (no BC) data (b.1~b.2), posterior
using LOTOS-EUROS/non-dust bias-corrected (LE BC) data (c.1~c.2), posterior using no bias-corrected (LSTM BC) data
(d.1~d.2) at April 15, 19:00 (a.1~d.1) and 22:00 (a.2~d.2)

21



example because of uncertainties in the meteorological data, a removal of dust that is too efficient, or because some
local sources of dust are absent (equally, non-dust PM10 levels are underestimated).
The grid cell Xingtai is located more to the south, and the model is able to simulate high dust concentrations10

here. The a prior model simulates the arrival of a first dust peak already at 13:00, which is however not visible in
the PM10 data. The assimilation postpones the arrival of the main dust, which according to the measurements takes
place around 22:00 and is already in the forecast period. The forecast simulations all overestimate the amplitude of
the peak, especially when using the original PM10 data as proxy for dust. The assimilation with the LSTM based
baseline removal shows the best agreement with the observations.15

4.4 Evaluation of forecast skill

To evaluate the forecast skill of the assimilation(s), the root mean square error (RMSE) of the reference and three
posterior full aerosol simulations (dust forecasts plus non-dust predictions) with respect to the observed PM10 over
the whole observation sites has been computed for each hour. A time series of this RMSE is shown in Fig.10; after
the assimilation window (marked period), the results are based on the forecast simulations. The a prior RMSE20

values at the end of the assimilation window and during the forecast are about 200-250 µg/m3. Direct assimilation
of the original PM10 measurement actually increases these values to above 300 µg/m3 during the forecast, since
dust concentrations become strongly overestimated. Assimilation of the LOTOS-EUROS/non-dust baseline removed
observations nonetheless reduces the RMSE, in particular within the assimilation window. Strongest decrease in
RMSE is obtained using the LSTM based baseline removal, with values of 120-200 µg/m3 during the forecast.25

5 Summary and conclusion

In this study, a dust storm data assimilation experiment has been performed for an event over East Asia in the
spring of 2015. PM10 observation data from the China Ministry of Environmental Protection observing network
were assimilated into a dust simulation model to estimate the dust emissions. The PM10 measurements themselves
are considered as unbiased. They clearly show the arrival of a dust plume throughout the region due to the high30

spatiotemporal resolution. However, the data cannot be compared directly to dust simulations since they actually
represent a sum of the dust particles and other non-dust aerosols. Direct assimilation of these measurements would
introduce a bias in the assimilation system, since it cannot distinguish between model and observation errors.
Two methods have been implemented to remove the non-dust part the PM10 observations during the dust event in

order to use them as ’dust’ proxy in a dust assimilation system. The first method uses a conventional regional chemical
transport model, LOTOS-EUROS/non-dust, which simulates the emission, transport, chemistry, and deposition5

of aerosols mainly related to anthropogenic activities. The second method uses a machine learning model that
statistically describes the relations between regular PM10 concentrations (outside dust events), and available air
quality and meteorological data.

22



Figure 9. Time series of posterior dust concentration and PM10 observations in three cities: Hohhot, Beijing, Xingtai
(observations in the gray shadow are assimilated)
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Figure 10. Time series of root mean square error compared to the ground PM10. The assimilation window is set from April
14 08:00 to April 15 19:00, and PM10 observation in the gray shadow are assimilated.

The two methods to estimate the non-dust part of the PM10 load have been validated. The simulations by the
LOTOS-EUROS/non-dust model in general underestimate the PM10 concentrations. The root mean square error10

stays at a relative high level of 89.4 µg/m3. It is mainly caused by missing emissions and aerosol components such
as secondary organic matter. In comparison, the data-driven machine learning model agrees more closely with the
real measurements, the RMSE declines to 58.6 µg/m3.
A variational data assimilation system has been used to estimate the dust emissions that lead to a severe dust

storm in April 2015. The system either assimilated the original PM10 observations, or the bias-corrected ’dust’5

observations based on either LOTOS-EUROS/non-dust or LSTM model. The posterior simulations using the original
observations resulted in a strong overestimation of the dust concentrations, since all PM10 are simply attributed to
dust. Using the LOTOS-EUROS/non-dust bias-corrected observations, a clear improvement on the dust simulation
has been obtained, but overestimation of dust concentrations is still present. The best results are obtained when
using a LSTM model to remove the non-dust part of the PM10 observations, with posterior concentrations in good10

agreement with the measurements.
The dust emissions estimated using the assimilation can be used to drive a dust forecast. When the original

PM10 observations were used in the assimilation, the forecast skill of the system actually decreased due to the
strong overestimation of dust concentrations, the RMSE rose from averagely 230 (prior forecast) to 300 µg/m3.
Better forecasts are obtained when using the model-based and especially the machine learning based bias-corrected15

observations. The RMSE of the former one was reduced to 200 µg/m3 while the RMSE of the latter one further
declined to 150 µg/m3.
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Future work

Both our CTM and machine learning based bias correction methods have room for improvements. It might be useful
to improve the CTM simulations by assimilating PM10 observations during the hours where no dust storms are20

present, and use these improved simulations to remove the non-dust part of the observations during an event. These
additional assimilations would then involve repeated forward ensemble bias-model runs which could be computa-
tionally expensive. The machine learning model in our non-dust PM10 simulation can also be further optimized,
such as using a different configuration or deeper neural network, including extra input features like non-dust PM10

simulation from CTMs (Lin et al., 2019) and other related records.25

We will exploited the variabilities of the representation errors comparing the model simulations at different spatial
resolutions. The error from the bias correction term will also be taken into account while calculating the observation
error.
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