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Abstract. Ozone (O3) is a secondary air pollutant that negatively affects human and ecosystem health. Ozone simulations with

regional air quality models suffer from unexplained biases over Europe, and uncertainties in the emissions of ozone precursor

group nitrogen oxides (NOx = NO + NO2) contribute to these biases. The goal of this study is to use NO2 column observations

from the OMI satellite sensor to infer top-down NOx emissions in the regional meteorology-chemistry model WRF-Chem,

and to evaluate the impact on simulated surface O3 with in situ observations. We first perform a simulation for July 20155

over Europe and evaluate its performance against in situ observations from the AirBase network. The spatial distribution of

mean ozone concenctrations is reproduced satisfactorily. However, the simulated maximum daily 8-hour ozone concentration

(MDA8 O3) is underestimated (mean bias error (MBE) = -14.2 µg m-3), and its spread is too low. We subsequently derive

satellite-constrained surface NOx emissions using a mass balance approach based on the relative difference between OMI and

WRF-Chem NO2 columns. The method accounts for feedbacks through OH, NO2’s dominant daytime oxidant. Our optimized10

European NOx emissions amount to 0.50 Tg N (for July 2015) 0.18 Tg N higher than the bottom-up emissions (which lacked

agricultural soil NOx emissions). Much of the increases occur across Europe, in regions where agricultural soil NOx emissions

dominate. Our best estimate of soil NOx emissions in July 2015 is 0.1 Tg N, much higher than the bottom-up 0.02 Tg N natural

soil NOx emissions from the MEGAN model. A simulation with satellite-updated NOx emissions reduces the systematic bias

between WRF-Chem and OMI NO2 (slope = 0.98, r2 = 0.84), and reduces the low bias against independent surface NO215

measurements by 1.1 µg m-3 (-56%). Following these NOx emission changes, daytime ozone is strongly affected, since NOx

emission changes particularly affect daytime ozone formation. Monthly averaged simulated daytime ozone increases by 6.0

µg m-3, and increases of >10 µg m-3 are seen in regions with large emission increases. With respect to the initial simulation,

MDA8 O3 has an improved spatial distribution, expressed by an increase in r2 from 0.40 to 0.53, and a decrease of the mean

bias by 7.4 µg m-3 (48%). Overall, our results highlight the dependence of surface ozone on its precursor NOx and demonstrate20

that simulations of surface ozone benefit from constraining surface NOx emissions by satellite NO2 column observations.

1 Introduction

Ozone (O3) is an air pollutant that affects human and ecosystem health (Lelieveld et al., 2015; Ainsworth et al., 2012). It also

affects radiative forcing directly as a greenhouse gas (IPCC, 2013), and indirectly by impacting ecosystem carbon uptake via
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deposition (Sitch et al., 2007). Despite decreases in ozone concentrations in Europe since 2000 (Chang et al., 2017), peak

ozone concentrations still exceed the WHO air quality guideline of 100 µg m-3 and the European long-term objective of 120

µg m-3 (EMEP/CCC, 2016). For example, 87% of European air quality stations did not meet this long-term objective (EEA,

2017) in 2015, and vegetation exposure thresholds were exceeded in large parts of the continent during this year, particularly

in Southern and Central Europe (Rouïl and Meleux, 2018).5

The formation of ozone in the lower troposphere is a photochemical process that depends nonlinearly on concentrations

of its precursor species nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs) (e.g. Sillman et al.,

1990). In NOx-limited conditions, ozone production increases with NOx emissions and is less sensitive to VOC emissions.

However, ozone production under NOx-saturated conditions increases with VOC emissions, but decreases with increasing

NOx emissions. European NOx emissions are dominated by the anthropogenic contribution from fossil fuel combustion for10

transportation, electricity generation and industry. In summer, there are additional contributions from soils and lightning, which

together comprise 40% of the total European NOx emission budget (Jaeglé et al., 2005). Soil NOx emissions in turn have an

anthropogenic component, since nitrogen-containing fertilizers are partly re-emitted to the atmosphere as NOx (Steinkamp and

Lawrence, 2011).

Anthropogenic emissions in Europe have decreased due to air pollution abatement measures and the economic crisis that15

started in 2008 (Castellanos and Boersma, 2012). Bottom-up anthropogenic emission inventories suggest a continued reduction

of NOx emissions in more recent years. This is consistent with the ongoing development of European air quality conditions

towards the NOx-limited regime (Jin et al., 2017), which is projected to continue in the future (Beekmann and Vautard, 2010).

On the other hand, a decrease in European anthropogenic and natural NOx emissions is not supported by trend analysis of

remote sensing and in situ NO2 observations (Jiang et al., 2019, submitted), although this potentially reflects a growing relative20

contribution from natural NOx emission sources (Silvern et al., 2019). Nevertheless, downward anthropogenic emission trends

have been suggested as an important driver of the decreasing trend in peak ozone concentrations in Europe (ETC/ACM, 2016).

Regional air quality (AQ) models are important tools for studying and forecasting ozone pollution. These models simulate

processes relevant for ozone pollution at a resolution that can better capture observed spatial gradients compared to coarser

global models. Regional AQ models can therefore be applied to simulate polluted conditions in or surrounding urban areas,25

or for air quality impact assessments. Coupled (or "online") meteorology-chemistry models resolve meteorology, transport,

chemical transformation and removal of pollutants at the same spatial and temporal resolution. The coupled treatment of

meteorology and chemistry is mandatory, because ozone concentrations depend on feedbacks between meteorological and

chemical processes: 1) O3 sources such as chemical formation depend on radiation, temperature and water vapour (Pusede

et al., 2015; Coates et al., 2016), and 2) O3 sinks, such as dry deposition, also largely depend on meteorological drivers30

(Clifton et al., 2017; Kavassalis and Murphy, 2017). However, coupled regional air quality models are subject to several

sources of uncertainties. These uncertainties are related to the limited knowledge on ozone precursor emissoins (Kuenen et al.,

2014; Pouliot et al., 2015), the representation of boundary conditions (Giordano et al., 2015), tropospheric chemistry in the

chemical mechanism (Knote et al., 2015), and the land surface and its feedbacks with tropospheric chemistry (Baklanov et al.,

2014).35
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Many regional AQ models have been applied to simulate NOx and O3 in European summers, for research and forecasting

purposes. Models tend to underestimate summertime NOx compared to rural background in situ observations (Terrenoire et al.,

2015; Mar et al., 2016). Comparison against satellite NO2 column observations also revealed underestimations at regional

scales (Huijnen et al., 2010; Aidaoui et al., 2015). Another study found both positive as well as negative biases, which were

attributed to the coarse resolution of the emission inventories (Pope et al., 2015). AQ models satisfactorily reproduce the5

spatial distribution in summer O3. However, mean O3 can be under- or overestimated depending on the model and chemical

mechanism (Terrenoire et al., 2015; Mar et al., 2016). In addition, many models consistently underestimate peak ozone values

that typically occur in the afternoon (Tuccella et al., 2012; Solazzo et al., 2012; Marécal et al., 2015; Im et al., 2015). This is

problematic for air pollution impact assessments, since the peak ozone values are important for determining the detrimental

effects on human health and ecosystems.10

The sensitivity of O3 to its precursor NOx, which is particularly pronounced in summer (e.g. Jin et al., 2017), suggests that

there is good potential to improve O3 simulations by constraining simulated NOx with observations. The past 20 years have

seen the development of methods to estimate NOx emissions with satellite-based NO2 columns in a mass balance approach,

where biases in the model-simulated and satellite-observed NO2 columns are used to update NOx emissions. The technique

has been applied in global models (Martin et al., 2003; Lamsal et al., 2008; Vinken et al., 2014a), and more recently also in15

regional models (e.g. Ghude et al., 2013). Applications of the technique include emission trend analysis (e.g. Lamsal et al.,

2011) and source-specific constraints on NOx emissions (e.g. Ghude et al., 2013; Vinken et al., 2014a, b; Verstraeten et al.,

2015). Changes in NOx emissions impact tropospheric chemistry, and therefore changes in O3 are expected. This was shown

by Ghude et al. (2013), who found local changes in surface O3 mole fractions up to 10 ppb over India after satellite-based NOx

emission scaling. Verstraeten et al. (2015) reported ozone increases up to 8 ppb at 800 hPa (±1.5 km) in China after scaling20

local NOx emissions with OMI observations, and found that simulated free-tropospheric ozone between 3-9 km was in better

agreement with tropospheric O3 columns observed by the Tropospheric Emission Sounder. However, ozone changes at the

surface after constraining NOx emissions with satellite observations have thus far not been evaluated with in situ data to our

knowledge.

Considering the importance of NOx for simulations of ozone and the previously reported ozone changes after applying25

satellite-based NOx emissions, we here investigate the potential improvement in simulated surface ozone concentrations over

Europe due to the application of satellite observations of NO2 to adjust NOx emissions. To this end, we use the WRF-Chem

meteorology-chemistry model (Grell et al., 2005) to simulate surface ozone in Europe in July 2015, at the approximate peak

of the ozone season. We first perform a model evaluation with AirBase in situ NO2 and O3 observations (EEA, 2018) and OMI

NO2 column measurements from the recently released QA4ECV dataset (Boersma et al., 2017a). We subsequently derive a30

new, OMI-based ("top-down") NOx emission inventory, and evaluate its effects on WRF-Chem simulations of surface NO2 and

O3 with the independent AirBase observations.

The structure of the paper is as follows. We describe the model set-up and observations in section 2. Section 3 presents the

method to calculate OMI-derived NOx emissions. In section 4, we evaluate a WRF-Chem set-up with bottom-up emissions

in situ and column observations, and in section 5 we describe the derived modified surface NOx emissions. We evaluate the35
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impacts on surface NOx and O3 with independent in situ observations in section 6. We conclude with a discussion (section 7)

and summarize our conclusions in section 8.

2 Model and data description

2.1 WRF-Chem

We perform simulations with the coupled meteorology-chemistry model WRF-Chem, version 3.7.1 (Grell et al., 2005). The5

model domain consists of 170 by 170 cells at 20×20 km2 horizontal resolution covering Europe, centered at 51.98◦N and

5.66◦E. Vertically, the domain extends from the Earth’s surface up to 50hPa, and consists of 27 layers with 13 layers in the

lowermost 1500m. Chemistry simulations of O3 and its precursor groups NOx and VOCs are performed with the CBM-Z gas-

phase chemical mechanism (Zaveri and Peters, 1999). Simulations of atmospheric chemistry with this mechanism compare

well with the European multi-model mean for summer O3 in a gas-phase mechanism comparison study (Knote et al., 2015).10

A complete list of parameterization options adopted in our WRF-Chem setup can be found in Table 1 of the Supplement. Our

simulations were performed with a time stepping of 180 s for a period of 38 days (24 June - 31 July 2015), allowing a 1-

week spin-up to analyze the model output for July. An evaluation of large-scale meteorological performance with ERA-Interim

reanalysis fields can be found in Sect. 2 of the Supplement.

We used anthropogenic emissions from the TNO-MACC-III inventory (Kuenen et al., 2014) for 2011, the most recent in-15

ventory available when the model experiments were performed. TNO-MACC-III contains anthropogenic emissions for lumped

species groups NOx and VOCs. NOx emissions were partitioned assuming that 97% is emitted as NO and 3% as NO2. VOC

emissions were divided over 15 emission categories in CBM-Z, following the VOC speciation by Archer-Nicholls et al. (2014).

This speciation procedure is further described in Table 3 of the Supplement. Point source emissions were distributed over the

five lowermost model layers following sector-specific emission altitude profiles (Bieser et al., 2011).20

Biogenic emissions of VOCs and soil NOx were calculated online with the MEGAN model implementation within WRF-

Chem (Guenther et al., 2006, 2012). The domain-total biogenic isoprene emissions are 1.82 Tg of isoprene, which is slightly

lower than the 9-year spread of 2-4.5 Tg isoprene for July, based on an inverse modeling study using OMI HCHO column

measurements for 2005-2013 (Bauwens et al., 2016). We simulate lightning NOx emissions using a parameterization based on

cloud-top height (Price and Rind, 1993; Wong et al., 2013), using a flash rate of 80 mol flash−1 based on a recent satellite-based25

estimate (Pickering et al., 2016). Simulations with higher flash rates of 500 mol flash−1 (Ott et al., 2010) and 310 mol flash−1

(Miyazaki et al., 2014) resulted in overestimated upper-tropospheric contributions to the NO2 columns relative to OMI.

Anthropogenic emissions are the dominant NOx source over Europe in July with a total monthly emission strength of 304

Gg N (76%). Minor contributions are associated with lightning (81.4 Gg N; 20%) and soils (15.0 Gg N; 4%). We note that

especially soil NOx emissions are low compared to previous studies, in which soils, including agricultural areas, have been30

estimated to contribute 40% to the total European NOx emission budget (Jaeglé et al., 2005; Ganzeveld et al., 2010).

Meteorological initial and boundary conditions were taken from ERA-Interim reanalysis data (Dee et al., 2011). Chemi-

cal boundary conditions for O3, NO, NO2, CO and peroxyacetyl nitrate (PAN) are taken from the CAMS chemical reanal-
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ysis product for Europe (Inness et al., 2015, retrieved at: http://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/).

Upper boundary conditions for ozone were prescribed with climatological values (retrieved at: https://www2.acom.ucar.edu/

wrf-chem/wrf-chem-tools-community).

2.2 AirBase NO2 and O3 in situ measurements

Surface measurements are taken from the European Air Quality Data Portal operated by the European Environment Agency,5

hereafter referred to as AirBase (EEA, 2018). We used all data at rural background stations from the validated E1a data

stream. The large availability of the data allows us to make a strict selection on data availability. For monthly averages, we

discard stations if data is missing for more than 24 hours. Stations used for the evaluation of monthly averages at 12:00 h

UTC may have a maximum data gap of 1 data point. This resulted in a final selection of 184-397 stations, depending on the

performance metric (see Table 1). In our analysis of O3 and NO2 we evaluate monthly time series and mid-day (12:00 h UTC)10

concentrations (denoted as [O3]12h and [NO2]12h, respectively). We additionally calculate the maximum daily 8-hour mean

ozone concentration (MDA8 O3), a widely applied metric for O3 health impacts.

2.3 OMI NO2 column measurements

We use tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) onboard NASA’s EOS Aura mission (Levelt

et al., 2006). The polar-orbiting instrument detects radiation backscattered from the Earth’s atmosphere. Retrieval of tropo-15

spheric vertical column densities (VCDs) from space follows a three-step procedure (Boersma et al., 2018). First, total slant

columns (SCDs; i.e., columns along the average light path through the atmosphere) are obtained from a spectral fit to the OMI-

measured reflectance spectra in the visible wavelength range using the Differential Optical Absorption Spectroscopy (DOAS)

method. Then, the stratospheric contribution component is separated from the total NO2 column via data assimilation into the

TM5 global Chemistry Transport Model (Dirksen et al., 2011). The final step is to obtain tropospheric VCDs by dividing the20

SCDs by a tropospheric Air Mass Factor (AMF) that describes the vertical sensitivity of the instrument to atmospheric NO2

(Eskes and Boersma, 2003). This is a function of satellite viewing geometry, surface albedo, terrain height, cloud properties,

and a priori NO2 profile.

The recent EU FP7 project Quality Assurance for Essential Climate Variables (QA4ECV) has led to the development of a

new OMI NO2 data product (Boersma et al., 2017a). The underlying consortium retrieval algorithm is based on the NO2 column25

retrieval principles described in Boersma et al. (2007), but with improvements in the three aforementioned steps (Boersma et al.,

2018). Zara et al. (2018) described how better wavelength calibration, and inclusion of liquid water absorption and an intensity

offset-correction reduced uncertainties in NO2 SCDs to 0.7− 0.8× 1015 molec. cm−2 (up to ±35 %). Lorente et al. (2017)

improved the AMF calculation method via the extension of the AMF look-up table with more reference points, and a correction

for the sphericity of the atmosphere. The ancillary data for the AMF calcultion has also improved relative to earlier algorithms30

such as DOMINO v2 (Boersma et al., 2011): surface albedo from the 5-year OMI albedo climatology (Kleipool et al., 2008),

cloud information from the improved OMI O2-O2 algorithm (Veefkind et al., 2016), and a priori NO2 profiles from TM5-MP at

1◦×1◦ (Williams et al., 2017). The study by Lorente et al. (2017) also showed that substantial differences between AMFs arise

5
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when different a priori NO2 profiles (as well as surface albedo and cloud properties) are used in the retrieval. This underlines

that a re-calculation of the tropospheric AMFs based on simulated WRF-Chem 20× 20 km2, replacing the coarse TM5-MP

1◦ × 1◦ NO2 profiles, may help to reduce model-satellite differences (Lamsal et al., 2010; Vinken et al., 2014b), and we will

explore this further below.

2.4 AMF re-calculation5

We take care to remove inconsistencies in the model-satellite comparison introduced by different assumptions about the vertical

NO2 profile in the satellite product compared to the model. The AMF calculation requires assumptions about the vertical profile

of NO2 to convert slant columns into vertical columns. We replace the a priori TM5-MP NO2 profiles (at 1◦ × 1◦) by WRF-

Chem NO2 profiles at a 20×20 km2 resolution. This has two advantages: 1) model-satellite comparisons are no longer affected

by differences in model assumptions between WRF-Chem and TM5-MP that lead to different vertical NO2 profiles, and 2) the10

higher resolution WRF-Chem setup resolves spatial gradients in the a priori profile that are not appropriately captured in TM5-

MP due to the coarser model resolution. Single-orbit results indicate that re-calculation of the AMFs leads to retrieved columns

that are 1× 1015 molec. cm−2 higher in densely populated areas, and lower or unaffected in surrounding non-urban regions.

This effect has been seen before in earlier studies (Huijnen et al., 2010; Heckel et al., 2011; Russell et al., 2011; Maasakkers,

2013; Vinken et al., 2014b).15

We apply the method described by Lamsal et al. (2010) and Boersma et al. (2016) to replace the TM5-MP vertical NO2

profile by the WRF-Chem profile in the calculation of the air mass factor (AMF):

Mtrop,WRF−Chem =Mtrop,TM5 ×
∑L

l=1Atrop,lxl,WRF−Chem∑L
l=1xl,WRF−Chem

(1)

where Mtrop is the tropospheric AMF based on an assumed profile from WRF-Chem or TM5, Atrop,l is the tropospheric

averaging kernel element for layer l, xl,WRF−Chem is the NO2 column density in model layer l, and L is the uppermost20

TM5-MP layer in the troposphere. The tropospheric averaging kernel in Eq. 1 is defined as follows (Boersma et al., 2017b):

Atrop =A× M
Mtrop

, where M and Mtrop refer to the AMF and the tropospheric AMF, respectively. Note that the WRF-Chem

vertical NO2 profile has been sampled at the TM5-MP vertical layer structure, so l refers to TM5-MP model layers.

3 Top-down NOx emissions: methods

Satellite-detected NO2 columns are sensitive to NOx emissions at the surface. We exploit this dependence to derive satellite-25

based surface NOx emissions using local OMI NO2 columns. We apply an improved version of the mass balance procedure

(Martin et al., 2003; Lamsal et al., 2011; Vinken et al., 2014b), which accounts for non-linear feedback from NOx emission

changes on NO2 concentrations via OH:

Etd = Ebu

(
1 +β(1 + γ)

COMI,bu −CWC,bu

CWC,bu

)
(2)
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where Ebu and Etd represent NOx emissions from the bottom-up inventory (bu) and the satellite-based top-down estimate (td),

respectively. CWC,bu represents the monthly-averaged NO2 vertical column density (VCD) simulated by WRF-Chem, and

COMI,bu is the monthly averaged modified QA4ECV OMI NO2 VCD using air mass factors based on the original WRF-Chem

NO2 vertical profile (CWC,bu, see Section 2.4). WRF-Chem NO2 VCDs are co-sampled with valid OMI observations. We

only use OMI and WRF-Chem data for pixels with valid satellite observations for at least 4 days in July 2015 to minimize the5

random error in the satellite retrieval.

We account for the nonlinear NOx-OH chemistry feedback via a dimensionless scaling factor β, for which we performed a

perturbation simulation with surface emissions increased by 20%:

β =
∆Ebu,1.2/Ebu

∆Cbu,1.2/Cbu
=

0.2Cbu

∆Cbu,1.2
(3)

where Cbu are the NO2 columns after a WRF-Chem simulation with bottom-up NOx emissions, and ∆Cbu,1.2 is the change in10

NO2 columns after perturbing bottom-up NOx emissions by +20%. In low-NOx environments, this perturbation leads to higher

OH levels and thus to more efficient NOx loss to HNO3, so that a β > 1 is needed to achieve column agreement. In NOx-rich

environments, however, OH levels are suppressed by enhanced NOx emissions so that the relative increase in NO2 columns

is larger than 20%, resulting in a β < 1. The use of β to account for the sensitivity of the NO2 column to local emissions is

essentially a linearization step of non-linear effects due to chemistry.15

Application of Equations 2 and 3 would lead to updated NOx emissions, and consequently also to modifications in the WRF-

Chem NO2 profile shapes in response to the updates (e.g. Vinken et al., 2014b). This is accounted for via γ, which we also

obtain from the simulation with +20% perturbed emissions:

γ =
(COMI,1.2 −COMI,bu)/COMI,bu

(CWC,1.2 −CWC,bu)/CWC,bu
(4)

whereCWC represents the WRF-Chem NO2 vertical column density (VCD), andCOMI represent the OMI NO2 VCD retrieved20

using WRF-Chem NO2 vertical profiles from the bottom-up simulation (CWC), for the bottom-up (subscript bu) and emission

perturbation simulation (subscript 1.2), respectively. Our approach to calculate γ differs from Vinken et al. (2014b), who

derived γ from a separate simulation after accounting for β. Our approach requires one less forward simulation and is thus

computationally more efficient, with little impact (<3%) on total derived emissions compared to the approach by Vinken et al.

(2014b).25

We calculate the scaling factors β and γ for all land-based and shipping lane WRF-Chem cells based on monthly mean NO2

columns (i.e., ocean-based pixels with emissions above a threshold value of 1 mol km-2 h-1). These pixels thus also include

shipping lanes and offshore oil platforms. OMI-inferred emission changes are calculated locally, i.e. for each individual model

cell for which the aforementioned data availability criteria are fulfilled. This differs from previous work where these factors

were calculated for regions containing multiple model cells (Vinken et al., 2014a, b) or for individual pixels in global models30

with a coarse resolution (e.g. Lamsal et al., 2011).
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We discard the effect of transport of NO2 away from the source region (’smearing’). In July, solar intensity in Europe is close

to its annual peak, which means that the NO2 lifetime is short due to efficient oxidation. Therefore, the clear-sky monthly mean

NO2 column difference between model and satellite is indicative of local NOx emission updates. Previous studies showed that

this method reduces the model-satellite NO2 column difference but does not resolve it completely (e.g. Vinken et al., 2014b;

Ghude et al., 2013) as a result of the linearization that is applied in the perturbation calculation. Nonetheless, we will show in5

this study that the systematic bias between WRF-Chem and OMI NO2 columns is largely removed after application of Eqns.

2-4.

4 Bottom-up model evaluation

4.1 Surface O3

We start our evaluation of O3 chemistry in WRF-Chem (with bottom-up NOx emissions, i.e. not yet based on the OMI-inferred10

NOx emissions) by a comparison of monthly-averaged, 24-hour mean surface ozone simulations with AirBase observations

(Fig. 1, panels a and b, and Table 1). WRF-Chem reproduces the spatial distribution of surface ozone satisfactorily, with an

increase in surface O3 concentrations from north to south, as reported elsewhere (e.g. Mar et al., 2016). Highest concentrations

are found around the Mediterranean basin. O3 concentrations over Central and Southern Europe are underestimated in WRF-

Chem. Simulated monthly-averaged concentrations do not exceed 110 µg m-3, while higher concentrations were observed at15

several stations in the southern part of the domain. Most notably, WRF-Chem does not capture observed high concentrations

of ±130 µg m-3 in northern Italy. The good agreement between WRF-Chem and in situ data in the western part of the domain

close to the model boundaries with a prevailing westerly circulation indicates that the model boundary conditions describe

inflow of long-lived compounds such as O3 from the western boundary well.

Monthly averaged ozone concentrations are an important and widely used metric to evaluate model skill, but are not nec-20

essarily indicative of the peak ozone concentrations that typically occur in the afternoon. These monthly averages include the

nocturnal conditions with generally the presence of stable boundary layers, in which the titration of ozone in the NOx-saturated

regions is difficult to model (e.g. Im et al., 2015). The simulated and observed monthly averaged ozone concentrations at 12:00

h UTC (Fig. 1, panels c and d) demonstrate a similar geographical distribution compared to the monthly average, but with

higher values because photochemical ozone production generally peaks during daytime. This figure demonstrates that peak25

ozone values occur around the Mediterranean basin, most prominently in North Italy and Spain, where the levels of sunlight

and ozone precursor concentrations are high. WRF-Chem shows elevated ozone with respect to adjacent areas, but maximum

simulated ozone levels do not exceed 120 µg m-3. This underestimation of peak ozone concentrations is also apparent from in

Fig. 8b (discussed in more detail in Sect. 6), which shows the simulated versus the observed 12:00 h UTC ozone concentrations.

Our results are in agreement with previous regional chemistry model evaluations for Europe. Such studies typically focus30

on seasonal variability; we compare our results with the results for European summer (JJA) from those studies. Im et al.

(2015) found that a model ensemble underestimates the daytime maximum O3 concentration for sites where observed O3

concentrations exceed 120-140 µg m-3, which agrees with our results. In that study, the ensemble mean model bias tends
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to become more negative for observed concentrations above 80 µg m-3 (Im et al., 2015). The two ensemble members that

use CBM-Z chemistry, similar to our WRF-Chem model set-up, are qualitatively in line with the ensemble mean, lending

support to the use of CBM-Z in this study. Mar et al. (2016) compared two chemical mechanisms in a WRF-Chem evaluation

study over Europe and reported large differences in the representation of peak summer (JJA) ozone: one chemistry model

(MOZART) overestimates mean and MDA8 ozone, while simulations with the other chemistry scheme (RADM2) shows5

underestimations of peak ozone that are in line with our findings. We will discuss the dependence of ozone simulation on the

chemical mechanism choice in detail in Sect. 7. The ensemble model mean daytime ozone concentration in Solazzo et al. (2012)

is underestimated by 10-30 µg m-3 in four sub-regions of the European continent. Tuccella et al. (2012) analyzed WRF-Chem

O3 concentrations for 2007 and found that yearly-averaged mid-day ozone is underestimated by approximately 10 µg m-3. The

model performance in the aforementioned studies is qualitatively similar to our findings and the magnitude compares well.10

Overall, most studies consistently show underestimated daytime O3, regardless of the chemical mechanism, model resolution

and other model assumptions. To further explore the potential role of a model misrepresentation of NO2 concentrations in

explaining this model O3 bias, the next sections will focus on a model comparison with in situ and remote sensing data for

NO2.

4.2 Surface NO215

Fig. 2 a and b present a comparison of monthly-averaged surface concentrations of NO2 between WRF-Chem and AirBase

(note the logarithmic scale). Performance statistics are shown in Table 1. We find that WRF-Chem reproduces the spatial distri-

bution well, with peak NO2 occurring in Northwest Europe and North Italy. In these regions with high NOx emissions, average

WRF-Chem-simulated concentrations are however underestimated by up to 10 µg m-3 compared to observations. AirBase con-

centrations show a region with elevated NO2 concentrations in Southwest Germany. WRF-Chem also shows elevated NO220

concentrations in this region, but does not reach such elevated concentrations. Overall, WRF-Chem shows more spatial het-

erogeneity in surface NO2 concentrations than is apparent from the observations. Observed NO2 concentrations in background

areas in Spain, France and Eastern Europe are 2-5 µg m-3 or higher, while the model consistently simulates values <2 µg m-3 in

these regions. This overall underestimation is also seen in Fig. 8, where the simulated daily mean NO2 concentration is shown

against AirBase observations. The model performance of our WRF-Chem setup is in line with previous WRF-Chem studies.25

Mar et al. (2016) found small overestimations (0.67-2.96 µg m-3) in mean NO2. Another study found an annual average mean

bias of -0.9 µg m-3, caused by underestimations of peak NO2 in WRF-Chem (Tuccella et al., 2012).

A comparison between WRF-Chem and AirBase monthly-averaged 12:00 h UTC NO2 concentrations is presented in Figure

2c and d and Table 1. We find that WRF-Chem on average strongly underestimates mid-day NO2 concentrations by 2.96 µg

m-3 (38.5%).30

4.3 NO2 VCD

Before we perform a comparison between NO2 VCDs from WRF-Chem and OMI, we first discuss the effect of the NO2

profile shape on the OMI-retrieved columns. Figure 3 shows the change in the monthly-averaged OMI NO2 column density
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after replacing TM5-MP NO2 profiles by WRF-Chem profiles using the procedure described in Sect. 2.4. The OMI NO2

VCDs change most prominently over urban/industrial areas such as the Netherlands, Paris, Berlin, Madrid, Milano and Rome.

The background areas are largely unaffected, or show small (± 0.2 ×1015 molec. cm-2) NO2 VCD increases (e.g. Spain) or

decreases (regions in France, Germany, Poland, Ukraine and Romania). The vertical NO2 profile over sea regions in western

Europe strongly peaks at the surface, because shipping NOx in WRF-Chem is emitted in the lowermost model layer. Overall,5

the average NO2 column change over non-land regions is small (<2%).

We subsequently compare WRF-Chem to this modified OMI product. The monthly-averaged NO2 vertical column densities

from WRF-Chem and OMI are displayed in Fig. 4. The model is sampled at 12:00 h UTC, close to the OMI overpass time

of ±13:30 h LT, and is co-sampled with valid satellite observations. There is good agreement in the spatial distribution of

monthly-averaged NO2 VCDs (r2 = 0.68). NO2 columns are underestimated by 0.3×1015 molec. cm-2 on average, with strong10

underestimations of up to 2×1015 molec. cm-2 in urban and industrial northwestern Europe. WRF-Chem overestimates NO2

columns in some isolated urban areas with high NOx emissions such as London, Madrid, Rome, and in parts of Eastern Europe.

We note that Fig. 4 shows small underestimations of the simulated NO2 VCD compared to OMI (±0.2× 1015 molec. cm-2)

in background regions (e.g. the Alps, rural Spain and France, Scandinavia) and over the oceans. Simulated NO2 columns

therefore show stronger spatial gradients than OMI-retrieved columns, which is in line with Huijnen et al. (2010). Other15

distinct underestimations in the simulated NO2 columns compared to OMI indicate a misrepresentation of emissions. For

example, the simulated NO2 column in northwestern Spain is underestimated by 2 × 1015 molec. cm-2 compared to OMI. The

enhanced NO2 columns in this region mainly reflect the contribution to atmospheric NOx by power plant emissions. Although

emissions from power plants should have decreased in recent years in this region (Zhou et al., 2012), these emissions seem to

be underestimated in WRF-Chem. However, since these results are only representative or July 2015, a more dedicated analysis20

is needed to further corroborate this hypothesis.

We have shown that our WRF-Chem set-up with bottom-up emissions underestimates NO2 with respect to both surface

and column measurements. To combine these model comparisons against different data sources, we already discuss parts

of Fig. 9, which compares the agreement between simulations with bottom-up and top-down emissions. Fig. 9a shows the

relative difference of WRF-Chem against AirBase and OMI NO2 binned as a function of bottom-up anthropogenic emission25

strength. This shows an overall underestimation of WRF-Chem at the surface and in the troposphere, except for regions with

strongest emissions. There is a relatively larger model underestimation of surface NO2 than of the NO2 VCD in regions with

comparatively low emissions. Given that the surface NO2 mixing ratios are more sensitive to surface emissions than the NO2

column (Li and Wang, 2019), this suggests that emissions are generally too low in WRF-Chem, but especially that emissions in

rural background regions, are underestimated. This, in turn, suggests that the representation of surface NOx emissions in WRF-30

Chem (anthropogenic emissions for 2011 and on-line calculated natural soil emissions) are too low to explain the observations

in July 2015. In the following section, we will derive satellite-constrained NOx emissions and discuss potential reasons for this

mismatch.
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5 Satellite-derived NOx emissions

5.1 Top-down emissions

We derive top-down NOx emissions using the method described in Section 3. Fig. 5 shows the July total bottom-up and top-

down surface NOx emissions and their difference. Top-down NOx emissions amount to 498 Gg N, which is 56% higher than

the bottom-up inventory, and increases occur across the domain (Fig. 5c). NOx emissions are reduced in several isolated grid5

cells that generally correspond to urban areas. The difference between top-down and bottom-up emissions is larger than the

16% increase reported by Miyazaki et al. (2017), although that study found strong (40-67%) local increases in areas with high

NOx emissions such as Belgium, western Germany and northern Italy.

Our top-down emissions are much higher than the bottom-up emissions over Germany and Poland. Over Belgium and the

Netherlands, the difference between top-down and bottom-up emissions is also substantial, but notably smaller despite larger10

differences between OMI and WRF-Chem NO2 columns over the low-countries (Fig. 4c). This reflects the chemical regime

with very high bottom-up NOx emissions in this region, resulting in suppressed mid-day OH concentrations, and consequently,

longer NO2 lifetimes (as diagnosed by low beta values over northwestern Europe in Supp. Fig. 1).

We subsequently replace bottom-up emissions with our observation-constrained top-down NOx emissions and perform a

new WRF-Chem simulation. As expected, the new NO2 columns agree much better with the OMI NO2 columns than those15

from the simulation with bottom-up emissions (Fig. 6). WRF-Chem with bottom-up emissions generally underestimates OMI

NO2 columns by 23.4%. As expected, the simulations with the top-down emissions agree better with OMI, and the slope

of 0.98 between the new WRF-Chem and OMI NO2 columns (Fig. 6b) suggests that the systematic underestimation in the

model is effectively resolved by applying the top-down emissions. The mean relative error is reduced to -7.5%, and the spatial

correlation coefficient between WRF-Chem and OMI NO2 also improves considerably (from 0.68 to 0.84).20

5.2 Attribution to emission sources

Fig. 7 shows the bottom-up and top-down NOx emissions as a function of the bottom-up anthropogenic emission strength.

This comparison demonstrates that top-down NOx emissions are higher than bottom-up emissions regardless of the emission

strength. However, top-down emissions are 50-100% higher than bottom-up estimates for relatively weak emissions between

0.5-50 Mg N month-1 cell-1, and only up to 20% higher for some urban and industrial hotspots (Fig. 7b). This 0.5-50 Mg25

N month-1 range is dominated by WRF-Chem grid cells located in the rural areas of Europe, excluding the largest urban

agglomerations as well as low-emission regions such as mountainous areas. Our substantially larger top-down emissions partly

reflect a required increase in NOx emissions in areas where soil NO emissions are expected to be a dominant NOx source. Soil

NO emissions are simulated in WRF-Chem using an implementation of the MEGAN biogenic emission model. The observed

discrepancy between the WRF-Chem-simulated and OMI-observed NO2 VCD triggers to assess how much of this discrepancy30

can be attributed to this model’s representation of soil NO emissions.

To separate the soil NOx contribution from the anthropogenic emission updates, we perform a simple budget calculation as

a first-order constraint on the partitioning of the top-down emissions between their anthropogenic and soil-based sources. We
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assume that the relative difference in anthropogenic sources is uniform over the emission bins in Fig. 7. This factor is calculated

as the median of the relative change in emissions for the three highest bins (>50 Mg N cell-1 for July, see Fig. 7), and amounts

to 0.22. This allows us to attribute the remaining emission difference to soils. Based on this crude first estimate, we derive top-

down soil NOx emissions to be 112 Gg N month-1, versus WRF-Chem/MEGAN-simulated bottom-up soil NO emissions of

only 15 Gg N month-1. The anthropogenic enhancement factor is relatively uncertain, but does not strongly impact our derived5

posterior soil NOx emission estimate: if, instead of the median (m = 0.22), we use the mean relative change in emissions for the

three highest bins (µ= 0.41), our soil contribution is still a factor >4 larger (69.0 Gg N month -1) compared to WRF-Chem’s

simulated bottom-up soil NO source. Therefore, this first-order estimation suggests that a substantial fraction (43-69%) of the

NOx emission increment after optimization can be attributed to soils.

To evaluate the derived total soil NOx emissions, we perform a comparison with literature-based estimates in Table 2. We10

find that bottom-up soil NOx emissions are underestimated by a factor 5-7 compared to previous studies. In some of those

studies (e.g. Ganzeveld et al., 2010), land use management practices (fertilizer and manure application) provide a substantial

contribution to European soil NO emissions, a feature that appears to be missing in the representation of soil NO emissions in

WRF-Chem. This supports our hypothesis that a substantial fraction of the increase in surface NOx emissions may be attributed

to soils. We will discuss this further in Sect. 7.15

6 Emission scaling impacts on surface NO2 and O3

6.1 Nitrogen dioxide

Table 1 summarizes the model performance of our bottom-up and top-down WRF-Chem simulations against a large number

of AirBase NO2 observations throughout Europe in July 2015. The simulation with top-down emissions improves upon the a

priori run in all metrics. Most notably, the model index of agreement (d) improves by 0.10 (14%). The modified model set-up20

still slightly underestimates the monthly averaged observed NO2 observations, as indicated by a slope of 0.89. However, the

low bias in WRF-Chem surface NO2 concentrations with respect to AirBase improves from -2.5 to -1.1 µg m-3.

Compared to the monthly average, we find little improvement in WRF-Chem’s skill to predict surface NO2 at 12:00 h UTC.

The model’s low bias in NO2 reduces from -3.0 to -2.6 µg m-3 and the index of agreement improves by only 0.02 (4%). This

more modest improvement in performance can be understood from mid-day surface NO2 concentrations being more strongly25

driven by photochemical removal processes and boundary layer development than the 24-hour mean NO2 levels, that are more

sensitive to NOx emissions due to strongly reduced mixing and photochemistry at night. Fig. 8 displays WRF-Chem monthly,

24-hour mean NO2 concentrations against AirBase observations, for the bottom-up (black) and top-down (red) simulations.

The model orthogonal distance regression (ODR) slope improves considerably, while the explained variance of the model

improves slightly to 0.46.30

Fig. 9 shows the relative biases between WRF-Chem and observed NO2 as a function of (binned) bottom-up anthropogenic

NO emission strength. Both the WRF-Chem simulations with bottom-up emissions (Fig. 9a) as well as the simulation with

top-down emissions (Fig. 9b) show a low bias against OMI and AirBase for regions with low emissions, and a positive relative
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bias in regions with stronger emissions. The relative bias is however considerably reduced in the simulation with top-down

NOx emissions, both at the surface and in the column. However, WRF-Chem still displays a stronger relative bias compared to

AirBase than compared to OMI. This feature can likely be attributed to a difference in spatial scales between the 20×20 km2-

resolution model versus the footprint area of local AirBase measurements, which can be easily influenced by a nearby NOx

source that is less well captured in the model, due to instantaneous mixing over a larger volume. Another potential explanation5

for lower relative bias of WRF-Chem compared to AirBase than compared to OMI is interference of in situ measurements with

molybdenum converters (see Sect. 2.2). This is in line with our previous finding that the slope of the top-down NO2 column

regression fit approaches 1, while the slope of the fit for in situ NO2 observations is still below 1. We also note that the spread

in the relative bias compared to AirBase increased for the top-down simulation, with more positive relative bias values for

all bins. Nonetheless, the results shown in Fig. 9 provide confidence regarding application of the model as a tool to reconcile10

local-scale bottom-up emissions and concentrations with larger-scale remote sensing-based NO2 measurements.

6.2 Ozone

Next, we address our main question whether the improved simulation of NO2 leads to better model performance for surface

ozone simulations. We find that WRF-Chem with top-down emissions improves upon the bottom-up simulation for both the

24-hour mean, as well as the 12:00 h UTC and MDA8 ozone metrics. The model index of agreement improves by 0.08-0.1115

(13-17 %, Table 1). However, the top-down model still simulates too low surface O3, especially over southern, eastern and

central Europe, where observed surface O3 exceeds 80 µg m-3 at 12:00 h UTC (see Fig. 11).

A comparison between monthly averaged mid-day O3 concentrations from the bottom-up and top-down simulation (Fig.

11, panels a and b, respectively) shows that ozone increases across the model domain. This particularly improves the WRF-

Chem-AirBase agreement in large parts of western and Central Europe. The simulated ozone values in northern Italy remain20

underestimated.

Surface ozone concentrations display a strong increase due to the use of top-down NOx emissions (Fig. 11). The areas where

ozone concentrations increase by >10 µg m-3 largely coincide with regions where top-down NOx emissions are much higher

than the bottom-up emissions (Fig. 5c), such as in northern Spain, southern Germany, southern Poland, Croatia, Serbia, western

Greece and southern Romania. There are also strong simulated ozone increases in central France and over the Adriatic Sea.25

These regions are all characterized as (rural) background areas, where ozone formation is strongly sensitive to the increases

introduced in the NOx emissions for the relatively low bottom-up anthropogenic and soil emissions. We find decreases in

ozone around the main shipping lanes, where the higher NOx emissions further enhance ozone titration. The enhanced titration

also reduced simulated surface ozone around urban regions such as Barcelona, Rome, and Paris. The increases in surface

NOx emissions in the BeNeLux and western Germany slightly increase simulated mid-day surface ozone. Ozone production30

is less sensitive to NOx emissions in these high NOx-emitting regions compared to the unpolluted background (Beekmann and

Vautard, 2010; Mar et al., 2016; Jin et al., 2017).

Fig. 8 shows that O3 simulations with the higher top-down NOx emissions lead to a somewhat better match between modeled

and observed surface O3, with an improvement in spatial correlation coefficient from 0.43 to 0.57, and an increase in slope from
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0.33 to 0.41. Overall, the model low bias has reduced from -15 to -8 µg m-3, which indicates that the use of OMI NO2 VCD

data to constrain WRF-Chem surface NOx emissions results in a considerable improvement regarding simulation of surface

layer O3 concentrations.

We additionally analyzed changes in the temporal evolution of ozone concentrations resulting from NOx emission changes

(Fig. 10). Daytime median O3 concentrations are better captured in the Po Valley, Central Spain and Poland. The NOx emission5

changes lead to a model overestimation of surface O3 concentrations for Central France and South Germany, while concentra-

tions change only slightly in the BeNeLux and Ruhr areas. In those regions, the mean bias error increases, while the hourly

correlation coefficient and RMSE values improve for all regions (Supplementary Table 4). In all areas, changes in NOx emis-

sions lead to increased ozone concentrations particularly during daytime. Enhancements in simulated night-time concentrations

are only observed in Central Spain. In other areas, night-time O3 concentrations are overestimated in both simulations. Peak10

daytime O3 concentrations are better captured in all areas, as evidenced by the increase of the 75th percentile of simulated O3

concentrations with top-down emissions. However, peak O3 concentrations remain underestimated in the Po Valley, Central

Spain and South Germany. Additionally, nighttime O3 concentration overestimations remain, likely due to issues related to

model resolution and vertical mixing. Overall, the NOx emission changes most effectively increase O3 concentrations during

periods with elevated ozone (Supplementary Fig. 3), which coincide with high solar radiation and temperatures and thus have15

a strongly NOx-dependent O3 formation.

7 Discussion

In this study we demonstrate the added value of deriving satellite-based NOx emissions in (regional) air pollution models for

simulations of summertime ozone, focusing on July 2015 over Europe. We use a modified version of the mass balance approach

introduced by Martin et al. (2003), with further improvements by Lamsal et al. (2011) and Vinken et al. (2014b). Although many20

studies report differences in simulated (surface) ozone concentrations after applying this mass balance approach (e.g. Ghude

et al., 2013), we are aware of only one other study that used observations to validate subsequent ozone changes. Verstraeten

et al. (2015) used TES O3 observations in the global chemistry model TM5 in a study on trans-continental transport of Asian

air pollution, and found an improved model-satellite agreement in lower-tropospheric ozone. However, their approach did not

allow for an evaluation of model performance closer to the surface.25

The mass balance approach that we used to derive observation-constrained European NOx emissions has several important

advantages over more formal inversion methods that are applied in the literature (e.g. Miyazaki et al., 2014, 2017). The method

is highly traceable due to the simple calculation of scaling parameters from model output for a baseline and perturbation

simulation, and column NO2 measurements. However, the linearization (see Sect. 3) oversimplifies the nonlinearity of the NOx-

O3 chemistry, which means that the model-satellite discrepancy is not resolved completely after one iteration. Additionally,30

the approach is only applicable on a pixel-basis when the NOx lifetime is sufficiently short to discard the contribution of

transport from adjacent model NO2 columns. The model-satellite difference for a simulation we performed for March 2015

(not shown) shows less spatial heterogeneity over regions with a diffuse spatial distribution of NOx sources (e.g. Germany).
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These shortcomings can be resolved by averaging the signal over multiple grid cells, or by applying more formal inversion

methods.

Our results demonstrate that surface NOx emissions in our WRF-Chem configuration are increased substantially after ap-

plying an emission scaling approach. In a first-order budget calculation we derive that 43-69% of this total increase can be

attributed to soil NOx. This is diagnosed from the notably higher relative increase in emissions in regions with moderate5

anthropogenic emissions compared to regions with low and high anthropogenic emissions. We therefore conclude that the con-

tribution of soil NOx to total surface emissions is likely underestimated in our model set-up. Additionally, our top-down soil

NOx emission estimate, derived with a budget calculation, agrees well with previous estimates for European summer (Table 2).

Our findings are in line with a previous study (Oikawa et al., 2015) that, using WRF-Chem with MEGAN soil NOx emissions,

found a strong underestimation of NOx emissions in a high-temperature agricultural region.10

Several studies previously investigated the relation between soil NOx emissions and O3 formation. For example, one study

estimated that European soil NOx emissions contribute 4 ppb to the daily maximum concentration (Stohl et al., 1996). A sen-

sitivity study by Li et al. (2019) indicates that a strong up-scaling of soil NOx emissions by a factor 5 indeed leads to a better

representation of the peak ozone concentration. It has further been shown that an improved process-based representation of

soil NOx emissions leads to MDA8 O3 changes by up to 6 ppb (Rasool et al., 2016), and a reduced mean bias for ozone con-15

centrations, particularly in agricultural areas (Rasool et al., 2019). Together, these findings provide support for the hypothesis

that underestimated soil NOx emissions, in particular those from agricultural areas, contribute to underestimated peak ozone

concentrations.

The comparison against in situ NO2 observations from the AirBase network may be hindered by interference of reactive

N species for measurements with molybdenum converters. The type of converter is not reported in the database. Literature-20

reported estimates of measurement overestimations due to this interference are 22% (Dunlea et al., 2007) and 5-18% (Boersma

et al., 2009) at urban sites, and 20-42% at a rural site (Steinbacher et al., 2007). A correction factor can be applied to obtain

corrected NO2 measurements from observations using a molybdenum converter, which is on average 0.4-0.6 in summer, but

with a large spread (0.2-0.8) (Lamsal et al., 2008, 2010). The strongest corrections of molybdenum-based in situ NO2 measure-

ments are needed in remote environments, where NOx is a relatively smaller component of the total reactive nitrogen budget25

compared to areas closer to NOx sources (Lamsal et al., 2008). We hypothesize that this can partially explain the remaining

model-observation mismatch for NO2 after the use of top-down emissions.

Despite the demonstrated improvement in ozone simulations, our simulation with OMI-derived top-down NOx emissions

still misrepresents the high tail of the ozone distribution. We believe that there is a potential explanatory role for local to

regional meteorological processes. The representation of several mesoscale phenomena requires a higher model resolution30

than 20× 20 km2. For example, Millán et al. (1997) demonstrated that local re-circulation of residual air masses from higher

aloft, containing elevated O3 transported aloft during previous days, can be entrained in the boundary layer and contribute

substantially to air pollution episodes in southern Europe. This is supported by an analysis of measured ozone (precursors) in

northeast Spain by Querol et al. (2017), where this mesoscale circulation pattern was found to contribute to concentrations that
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exceed the information threshold value set by the European Union (180 µg m-3), alongside contributions from locally emitted

NOx and biogenic VOCs.

Simulations of surface ozone in AQ models are also impacted by the choice of chemical parameterization. Recently, several

studies have investigated the influence of the chemical mechanism on simulated NOx and O3 concentrations. Regarding ozone

chemistry, chemical mechanisms differ predominantly in two aspects: 1) the grouping of VOC species in species categories5

("lumping") according to their chemical structure or number of C-atoms, and 2) the inorganic rate coefficients involved in the

catalytic cycling of NOx, HOx and Ox. Especially the latter aspect has a strong influence on simulated NO2 concentrations,

and can therefore influence the derivation of top-down emission estimates using satellite observations (Stavrakou et al., 2013).

Coates et al. (2016) investigated the maximum ozone formation potential in different chemical mechanisms and found that

mechanisms with lumped VOC categories led to lower ozone mixing ratios compared to a mechanism with a near-explicit10

treatment of VOCs. Knote et al. (2015) found small differences in inorganic rate constants among mechanisms and thus

concluded that VOC representation was the dominating source of uncertainty among mechanisms. However, Mar et al. (2016)

performed a WRF-Chem sensitivity study where MOZART inorganic rate constants were applied within RADM2, leading to

mean O3 concentration differences of 8 µg m-3 between those mechanisms.

In order to test the importance of inorganic NOx-HOx-Ox reaction rates for ozone formation, we implemented inorganic rate15

constants from three different mechanisms (CBM-Z, RADM2 and MOZART) in a mixed layer model with simplified chemistry

(Janssen et al., 2012). Further details are given in Sect. 5 of the Supplement. Our analysis shows that varying the temperature-

dependent rate constant of HNO3 formation (kNO2 + OH) can lead to a spread of 2 ppb for end-of-afternoon ozone values on a

typical summer day in a polluted boundary layer. CBM-Z uses the lowest kNO2 + OH among the considered mechanisms, and

thus leads to a higher NO2 lifetime and more O3 formation than in other mechanisms. Therefore, we conclude that modification20

of inorganic reaction rate constants has a modest effect on simulated O3, but is not likely to lead to increases in simulated O3

in our WRF-Chem configuration. Nevertheless, the model representation of ozone chemistry should be carefully considered in

NOx and O3 air quality studies, besides the representation of NOx emissions.

Several studies have considered the resolution dependence of air quality simulations. This is especially relevant for NO2,

since NOx emissions display strong variation on the 20× 20 km2 scale applied in this study. Increasing model resolution leads25

to better representation of these local gradients and therefore improves simulations of NO2 concentrations (Schaap et al., 2015).

Valin et al. (2011) found that an accurate representation of mid-day NO2 columns from highly localized sources requires a high

model resolution, but regions with more diffuse sources can be simulated at a coarser resolution of ±10× 10 km2. Although

ozone production regimes do not strongly depend on the model resolution in regional models, high resolution models perform

better at simulating local O3 titration in freshly emitted NO plumes (Cohan et al., 2006).30

Besides the representation of meteorological processes, there is an additional uncertainty related to surface-atmosphere

exchange of pollutants. Dry deposition constitutes 17% of the tropospheric sink of ozone, and is the second most important

removal process after chemical removal (Hu et al., 2017). Several studies have recently investigated the role of meteorological

drivers that determine ozone removal at the surface. However, these meteorological controls are oversimplified in deposition

parameterizations. The vapour pressure deficit strongly controls stomatal uptake of ozone, thereby affecting surface ozone35
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levels in spring to summer in the United States (Kavassalis and Murphy, 2017). Analysis of 10-year O3 flux observations in

the northeastern United States revealed that the removal of ozone by the land surface exhibits a strong inter-annual variability,

which is not captured in dry deposition parameterizations (Clifton et al., 2017). Lastly, the role of soil moisture has been

proposed as a regulator of surface ozone uptake (Tawfik and Steiner, 2013) and is often neglected in parameterizations of

dry deposition, even though a recent study found that it can significantly reduce simulated ozone uptake (Anav et al., 2017).5

Improving the biophysical representation of the dry deposition process in WRF-Chem will be one of our foci in the future.

Future studies that apply satellite-based constraints on surface NOx emissions can benefit from observations from the recently

launched TROPOMI instrument (Veefkind et al., 2012), which delivers NO2 column data at an unprecedented resolution of

7× 3.5 km2. This has the potential to lead to important improvements in satellite-constrained NOx emissions. Recent work

(Lorente et al., 2019, in review) has applied TROPOMI observations in a column model study to derive emissions from Paris.10

The resolution of the instrument additionally enables the focus on more local areas with one dominating source such as soils

in agricultural or bare-soil regions.

8 Conclusions

We performed a WRF-Chem simulation of NOx and ozone over Europe for July 2015 and assessed its performance with

AirBase in situ observations and OMI NO2 column measurements. We find that WRF-Chem underestimates high surface15

ozone concentrations in central and southern Europe, and overestimates lower ozone concentrations in northern Europe. The

model also underestimates the spread. The monthly averaged mean bias error (MBE) is relatively small (-2.4 µg m-3, 10%).

WRF-Chem underestimates daytime increases in ozone concentrations, as evidenced by substantial negative MBE values for

the mid-day (12 h UTC) O3 concentration and MDA8 O3 (-15.1 µg m-3 and -14.2 µg m-3, respectively). We relate the low bias

in surface ozone to biases in ozone precursor concentrations. Of particular relevance are nitrogen oxides, which drive ozone20

production in much of NOx-limited summertime Europe.

For NO2, we find that WRF-Chem underestimates surface and column NO2 values for most of the domain, with exception of

some high-emission regions. With respect to AirBase, WRF-Chem monthly averaged surface NO2 is biased low by -2.5 µg m-3

(-73%). The spatial distribution of WRF-Chem column NO2 agrees well with OMI (r2 = 0.68), and a mean underestimation

of 0.3× 1015 molec. cm-2 (-23%). We attribute the low bias in WRF-Chem NO2 concentrations to underestimations in surface25

NOx emissions in WRF-Chem. We subsequently derive optimized NOx emissions based on the WRF-Chem/OMI relative

difference using a mass balance approach. Overall emissions increase from 0.32 to 0.50 Tg N, an increase of 0.18 Tg N

(+56%), for July 2015. The updates indicate that NOx emissions should be scaled up across the domain. The relative increase

in emissions is largest for regions with moderate emission strength (up to 50 Mg N month-1 cell-1) and coincides with regions

where agricultural soil NOx emissions are substantial. Our optimized soil NOx emissions amount to 0.1 Tg N, in much better30

agreement with values from the literature.

A WRF-Chem simulation with optimized NOx emissions removes the model’s systematic bias with respect to OMI NO2,

and leads to an improved spatial agreement (slope = 0.98, r2 = 0.84). An evaluation against AirBase NO2 reveals that the
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top-down simulation improves particularly in the monthly average, where the systematic mismatch is reduced (slope = 0.89

instead of 0.73) and the mean bias is reduced by 50%. For ozone, the model skill improves particularly for mid-day and MDA8

O3, when local ozone formation occurs and the sensitivity of ozone formation to NOx concentrations is highest. On average,

surface O3 concentrations increase by 6 µg m-3 (6%). Still, peak (mid-day) ozone values are underestimated after NOx emission

optimization.5

Overall, our findings demonstrate that air quality model simulations combined with in situ and remote sensing observations

can be used to infer missing sources of NOx at the surface. By optimizing NOx emissions with satellite observations, substantial

improvements in simulated ozone can be achieved. Our work shows that this helps to reduce the persistent biases in O3 that

most air quality models are suffering from. Projected decreasing trends in anthropogenic NOx emissions will mean that the

contribution of soils to total European NOx emissions will likely increase in the future, and thus deserves careful attention in10

(European) air quality assessments, along with detailed assessments of emissions of volatile organic compounds and wildfires,

boundary layer mixing, and chemistry.
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Table 1. Performance statistics of WRF-Chem bottom-up and top-down simulations for July 2015 for several conventionally applied per-

formance metrics (MBE, RMSE, slope and intercept of a linear regression fit of simulations against observations, and r2 from orthogonal

distance regression), as well as the index of agreement (d = 1 -
∑N

i=1(Pi−Oi)
2∑N

i=1(|P
′
i |+|O

′
i|)

2 , Willmott, 1982), where Pi and Oi represent simulations

and observations, respectively. MBE, RMSE and intercept have unit µg m-3, slope, r2 and d are unitless.

Bottom-up Top-down

n MBE RMSE slope intercept r2 d MBE RMSE slope intercept r2 d

[O3] 289 -2.37 2.50 0.26 54.27 0.32 0.60 2.18 17.03 0.34 53.23 0.41 0.68

[O3]
12h

397 -15.07 24.68 0.33 51.63 0.43 0.63 -7.56 19.09 0.41 51.13 0.58 0.74

MDA8 O3 289 -14.24 24.79 0.28 55.98 0.40 0.61 -7.38 19.99 0.36 55.72 0.53 0.70

[NO2] 184 -2.49 3.86 0.73 -0.28 0.42 0.70 -1.09 3.09 0.89 -0.12 0.46 0.80

[NO2]
12h

250 -2.96 3.56 0.30 -0.03 0.25 0.51 -2.59 3.28 0.33 0.04 0.23 0.53
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Figure 1. Monthly averaged surface O3 and simulated by WRF-Chem with bottom-up NOx emissions (a & c) and observed at AirBase

stations (b & d). Panels a) and b) are monthly averages, and b) and d) are sampled at 12:00 h UTC.
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Figure 2. As Fig. 1, but for NO2.
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Figure 3. Change in monthly-averaged OMI-retrieved NO2 columns after using WRF-Chem vertical NO2 profiles to calculate the Air Mass

Factors (AMFs) in the OMI retrieval, as described in Sect. 2.4.
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Figure 4. Monthly-averaged tropospheric NO2 vertical column densities from a) WRF-Chem with bottom-up NOx emissions, b) OMI and

c) their difference (WRF-Chem - OMI). WRF-Chem NO2 columns have been co-sampled with OMI, and pixels are shown when nobs ≥ 4.
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Figure 5. Surface NOx emissions for a) the a bottom-up simulation (TNO-MACC-III anthropogenic + MEGAN soil NOx), and b) the top-

down simulation; c) depicts the change in surface NOx emissions after the recalculation procedure.
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Figure 6. NO2 vertical column density scatter plots of WRF-Chem against OMI, presented as a heat map with a bin size of 0.25 × 1015

molec. cm-2, for WRF-Chem with bottom-up emissions (a), and WRF-Chem with OMI-derived top-down surface NOx emissions (b).The

OMI NO2 VCDs in panels a) and b) are calculated with AMFs based on NO2 vertical profiles of the WRF-Chem simulations against which

they are compared, to ensure a consistent model-satellite comparison. The solid black lines represent the 1:1 line, and the dashed lines display

the orthogonal distance regression fits.
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Table 2. Comparison of WRF-Chem surface NOx emissions in July (in Tg N month-1, unless indicated otherwise) with literature-reported

values.

Year Region Surface Anthropogenic Soils Soils (%)

This study, bottom-up 2015
Maps in this

study
0.32 0.30 0.015 4.7

This study, top down,

after bias attribution

(see Sect. 5.2)

2015
Maps in this

study
0.50 0.39-0.43 0.07-0.11 14-22

Stohl et al. (1996) 1994
-24.6-41.9°E,

34.9-72.1°N
- - - 17.61

Ganzeveld et al. (2010) 2000 -16-41°E, 34-64°N - - 0.14 -

Jaeglé et al. (2005) 2000 -15-45°E, 35-60°N 0.59 0.35 0.25 42.3

Miyazaki et al. (2017) 2005-2014 -10-30°E, 35-60°N 0.33-0.38 - - -

Dammers (2013) 2005-2007 -15-35°E, 35-70°N - - 0.09 -

Lathière et al. (2005)

referenced in

Dammers (2013)

1983-1995 -15-35°E, 35-70°N - - 0.13 -

1 This estimate is based on summer (JJA) estimates.
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Figure 7. Difference between bottom-up and top-down surface NOx emissions, expressed as a) a bar plot (note the logarithmic scale) of

median emissions binned by bottom-up anthropogenic NOx emissions (error bars indicate the inter-quartile range), and b) a bar plot of

relative emission differences
(

posterior−prior
prior

)
between the bars in panel a). In panel b) we define the relative anthropogenic emission

difference to be the median of the relative change between top-down and bottom-up emissions in anthropogenic-dominated regions (shaded,

with bottom-up emissions >50 Mg N month-1 cell-1.
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Figure 8. Scatter plots of monthly averaged simulated concentrations of a) NO2 and b) O3 against AirBase observations. Panel a) shows

monthly averages for 0-23 h UTC, while panel b) is sampled at 12 h UTC. The black solid lines represent the 1:1 line.
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Figure 9. Relative bias
(
RB = model - observations

observations

)
of WRF-Chem against land-based OMI NO2 vertical column densities (box plots) and Air-

Base in situ NO2 measurements (green scatter), binned by bottom-up anthropogenic NO emission strength, for the bottom-up (a) and top-

down WRF-Chem simulation (b). Green diamonds indicate the median WRF-Chem RB against AirBase observations for pixels within every

emissions bin.
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Figure 10. July 2015 monthly median diurnal ozone concentrations for six representative regions in Europe, as simulated by WRF-Chem

with bottom-up NOx emissions (green line) and top-down NOx emissions (red line), and as observed at AirBase stations in these regions.

Shaded areas and whiskers indicate the inter-quartile range. Results represent the median over all model-observation comparisons per region.

The sample size for the comparison is displayed on the top right of each subplot.
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Figure 11. Monthly-averaged 12:00 h UTC surface O3 concentration with bottom-up (BU, panel a) and top-down (TD, panel b) NOx

emissions. Panel c shows the difference between the two monthly averages (TD - BU).
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