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Abstract

We would like to thank Anonymous Referees #1 and #3 for their useful and constructive
feedback on our work. We additionally thank dr. Andreas Stohl for his comment. In this
response letter, we carefully consider the issues that have been raised.
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1 Anonymous Referee #1

The manuscript has presented the simulations of surface ozone concentrations over
Europe in the regional air quality model (WRF-Chem). Its main focus is to analyse
the changes in summertime surface ozone over Europe when replacing the bottom-
up NOx emission inventories with top-down NOx emission estimates derived from
the latest OMI NO2 product. The results show that OMI-constrained European NOx
emissions are 56% higher than the bottom-up estimates, and that the increases can be
largely attributed to large underestimates of agricultural soil emissions in the model.
Model results with the top-down emissions significantly improve the comparison
with surface in-situ NO2 measurements and moderately improve the comparison
with surface ozone measurements as well.

Overall the manuscript is well organised and written, the methodology is sound. I
recommend publish on ACP after the following comments been addressed.

\.

Response

We thank the Anonymous Referee #1 for her/his positive comments about our work and
manuscript. We particularly thank the referee for the suggestion to include a discussion of
time series and diurnal cycles, which we believe strenghthens our message. Below, we ad-
dress every comment carefully and explain the corresponding changes in the manuscript.

Page 1, Line 20 in the abstract: What does "-48%" mean? Reduced by or to this value?
Please clarify.

Response

This should be: reduced by 48%. The sentence has been modified as follows (new text shown
in blue):

With respect to the initial simulation, MDAS8 O3 has an improved spatial distri-
bution, expressed by an increase in r? from 0.40 to 0.53, and a decrease of the
mean bias by 7.4 ug m™ (48%).

Page 4, Line 17: The study assumes 97% of NOx is emitted as NO and 3% as NO2. Can
the model simulation of NO2 column be sensitive to this partitioning? Please discuss.

Response

Our NO; emission partitioning was motivated by the recommendation in the TNO-MACC-
III anthropogenic emission dataset that 97% of NO, be emitted as NO, and the remaining
3% as NO,. Indeed, the NO,/NOjy ratio in vehicle emissions, the largest NO, source in
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Europe (Kuenen et al., 2014), is on the order of 10% to 20% (Carslaw, 2005). Surface concen-
trations can be sensitive to this emission ratio, as is seen at road-side air quality monitoring
stations that are close to vehicle emission sources (Grange et al., 2017). Road-side observa-
tions sample air that has likely not reached photo-chemical equilibrium, so the NO, emission
partitioning could be a potential source of error when comparing model output to observa-
tions from road-side stations. This motivates our choice to use only background air quality
observations for our model comparison to in situ data.

However, the NO; column represents a vertically integrated amount of NO,, composed of
NOy emitted at the surface that has been transported horizontally and vertically, as well as
NOy from adjacent model cells. We can assume that a photo-chemical equilibrium has been
reached on the spatial scale of a 20 x20 km? model pixel, especially in the model levels away
from the lowermost level (but still in the boundary layer). Therefore, we do not think that the
model-simulated NO; column is strongly sensitive to the NO, emission partitioning.

Page 4, Line 31: Here "+/-40%" should be "40%".

Response

Noted, the £ sign has been removed.

Page 10, Line 17-20: The sentence is confusing. Why the model underestimates of NO2
column would reflect emissions from power plants being too strong? Please clarify.

Response

We agree with the referee that this statement can be perceived as confusing. We therefore
added extra context to further clarify this issue:

For example, the simulated NO, column over northwestern Spain is underesti-
mated by 2 x 10 molec. cm™ compared to OMI. The enhanced NO; columns
in this region mainly reflect the contribution to atmospheric NO, by power plant
emissions. Although emissions from power plants should have decreased in re-
cent years in this region (Zhou et al., 2012), these emissions seem to be under-
estimated in WRF-Chem. However, since these results are only representative
or July 2015, a more dedicated analysis is needed to further corroborate this hy-
pothesis.

Page 10, Line 25-28: This statement did not explain why there was a larger model un-
derestimate of surface NO2 concentration than that of NO2 column. Can you explain
further? Would it reflect biases in model vertical transport or any measurement bias?

Response
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Figure 9a in the main text indeed shows a lower model relative bias of surface NO, con-
centrations than of the tropospheric NO, column. We believe that missing surface NO,
sources are responsible for the stronger underestimation at the surface. The surface model
level, which is used for the comparison to surface stations, is more sensitive to missing NOy
sources than the tropospheric NO, column.

We have investigated this while preparing the manuscript. We calculated the -values (see
Eqgn. 3 in the main text) in two different ways: based on changes in the tropospheric NO,
column, and based on changes in surface NO, concentrations (See Fig. 1). Column-based
B-values are consistently higher, implying that a the emission increase needed to match col-
umn observations is larger than for in situ observations at the surface. This conclusion is
supported by a study currently under discussion for ACP (Li and Wang, 2019) that also
finds a stronger sensitivity for surface NO, emission changes at the surface compared to the
tropospheric column.

Sensitivity to emission change in column and at surface
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Figure 1: Scatter plot of column S-values (Bcolumn) Versus surface S-values (Bsyrface), calcu-
lated by using a perturbation simulation with +20% surface emissions (see Sect. 3, Eq. 3).
Bsurface is calculated in the same manner as Solumn, Using the surface NO, mixing ratio as the
response variable.

We have modified the statement in the main text:

There is a relatively larger model underestimation of surface NO, than of the
NO; VCD in regions with comparatively low emissions. Given that the surface
NO; mixing ratios are more sensitive to surface emissions than the NO, VCD
(Li and Wang, 2019), this suggests that emissions are generally too low in WRF-
Chem, but especially that emissions in rural background regions are underesti-
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mated.

Page 12, Line 20-22: The sentence stated that model "underestimates the highest
monthly averaged NO2 observations", but Figure 9 showed the opposite. Model re-
sults appeared to be slightly biases high for over high NOx emission regions. And
should hear 0.86 be 0.89?

Response
Firstly, thank you for noticing this typo, the slope should indeed be 0.89 instead of 0.86.

Figure 8 shows that, on average, WRF-Chem with top-down NO, emissions still slightly
underestimates surface NO,. However, Figure 9 shows that the model indeed overestimates
the NO; column and surface NO; in regions with high NO, emissions (though there are only
a limited number of AirBase background stations in these high-emission regions).

The results in Figure 8 are not in disagreement with those in Figure 9, because WRF-Chem
overestimates the monthly-averaged surface NO, concentration at several stations. At those
stations, WRF-Chem also shows a positive relative bias compared to AirBase in Figure 9.
The improved slope between model and independent in situ observations indicates that our
endeavour to derive satellite-based emissions has removed much of the systematic bias in
simulated surface NO,, but now leads to an overestimation in the simulated NO, concen-
trations at some stations. The scatter around the 1:1-line leads to low correlation values for
NO, (also observed by e.g. Tuccella et al., 2012; Mar et al., 2016), and is likely caused by
differences in spatial representativeness between a 20x20 km? model cell and in situ obser-
vations.

We have modified the sentence as follows, in order to ensure that the apparent contradiction
between the results in Figures 8 and 9 is removed:

The modified model set-up still slightly underestimates the highest monthly-
averaged NO, observations, as indicated by a slope of 0.89.

Comment 8

Page 14, Line 1: Should 0.40 be 0.41 as seen from Table 1?

Response

That is correct, this typo has been changed in the manuscript.

Page 13, Section 6.2: The improvement on surface ozone simulation with the top-
down NOx emissions appears to be small. Can you also comment on some other
metrics, such as time series of ozone levels at representative sites, or their diurnal
cycles?

Response
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We agree with Anonymous Referee #1 that the remaining model-observation mismatch is
substantial. However, we actually believe a domain-average increase of the simulated monthly
mean mid-day surface O3 concentration of 6 ug m™ (in some regions reaching over 15 pg
m™) after application of satellite-derived NO, is remarkable and agrees well with previ-
ously reported ozone sensitivities to NO, emissions (e.g Mallet and Sportisse, 2005; Li et al.,
2019).

Nonetheless, we have taken up the suggestion by Anonymous Referee #1 to include an anal-
ysis of monthly diurnal cycles and time series of O3 in six representative regions in Europe.
This analysis supports our point that the afternoon ozone peak depends on NO, emissions.
Therefore, the main text now contains a discussion of O3z diurnal cycles, whereas the com-
plete time series are included in the supplement.

The six representative regions span several degrees in latitude/longitude and contain 18-
59 stations for a time series comparison (Figs. 2 and 3, and Table 1). Two have high NO,
emissions (BeNeLux + Ruhr, Po Valley), with contrasting ozone production efficiency due to
temperature and radiation differences. Two sites are situated in low-NO, rural background
areas (Central France and Central Spain), while two other regions show a considerable NOy
emission increase that apparently results in a strong response in O3 (Southern Germany,
Poland).

The following section has been added to the main text:

We additionally analyzed changes in the temporal evolution of ozone concentra-
tions resulting from NO, emission changes (Fig. 10). Daytime median O3z con-
centrations are better captured in the Po Valley, Central Spain and Poland. The
NO, emission changes lead to a model overestimation of surface O3 concentra-
tions for Central France and South Germany, while concentrations change only
slightly in the BeNeLux and Ruhr areas. In those regions, the mean bias error
increases, while the hourly correlation coefficient and RMSE values improve for
all regions (Supplementary Table 4). In all areas, changes in NO, emissions lead
to increased ozone concentrations particularly during daytime. Enhancements
in simulated night-time concentrations are only observed in Central Spain. In
other areas, night-time O3 concentrations are overestimated in both simulations.
Peak daytime O3 concentrations are better captured in all areas, as evidenced by
the increase of the 75T percentile of simulated Oz concentrations with top-down
emissions. However, peak Oz concentrations remain underestimated in the Po
Valley, Central Spain and South Germany. Additionally, nighttime O3 concentra-
tion overestimations remain, likely due to issues related to model resolution and
vertical mixing. Overall, the NO, emission changes most effectively increase O3
concentrations during periods with elevated ozone (Fig. S3), which coincide with
high solar radiation and temperatures and thus have a strongly NO,-dependent
O3 formation.
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Figure 2: July 2015 monthly median diurnal ozone concentrations for six representative re-
gions in Europe, as simulated by WRF-Chem with a priori NO, emissions (green line) and
a posteriori NO, emissions (red line), and as observed at AirBase stations in these regions.
Shaded areas and whiskers indicate the inter-quartile range. Results represent the median
over all model-observation comparisons per region. The sample size for the comparison is

displayed on the top right of each subplot.

Table 1: Model performance statistics for surface ozone concentration time series of the WREF-
Chem simulation with bottom-up and top-down emissions for six European regions.

Po BeNeLux Central

Central

South

Valley + Ruhr France Spain Germany Poland

n (stations) 59 32 29 24 39 18
Bottom-up

MBE -20.14 16.82 3.35 -22.40 -11.15 1.74

RMSE 68.07 7148 59.92 45.39 68.68 43.64

r 0.80 0.78 0.76 0.81 0.74 0.77
Top-down

MBE -1.58 25.94 17.29 -1.33 5.02 16.10

RMSE 55.08 6857 56.48 36.44 58.13 41.81

r 0.85 0.81 0.79 0.83 0.81 0.80
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Figure 3: July 2015 time series of the median O3 concentrations as observed at AirBase
stations (black dots), and as simulated by WRF-chem with bottom-up (red) and top-down
emissions (green). Medians are calculated by including all stations (resp. co-sampled sim-
ulations) in the latitude/longitude range specified in the subplot titles. Shaded areas show
the inter-quartile range.
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Page 28, Figure 10: The right panel of Figure 10 is misleading by showing all values
including negative values in red. Can you change the color table, e.g., use red for
positive values, white for near-zero values, and blue for negative values?

Response We agree that a diverging colormap is more appropriate here. The colormap has
been updated in the figure.
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Figure 4: Monthly-averaged 12:00 h UTC surface O3 concentration with bottom-up (BU,
panel a) and top-down (TD, panel b) NO, emissions. Panel c shows the difference between
the two monthly averages (TD - BU).
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2 Anonymous Referee #3

I found the manuscript very well written and clear. All details of the methods seem to
be explained in order to assure reproducibility and the results are logically and clearly
illustrated. I think the manuscript is basically ready for publication, but I have only
two comments/suggestions that the authors may evaluate for a minor revision:

Response

We thank Anonymous Referee #3 for her/his positive evaluation of our study. The sugges-
tions for further analysis are interesting, and we address them below.

Attribution to soil NOx emissions: the authors make a first-order estimate of the con-
tribution of soil NOx emissions to increased total NOx emissions, after ingestion of
satellite NO2 column data, using "anthropogenic" grid cells to estimate the contribu-
tion to NOx emissions from sources other than soils. This sounds to be reasonable,
also considering the diffuse nature of the NOx emission change. A further relatively
simple test to confirm the hypothesis would be to run an additional simulation with
increased bottom-up soil NOx emissions only by an x%, and see if the changes are
consistent with the simulations using top-down emissions, both in terms of spatial
distribution and magnitude.

\.

Response

Indeed, a strong and uniform increase in soil NO, emissions would lead to increases in sim-
ulated peak ozone concentrations, and would therefore reduce model bias in rural areas: a
recent study found an increase in the monthly-averaged daily maximum ozone mixing ratio
of 6 ppb after increasing a priori emissions from soils by 500% (Li et al., 2019). A sensi-
tivity test that we performed while preparing the manuscript, in which soil NO, emissions
were uniformly scaled up by 86%, points in the same direction. We are however hesitant
to include a sensitivity study with a uniform scaling factor for soil NO, emissions in the
paper, since this goes against our point that a strong contribution by fertilizer application
(Ganzeveld et al., 2010) is likely missing in the a priori soil NO, emission budget, leading
to a wrong spatial distribution of soil NO, emissions. The contribution of fertilizer-induced
NO, emissions in Europe varies strongly per country (e.g. Butterbach-Bahl et al., 2009). The
sensitivity of (peak) ozone concentrations to soil NO, emissions is further reflected by stud-
ies introducing improvements in the process-based representation of soil NO, emissions in
the CMAQ CTM, which found strong increases of MDAS8 O3 and a reduced mean ozone
concentration bias over agricultural areas (Rasool et al., 2016, 2019).

The study by Li et al. (2019), which exactly describes the experiment that Anonymous Ref-
eree #3 requests, albeit for a different study area, was not yet published at the time of sub-
mission. We have therefore added the following content to our discussion:
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Several studies previously investigated the relation between soil NO, emissions
and O3 formation. For example, one study estimated that European soil NOy
emissions contribute 4 ppb to the daily maximum concentration (Stohl et al.,
1996). A sensitivity study by Li et al. (2019) indicates that a strong up-scaling
of soil NO, emissions by a factor 5 indeed leads to a better representation of the
peak ozone concentration. It has further been shown that an improved process-
based representation of soil NO, emissions leads to MDAS8 O3 changes by up to 6
ppb (Rasool et al., 2016), and a reduced mean bias for ozone concentrations, par-
ticularly in agricultural areas (Rasool et al., 2019). Together, these findings pro-
vide support for the hypothesis that underestimated soil NO, emissions, in par-
ticular those from agricultural areas, contribute to underestimated peak ozone
concentrations.

One interesting area is the Po Valley, which is the one showing the highest NO2 and
O3 levels in the observations. The top-down correction of NOx emissions, however,
does not seem to be effective enough in this area to fill the gap with observations.
This point is sparsely discussed in the manuscript, but it would be useful to have
some slightly further comment. For example, Figure 1 in the supplement shows that
low values of beta (proportional to NO2 lifetime, from my understanding) are calcu-
lated upon main urban settlements (e.g. Milan), but the gamma factor (accounting for
changes in the "shape" of the NO2 profile after update of emissions) is the lowest in
Europe and pretty flat over the valley. Why is that and could this be a cause for the
persistent underestimation of NOx emissions and O3 levels in the area? One rough
idea is that the model possibly simulates a quite uniform PBL (thus a low gamma,
from my understanding), even if this could be quite vertically inhomogeneous, due
to recirculation of air in the valley (see e.g. Zhang and Rao (1999), J. Appl. Meteorol.,
38, 1674-1691, doi:10.1175/1520-0450(1999)038<1674:TROVMI>2.0.CO;2; Ordonez et
al. (2006) J. Geophys. Res., 111, D05310, doi:10.1029 /2005]D006305; Cuzrci et al. (2015)
Atmos. Chem. Phys., 15, 2629-2649, https://doi.org/10.5194/acp-15-2629-2015). A
further inspection in the vertical profiles over Po Valley, perhaps compared to other
polluted regions such as Benelux would be instructive.

Response

Firstly, we do not agree with Anonymous Referee #3 that NO, emissions and O3 concentra-
tions are underestimated in the Po Valley in the simulation with top-down emissions. Our
approach to re-calculate NO, emissions based on OMI data leads to an almost 1:1 agreement
with OMI (the dependent variable, indicating that biases are effectively removed using our
approach) at an r? of 0.84, and a better agreement with surface NO, observations. Addi-
tionally, in Fig. 2 (Fig. 10 in the revised manuscript) we show that median ozone levels in
the Po Valley in the simulation with top-down NO, emissions agree well with observations,
although peak ozone concentrations remain underestimated.

However, we thank Anonymous Referee #3 for raising this interesting point regarding the
effect of v on NO, emissions. It is correct that v expresses the sensitivity of the AMF to a
change in the NO, profile shape resulting from NO, emission changes (Vinken et al., 2014).
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In simple terms, the air mass factor (AMF) can be understood as the convolution of the
averaging kernel, expressing the decreasing vertical sensitivity of the instrument (Eskes and
Boersma, 2003) towards the surface (in cloud-free conditions), and the vertical NO, profile.
The relative change in the profile shape is lower for high-emission areas compared to low-
emission areas, since high-emission regions already have a strongly peaked NO; profile at
the surface. A +20% perturbation in NO, emissions, as used to calculate v, will lead to a
relatively lower increase of NO, levels in high-NO, regions compared to low-NO, areas.
The resulting change in the AMF is low in high-emission areas such as the Po Valley, the
BeNeLux and the Ruhr area. This explains the low v values in polluted regions.

Lastly, suppose that vertical re-circulation of NO,- and Ogz-rich air (as can be seen in the
references brought forward by Anonymous Referee #3) is indeed underestimated in WREF-
Chem. More efficient vertical mixing conditions would then lead to a less strongly peaked
monthly-average NO, profile at the surface following a +20% emission perturbation. The
OMI NO; column will display a relatively lower increase following AMF updates compared
to a case with lower vertical mixing. Therefore, following Eqn. 4 in the main text, this will
lead to lower vy-values and thus to a less strong emission update.
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3 Dr. Andreas Stohl

This is an interesting study about European NOx emissions. I was puzzled by the fact
that the ozone increase of 6 ug/m3 due to optimized emissions (which is reported to
be largely due to increases in soil NOx emissions) is very similar to what I estimated
as the impact of soil NOx emissions (albeit with even higher soil NOx emissions) of
4 (1.4-9.6) ppb a long time ago using a very simple all-European box model (Stohl,
1996). Is this just a coincidence, given the very simple set-up in Stohl (1996) and also
differences in both soil and other NOx emissions between the two studies?

\. J

Response

We would like to thank Dr. Stohl for his interest, his positive words about our study and his
question.

Given the large differences in approach between the current study and Stohl et al. (1996),
concerning model complexity and input emission datasets, the similarity in ozone sensitiv-
ity to (soil) NO, emissions could be coincidental. Nonetheless, the study by Stohl et al. (1996)
provides support for our hypothesis that mis-representations in soil NO, emissions, partic-
ularly from land management practices, can contribute to biased ozone simulations. The
one-dimensional model that is used in the study is likely to generally represent NO,-limited
conditions during daytime, meaning that an addition of NO, from soils leads to efficient O3
production.

The annual emission totals reported by Stohl et al. (1996) are indeed higher than ours, but
are difficult to compare to our results without accurate knowledge on the seasonal cycle in
emissions. However, soil emissions are 21.4% of combustion-related "pyrogenic” emissions
in summer (JJA) 1994 in Stohl et al. (1996), which amounts to 17.6% of total surface emissions
(soils + pyrogenic). We derive soil emissions to be 14-22% of total European NO, emissions
in July 2015, suggesting that our top-down estimates are reasonable.

Since the study brought to our attention by Dr. Stohl provides support for our satellite-
based soil NO, emission estimate, we added a reference to Stohl et al. (1996) to Table 2 in the
manuscript. We additionally added a reference to Stohl et al. (1996) in a new section in the
discussion (see response to Anonymous Referee #3, comment 2), which places our findings
regarding the ozone increases and our attribution to soil NOy in a literature context:

Several studies previously investigated the relation between soil NO, emissions
and Os formation. For example, one study estimated that European soil NOy
emissions contribute 4 ppb to the daily maximum concentration (Stohl et al.,
1996). A sensitivity study by Li et al. (2019) indicates that a strong up-scaling
of soil NO, emissions by a factor 5 indeed leads to a better representation of the
peak ozone concentration. It has further been shown that an improved process-
based representation of soil NO, emissions leads to MDAS8 O3 changes by up to
6 ppb (Rasool et al., 2016), and a reduced mean bias for ozone concentrations,
particularly in agricultural areas (Rasool et al., 2019). Together, these findings
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provide support for the hypothesis that underestimated soil NO, emissions con-
tribute to underestimated peak ozone concentrations.
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Abstract. Ozone (O3) is a secondary air pollutant that negatively affects human and ecosystem health. Ozone simulations with
regional air quality models suffer from unexplained biases over Europe, and uncertainties in the emissions of ozone precursor
group nitrogen oxides (NO, = NO + NO,) contribute to these biases. The goal of this study is to use NO, column observations
from the OMI satellite sensor to infer top-down NO, emissions in the regional meteorology-chemistry model WRF-Chem,
and to evaluate the impact on simulated surface O3 with in situ observations. We first perform a simulation for July 2015
over Europe and evaluate its performance against in situ observations from the AirBase network. The spatial distribution of
mean ozone concenctrations is reproduced satisfactorily. However, the simulated maximum daily 8-hour ozone concentration
(MDAS 0O3) is underestimated (mean bias error (MBE) = -14.2 ng m™>), and its spread is too low. We subsequently derive
satellite-constrained surface NO, emissions using a mass balance approach based on the relative difference between OMI and
WRF-Chem NO; columns. The method accounts for feedbacks through OH, NO,’s dominant daytime oxidant. Our optimized
European NO, emissions amount to 0.50 Tg N (for July 2015) 0.18 Tg N higher than the bottom-up emissions (which lacked
agricultural soil NO, emissions). Much of the increases occur across Europe, in regions where agricultural soil NO, emissions
dominate. Our best estimate of soil NO, emissions in July 2015 is 0.1 Tg N, much higher than the bottom-up 0.02 Tg N natural
soil NO, emissions from the MEGAN model. A simulation with satellite-updated NO, emissions reduces the systematic bias
between WRF-Chem and OMI NO; (slope = 0.98, r2 = 0.84), and reduces the low bias against independent surface NO,
measurements by 1.1 ug m™ (-56%). Following these NO, emission changes, daytime ozone is strongly affected, since NO,
emission changes particularly affect daytime ozone formation. Monthly averaged simulated daytime ozone increases by 6.0
ug m, and increases of >10 ug m™ are seen in regions with large emission increases. With respect to the initial simulation,
MDAS O3 has an improved spatial distribution, expressed by an increase in r> from 0.40 to 0.53, and a reduced-mean-bias
7-4-decrease of the mean bias by 7.4 ug m™ -~48(48%). Overall, our results highlight the dependence of surface ozone on its
precursor NO, and demonstrate that simulations of surface ozone benefit from constraining surface NO, emissions by satellite

NO; column observations.
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1 Introduction

Ozone (0O3) is an air pollutant that affects human and ecosystem health (Lelieveld et al., 2015; Ainsworth et al., 2012). It also
affects radiative forcing directly as a greenhouse gas (IPCC, 2013), and indirectly by impacting ecosystem carbon uptake via
deposition (Sitch et al., 2007). Despite decreases in ozone concentrations in Europe since 2000 (Chang et al., 2017), peak
ozone concentrations still exceed the WHO air quality guideline of 100 ug m™ and the European long-term objective of 120
ug m™ (EMEP/CCC, 2016). For example, 87% of European air quality stations did not meet this long-term objective (EEA,
2017) in 2015, and vegetation exposure thresholds were exceeded in large parts of the continent during this year, particularly
in Southern and Central Europe (Rouil and Meleux, 2018).

The formation of ozone in the lower troposphere is a photochemical process that depends nonlinearly on concentrations
of its precursor species nitrogen oxides (NO, = NO + NO;) and volatile organic compounds (VOCs) (e.g. Sillman et al.,
1990). In NO,-limited conditions, ozone production increases with NO, emissions and is less sensitive to VOC emissions.
However, ozone production under NO,-saturated conditions increases with VOC emissions, but decreases with increasing
NO, emissions. European NO, emissions are dominated by the anthropogenic contribution from fossil fuel combustion for
transportation, electricity generation and industry. In summer, there are additional contributions from soils and lightning, which
together comprise 40% of the total European NO, emission budget (Jaeglé et al., 2005). Soil NO, emissions in turn have an
anthropogenic component, since nitrogen-containing fertilizers are partly re-emitted to the atmosphere as NO, (Steinkamp and
Lawrence, 2011).

Anthropogenic emissions in Europe have decreased due to air pollution abatement measures and the economic crisis that
started in 2008 (Castellanos and Boersma, 2012). Bottom-up anthropogenic emission inventories suggest a continued reduction
of NO, emissions in more recent years. This is consistent with the ongoing development of European air quality conditions
towards the NO,-limited regime (Jin et al., 2017), which is projected to continue in the future (Beekmann and Vautard, 2010).
On the other hand, a decrease in European anthropogenic and natural NO, emissions is not supported by trend analysis of
remote sensing and in situ NO, observations (Jiang et al., 2019, submitted), although this potentially reflects a growing relative
contribution from natural NO, emission sources (Silvern et al., 2019). Nevertheless, downward anthropogenic emission trends
have been suggested as an important driver of the decreasing trend in peak ozone concentrations in Europe (ETC/ACM, 2016).

Regional air quality (AQ) models are important tools for studying and forecasting ozone pollution. These models simulate
processes relevant for ozone pollution at a resolution that can better capture observed spatial gradients compared to coarser
global models. Regional AQ models can therefore be applied to simulate polluted conditions in or surrounding urban areas,
or for air quality impact assessments. Coupled (or "online") meteorology-chemistry models resolve meteorology, transport,
chemical transformation and removal of pollutants at the same spatial and temporal resolution. The coupled treatment of
meteorology and chemistry is mandatory, because ozone concentrations depend on feedbacks between meteorological and
chemical processes: 1) O3 sources such as chemical formation depend on radiation, temperature and water vapour (Pusede
et al., 2015; Coates et al., 2016), and 2) O3 sinks, such as dry deposition, also largely depend on meteorological drivers

(Clifton et al., 2017; Kavassalis and Murphy, 2017). However, coupled regional air quality models are subject to several
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sources of uncertainties. These uncertainties are related to the limited knowledge on ozone precursor emissoins (Kuenen et al.,
2014; Pouliot et al., 2015), the representation of boundary conditions (Giordano et al., 2015), tropospheric chemistry in the
chemical mechanism (Knote et al., 2015), and the land surface and its feedbacks with tropospheric chemistry (Baklanov et al.,
2014).

Many regional AQ models have been applied to simulate NO, and O3 in European summers, for research and forecasting
purposes. Models tend to underestimate summertime NO, compared to rural background in situ observations (Terrenoire et al.,
2015; Mar et al., 2016). Comparison against satellite NO, column observations also revealed underestimations at regional
scales (Huijnen et al., 2010; Aidaoui et al., 2015). Another study found both positive as well as negative biases, which were
attributed to the coarse resolution of the emission inventories (Pope et al., 2015). AQ models satisfactorily reproduce the
spatial distribution in summer Oz. However, mean O3 can be under- or overestimated depending on the model and chemical
mechanism (Terrenoire et al., 2015; Mar et al., 2016). In addition, many models consistently underestimate peak ozone values
that typically occur in the afternoon (Tuccella et al., 2012; Solazzo et al., 2012; Marécal et al., 2015; Im et al., 2015). This is
problematic for air pollution impact assessments, since the peak ozone values are important for determining the detrimental
effects on human health and ecosystems.

The sensitivity of O3 to its precursor NO,, which is particularly pronounced in summer (e.g. Jin et al., 2017), suggests that
there is good potential to improve O3 simulations by constraining simulated NO, with observations. The past 20 years have
seen the development of methods to estimate NO, emissions with satellite-based NO, columns in a mass balance approach,
where biases in the model-simulated and satellite-observed NO, columns are used to update NO, emissions. The technique
has been applied in global models (Martin et al., 2003; Lamsal et al., 2008; Vinken et al., 2014a), and more recently also in
regional models (e.g. Ghude et al., 2013). Applications of the technique include emission trend analysis (e.g. Lamsal et al.,
2011) and source-specific constraints on NO, emissions (e.g. Ghude et al., 2013; Vinken et al., 2014a, b; Verstraeten et al.,
2015). Changes in NO, emissions impact tropospheric chemistry, and therefore changes in O3 are expected. This was shown
by Ghude et al. (2013), who found local changes in surface O3 mole fractions up to 10 ppb over India after satellite-based NO,
emission scaling. Verstraeten et al. (2015) reported ozone increases up to 8 ppb at 800 hPa (1.5 km) in China after scaling
local NO, emissions with OMI observations, and found that simulated free-tropospheric ozone between 3-9 km was in better
agreement with tropospheric O3 columns observed by the Tropospheric Emission Sounder. However, ozone changes at the
surface after constraining NO, emissions with satellite observations have thus far not been evaluated with in situ data to our
knowledge.

Considering the importance of NO, for simulations of ozone and the previously reported ozone changes after applying
satellite-based NO, emissions, we here investigate the potential improvement in simulated surface ozone concentrations over
Europe due to the application of satellite observations of NO; to adjust NO, emissions. To this end, we use the WRF-Chem
meteorology-chemistry model (Grell et al., 2005) to simulate surface ozone in Europe in July 2015, at the approximate peak
of the ozone season. We first perform a model evaluation with AirBase in situ NO, and O3 observations (EEA, 2018) and OMI

NO; column measurements from the recently released QA4ECV dataset (Boersma et al., 2017a). We subsequently derive a
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new, OMI-based ("top-down") NO, emission inventory, and evaluate its effects on WRF-Chem simulations of surface NO, and
O3 with the independent AirBase observations.

The structure of the paper is as follows. We describe the model set-up and observations in section 2. Section 3 presents the
method to calculate OMI-derived NO, emissions. In section 4, we evaluate a WRF-Chem set-up with bottom-up emissions
in situ and column observations, and in section 5 we describe the derived modified surface NO, emissions. We evaluate the
impacts on surface NO, and O3 with independent in situ observations in section 6. We conclude with a discussion (section 7)

and summarize our conclusions in section 8.

2 Model and data description
2.1 WRF-Chem

We perform simulations with the coupled meteorology-chemistry model WRF-Chem, version 3.7.1 (Grell et al., 2005). The
model domain consists of 170 by 170 cells at 20x20 km? horizontal resolution covering Europe, centered at 51.98°N and
5.66°E. Vertically, the domain extends from the Earth’s surface up to 50hPa, and consists of 27 layers with 13 layers in the
lowermost 1500m. Chemistry simulations of O3 and its precursor groups NO, and VOCs are performed with the CBM-Z gas-
phase chemical mechanism (Zaveri and Peters, 1999). Simulations of atmospheric chemistry with this mechanism compare
well with the European multi-model mean for summer O3 in a gas-phase mechanism comparison study (Knote et al., 2015).
A complete list of parameterization options adopted in our WRF-Chem setup can be found in Table 1 of the Supplement. Our
simulations were performed with a time stepping of 180 s for a period of 38 days (24 June - 31 July 2015), allowing a 1-
week spin-up to analyze the model output for July. An evaluation of large-scale meteorological performance with ERA-Interim
reanalysis fields can be found in Sect. 2 of the Supplement.

We used anthropogenic emissions from the TNO-MACC-III inventory (Kuenen et al., 2014) for 2011, the most recent in-
ventory available when the model experiments were performed. TNO-MACC-III contains anthropogenic emissions for lumped
species groups NO, and VOCs. NO, emissions were partitioned assuming that 97% is emitted as NO and 3% as NO,. VOC
emissions were divided over 15 emission categories in CBM-Z, following the VOC speciation by Archer-Nicholls et al. (2014).
This speciation procedure is further described in Table 3 of the Supplement. Point source emissions were distributed over the
five lowermost model layers following sector-specific emission altitude profiles (Bieser et al., 2011).

Biogenic emissions of VOCs and soil NO, were calculated online with the MEGAN model implementation within WRF-
Chem (Guenther et al., 2006, 2012). The domain-total biogenic isoprene emissions are 1.82 Tg of isoprene, which is slightly
lower than the 9-year spread of 2-4.5 Tg isoprene for July, based on an inverse modeling study using OMI HCHO column
measurements for 2005-2013 (Bauwens et al., 2016). We simulate lightning NO, emissions using a parameterization based on
cloud-top height (Price and Rind, 1993; Wong et al., 2013), using a flash rate of 80 mol flash—! based on a recent satellite-based
estimate (Pickering et al., 2016). Simulations with higher flash rates of 500 mol flash~! (Ott et al., 2010) and 310 mol flash—*

(Miyazaki et al., 2014) resulted in overestimated upper-tropospheric contributions to the NO, columns relative to OMI.
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Anthropogenic emissions are the dominant NO, source over Europe in July with a total monthly emission strength of 304
Gg N (76%). Minor contributions are associated with lightning (81.4 Gg N; 20%) and soils (15.0 Gg N; 4%). We note that
especially soil NO, emissions are low compared to previous studies, in which soils, including agricultural areas, have been
estimated to contribute +46-40% to the total European NO, emission budget (Jaeglé et al., 2005; Ganzeveld et al., 2010).

Meteorological initial and boundary conditions were taken from ERA-Interim reanalysis data (Dee et al., 2011). Chemi-
cal boundary conditions for O3, NO, NO,, CO and peroxyacetyl nitrate (PAN) are taken from the CAMS chemical reanal-
ysis product for Europe (Inness et al., 2015, retrieved at: http://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/).
Upper boundary conditions for ozone were prescribed with climatological values (retrieved at: https://www2.acom.ucar.edu/

wrf-chem/wrf-chem-tools-community).
2.2 AirBase NO; and O3 in situ measurements

Surface measurements are taken from the European Air Quality Data Portal operated by the European Environment Agency,
hereafter referred to as AirBase (EEA, 2018). We used all data at rural background stations from the validated Ela data
stream. The large availability of the data allows us to make a strict selection on data availability. For monthly averages, we
discard stations if data is missing for more than 24 hours. Stations used for the evaluation of monthly averages at 12:00 h
UTC may have a maximum data gap of 1 data point. This resulted in a final selection of 184-397 stations, depending on the
performance metric (see Table 1). In our analysis of O; and NO, we evaluate monthly time series and mid-day (12:00 h UTC)
concentrations (denoted as [03]'?" and [NO,]*?", respectively). We additionally calculate the maximum daily 8-hour mean

ozone concentration (MDAS O3), a widely applied metric for O3 health impacts.
2.3 OMI NO; column measurements

We use tropospheric NO, columns from the Ozone Monitoring Instrument (OMI) onboard NASA’s EOS Aura mission (Levelt
et al., 2006). The polar-orbiting instrument detects radiation backscattered from the Earth’s atmosphere. Retrieval of tropo-
spheric vertical column densities (VCDs) from space follows a three-step procedure (Boersma et al., 2018). First, total slant
columns (SCDs; i.e., columns along the average light path through the atmosphere) are obtained from a spectral fit to the OMI-
measured reflectance spectra in the visible wavelength range using the Differential Optical Absorption Spectroscopy (DOAS)
method. Then, the stratospheric contribution component is separated from the total NO, column via data assimilation into the
TMS5 global Chemistry Transport Model (Dirksen et al., 2011). The final step is to obtain tropospheric VCDs by dividing the
SCDs by a tropospheric Air Mass Factor (AMF) that describes the vertical sensitivity of the instrument to atmospheric NO,
(Eskes and Boersma, 2003). This is a function of satellite viewing geometry, surface albedo, terrain height, cloud properties,
and a priori NO, profile.

The recent EU FP7 project Quality Assurance for Essential Climate Variables (QA4ECYV) has led to the development of a
new OMI NO, data product (Boersma et al., 2017a). The underlying consortium retrieval algorithm is based on the NO, column
retrieval principles described in Boersma et al. (2007), but with improvements in the three aforementioned steps (Boersma et al.,

2018). Zara et al. (2018) described how better wavelength calibration, and inclusion of liquid water absorption and an intensity
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offset-correction reduced uncertainties in NO, SCDs to 0.7 — 0.8 x 10'® molec. cm~2 (up to &35 %). Lorente et al. (2017)
improved the AMF calculation method via the extension of the AMF look-up table with more reference points, and a correction
for the sphericity of the atmosphere. The ancillary data for the AMF calcultion has also improved relative to earlier algorithms
such as DOMINO v2 (Boersma et al., 2011): surface albedo from the 5-year OMI albedo climatology (Kleipool et al., 2008),
cloud information from the improved OMI O,-0, algorithm (Veefkind et al., 2016), and a priori NO; profiles from TM5-MP at
1° x 1° (Williams et al., 2017). The study by Lorente et al. (2017) also showed that substantial differences between AMFs arise
when different a priori NO, profiles (as well as surface albedo and cloud properties) are used in the retrieval. This underlines
that a re-calculation of the tropospheric AMFs based on simulated WRF-Chem 20 x 20 km?, replacing the coarse TMS5-MP
1° x 1° NO; profiles, may help to reduce model-satellite differences (Lamsal et al., 2010; Vinken et al., 2014b), and we will

explore this further below.
2.4 AMF re-calculation

We take care to remove inconsistencies in the model-satellite comparison introduced by different assumptions about the vertical
NO; profile in the satellite product compared to the model. The AMF calculation requires assumptions about the vertical profile
of NO, to convert slant columns into vertical columns. We replace the a priori TM5-MP NO, profiles (at 1° x 1°) by WRF-
Chem NO, profiles at a 20 x 20 km? resolution. This has two advantages: 1) model-satellite comparisons are no longer affected
by differences in model assumptions between WRF-Chem and TM5-MP that lead to different vertical NO, profiles, and 2) the
higher resolution WRF-Chem setup resolves spatial gradients in the a priori profile that are not appropriately captured in TM5-
MP due to the coarser model resolution. Single-orbit results indicate that re-calculation of the AMFs leads to retrieved columns
that are 1 x 10'® molec. cm~2 higher in densely populated areas, and lower or unaffected in surrounding non-urban regions.
This effect has been seen before in earlier studies (Huijnen et al., 2010; Heckel et al., 2011; Russell et al., 2011; Maasakkers,
2013; Vinken et al., 2014b).

We apply the method described by Lamsal et al. (2010) and Boersma et al. (2016) to replace the TM5-MP vertical NO,
profile by the WRF-Chem profile in the calculation of the air mass factor (AMF):

LA
Zl:] trop,lLl,W RF—Chem

6]

Mtrop,WRF—Chem = Mtrop,TZ\/I5 X T
21:1 LI, WRF—Chem

where Mo, is the tropospheric AMF based on an assumed profile from WRF-Chem or TMS, A, is the tropospheric
averaging kernel element for layer [, ; w rF—cChem is the NO, column density in model layer [, and L is the uppermost
TM5-MP layer in the troposphere. The tropospheric averaging kernel in Eq. 1 is defined as follows (Boersma et al., 2017b):
Aprop = A X M],Mﬁp where M and Mj,,, refer to the AMF and the tropospheric AMF, respectively. Note that the WRF-Chem
vertical NO, profile has been sampled at the TM5-MP vertical layer structure, so [ refers to TM5-MP model layers.
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3 Top-down NO, emissions: methods

Satellite-detected NO, columns are sensitive to NO, emissions at the surface. We exploit this dependence to derive satellite-
based surface NO, emissions using local OMI NO, columns. We apply an improved version of the mass balance procedure
(Martin et al., 2003; Lamsal et al., 2011; Vinken et al., 2014b), which accounts for non-linear feedback from NO, emission

changes on NO, concentrations via OH:

C U _O U
Evq = By, <1+ﬁ(1+v) OMI’C”WCb b > )

where Ey,, and Fy, represent NO, emissions from the bottom-up inventory (bu) and the satellite-based top-down estimate (¢d),
respectively. Cyyc by, represents the monthly-averaged NO, vertical column density (VCD) simulated by WRF-Chem, and
Conr1,bu s the monthly averaged modified QA4ECV OMI NO, VCD using air mass factors based on the original WRF-Chem
NO, vertical profile (Cy ¢ py, see Section 2.4). WRF-Chem NO, VCDs are co-sampled with valid OMI observations. We
only use OMI and WRF-Chem data for pixels with valid satellite observations for at least 4 days in July 2015 to minimize the
random error in the satellite retrieval.

We account for the nonlinear NO,-OH chemistry feedback via a dimensionless scaling factor /3, for which we performed a

perturbation simulation with surface emissions increased by 20%:

_ AE1bu,1.2/E‘bu 02Cbu

= = 3
AC’bu,l.Q/C’bu AObu,l.Q ( )

B

where Cy,, are the NO, columns after a WRF-Chem simulation with bottom-up NO,. emissions, and ACj,, ;.2 is the change in
NO, columns after perturbing bottom-up NO, emissions by +20%. In low-NO, environments, this perturbation leads to higher
OH levels and thus to more efficient NO, loss to HNOs3, so that a 3 > 1 is needed to achieve column agreement. In NO,-rich
environments, however, OH levels are suppressed by enhanced NO, emissions so that the relative increase in NO, columns
is larger than 20%, resulting in a $ < 1. The use of 3 to account for the sensitivity of the NO, column to local emissions is
essentially a linearization step of non-linear effects due to chemistry.

Application of Equations 2 and 3 would lead to updated NO, emissions, and consequently also to modifications in the WRF-
Chem NO, profile shapes in response to the updates (e.g. Vinken et al., 2014b). This is accounted for via -y, which we also

obtain from the simulation with +20% perturbed emissions:

e (Comri2—Comrbu)/Comibu @

(Cwei2—Cwepu)/Cwebu

where Cyy ¢ represents the WRF-Chem NO, vertical column density (VCD), and C ;5 represent the OMI NO, VCD retrieved
using WRF-Chem NO, vertical profiles from the bottom-up simulation (Cyy¢), for the bottom-up (subscript bu) and emission

perturbation simulation (subscript 1.2), respectively. Our approach to calculate v differs from Vinken et al. (2014b), who
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derived ~ from a separate simulation after accounting for /3. Our approach requires one less forward simulation and is thus
computationally more efficient, with little impact (<3%) on total derived emissions compared to the approach by Vinken et al.
(2014b).

We calculate the scaling factors 8 and +y for all land-based and shipping lane WRF-Chem cells based on monthly mean NO,
columns (i.e., ocean-based pixels with emissions above a threshold value of 1 mol km™ h'!). These pixels thus also include
shipping lanes and offshore oil platforms. OMI-inferred emission changes are calculated locally, i.e. for each individual model
cell for which the aforementioned data availability criteria are fulfilled. This differs from previous work where these factors
were calculated for regions containing multiple model cells (Vinken et al., 2014a, b) or for individual pixels in global models
with a coarse resolution (e.g. Lamsal et al., 2011).

We discard the effect of transport of NO, away from the source region (’smearing’). In July, solar intensity in Europe is close
to its annual peak, which means that the NO; lifetime is short due to efficient oxidation. Therefore, the clear-sky monthly mean
NO; column difference between model and satellite is indicative of local NO, emission updates. Previous studies showed that
this method reduces the model-satellite NO, column difference but does not resolve it completely (e.g. Vinken et al., 2014b;
Ghude et al., 2013) as a result of the linearization that is applied in the perturbation calculation. Nonetheless, we will show in
this study that the systematic bias between WRF-Chem and OMI NO, columns is largely removed after application of Eqns.
2-4.

4 Bottom-up model evaluation
4.1 Surface O3

We start our evaluation of O3 chemistry in WRF-Chem (with bottom-up NO, emissions, i.e. not yet based on the OMI-inferred
NO, emissions) by a comparison of monthly-averaged, 24-hour mean surface ozone simulations with AirBase observations
(Fig. 1, panels a and b, and Table 1). WRF-Chem reproduces the spatial distribution of surface ozone satisfactorily, with an
increase in surface O3 concentrations from north to south, as reported elsewhere (e.g. Mar et al., 2016). Highest concentrations
are found around the Mediterranean basin. O3 concentrations over Central and Southern Europe are underestimated in WREF-
Chem. Simulated monthly-averaged concentrations do not exceed 110 ug m™, while higher concentrations were observed at
several stations in the southern part of the domain. Most notably, WRF-Chem does not capture observed high concentrations
of £130 ug m™ in northern Italy. The good agreement between WRF-Chem and in situ data in the western part of the domain
close to the model boundaries with a prevailing westerly circulation indicates that the model boundary conditions describe
inflow of long-lived compounds such as O3 from the western boundary well.

Monthly averaged ozone concentrations are an important and widely used metric to evaluate model skill, but are not nec-
essarily indicative of the peak ozone concentrations that typically occur in the afternoon. These monthly averages include the
nocturnal conditions with generally the presence of stable boundary layers, in which the titration of ozone in the NO,-saturated
regions is difficult to model (e.g. Im et al., 2015). The simulated and observed monthly averaged ozone concentrations at 12:00

h UTC (Fig. 1, panels ¢ and d) demonstrate a similar geographical distribution compared to the monthly average, but with
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higher values because photochemical ozone production generally peaks during daytime. This figure demonstrates that peak
ozone values occur around the Mediterranean basin, most prominently in North Italy and Spain, where the levels of sunlight
and ozone precursor concentrations are high. WRF-Chem shows elevated ozone with respect to adjacent areas, but maximum
simulated ozone levels do not exceed 120 ug m™. This underestimation of peak ozone concentrations is also apparent from in
Fig. 8b (discussed in more detail in Sect. 6), which shows the simulated versus the observed 12:00 h UTC ozone concentrations.

Our results are in agreement with previous regional chemistry model evaluations for Europe. Such studies typically focus
on seasonal variability; we compare our results with the results for European summer (JJA) from those studies. Im et al.
(2015) found that a model ensemble underestimates the daytime maximum Os concentration for sites where observed O;
concentrations exceed 120-140 ug m, which agrees with our results. In that study, the ensemble mean model bias tends
to become more negative for observed concentrations above 80 ug m= (Im et al., 2015). The two ensemble members that
use CBM-Z chemistry, similar to our WRF-Chem model set-up, are qualitatively in line with the ensemble mean, lending
support to the use of CBM-Z in this study. Mar et al. (2016) compared two chemical mechanisms in a WRF-Chem evaluation
study over Europe and reported large differences in the representation of peak summer (JJA) ozone: one chemistry model
(MOZART) overestimates mean and MDAS8 ozone, while simulations with the other chemistry scheme (RADM2) shows
underestimations of peak ozone that are in line with our findings. We will discuss the dependence of ozone simulation on the
chemical mechanism choice in detail in Sect. 7. The ensemble model mean daytime ozone concentration in Solazzo et al. (2012)
is underestimated by 10-30 pg m™ in four sub-regions of the European continent. Tuccella et al. (2012) analyzed WRF-Chem
03 concentrations for 2007 and found that yearly-averaged mid-day ozone is underestimated by approximately 10 ug m-. The
model performance in the aforementioned studies is qualitatively similar to our findings and the magnitude compares well.
Overall, most studies consistently show underestimated daytime O3, regardless of the chemical mechanism, model resolution
and other model assumptions. To further explore the potential role of a model misrepresentation of NO, concentrations in
explaining this model O3 bias, the next sections will focus on a model comparison with in situ and remote sensing data for
NO:;.

4.2 Surface NO,

Fig. 2 a and b present a comparison of monthly-averaged surface concentrations of NO, between WRF-Chem and AirBase
(note the logarithmic scale). Performance statistics are shown in Table 1. We find that WRF-Chem reproduces the spatial distri-
bution well, with peak NO, occurring in Northwest Europe and North Italy. In these regions with high NO, emissions, average
WRF-Chem-simulated concentrations are however underestimated by up to 10 ug m compared to observations. AirBase con-
centrations show a region with elevated NO, concentrations in Southwest Germany. WRF-Chem also shows elevated NO,
concentrations in this region, but does not reach such elevated concentrations. Overall, WRF-Chem shows more spatial het-
erogeneity in surface NO, concentrations than is apparent from the observations. Observed NO, concentrations in background
areas in Spain, France and Eastern Europe are 2-5 ug m™ or higher, while the model consistently simulates values <2 ug m™ in
these regions. This overall underestimation is also seen in Fig. 8, where the simulated daily mean NO, concentration is shown

against AirBase observations. The model performance of our WRF-Chem setup is in line with previous WRF-Chem studies.
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Mar et al. (2016) found small overestimations (0.67-2.96 ug m™) in mean NO,. Another study found an annual average mean
bias of -0.9 ug m™, caused by underestimations of peak NO, in WRF-Chem (Tuccella et al., 2012).

A comparison between WRF-Chem and AirBase monthly-averaged 12:00 h UTC NO, concentrations is presented in Figure
2c and d and Table 1. We find that WRF-Chem on average strongly underestimates mid-day NO, concentrations by 2.96 ug
m (38.5%).

4.3 NO, VCD

Before we perform a comparison between NO, VCDs from WRF-Chem and OMI, we first discuss the effect of the NO,
profile shape on the OMI-retrieved columns. Figure 3 shows the change in the monthly-averaged OMI NO, column density
after replacing TM5-MP NO, profiles by WRF-Chem profiles using the procedure described in Sect. 2.4. The OMI NO,
VCDs change most prominently over urban/industrial areas such as the Netherlands, Paris, Berlin, Madrid, Milano and Rome.
The background areas are largely unaffected, or show small (4 0.2 x10'® molec. cm?) NO, VCD increases (e.g. Spain) or
decreases (regions in France, Germany, Poland, Ukraine and Romania). The vertical NO, profile over sea regions in western
Europe strongly peaks at the surface, because shipping NO, in WRF-Chem is emitted in the lowermost model layer. Overall,
the average NO, column change over non-land regions is small (<2%).

We subsequently compare WRF-Chem to this modified OMI product. The monthly-averaged NO, vertical column densities
from WRF-Chem and OMI are displayed in Fig. 4. The model is sampled at 12:00 h UTC, close to the OMI overpass time
of £13:30 h LT, and is co-sampled with valid satellite observations. There is good agreement in the spatial distribution of

monthly-averaged NO, VCDs (12 = 0.68). NO, columns are underestimated by 0.3 x10'® molec. cm?

2

on average, with strong
underestimations of up to 2x10*® molec. cm™ in urban and industrial northwestern Europe. WRF-Chem overestimates NO,
columns in some isolated urban areas with high NO, emissions such as London, Madrid, Rome, and in parts of Eastern Europe.

We note that Fig. 4 shows small underestimations of the simulated NO, VCD compared to OMI (0.2 x 10*® molec. cm?) in
background regions (e.g. the Alps, rural Spain and France, Scandinavia) and over the oceans. Simulated NO, columns therefore
show stronger spatial gradients than OMI-retrieved columns, which is in line with Huijnen et al. (2010). Other distinct underes-

timations in the simulated NO, columns compared to OMI indicate a misrepresentation of emissions. For example, the region-in

| : s simulated NO, column in
northwestern Spain is underestimated by 2 >161>x 10'° molec. em™ suggest: issionscompared to OMI. The enhanced
NO, columns in this region mainly reflect the contribution to atmospheric NO, by power plant emissions. Although emissions
from power plants in-thisregion-are stiltstrong in-should have decreased in recent years in this region (Zhou et al., 2012), these
emissions seem to be underestimated in WRF-Chem. However, since these results are only representative or July 2015, despite
previousty reported-reduetions-(Zhou-et-at-2642)a more dedicated analysis is needed to further corroborate this hypothesis.

We have shown that our WRF-Chem set-up with bottom-up emissions underestimates NO, with respect to both surface
and column measurements. To combine these model comparisons against different data sources, we already discuss parts
of Fig. 9, which compares the agreement between simulations with bottom-up and top-down emissions. Fig. 9a shows the

relative difference of WRF-Chem against AirBase and OMI NO, binned as a function of bottom-up anthropogenic emission
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strength. This shows an overall underestimation of WRF-Chem at the surface and in the troposphere, except for regions with

strongest emissions. There is a relatively larger model underestimation of surface NO, than of the NO, VCD in regions with

low-emissions;-suggesting-comparatively low emissions. Given that the surface NO, mixing ratios are more sensitive to surface
emissions than the NO, column (Li and Wang, 2019), this suggests that emissions are generally too low in WRF-Chem, but

especially that emissions in rural background regions, are underestimated. This, in turn, suggests that the representation of
surface NO, emissions in WRF-Chem (anthropogenic emissions for 2011 and on-line calculated natural soil emissions) are too
low to explain the observations in July 2015. In the following section, we will derive satellite-constrained NO, emissions and

discuss potential reasons for this mismatch.

5 Satellite-derived NO, emissions
5.1 Top-down emissions

We derive top-down NO, emissions using the method described in Section 3. Fig. 5 shows the July total bottom-up and top-
down surface NO, emissions and their difference. Top-down NO, emissions amount to 498 Gg N, which is 56% higher than
the bottom-up inventory, and increases occur across the domain (Fig. 5¢). NO, emissions are reduced in several isolated grid
cells that generally correspond to urban areas. The difference between top-down and bottom-up emissions is larger than the
16% increase reported by Miyazaki et al. (2017), although that study found strong (40-67%) local increases in areas with high
NO, emissions such as Belgium, western Germany and northern Italy.

Our top-down emissions are much higher than the bottom-up emissions over Germany and Poland. Over Belgium and the
Netherlands, the difference between top-down and bottom-up emissions is also substantial, but notably smaller despite larger
differences between OMI and WRF-Chem NO, columns over the low-countries (Fig. 4c). This reflects the chemical regime
with very high bottom-up NO, emissions in this region, resulting in suppressed mid-day OH concentrations, and consequently,
longer NO; lifetimes (as diagnosed by low beta values over northwestern Europe in Supp. Fig. 1).

We subsequently replace bottom-up emissions with our observation-constrained top-down NO, emissions and perform a
new WRF-Chem simulation. As expected, the new NO, columns agree much better with the OMI NO, columns than those
from the simulation with bottom-up emissions (Fig. 6). WRF-Chem with bottom-up emissions generally underestimates OMI
NO; columns by 23.4%. As expected, the simulations with the top-down emissions agree better with OMI, and the slope
of 0.98 between the new WRF-Chem and OMI NO, columns (Fig. 6b) suggests that the systematic underestimation in the
model is effectively resolved by applying the top-down emissions. The mean relative error is reduced to -7.5%, and the spatial

correlation coefficient between WRF-Chem and OMI NO, also improves considerably (from 0.68 to 0.84).
5.2 Attribution to emission sources

Fig. 7 shows the bottom-up and top-down NO, emissions as a function of the bottom-up anthropogenic emission strength.

This comparison demonstrates that top-down NO, emissions are higher than bottom-up emissions regardless of the emission
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strength. However, top-down emissions are 50-100% higher than bottom-up estimates for relatively weak emissions between
0.5-50 Mg N month™! cell"!, and only up to 20% higher for some urban and industrial hotspots (Fig. 7b). This 0.5-50 Mg
N month™! range is dominated by WRF-Chem grid cells located in the rural areas of Europe, excluding the largest urban
agglomerations as well as low-emission regions such as mountainous areas. Our substantially larger top-down emissions partly
reflect a required increase in NO, emissions in areas where soil NO emissions are expected to be a dominant NO, source. Soil
NO emissions are simulated in WRF-Chem using an implementation of the MEGAN biogenic emission model. The observed
discrepancy between the WRF-Chem-simulated and OMI-observed NO, VCD triggers to assess how much of this discrepancy
can be attributed to this model’s representation of soil NO emissions.

To separate the soil NO, contribution from the anthropogenic emission updates, we perform a simple budget calculation as
a first-order constraint on the partitioning of the top-down emissions between their anthropogenic and soil-based sources. We
assume that the relative difference in anthropogenic sources is uniform over the emission bins in Fig. 7. This factor is calculated
as the median of the relative change in emissions for the three highest bins (>50 Mg N cell”! for July, see Fig. 7), and amounts
to 0.22. This allows us to attribute the remaining emission difference to soils. Based on this crude first estimate, we derive top-
down soil NO, emissions to be 112 Gg N month™, versus WRF-Chem/MEGAN-simulated bottom-up soil NO emissions of
only 15 Gg N month™'. The anthropogenic enhancement factor is relatively uncertain, but does not strongly impact our derived
posterior soil NO, emission estimate: if, instead of the median (m = 0.22), we use the mean relative change in emissions for the
three highest bins (i = 0.41), our soil contribution is still a factor >4 larger (69.0 Gg N month -') compared to WRF-Chem’s
simulated bottom-up soil NO source. Therefore, this first-order estimation suggests that a substantial fraction (43-69%) of the
NO, emission increment after optimization can be attributed to soils.

To evaluate the derived total soil NO, emissions, we perform a comparison with literature-based estimates in Table 2. We
find that bottom-up soil NO, emissions are underestimated by a factor 5-7 compared to previous studies. In some of those
studies (e.g. Ganzeveld et al., 2010), land use management practices (fertilizer and manure application) provide a substantial
contribution to European soil NO emissions, a feature that appears to be missing in the representation of soil NO emissions in
WRF-Chem. This supports our hypothesis that a substantial fraction of the increase in surface NO, emissions may be attributed

to soils. We will discuss this further in Sect. 7.

6 Emission scaling impacts on surface NO, and O3
6.1 Nitrogen dioxide

Table 1 summarizes the model performance of our bottom-up and top-down WRF-Chem simulations against a large number
of AirBase NO, observations throughout Europe in July 2015. The simulation with top-down emissions improves upon the a
priori run in all metrics. Most notably, the model index of agreement (d) improves by 0.10 (14%). The modified model set-up
still slightly underestimates the highest-monthty-averaged-monthly averaged observed NO, observations, as indicated by a
slope of 8:860.89. However, the low bias in WRF-Chem surface NO, concentrations with respect to AirBase improves from

-2.5t0-1.1 ugm.
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Compared to the monthly average, we find little improvement in WRF-Chem’s skill to predict surface NO, at 12:00 h UTC.
The model’s low bias in NO, reduces from -3.0 to -2.6 pug m™ and the index of agreement improves by only 0.02 (4%). This
more modest improvement in performance can be understood from mid-day surface NO, concentrations being more strongly
driven by photochemical removal processes and boundary layer development than the 24-hour mean NO; levels, that are more
sensitive to NO, emissions due to strongly reduced mixing and photochemistry at night. Fig. 8 displays WRF-Chem monthly,
24-hour mean NO; concentrations against AirBase observations, for the bottom-up (black) and top-down (red) simulations.
The model orthogonal distance regression (ODR) slope improves considerably, while the explained variance of the model
improves slightly to 0.46.

Fig. 9 shows the relative biases between WRF-Chem and observed NO; as a function of (binned) bottom-up anthropogenic
NO emission strength. Both the WRF-Chem simulations with bottom-up emissions (Fig. 9a) as well as the simulation with
top-down emissions (Fig. 9b) show a low bias against OMI and AirBase for regions with low emissions, and a positive relative
bias in regions with stronger emissions. The relative bias is however considerably reduced in the simulation with top-down
NO, emissions, both at the surface and in the column. However, WRF-Chem still displays a stronger relative bias compared to
AirBase than compared to OMI. This feature can likely be attributed to a difference in spatial scales between the 20 x 20 km?-
resolution model versus the footprint area of local AirBase measurements, which can be easily influenced by a nearby NO,
source that is less well captured in the model, due to instantaneous mixing over a larger volume. Another potential explanation
for lower relative bias of WRF-Chem compared to AirBase than compared to OMI is interference of in situ measurements with
molybdenum converters (see Sect. 2.2). This is in line with our previous finding that the slope of the top-down NO, column
regression fit approaches 1, while the slope of the fit for in situ NO, observations is still below 1. We also note that the spread
in the relative bias compared to AirBase increased for the top-down simulation, with more positive relative bias values for
all bins. Nonetheless, the results shown in Fig. 9 provide confidence regarding application of the model as a tool to reconcile

local-scale bottom-up emissions and concentrations with larger-scale remote sensing-based NO, measurements.
6.2 Ozone

Next, we address our main question whether the improved simulation of NO, leads to better model performance for surface
ozone simulations. We find that WRF-Chem with top-down emissions improves upon the bottom-up simulation for both the
24-hour mean, as well as the 12:00 h UTC and MDAS ozone metrics. The model index of agreement improves by 0.08-0.11
(13-17 %, Table 1). However, the top-down model still simulates too low surface O3, especially over southern, eastern and
central Europe, where observed surface O3 exceeds 80 ug m™ at 12:00 h UTC (see Fig. 11).

A comparison between monthly averaged mid-day O3 concentrations from the bottom-up and top-down simulation (Fig.
11, panels a and b, respectively) shows that ozone increases across the model domain. This particularly improves the WRF-
Chem-AirBase agreement in large parts of western and Central Europe. The simulated ozone values in northern Italy remain
underestimated.

Surface ozone concentrations display a strong increase due to the use of top-down NO,, emissions (Fig. 11). The areas where

ozone concentrations increase by >10 ug m™ largely coincide with regions where top-down NO, emissions are much higher

13



10

15

20

25

30

than the bottom-up emissions (Fig. 5c¢), such as in northern Spain, southern Germany, southern Poland, Croatia, Serbia, western
Greece and southern Romania. There are also strong simulated ozone increases in central France and over the Adriatic Sea.
These regions are all characterized as (rural) background areas, where ozone formation is strongly sensitive to the increases
introduced in the NO, emissions for the relatively low bottom-up anthropogenic and soil emissions. We find decreases in
ozone around the main shipping lanes, where the higher NO, emissions further enhance ozone titration. The enhanced titration
also reduced simulated surface ozone around urban regions such as Barcelona, Rome, and Paris. The increases in surface
NO, emissions in the BeNeLux and western Germany slightly increase simulated mid-day surface ozone. Ozone production
is less sensitive to NO, emissions in these high NO,-emitting regions compared to the unpolluted background (Beekmann and
Vautard, 2010; Mar et al., 2016; Jin et al., 2017).

Fig. 8 shows that O3 simulations with the higher top-down NO, emissions lead to a somewhat better match between modeled
and observed surface O3, with an improvement in spatial correlation coefficient from 0.43 to 0.57, and an increase in slope
from 0.33 to 6-400.41. Overall, the model low bias has reduced from -15 to -8 ug m~, which indicates that the use of OMI
NO, VCD data to constrain WRF-Chem surface NO, emissions results in a considerable improvement regarding simulation of

surface layer O3 concentrations.

We additionally analyzed changes in the temporal evolution of ozone concentrations resulting from NO, emission changes
(Fig. 10). Daytime median O _concentrations are better captured in the Po Valley, Central Spain and Poland. The NO,
emission changes lead to a model overestimation of surface O concentrations for Central France and South Germany, while
concentrations change only slightly in the BeNeLux and Ruhr areas. In those regions, the mean bias error increases, while
the hourly correlation coefficient and RMSE values improve for all regions (Supplementary Table 4). In all areas, changes
in NO, emissions lead to increased ozone concentrations particularly during daytime. Enhancements in simulated night-time
concentrations are only observed in Central Spain. In other areas, night-time O3 concentrations are overestimated in_both
simulations. Peak daytime Os concentrations are better captured in all areas, as evidenced by the increase of the 75" percentile
of simulated Oy concentrations with top-down emissions. However, peak Oy concentrations remain underestimated in the Po
Valley, Central Spain and South Germany. Additionally, nighttime O concentration overestimations remain, likely due to issues
related to model resolution and vertical mixing. Overall, the NO, emission changes most effectively increase O3 concentrations

during periods with elevated ozone (Supplementary Fig. 3), which coincide with high solar radiation and temperatures and thus

have a strongly NO,-dependent O5 formation.

7 Discussion

In this study we demonstrate the added value of deriving satellite-based NO, emissions in (regional) air pollution models for
simulations of summertime ozone, focusing on July 2015 over Europe. We use a modified version of the mass balance approach
introduced by Martin et al. (2003), with further improvements by Lamsal et al. (2011) and Vinken et al. (2014b). Although many
studies report differences in simulated (surface) ozone concentrations after applying this mass balance approach (e.g. Ghude

et al., 2013), we are aware of only one other study that used observations to validate subsequent ozone changes. Verstraeten
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et al. (2015) used TES O3 observations in the global chemistry model TMS in a study on trans-continental transport of Asian
air pollution, and found an improved model-satellite agreement in lower-tropospheric ozone. However, their approach did not
allow for an evaluation of model performance closer to the surface.

The mass balance approach that we used to derive observation-constrained European NO, emissions has several important
advantages over more formal inversion methods that are applied in the literature (e.g. Miyazaki et al., 2014, 2017). The method
is highly traceable due to the simple calculation of scaling parameters from model output for a baseline and perturbation
simulation, and column NO, measurements. However, the linearization (see Sect. 3) oversimplifies the nonlinearity of the NO,-
O3 chemistry, which means that the model-satellite discrepancy is not resolved completely after one iteration. Additionally,
the approach is only applicable on a pixel-basis when the NO, lifetime is sufficiently short to discard the contribution of
transport from adjacent model NO, columns. The model-satellite difference for a simulation we performed for March 2015
(not shown) shows less spatial heterogeneity over regions with a diffuse spatial distribution of NO, sources (e.g. Germany).
These shortcomings can be resolved by averaging the signal over multiple grid cells, or by applying more formal inversion
methods.

Our results demonstrate that surface NO, emissions in our WRF-Chem configuration are increased substantially after ap-
plying an emission scaling approach. In a first-order budget calculation we derive that 43-69% of this total increase can be
attributed to soil NO,. This is diagnosed from the notably higher relative increase in emissions in regions with moderate
anthropogenic emissions compared to regions with low and high anthropogenic emissions. We therefore conclude that the con-
tribution of soil NO, to total surface emissions is likely underestimated in our model set-up. Additionally, our top-down soil
NO, emission estimate, derived with a budget calculation, agrees well with previous estimates for European summer (Table 2).
Our findings are in line with a previous study (Oikawa et al., 2015) that, using WRF-Chem with MEGAN soil NO, emissions,

found a strong underestimation of NO, emissions in a high-temperature agricultural region.

Several studies previously investigated the relation between soil NO, emissions and O3 formation. For example, one stud
estimated that European soil NO, emissions contribute 4 ppb to the daily maximum concentration (Stohl et al., 1996). A
itivity study by Li et al. (2019) indicates

better representation of the peak ozone concentration. It has further been shown that an improved process-based representation
of soil NO, emissions leads to MDAS8 O3 changes by up to 6 ppb (Rasool et al., 2016), and a reduced mean bias for ozone
concentrations, particularly in agricultural areas (Rasool et al., 2019). Together, these findings provide support for the hypothesis
that underestimated soil NO, emissions, in particular those from agricultural areas, contribute to underestimated peak ozone

concentrations.

that a strong up-scaling of soil NO, emissions by a factor 5 indeed leads to a

The comparison against in situ NO, observations from the AirBase network may be hindered by interference of reactive
N species for measurements with molybdenum converters. The type of converter is not reported in the database. Literature-
reported estimates of measurement overestimations due to this interference are 22% (Dunlea et al., 2007) and 5-18% (Boersma
et al., 2009) at urban sites, and 20-42% at a rural site (Steinbacher et al., 2007). A correction factor can be applied to obtain
corrected NO, measurements from observations using a molybdenum converter, which is on average 0.4-0.6 in summer, but

with a large spread (0.2-0.8) (Lamsal et al., 2008, 2010). The strongest corrections of molybdenum-based in situ NO, measure-
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ments are needed in remote environments, where NO, is a relatively smaller component of the total reactive nitrogen budget
compared to areas closer to NO, sources (Lamsal et al., 2008). We hypothesize that this can partially explain the remaining
model-observation mismatch for NO, after the use of top-down emissions.

Despite the demonstrated improvement in ozone simulations, our simulation with OMI-derived top-down NO, emissions
still misrepresents the high tail of the ozone distribution. We believe that there is a potential explanatory role for local to
regional meteorological processes. The representation of several mesoscale phenomena requires a higher model resolution
than 20 x 20 km?. For example, Mill4n et al. (1997) demonstrated that local re-circulation of residual air masses from higher
aloft, containing elevated O; transported aloft during previous days, can be entrained in the boundary layer and contribute
substantially to air pollution episodes in southern Europe. This is supported by an analysis of measured ozone (precursors) in
northeast Spain by Querol et al. (2017), where this mesoscale circulation pattern was found to contribute to concentrations that
exceed the information threshold value set by the European Union (180 pg m™), alongside contributions from locally emitted
NO, and biogenic VOCs.

Simulations of surface ozone in AQ models are also impacted by the choice of chemical parameterization. Recently, several
studies have investigated the influence of the chemical mechanism on simulated NO, and O3 concentrations. Regarding ozone
chemistry, chemical mechanisms differ predominantly in two aspects: 1) the grouping of VOC species in species categories
("lumping") according to their chemical structure or number of C-atoms, and 2) the inorganic rate coefficients involved in the
catalytic cycling of NO,, HO, and O,. Especially the latter aspect has a strong influence on simulated NO, concentrations,
and can therefore influence the derivation of top-down emission estimates using satellite observations (Stavrakou et al., 2013).
Coates et al. (2016) investigated the maximum ozone formation potential in different chemical mechanisms and found that
mechanisms with lumped VOC categories led to lower ozone mixing ratios compared to a mechanism with a near-explicit
treatment of VOCs. Knote et al. (2015) found small differences in inorganic rate constants among mechanisms and thus
concluded that VOC representation was the dominating source of uncertainty among mechanisms. However, Mar et al. (2016)
performed a WRF-Chem sensitivity study where MOZART inorganic rate constants were applied within RADM?2, leading to
mean O3 concentration differences of 8 ug m between those mechanisms.

In order to test the importance of inorganic NO,-HO,-O, reaction rates for ozone formation, we implemented inorganic rate
constants from three different mechanisms (CBM-Z, RADM?2 and MOZART) in a mixed layer model with simplified chemistry
(Janssen et al., 2012). Further details are given in Sect. 5 of the Supplement. Our analysis shows that varying the temperature-
dependent rate constant of HNOj; formation (kno, + on) can lead to a spread of 2 ppb for end-of-afternoon ozone values on a
typical summer day in a polluted boundary layer. CBM-Z uses the lowest kno, + on among the considered mechanisms, and
thus leads to a higher NO, lifetime and more O3 formation than in other mechanisms. Therefore, we conclude that modification
of inorganic reaction rate constants has a modest effect on simulated O3, but is not likely to lead to increases in simulated O3
in our WRF-Chem configuration. Nevertheless, the model representation of ozone chemistry should be carefully considered in
NO, and Os air quality studies, besides the representation of NO, emissions.

Several studies have considered the resolution dependence of air quality simulations. This is especially relevant for NO,,

since NO, emissions display strong variation on the 20 x 20 km? scale applied in this study. Increasing model resolution leads
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to better representation of these local gradients and therefore improves simulations of NO, concentrations (Schaap et al., 2015).
Valin et al. (2011) found that an accurate representation of mid-day NO, columns from highly localized sources requires a high
model resolution, but regions with more diffuse sources can be simulated at a coarser resolution of 10 x 10 km?. Although
ozone production regimes do not strongly depend on the model resolution in regional models, high resolution models perform
better at simulating local Oj titration in freshly emitted NO plumes (Cohan et al., 2006).

Besides the representation of meteorological processes, there is an additional uncertainty related to surface-atmosphere
exchange of pollutants. Dry deposition constitutes 17% of the tropospheric sink of ozone, and is the second most important
removal process after chemical removal (Hu et al., 2017). Several studies have recently investigated the role of meteorological
drivers that determine ozone removal at the surface. However, these meteorological controls are oversimplified in deposition
parameterizations. The vapour pressure deficit strongly controls stomatal uptake of ozone, thereby affecting surface ozone
levels in spring to summer in the United States (Kavassalis and Murphy, 2017). Analysis of 10-year O3 flux observations in
the northeastern United States revealed that the removal of ozone by the land surface exhibits a strong inter-annual variability,
which is not captured in dry deposition parameterizations (Clifton et al., 2017). Lastly, the role of soil moisture has been
proposed as a regulator of surface ozone uptake (Tawfik and Steiner, 2013) and is often neglected in parameterizations of
dry deposition, even though a recent study found that it can significantly reduce simulated ozone uptake (Anav et al., 2017).
Improving the biophysical representation of the dry deposition process in WRF-Chem will be one of our foci in the future.

Future studies that apply satellite-based constraints on surface NO, emissions can benefit from observations from the recently
launched TROPOMI instrument (Veefkind et al., 2012), which delivers NO, column data at an unprecedented resolution of
7 x 3.5 km?. This has the potential to lead to important improvements in satellite-constrained NO, emissions. Recent work
(Lorente et al., 2019, in review) has applied TROPOMI observations in a column model study to derive emissions from Paris.
The resolution of the instrument additionally enables the focus on more local areas with one dominating source such as soils

in agricultural or bare-soil regions.

8 Conclusions

We performed a WRF-Chem simulation of NO, and ozone over Europe for July 2015 and assessed its performance with
AirBase in situ observations and OMI NO, column measurements. We find that WRF-Chem underestimates high surface
ozone concentrations in central and southern Europe, and overestimates lower ozone concentrations in northern Europe. The
model also underestimates the spread. The monthly averaged mean bias error (MBE) is relatively small (-2.4 ug m>, 10%).
WRF-Chem underestimates daytime increases in ozone concentrations, as evidenced by substantial negative MBE values for
the mid-day (12 h UTC) O3 concentration and MDAS O3 (-15.1 ug m™ and -14.2 pg m3, respectively). We relate the low bias
in surface ozone to biases in ozone precursor concentrations. Of particular relevance are nitrogen oxides, which drive ozone
production in much of NO,-limited summertime Europe.

For NO,, we find that WRF-Chem underestimates surface and column NO; values for most of the domain, with exception of

some high-emission regions. With respect to AirBase, WRF-Chem monthly averaged surface NO, is biased low by -2.5 pug m™3
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(-73%). The spatial distribution of WRF-Chem column NO, agrees well with OMI (r? = 0.68), and a mean underestimation
of 0.3 x 10'° molec. cm™ (-23%). We attribute the low bias in WRF-Chem NO, concentrations to underestimations in surface
NO, emissions in WRF-Chem. We subsequently derive optimized NO, emissions based on the WRF-Chem/OMI relative
difference using a mass balance approach. Overall emissions increase from 0.32 to 0.50 Tg N, an increase of 0.18 Tg N
(+56%), for July 2015. The updates indicate that NO, emissions should be scaled up across the domain. The relative increase
in emissions is largest for regions with moderate emission strength (up to 50 Mg N month™! cell'!) and coincides with regions
where agricultural soil NO, emissions are substantial. Our optimized soil NO, emissions amount to 0.1 Tg N, in much better
agreement with values from the literature.

A WRF-Chem simulation with optimized NO, emissions removes the model’s systematic bias with respect to OMI NO,,
and leads to an improved spatial agreement (slope = 0.98, 1> = 0.84). An evaluation against AirBase NO, reveals that the
top-down simulation improves particularly in the monthly average, where the systematic mismatch is reduced (slope = 0.89
instead of 0.73) and the mean bias is reduced by 50%. For ozone, the model skill improves particularly for mid-day and MDAS
O3, when local ozone formation occurs and the sensitivity of ozone formation to NO, concentrations is highest. On average,
surface O3 concentrations increase by 6 ug m= (6%). Still, peak (mid-day) ozone values are underestimated after NO, emission
optimization.

Overall, our findings demonstrate that air quality model simulations combined with in situ and remote sensing observations
can be used to infer missing sources of NO, at the surface. By optimizing NO, emissions with satellite observations, substantial
improvements in simulated ozone can be achieved. Our work shows that this helps to reduce the persistent biases in O3 that
most air quality models are suffering from. Projected decreasing trends in anthropogenic NO, emissions will mean that the
contribution of soils to total European NO, emissions will likely increase in the future, and thus deserves careful attention in
(European) air quality assessments, along with detailed assessments of emissions of volatile organic compounds and wildfires,

boundary layer mixing, and chemistry.

Code and data availability. WRF-Chem output and re-calculated OMI NO, columns are available upon request, as well as scripts to re-

calculate the tropospheric AMF and the resulting changes in satellite NO> columns.

Author contributions. AV, KFB and LG designed the experiment. AV performed the model simulations and analysis, with support from all

co-authors. AV wrote the manuscript, with contributions from all co-authors.

Competing interests. The authors declare no competing interests.

18



Acknowledgements. AV acknowledges funding from NWO’s program “Gebruikersondersteuning Ruimteonderzoek™ (GO) project ALW-
GO/16-17 SASODIE: Space-based assessment of ozone deposition and its impact on ecosystem functioning. The authors acknowledge the
free availability of the WRF-Chem model (https://www2.acom.ucar.edu/wrf-chem, last acces: 5 February 2019), in situ data from AirBase
(http://discomap.eea.europa.eu/map/fme/AirQualityExport.htm, last access: 14 March 2019), and satellite NO, column observations from the

OMI instrument (http://www.qadecv.eu, last access: 12 March 2019). We additionally thank John Paton for his help downloading AirBase in

situ measurements.

19



Table 1. Performance statistics of WRF-Chem bottom-up and top-down simulations for July 2015 for several conventionally applied per-

formance metrics (MBE, RMSE, slope and intercept of a linear regression fit of simulations against observations, and r> from orthogonal
S (Pi—04)?

L (PI+07D2”

and observations, respectively. MBE, RMSE and intercept have unit ug m™, slope, r* and d are unitless.

distance regression), as well as the index of agreement (d =1 - Willmott, 1982), where P; and O; represent simulations

Bottom-up Top-down
n MBE RMSE slope intercept r? d MBE RMSE slope intercept r? d
[O3] 289 237 250 0.26  54.27 0.32  0.60 2,18 17.03 034 53.23 041 0.68
[03]12h 397 -15.07 24.68 033 51.63 043 0.63 -7.56  19.09 041 51.13 0.58 0.74
MDA8 O3 289 -14.24 2479  0.28 5598 040 0.61 -7.38 1999 036 55.72 0.53 0.70
[NO2] 184 -249  3.86 0.73  -0.28 042 0.70 -1.09  3.09 0.89 -0.12 046 0.80
[NOg]lQh 250 -296  3.56 0.30  -0.03 025 0.51 -2.59 3.28 033  0.04 023 0.53

20



180

150
120 m
90

60

[O3]1[pg m

]

12:00 h UTC [O5] [ug m

Figure 1. Monthly averaged surface O3 and simulated by WRF-Chem with bottom-up NO, emissions (a & c) and observed at AirBase
stations (b & d). Panels a) and b) are monthly averages, and b) and d) are sampled at 12:00 h UTC.
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Figure 2. As Fig. 1, but for NO,.
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Figure 3. Change in monthly-averaged OMI-retrieved NO» columns after using WRF-Chem vertical NO, profiles to calculate the Air Mass
Factors (AMFs) in the OMI retrieval, as described in Sect. 2.4.
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Figure 4. Monthly-averaged tropospheric NO, vertical column densities from a) WRF-Chem with bottom-up NO, emissions, b) OMI and
¢) their difference (WRF-Chem - OMI). WRF-Chem NO; columns have been co-sampled with OMI, and pixels are shown when ngps > 4.
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Figure 5. Surface NO, emissions for a) the a bottom-up simulation (TNO-MACC-III anthropogenic + MEGAN soil NO,), and b) the top-

down simulation; c) depicts the change in surface NO, emissions after the recalculation procedure.
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Figure 6. NO, vertical column density scatter plots of WRF-Chem against OMI, presented as a heat map with a bin size of 0.25 x 10'°
molec. cm™, for WRF-Chem with bottom-up emissions (a), and WRF-Chem with OMI-derived top-down surface NO, emissions (b).The
OMI NO; VCDs in panels a) and b) are calculated with AMFs based on NO, vertical profiles of the WRF-Chem simulations against which
they are compared, to ensure a consistent model-satellite comparison. The solid black lines represent the 1:1 line, and the dashed lines display

the orthogonal distance regression fits.
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Table 2. Comparison of WRF-Chem surface NO, emissions in July Ga-FeN-moenth) (in Tg N month™', unless indicated otherwise) with

literature-reported values.

Year Region Surface Anthropogenic ~ Soils Soil (%)
. Maps in this
This study, bottom-up 2015 0.32 0.30 0.015 4.7
study
This study, top down, ] )
Maps in this
after bias attribution 2015 0.50 0.39-0.43 0.07-0.11  14-22
study
(see Sect. 5.2)
-24.6-41.9°E,
Stohletal (1996) 1994 TS - - 176"
Ganzeveld et al. (2010) 2000 -16-41°E, 34-64°N - - 0.14 N
Jaeglé et al. (2005) 2000 -15-45°E, 35-60°N  0.59 0.35 0.25 423
Miyazaki et al. (2017)  2005-2014 -10-30°E, 35-60°N  0.33-0.38 - - -
Dammers (2013) 2005-2007  -15-35°E, 35-70°N - - 0.09 -
Lathiere et al. (2005)
referenced in 1983-1995  -15-35°E, 35-70°N - - 0.13 -

Dammers (2013)

! This estimate is based on summer (JJA) estimates.
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Figure 7. Difference between bottom-up and top-down surface NO, emissions, expressed as a) a bar plot (note the logarithmic scale) of
median emissions binned by bottom-up anthropogenic NO, emissions (error bars indicate the inter-quartile range), and b) a bar plot of
relative emission differences (W) between the bars in panel a). In panel b) we define the relative anthropogenic emission

difference to be the median of the relative change between top-down and bottom-up emissions in anthropogenic-dominated regions (shaded,

with bottom-up emissions >50 Mg N month™ cell.
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Figure 8. Scatter plots of monthly averaged simulated concentrations of a) NO, and b) O3 against AirBase observations. Panel a) shows

Airbase [NO,] [pg m~3]

Airbase [05] [pg m™3]

monthly averages for 0-23 h UTC, while panel b) is sampled at 12 h UTC. The black solid lines represent the 1:1 line.
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Figure 9. Relative bias (RB = %m) of WRF-Chem against land-based OMI NO; vertical column densities (box plots) and Air-
Base in situ NO, measurements (green scatter), binned by bottom-up anthropogenic NO emission strength, for the bottom-up (a) and top-
down WRF-Chem simulation (b). Green diamonds indicate the median WRF-Chem RB against AirBase observations for pixels within every

emissions bin.
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Figure 10. July 2015 monthly median diurnal ozone concentrations for six representative regions in Europe, as simulated by WRE-Chem
with bottom-up NO,
Shaded areas and whiskers indicate the inter-quartile range. Results represent the median over all model-observation comparisons per region.

emissions (green line) and top-down NO, emissions (red line), and as observed at AirBase stations in these regions.
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Figure 11. Monthly-averaged 12:00 h UTC surface O3 concentration with bottom-up (BU, panel a) and top-down (TD, panel b) NO,

emissions. Panel ¢ shows the difference between the two monthly averages (TD - BU).
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1 WRF-Chem namelist

Table 1: Parameterization schemes used in the WRF-Chem setup.

WRF-Chem option Parameterization scheme (reference)
Physics
Microphysics Morrison double-moment (Morrison et al. | [2009)
Longwave radiation CAM (Collins et al. |, 12004)
Shortwave radiation CAM (Collins et al. |, 12004)
Surface layer MYNN2 (Nakanishi & Niinoj, |2006)
Land surface physics Noah land surface model (Tewari et al. |, 2004)
Boundary layer physics MYNN2 (Nakanishi & Niino, 2006; |[Nakanasi & Niino), [2009)
Cumulus parameterization Grell 3D Ensemble Scheme (Grell & Devenyi, [2002)
Lightning physics PR92 neutral buoyancy (Price & Rind, {1993)
Chemistry
Gas-phase chemistry CBM-Z (Zaveri & Peters, [1999)

Photolysis parameterization ~Madronich F-TUV (Tie et al. | 2003)




2 Meteorology evaluation

2.1 Meteorological reanalysis data

A European-wide meteorology evaluation performed by Mar et al. | (2016) and numerous other
studies demonstrated the skill of WRF-Chem to simulate several meteorological variables relevant
to O3 formation (radiation, temperature, wind speed and wind direction, boundary layer height). We
further evaluated WRF-Chem’s performance to simulate meteorology by comparing to the ERA-
Interim reanalysis product (Dee et al. | |2011)), for five variables that are important for surface
ozone: surface pressure, 2m temperature, relative humidity, wind speed and wind direction. This
complements the comparison with meteorological station observations (e.g. Mar et al. | 2016)), and
has the additional advantage that it is continuous in space.

2.2 Results

To evaluate the meteorology in WRF-Chem we perform a comparison with the state-of-the-art
ECMWF operational reanalysis product (hereafter referred to as ECMWF reanalysis). Model per-
formance metrics for the meteorological evaluation for the two simulated months are shown in Table
for which show the monthly average of single-day comparisons. We only calculate performance
metrics for land-based pixels, as the oceanic pixels generally contribute less to the overall bias.
Overall, WRF-Chem shows good performance compared to ECMWF-reanalysis data, and WRF-
Chem-ECMWEF differences between March and July are consistent in sign.

WRF-Chem performs best at simulating surface temperature and pressure, but relative humidity
and wind speed and -direction are simulated with less accuracy. Surface temperature is slightly
underestimated, which agrees well with the cold bias generally found in WRF(-Chem) (e.g. Holtslag
et al. | 2013; [Kleczek et al. | 2014). Surface pressure is in general slightly underestimated, although
we must note that this comparison is limited by terrain height differences in ECMWF reanalysis
compared to WRF-Chem. Relative humidity is overestimated substantially in WRF-Chem, by
approximately 10%. This potentially impacts simulated surface ozone in WRF-Chem, as there is
an important role for surface atmospheric humidity, which governs the VPD in combination with
temperature, in describing ozone removal at the surface (Kavassalis & Murphyy, [2017)).

We found an approximately linear increase in the model bias (defined in this section as WRF-
Chem - ECMWF reanalysis) for RH in July, with a slope of 0.2% d~!. This coincides with a
linear decrease in the bias from 0.12 K to -0.98 K, which would suggest that the domain-averaged
latent energy flux is overestimated, leading to an enhanced moisture flux to the atmosphere and
underestimated temperatures. For all other variables we did not observe a clear change in domain-
average model biases with time, indicating that model performance is robust over the simulation
period. Overall, this evaluation, in combination with recent WRF-Chem meteorology evaluation
studies (e.g. Mar et al. |, [2016) provides confidence in WRF-Chem’s skill to reproduce domain-
averaged surface meteorological conditions.



Table 2: Meteorological evaluation of two one-month WRF-Chem simulations with ECMWF opera-
tional reanalysis fields for five key surface meteorological variables. Only land-based pixels are used
in the evaluation.

March July

HERA UW RF 7“2 MB RMSE HERA UW RF 7“2 MB RMSE
Tom [K] 281.51 280.52 0.77 -0.95 2.86 296.33 295.38 0.87 -0.95 2.69
Pssc [hPa] 978.90 976.61 0.83 -2.29 18.56 972.94 97228 096 -0.67 7.98
RH [%] 61.74 71.55 0.41 9.81 18.19 53.21 63.81 0.42 10.60 19.11
WSiom [ms™t] 478 545 056 0.68 2.08 334 451 050 1.17  1.95
WDiom [°] 181.70 180.39 0.44 1.30 82.53 21518 209.83 0.34 -535 85.71

3 Emission speciation

Table 3: Distribution of TNO-MACC non-methane VOC emission categories over VOC species in

CBM-Z.

CBM-7Z TNO-MACC-III

e_ch3oh alcohols

e_c2hboh alcohols

e_hc3 propane, butanes, ethyne
e_hch pentanes

e_hc8 hexanes & higher alkanes
e_ol2 ethene

eolt propene

e_oli other alk(adi)enes & alkynes
e_tol benzene, toluene, other aROUatics
e_xyl xylene, trimethylbenzenes
e_hcho methanal

e_ald other alkanals, ethers

e_ket ketones

e_ora2 acids




4 Spatial plots of emission scaling parameters
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Figure 1: Spatial plots of monthly-averaged values of a) 5 and b) ~, calculated following Eqns. 3
and 4 (in main text), respectively.

5 Sensitivity study on inorganic reaction rates

A recent study investigated the representation of inorganic rate constants for tropospheric Og for-
mation in WRF-Chem, and found a strong impact on the monthly average of 8 yg m™ when using
MOZART inorganic rate constants in RADM2 (Mar et al. | 2016). To evaluate the potential impact
of this on our simulations, we apply the mixed-layer and chemistry model MXLCH (Janssen et al. |
, which uses a simplified version of the MOZART mechanism. We set up this case as follows
in order reproduce polluted conditions occurring in the Mediterranean, in order to determine the
impact of inorganic reaction rates on the production of ozone in a well-mixed boundary layer: The
location is set at 45.5°N/3.4°E (Southern France), initial O3 concentrations in the mixed layer and
the free troposphere are set to 62 ppbv and 78 ppbv, respectively, initial NO and NOs concentrations
in the mixed layer are set to 1.6 ppb and 4.0 ppb, respectively, we apply NO and CO emission fluxes
representative for relatively polluted conditions (0.15 ppb s and 2.0 ppb s, respectively), and we
add two reactions to this mechanism representing HO, cycling via reaction with Os.

From a comparison of rate constants among the mechanisms CBM-Z, RADM2 and MOZART,
we found the largest differences in rate constants for the reaction forming HNOs (NOy + OH +
M —— HNOj3 + M), while other inorganic rate constants are much more comparable. This is
in line with the rate constant comparison by Knote et al. | (2015). We modify the temperature-
dependent rate constants of the reaction forming HNOj3 (kno, + on) according to Fig. [2| (panel a),
and subsequently we study the sensitivity of afternoon ozone concentrations to kxo, + omn-

The NO; concentration and lifetime increase with decreasing rate constants, but the impact of
kno, + on on NOg concentrations is rather small (Fig. ) The relative impact on OH is stronger
(Fig. [2d): the NO, availability in combination with kno, + on drives OH loss, causing increasing
OH concentrations for a decrease in kxo,+om-

HNOg formation in CBM-Z has a somewhat lower rate constant compared to other mechanisms,
and therefore leads to a longer NO, lifetime. This accelerates O3 formation, and thus leads to higher
afternoon O3 concentrations. The upper right panel of Fig. [2]shows that the inter-mechanism spread




is £2 ppbv. From this sensitivity analysis with a simplified representation of atmospheric chemistry
within the atmospheric boundary layer, we conclude that there is some sensitivity of afternoon O3
concentrations to the representation of inorganic reactions, particularly HNOj formation, involved
in O3z chemistry.
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Figure 2: Temperature-dependence of rate constants for the reaction NOy + OH + M —— HNOj3 +
M from three different mechanisms (panel a), and the resulting impacts on Oz (pabel b), NO2 (c)
and OH (d). Panel a additionally gives the TUPAC-recommended value under standard conditions
(P =1 bar, T = 298 K) given by |Atkinson et al. | (2004)). The lifetimes of NO2 and OH are given
in panels e and f, respectively.
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Table 4: Model performance statistics for surface ozone concentration time series of the WRF-Chem
simulation with bottom-up and top-down emissions for six European regions.

Po BeNeLux  Central ~ Central — South Poland
Valley 4 Ruhr  France  Spain  Germany ~
n (stations) 59 32, 29 24 39, 18
Bottom-up
MBE, 220,14 16.82 335 22240 -1L15 174
RMSE 68.07 7148 5992 4539 68.68 43.64
r 080 018 016 081 0.4 017
Top-down
MBE 198 2594 1729 <133 502 16.10
RMSE 5508 68.57 5648 3644 5813 4181
L 085 081 079 083 081 0.80
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