Supplement of

Enhanced sulfate formation through SO₂+NO₂ heterogeneous reactions during heavy winter haze in the Yangtze River Delta region, China

Ling Huang et al.

Correspondence to: Li Li (lily@shu.edu.cn) and Cheng Huang (huangc@saes.sh.cn)

Table S1. Summary of parameters representing clean, transition, and polluted conditions during Beijing 2015. Temperature (T) and relative humidity (RH) are directly adopted from Table S2 of Wang et al. (2016). NO₂ concentrations are assumed to be 50 % of NOx. Liquid water content (LWC) and aerosol pH are calculated by ISORROPIA assuming a metastable aerosol in CAMx.

Conditions	Temperature	RH	NO ₂ (g)	LWC	Aerosol pH
	[K]	[%]	[ppb]	[µg m ⁻³]	[-]
Clean	273.4	21	32	1.24	5.5
Transition	274.4	41	58	12.3	4.2
Polluted	273.9	56	45.5	35.8	4.1

Figure S1. Mass fractions of major PM species for clean, transition, and polluted periods during 1 to 29 December 2013 at SAES site.

Figure S2. Diurnal profiles of ammonia concentrations (ppb) at FDU site during 1 to 29 December 2013. Shaded areas constrain maximum and minimum concentrations.

Figure S3. Comparison of observed (black dot-line) and simulated (red dot-line) hourly relative humidity (top row), wind speed (WS, middle row) and temperature (bottom row) at Pudong (left column) and Hongqiao (right column) airport monitoring site.

No	Drovinco	City	Latituda	Longitudo	Observed mean	noHet			Het_2NH ₃				
INU.	riovince	City	Lanuue	Longitude	Observed mean	Modeled mean	MB	NMB	IOA	Modeled mean	MB	NMB	IOA
1		Hangzhou	29.64	119.03	66.5	60.1	-6.4	-10%	0.74	74.0	7.5	11%	0.75
2		Ningbo	29.85	121.52	153.0	108.9	-44.1	-29%	0.71	122.5	-30.5	-20%	0.78
3		Wenzhou	28.02	120.67	86.6	56.5	-30.1	-35%	0.71	69.3	-17.3	-20%	0.75
4		Jiaxing	30.76	120.76	131.9	102.5	-29.5	-22%	0.73	116.5	-15.4	-12%	0.80
5		Huzhou	30.86	120.09	189.3	119.8	-69.6	-37%	0.67	140.6	-48.7	-26%	0.77
6	Zhejiang	Quzhou	28.94	118.87	71.4	82.8	11.4	16%	0.72	89.8	18.5	26%	0.66
7		Zhoushan	30.02	122.12	99.0	59.5	-39.5	-40%	0.67	72.2	-26.8	-27%	0.75
8		Taizhou	28.65	121.42	106.9	75.3	-31.7	-30%	0.76	88.8	-18.2	-17%	0.82
9		Lishui	28.45	119.91	91.0	61.5	-29.5	-32%	0.62	75.1	-15.9	-17%	0.68
10		Shaoxing	30.01	120.58	198.7	138.8	-60.0	-30%	0.64	166.1	-32.6	-16%	0.72
11		Jinhua	29.11	119.65	164.3	88.2	-76.1	-46%	0.59	105.5	-58.8	-36%	0.68
12		Nanjing	32.01	118.74	170.5	139.4	-31.1	-18%	0.76	152.5	-18.0	-11%	0.80
14		Xuzhou	34.28	117.29	142.0	139.5	-2.4	-2%	0.70	150.0	8.0	6%	0.71
15		Changzhou	31.76	120.00	144.9	127.1	-17.8	-12%	0.83	141.8	-3.1	-2%	0.86
16		Suzhou	31.25	120.56	154.8	119.3	-35.5	-23%	0.74	132.7	-22.1	-14%	0.79
17		Nantong	31.93	120.94	132.1	92.9	-39.2	-30%	0.73	104.3	-27.8	-21%	0.78
18	Jiangsu	Huai'an	33.60	119.04	200.1	109.7	-90.4	-45%	0.55	120.5	-79.6	-40%	0.57
19		Yancheng	33.37	120.13	145.1	130.8	-14.3	-10%	0.75	140.2	-4.9	-3%	0.76
20		Yangzhou	32.38	119.39	144.9	137.6	-7.3	-5%	0.75	149.7	4.8	3%	0.77
21		Zhenjiang	32.21	119.43	143.5	140.7	-2.7	-2%	0.78	154.1	10.7	7%	0.79
22		Taizhou	32.49	119.90	158.0	119.1	-39.0	-25%	0.73	126.9	-31.2	-20%	0.77
23		Suqian	33.95	118.29	139.9	115.9	-24.0	-17%	0.74	126.4	-13.5	-10%	0.74
24	Anhui	Hefei	31.91	117.16	132.2	115.0	-17.1	-13%	0.77	126.8	-5.4	-4%	0.77

Table S2. Statistical summary of monthly $PM_{2.5}$ simulated from noHet and Het_2NH₃ scenarios at 23 monitoring sites in Zhejiang, Jiangsu and Anhui province during 1 to 29 December 2013.

Meteorological parameter	Statistics metric	Pudong	Hongqiao
Tommomotium	NMB	0.37	0.01
	NME	0.41	0.16
	IOA	0.86	0.98
Relative humidity [%]	NMB	0.00	0.01
	NME	0.16	0.14
[%]	IOA	0.85	0.92
Wind anad	NMB	0.33	0.14
	NME	0.42	0.29
	IOA	0.79	0.89
Wind direction	Bias	0.13	0.31

Table S3. Statistic summary of WRF simulated meteorological parameters during December 2013 at Pudong and Hongqiao airport monitoring site.

Table S4. Statistical analysis of base case model performance

Species	Observed mean $[\mu g m^{-3}]^*$	Modeled mean $[\mu g m^{-3}]^*$	MB	NMB	IOA
O ₃	20.1	13.5	-6.6	-33%	0.76
NO ₂	71.5	67.7	-3.8	-5%	0.79
SO_2	62.9	42.9	-20.0	-32%	0.57
NH ₃	7.4	2.2	-5.2	-72%	0.52
PM _{2.5}	118.7	106.7	-12.0	-10%	0.78
sulfate	17.2	14.5	-2.7	-16%	0.80
ammonium	12.7	9.7	-3.0	-21%	0.79
nitrate	24.4	19.6	-4.8	-20%	0.77
EC	4.3	2.9	-1.4	-32%	0.72
OC	18.7	9.6	-9.1	-49%	0.60

*Units for all species except NH_3 are $\mu g \text{ m}^{-3}$; unit for NH_3 is ppb.

Figure S4. Time series of observed and modeled concentrations for ozone, NH₃, nitrate, ammonium, EC, OA, SO₂ and NO₂ at SAES site during 1 to 29 December 2013

Figure S5. Observed and predicted average sulfate concentrations for four selected heavy haze episodes during 1 to 29 December 2013.

Figure S6. Box and whisker plot of observations by clean, transition and polluted periods during 1 to 29 December 2013 at SAES site.

C	De de l	Mean observed sulfate	Mean modeled sulfate	MB	NMB	IOA
Scenario	Period	[µg m ⁻³]	$[\mu g m^{-3}]$	[µg m ⁻³]	[-]	[-]
	all	17.2	14.4	-2.8	-16%	0.80
TT 4	clean	6.7	7.8	1.1	16%	0.68
noHet	transition	14.2	14.7	0.5	4%	0.63
	polluted	36.1	23.1	-13.0	-36%	0.59
Het	all	17.2	15.1	-2.1	-12%	0.83
	clean	6.7	8.0	1.2	18%	0.65
	transition	14.2	15.3	1.2	8%	0.62
	polluted	36.1	24.6	-11.5	-32%	0.63
	all	17.2	15.2	-2.1	-12%	0.83
nollat 2NIL	clean	6.7	8.6	1.9	28%	0.65
nonet_2Nn ₃	transition	14.2	15.0	0.8	6%	0.63
	polluted	36.1	24.5	-11.6	-32%	0.64
	all	17.2	17.0	-0.2	-1%	0.86
Het ONH	clean	6.7	9.1	2.3	34%	0.59
$\Pi el_2 N \Pi_3$	transition	14.2	16.3	2.1	15%	0.58
	polluted	36.1	29.1	-6.9	-19%	0.72

Table S5. Statistical metrics of sulfate for different scenarios at SAES site during 1 to 29 December2013

C	De de 1	Mean observed nitrate	Mean modeled nitrate	MB	NMB	IOA
Scenario	Period	$[\mu g m^{-3}]$	$[\mu g m^{-3}]$	[µg m ⁻³]	[-]	[-]
	all	24.4	19.6	-4.8	-20%	0.77
TT 4	clean	9.6	12.0	2.4	25%	0.74
noHet	transition	22.0	20.8	-1.2	-5%	0.76
	polluted	48.4	28.3	-20.1	-42%	0.62
Het	all	24.4	19.6	-4.8	-20%	0.77
	clean	9.6	12.1	2.5	26%	0.73
	transition	22.0	20.9	-1.1	-5%	0.75
	polluted	48.4	28.1	-20.2	-42%	0.62
	all	24.4	26.8	2.3	10%	0.82
nollat 2NU	clean	9.6	15.9	6.3	66%	0.55
lionet_2NH ₃	transition	22.0	28.7	6.7	31%	0.56
	polluted	48.4	38.9	-9.5	-20%	0.72
	all	24.4	27.4	2.9	12%	0.83
Hat 2NH	clean	9.6	16.2	6.6	69%	0.55
Het noHet_2NH ₃ Het_2NH ₃	transition	22.0	29.3	7.3	33%	0.57
	polluted	48.4	40.0	-8.4	-17%	0.75

Table S6. Statistical metrics of nitrate for different scenarios at SAES site during 1 to 29 December2013

		Mean observed	Mean observed Mean modeled			IOA
Scenario	Period	ammonium	ammonium	IVID	INIVID	IOA
_		[µg m ⁻³]	$[\mu g m^{-3}]$	$[\mu g m^{-3}]$	[-]	[-]
noHet	all	12.7	10.1	-2.6	-21%	0.79
	clean	4.9	5.8	0.9	19%	0.80
	transition	11.0	10.5	-0.4	-4%	0.76
	polluted	26.2	15.4	-10.8	-41%	0.61
Het	all	12.7	10.4	-2.4	-19%	0.80
	clean	4.9	5.9	1.0	20%	0.79
	transition	11.0	10.8	-0.2	-1%	0.77
	polluted	26.2	15.9	-10.3	-39%	0.63
	all	12.7	11.6	-1.2	-9%	0.84
nollat 2NU	clean	4.9	6.4	1.6	32%	0.70
11011et_21113	transition	11.0	12.0	1.1	10%	0.66
_	polluted	26.2	18.1	-8.1	-31%	0.68
	all	12.7	12.4	-0.4	-3%	0.87
	clean	4.9	6.6	1.8	36%	0.70
11CL_21NIT3	transition	11.0	12.6	1.7	15%	0.67
	polluted	26.2	20.0	-6.2	-24%	0.75

Table S7. Statistical metrics of ammonium for different scenarios at SAES site during 1 to 29 December 2013

2013						
Commin	Daniad	Mean observed PM _{2.5}	Mean modeled PM _{2.5}	MB	NMB	IOA
Scenario	Period	$[\mu g m^{-3}]$	[µg m ⁻³]	[µg m ⁻³]	[-]	[-]
noHet	all	118.7	106.7	-12.0	-10%	0.78
	clean	52.8	69.4	16.6	31%	0.73
	transition	103.1	112.9	9.7	9%	0.74
	polluted	232.3	149.2	-83.0	-36%	0.63
Het	all	118.7	107.7	-11.0	-9%	0.79
	clean	52.8	69.8	16.9	32%	0.73
	transition	103.1	113.9	10.8	10%	0.74
	polluted	232.3	151.2	-81.0	-35%	0.64
	all	118.7	116.0	-2.7	-2%	0.80
nollat 2NIL	clean	52.8	74.8	22.0	42%	0.68
noHet_2NH ₃	transition	103.1	122.5	19.3	19%	0.67
	polluted	232.3	163.7	-68.5	-30%	0.66
	all	118.7	119.4	0.7	1%	0.82
Hat 2NH	clean	52.8	75.7	22.9	43%	0.68
$\Pi el_2 n \Pi_3$	transition	103.1	125.1	22.0	21%	0.68
	polluted	232.3	171.7	-60.6	-26%	0.71

Table S8. Statistical metrics of $PM_{2.5}$ for different scenarios at SAES site during 1 to 29 December 2013

Figure S7: Spatial distribution of simulated monthly average NH_3 (µg m⁻³, top row), SO_2 (µg m⁻³, second row), and aerosol pH (bottom row) over the YRD region for the base case scenario (first column) and the changes between the base case and the other three sensitivity runs: Het (second column), noHet_2NH₃ (third column) and Het_2NH₃ (fourth column).

Figure S8: Spatial distribution of base case simulated monthly average NH₃ (µg m⁻³) concentrations over China.