

1 Diurnal cycle of iodine and mercury concentrations in Svalbard surface snow

- ² ¹Andrea Spolaor, ¹Elena Barbaro, ²David Cappelletti, ¹Clara Turetta, ³Mauro Mazzola, ⁴Fabio Giardi,
- 3 ⁵Mats P. Björkman, ⁶Federico Lucchetta, ¹Federico Dallo, ⁷Katrine Aspmo Pfaffhuber, ⁸Hélène
- 4 Angot, ⁹Aurelien Dommergue, ¹⁰Marion Maturilli, ¹¹Alfonso Saiz-Lopez, ^{6,1}Carlo Barbante and
- 5 ¹Warren RL Cairns
- 6
- 7 ¹Institute for the Dynamics of Environmental Processes, IDPA-CNR, Campus Scientifico Via Torino
- 8 155, 30172 Mestre, Venice, Italy.
- 9 ²Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia I-06123
- 10 Perugia, Italy
- ¹¹ ³National Research Council, Institute of Atmospheric Sciences and Climate, CNR-ISAC, Via P.
- 12 Gobetti 101, Bologna, Italy
- 13 ⁴Chemistry Department Analytical Chemistry, Scientific Pole, University of Florence, Via della
- 14 Lastruccia 3, I-50019 Sesto Fiorentino (Florence) Italy.
- 15 ⁵University of Gothenburg, Department of Earth Sciences, Box 460, 40530 Göteborg, Sweden
- 16 ⁶Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics,
- 17 Santa Marta Dorsoduro 2137, 30123 Venice, Italy.
- 18 ⁷NILU Norwegian Institute for Air Research, Kjeller, Norway
- 19 ⁸Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, USA
- ⁹Institut des Géosciences de l'Environnement, Univ. Grenoble Alpes /CNRS, F 38041 Grenoble,
 France.
- 22 ¹⁰Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- 23 ¹¹Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano,
- 24 CSIC, Madrid, Spain
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36

37 Abstract

38 Sunlit snow is highly photochemically active and plays an important role in the exchange of gas-39 phase species between the cryosphere to the atmosphere. Here, we investigate the behaviour of two 40 selected species in surface snow: mercury (Hg) and iodine (I). Hg can deposit year-round and accumulate in the snowpack. However, photo-induced re-emission of gas phase Hg from the surface 41 42 has been widely reported. Iodine is active in atmosphere new particle formation, especially in the 43 marine boundary layer, and in the destruction of atmospheric ozone. It can also undergo 44 photochemical re-emission. Although previous studies indicate possible post-depositional processes, 45 little is known about the diurnal behaviour of these two species and their interaction in surface snow. 46 The mechanisms are still poorly constrained and no field experiments have been performed in 47 different seasons to investigate the magnitude of re-emission processes. Three high temporal resolution (hourly samples) 3 days long sampling campaign were carried out near Ny-Ålesund 48 49 (Svalbard) to study the behaviour of mercury and iodine in surface snow under different sunlight and 50 environmental conditions (24h-darkness, 24h-sunlight and day/night cycles). Our results indicate a 51 clearly different behaviour of Hg and I in surface snow during the different campaign. The day/night 52 experiments demonstrate the existence of a diurnal cycle in surface snow for Hg and iodine, indicating 53 that these species are indeed influenced by the daily solar radiation cycle. Differently bromine did not show any diurnal cycle. The diurnal cycle disappeared also for Hg and iodine during the 24h-54 55 sunlight period and during 24h-darkness experiments supporting the idea of the occurrence (absence) 56 of a continuous recycling/exchange at the snow-air interface. These results demonstrate that this 57 surface snow recycling is seasonally dependent, through sunlight. They also highlight the non-58 negligible role that snowpack emissions have on ambient air concentrations and potentially on iodine-59 induced atmospheric nucleation processes.

- 60
- 61
- 62
- 63
- 64 65
- 66
- 67
- ¢,
- 68
- 69
- 70
- 71
- 72

73 1. Introduction

74 Polar Regions are being increasingly studied for their important roles in global climate and 75 atmospheric chemical cycles. Multiple studies have improved our understanding of atmospheric 76 processes in polar regions, ranging from new particle formation processes (Dall'Osto et al., 2017; 77 Sipilä et al., 2016), ozone destruction processes (Saiz-Lopez et al., 2007; Simpson et al., 2007), the 78 role of halogens in polar atmospheric processes (Saiz-Lopez and von Glasow, 2012; Spolaor et al., 79 2013a), the mercury cycle (Angot et al., 2016a; Aspmo et al., 2005; Dommergue et al., 2003a; 80 Durnford and Dastoor, 2011) to atmospheric transport and deposition of natural and anthropogenic 81 compounds (Moroni et al., 2015; Moroni et al., 2017; Udisti et al., 2016; Zangrando et al., 2013). The 82 Polar Regions are characterized by periods with 24 h of continuous solar radiation (April to 83 September in the Arctic), periods when the night and day cycle is present (February to March and 84 September to October in the Arctic) and periods of continuous darkness (November to January in the 85 Arctic), the so-called polar night. The different periods have completely different environmental 86 conditions depending on the incoming solar radiation, with variables such as sea ice presence or 87 biological activity being radically altered by sunlight. One important aspect is snow cover. Annual 88 snow is present, on average, for almost nine months of the year and represents an important 89 environmental component of Polar Regions. In Svalbard, the snow starts to accumulate in October 90 and remains until the end of May when the melting season begins (Førland et al., 2011). However, 91 with Arctic temperatures rising (Maturilli et al., 2013), the length of the snow cover has diminished 92 (Brage B. Hansen et al., 2014), with direct consequences on the environment of the Svalbard 93 archipelago, such as glacier mass loss, permafrost thawing, disturbances of the local fauna etc. (Karner et al., 2013; Kohler and Aanes, 2004; Kohler et al., 2007; Westermann et al., 2011). The 94 95 annual snow layer is an extremely dynamic portion of the cryosphere, and can be defined as the snow 96 accumulated and present on the ground during the whole year (Spolaor et al., 2016a). The 97 characteristics of the annual snow strata are strongly dependent on climate conditions and may influence food access for animals that rely on food sources below the snow (Kohler and Aanes, 2004). 98 99 From a chemical point of view, snow is a sink for an impressive number of chemical compounds 100 (natural and anthropogenic) and elements (Björkman et al., 2013; Gabrieli et al., 2011; Vecchiato et 101 al., 2018). Specific compounds and elements accumulate during the winter can undergo photo-102 activation and can be re-emitted into the atmosphere (Angot et al., 2016c; Spolaor et al., 2014), while 103 taking part in numerous geochemical and biological cycles (Björkman et al., 2014) during spring and 104 summer. Mercury (Hg) and iodine (I) are two elements that can be photo activated and released from 105 the snow pack. Mercury is a heavy metal with a known toxicity present in the environment in several 106 different chemical forms. It is reactive in the environment and undergoes photochemical reactions 107 that change its speciation and chemical behaviour (Dommergue et al., 2010; Durnford and Dastoor, 108 2011; Saiz-Lopez et al., 2018; Steffen et al., 2002). Mercury in its oxidized form can be deposited

109 onto the snowpack, increasing Hg concentrations in the upper snow strata (Obrist et al., 2017). Once 110 present in the snowpack, Hg is very labile, and it can be reduced back to elemental Hg (Hg(0)) and 111 undergo dynamic exchange with the atmosphere above (Song et al., 2018; Spolaor et al., 2018; 112 Steffen et al., 2002). The role of the snowpack is crucial in the mercury cycle in Polar Regions since 113 it acts as both a sink (deposition, accumulation) and a source (re-emission). Several studies have 114 already been carried out in the polar regions with the aim of determining the extent of mercury 115 recycling between the surface snow and the lower atmosphere (Angot et al., 2016c; Brooks et al., 116 2008; Dommergue et al., 2012; Douglas et al., 2008; Han et al., 2014; Obrist et al., 2017; Wang et 117 al., 2016). It has been shown that surface Arctic snow could lose up to 90 % of its total Hg content 118 within 48 hours (Poulain et al., 2004). Similar, re-emission/loss rates of Hg from snow surface (35-119 50 %) and drifting snow (65–75 %) over 10.5 h have been suggested in chamber experiments 120 (Sherman et al., 2010) while, in a study performed on the Antarctic Plateau, Spolaor et al. 2018 121 suggest a loss of 90% of mercury in the upper snow layer within a few hours. 122 Similar to mercury, iodine can undergo photochemical activation in surface snow resulting in its

123 presence in the surrounding atmosphere (Frieb et al., 2010; Spolaor et al., 2014). Several studies 124 aimed at understanding the behaviour of iodine in the Arctic region, from a paleo perspective using 125 ice core archives (Cuevas et al., 2018; Spolaor et al., 2016b), and field (atmospheric and snow) 126 experiments (Frieb et al., 2010; Gilfedder et al., 2007). The role of iodine in new particle formation 127 as well in ozone destruction is currently under investigation (Allan et al., 2015; Saiz-Lopez et al., 128 2012; Saiz-Lopez, 2006; Sipilä et al., 2016) since it could have a direct effect on the radiative budget 129 of polar areas. Up to now, it was believed that iodine was mainly associated with biological emissions, 130 however, recent studies have underlined the increase in ocean inorganic emissions (tripled since 1950) 131 connected with the increase in anthropogenic ozone via reactions over the ocean surface (Cuevas et 132 al., 2018). Like mercury, iodine could be released from surface snow and directly participate in 133 specific processes within the marine boundary layer, particularly in new particle formation. Little 134 information exists on the behaviour of mercury and iodine in surface snow during different seasons. 135 Laboratory experiments have been carried out to understand light-induced processes regarding Hg 136 and iodine (Durnford and Dastoor, 2011; Saiz-Lopez et al., 2012; Spolaor et al., 2013b). However 137 few experiments have been carried out in the field, with the specific aim of understanding the diurnal 138 dynamics of these elements in surface snow (Dommergue et al., 2003b; Ferrari et al., 2005; Spolaor et al., 2018). The unique high-temporal resolution experiments presented, aim to improve our 139 140 understanding of the behaviour of these elements in the upper snow layers (0-3 cm) under different 141 light and atmospheric conditions to investigate their short-term (diurnal) variation. 142

143 **2. Methods**

144 The experiments were conducted in the vicinity of Ny-Ålesund, in the snowfield behind the 145 Gruvebadet aerosol site (Figure 1). This area has a homogeneously flat surface without specific 146 elevation changes or obstacles that might interfere with snow deposition or wind-blown redistribution. 147 This area is approximatively 1 km from the coast line of the Kongsfjorden and about 400 m from the 148 Zeppelin mountain. The "Gruvebadet" snow field is located to the south of Ny-Alesund at an 149 elevation of the 80 m a.s.l. (Figure 1). Atmospheric mercury concentrations were obtained from the Zeppelin Observatory located at 474 m a.s.l. The "Gruvebadet" snow field is located to the south of 150 151 Ny-Ålesund, while the prevailing wind are mainly from east and south-east, minimizing possible 152 influences from station activities.

153

154 2.1 Sampling period and strategy

155 Surface snow samples were collected in the vicinity of Ny-Ålesund, specifically in the snow field 156 behind the "Gruvebadet" Aerosol Laboratory (Figure 1). Three experiments were conducted, two in 157 spring (2015 and 2016) and one in winter (2017). In 2015, we performed the first surface experiment 158 (hereafter called the "2015 experiment") between the 28th of April and the 1st of May. This period 159 was characterized by 24 hours of sunlight (incoming solar radiation ranged from a minimum of 25 160 Wm⁻² to a maximum of 456 W/m²). In 2016, a second experiment (hereafter called the "2016 experiment") was carried out between the 6th and the 9th of April when the night and day cycle was 161 still present at Ny-Ålesund (incoming solar radiation between 0 and 227 Wm⁻²). The last experiment 162 was conducted during the polar night, between the 24th and the 29th of January 2017 (hereafter called 163 164 the "2017 experiment") with the complete absence of incoming solar radiation. To determine the 165 diurnal variation, and the rates of the expected changes in iodine and mercury concentrations, a high 166 temporal resolution (hourly) sampling strategy was adopted. An area of approximately 2 m x 2 m was 167 delimited for surface snow sampling, and all samples were collected inside this delimited area. At the 168 beginning of the experiment, six samples were collected to evaluate the spatial variability of mercury, 169 iodine, bromine (bromine is limited to the "2016 experiment") and sodium in surface snow within 170 the delimited snowfield. Afterwards, surface snow (the first 3 cm) was sampled with an hourly 171 resolution for three consecutive days. The upper 3 cm were chosen as this is the snow layer that is most influenced by the surrounding atmospheric conditions, and, in case of snowfall, by deposition 172 173 (Spolaor et. al. 2018). During snow sampling, the temperature of surface snow was also measured. 174 To minimize spatial variability, samples were collected following a straight line leaving about 5 cm 175 between each of the sampling points. After collection, the snow samples were stored at -20°C in dark 176 conditions and transported to the Venice IDPA-CNR laboratories. The samples were never melted or 177 exposed to direct sunlight until analysis.

178

179 2.2 Meteorological measurements

180 Meteorological and radiation conditions were monitored at the Amundsen-Nobile Climate Change 181 Tower (Mazzola et al., 2016), located about 500 m west of the sampling site and from the AWIPEV 182 observatory (Maturilli et al., 2013), located about 800 m north of the sampling site. No meteorological 183 measurements are present in the sampling area. Temperature, relative humidity, were measured at 2 184 m above ground level and were considered as representative of the atmosphere just above the snow 185 surface while wind speed and direction at 10 m above ground. Incoming solar radiation was measured 186 at the top of the CCT tower (33 m), this value was not influenced by reflections from the structure. 187 One-minute data were used to obtain hourly averages. Snow accumulation data were obtained by 188 measuring the high of 4 plastic poles located at the extremities of the snow sampling field. 189 Precipitation data were recorded in Ny-Ålesund by the Norwegian Meteorological Institute (station 190 n. 99910) and downloaded through the eKlima database (eklima.no).

191

192 2.3 Snow Mercury analysis

193 Total Hg concentrations in surface snow samples was determined using a Thermo Element 194 Inductively Coupled Plasma Sector Field Mass Spectrometry (ICP-SFMS Element XR, Thermo-195 Fisher, Bremen, Germany) in low resolution scanning mode using ²⁰²Hg as the analytical mercury 196 mass with 10 replicates per sample measurement. The instrument was calibrated using standards 197 prepared from a mono-elemental Hg solution (TraceCert®, purity grade, Sigma-Aldrich, MO, USA). 198 Hg calibration standards were re-analysed every 10 samples as a quality control check. The percent 199 relative standard deviation (n=10) ranged from 0.5 % at 500 pgg⁻¹ to 10 % at 1 pgg⁻¹ and amounted 200 to 2.6 % on average. Considering the high volatility and instability of Hg in solution, the samples 201 were acidified at 2 % v/v with ultrapure hydrochloric acid before they were melted and analyzed. 202 Each sample was weighed and the exact amount of HCl was added to reach a final concentration of 203 2 % (Planchon et al., 2004; Spolaor et al., 2018).

204

205 2.4 Snow iodine, sodium and bromine analysis

206 Halogens (I and Br) and sodium analyses were conducted on non-acidified samples. Total sodium 207 (Na), iodine (I) and bromine (Br) concentrations were determined by ICP-SFMS (Spolaor et al., 208 2016c). Each analytical run started and ended with an ultra-pure water (UPW) cleaning session of 3 209 min to ensure a stable background level throughout the analysis. The external standards that were 210 used to calibrate the analytes were prepared by diluting a 1000 ppm stock IC (ion chromatography) 211 standard solution (TraceCERT® purity grade, Sigma-Aldrich, MO, USA). The standard 212 concentrations ranged between 10 and 4000 ng g⁻¹ for sodium, 0.01 and 1 ngg⁻¹ for iodine and between 0.5 and 20 ng g⁻¹ for bromine. The residual standard deviation (RSD) was low for all analytes, the 213 214 halogens ranged between 1-2% and 2-5% for Br and I, respectively, and the RSD was 3-4 % for 215 sodium.

216 **2.5 Atmospheric mercury measurements**

217 Gaseous elemental mercury (GEM) was monitored using a Tekran 2537 Hg vapor analyzer as 218 described by Aspmo et al., 2005 and as summarized here: ambient air was sampled at 1.5 l min⁻¹ 219 through a Teflon filter via a heated sampling line. A soda-lime trap was mounted in-line before the 220 instrument filter. Hg in the air is pre-concentrated for 5 minutes by amalgamation on two parallel 221 gold cartridges, which alternate between collection and thermal desorption, followed by AFS (atomic 222 fluorescence spectrometric) detection. The instrument was auto-calibrated every 25 hours using an 223 internal Hg permeation source, whose accuracy was verified during routine site audits that include 224 manual injections of Hg from an external source (Aspmo et al., 2005).

225 **3. Results**

226 The 2015 and 2016 experiments were characterized by similar atmospheric conditions (except for the 227 incoming solar radiation) while during the 2017 experiment a storm approached Ny-Ålesund during 228 the first 12 hours of the experiment with strong winds lasting for the first 24 hours of the experiment. 229 During the 2015 experiment under full day conditions, the average air temperature ranged between -230 10°C and -6°C and the surface snow temperature range between -13°C and -5°C, showing a diurnal 231 variability connected with changes in the incoming solar radiation (Figure 2). Incoming solar radiation ranged from a minimum of 25 Wm⁻² to a maximum of 450 Wm⁻². Wind speed was almost 232 233 constant and remained below 3 ms⁻¹ during most of the experiment, except for a few hours at the beginning when it exceeded 3 ms⁻¹. Snowfall (1 cm net accumulation on the ground) occurred on the 234 235 30th of April between 3 am and 11 am (Figure 2, pink rectangle). A snow event, causing a net 236 accumulation of 1 cm of snow, also occurred during the 2016 experiment (Figure 3, pink rectangular) 237 when day and night periods were present. The snow event occurred on the 9th of April between 10 am and 3 pm. During the 2016 experiment, conducted between 6th and the 9th of April, the snow 238 239 temperature was not registered due a technical problem with the temperature probe installed in the 240 snow. Air temperature ranged between -7 and -3°C and solar radiation between zero at night time to 241 a maximum of 227 W/m². As for the first experiment, wind speed was below 3 ms⁻¹, minimizing the 242 effect of blowing snow. Wind direction was almost constant and prevailing from east. The GEM and 243 the surface snow mercury datasets were de-trended to emphasize the diurnal variation and remove 244 the decreasing trend present in both datasets. The de-trended series were obtained calculating the 245 linear regression line for both series and subtracting this value from the data. Figure 3 (middle panel) 246 reports the de-trended mercury dataset while the Figure 4 shows the raw data and the methods used 247 to remove the trend. The 2017 winter experiment (Figure 5) was characterized by a snowstorm that 248 occurred on the 24th of January (10 hours after the experiment began, pink rectangle). Differently to the previous experiments, the wind speed averaged 9 ms⁻¹ during the storm, with a maximum speed 249 250 of 16 ms⁻¹ (Figure 5, orange line). Strong winds can redistribute surface snow and significantly

251 change chemical concentrations. For these reasons, the winter experiment began on the 24th of 252 January and ended on the 29th of January for 5 days in total, compared the 3 days adopted for the 253 2015 and 2016 experiment. The length of the experiment was extended of 2 days to minimize the 254 impact of the strong wind and snowfall that occurred at the beginning of the experiment. Air 255 temperatures ranged from between -17°C and -3°C, while snow temperatures ranged between -25°C 256 and -10°C (Figure 5, upper panel). One important issue that could confound the results obtained by 257 surface sampling is spatial variability. Spatial variability was tested during the three experiments and 258 specifically for the four elements investigated. Six surface snow aliquots were collected at the 259 beginning of each experiment within the delimited area at the same time. The results obtained show 260 that for sodium, bromine and mercury, spatial variability can explain 10% of the variability whilst 261 for iodine the variability was of the order of 5%. Concentrations detected during the three experiments 262 show different background levels (Table 1) for total iodine, sodium, mercury and gaseous elemental 263 mercury (Br was measured only during the 2016 experiment). For sodium, the highest concentration 264 was detected during the 2015 (full day) experiment where concentrations in surface snow averaged 265 3500 ngg⁻¹. The lowest sodium concentrations were determined during the winter period with 266 concentrations of around 1500 ngg⁻¹. For iodine the trend was the opposite, with highest 267 concentrations in winter (0.38 ngg^{-1}) and the lowest during the 24h sunlight period (0.15 ngg^{-1}) . For 268 total mercury, the minimum concentration was found in early spring (0.007 ngg⁻¹, 2016 experiment) 269 while the highest values were detected during 2015 (full light) and 2017 winter experiment (on 270 average 0.010 ngg⁻¹ for 2015 and 0.009 ngg⁻¹ for 2017). Gaseous elemental mercury has the highest 271 concentration during springtime, when 24 h incoming solar radiation is present (1.45 ngm⁻³) while 272 the lowest value has been detected during polar night (1.28 ngm⁻³). The average concentration during 273 the experiment is only representative for specific periods in the experiment and should not be 274 considered as a reference concentration for a specific season. However, some indications emerged, 275 especially for iodine, which showed the highest concentrations during the polar night in the absence 276 of solar radiation. Considering iodine (inorganic and organic) is mainly emitted by oceanic processes, 277 iodine concentrations were normalized to sodium concentrations to obtain an iodine enrichment (Ienr) 278 compared to the bulk seawater abundance. This is defined as Ienr=Isnow x (Nasnow* [I/Na]sw, where I/Na 279 = 0.00000596, (Millero et al., 2008) where "sw" = measured sea water abundance. In the 2015 280 experiment (24h sunlight), iodine had an average enrichment value of 5, a value that exponentially 281 increased (up to 190) during snowfall (Figure 2), so if we consider the snowfall period the mean value 282 increases to 10. The 2016 experiment (day/night) was characterized by a diurnal cycle for both 283 mercury and iodine (and Ienr) and by an average Ienr value of 11, with the lowest value during day 284 time and higher values detected during the night periods (Figure 3). As for the 2015 experiment, the 285 experiment conducted in 2016 was characterized by a snowfall event that significantly influenced the 286 surface iodine concentration and its enrichment factor. During the 2016 experiment, snowfall caused

287 the Ienr to increase up to 300. The rapid increase in iodine and its enrichment factor during snowfall 288 was followed by a rapid decrease to the pre-snowfall (seasonal background value) concentration 289 during the 2015 experiment (Figure 2), whilst in the 2016 experiment the increased concentration and 290 enrichment caused by the snow fall was most likely masked by the night time deposition (Figure 3). 291 Similar behaviour was measured for total mercury in surface snow samples, with an increase in 292 concentration during snowfall followed by a rapid decrease in both experiments (Figure 2 and 3). The 293 winter experiment is characterized by the highest iodine enrichment values (47 on average) and, 294 similar the previous experimental results, the experiment was characterized by snowfall and strong 295 winds during the first 24h. During the storm period in the winter experiment we detected an increase 296 in iodine concentrations (and Ienr up to 100), however the difference in iodine enrichment between 297 the snowfall periods and rest of samples collect was not statistically significant. The average 298 elemental concentrations for each experiment are reported in Table 1.

299

300 4. Discussion

301 The behaviour of mercury and iodine in surface snow depends on the season and the amount of 302 incoming solar radiation (Figure 2, Figure 3, Figure 5). During wintertime (Figure 5), iodine behaves 303 similarly to sodium. Sodium does not undergo photochemical processes in the snow and is often used 304 to evaluate/correct for marine sea spray emission/deposition (Spolaor et al., 2014). During winter, 305 iodine has higher concentrations and enrichment factors (compared to its sea water abundance based 306 on the I/Na mass ratio). These higher values in surface snow could be due to the absence of 307 photochemical activation by solar radiation. In the absence of photochemistry and with limited 308 biological production in winter (Ardyna et al., 2013), we expect to find enrichment values close to 309 the seawater abundance. However, during the 2017 experiment, iodine had higher than expected 310 enrichment values suggesting that an extra source(s), in addition to sea spray emission may exist and 311 that it might be dominant during winter. Saiz-Lopez et al. 2016 suggests that night time radical 312 activation can occur. They indicate that the reaction of HOI with NO₃, to yield IO + HNO₃, is possible 313 under winter tropospheric conditions (Saiz-Lopez et al., 2016). The inclusion of this reaction, along 314 with that of $I_2 + NO_3$, has a number of significant implications, such as the night time activation of 315 iodine radical chemistry that can cause an enhanced night time oceanic emissions of HOI and I₂ (Saiz-316 Lopez et al., 2016). Sea spray aerosol droplets could absorb gas phase iodine emissions from the 317 ocean surface (as suggested by the high correlation between total iodine and sodium, Figure 5 and 318 Table 2) and deposited on the surface snow causing the high iodine surface snow enrichment. This 319 process, together with the absence of photoactivation that causes iodine loss from the snow surface, 320 could explain the high level of iodine during the polar night.

321 In parallel to iodine, our experiments have focused on the rapid changes in mercury concentrations 322 that could occur in surface snow during the polar night. This is because without these temporal 323 resolution measurements, it is extremely difficult to determine which reactions might be occurring. 324 During the first 24 hours of the winter experiment (2017) we had strong winds remodelling the snow 325 surface. Variations in surface mercury concentrations detected within the first 24 hours may in part 326 have been due to snowfall and physical artefacts caused by windblown snow redistribution. After the 327 storm, total mercury concentrations in surface snow tended to stabilize until the end of the experiment. 328 It should be noted that some oscillations in surface snow mercury concentrations and the ambient air 329 above have been detected. Mercury in the snow rapidly decreased from 00:00 on the 24th until noon 330 on the same day and was associated with an increase in the atmospheric mercury concentration 331 (Figure 5). After this sharp increase, the GEM concentration decreased rapidly while the surface snow 332 mercury increased. These two rapid events occurred within about 24 hours, supporting the idea of a 333 connection and interchange between GEM and the mercury present in snow surface, even during the 334 night-time. Night-time mercury reactions have been thought to occur. Angot et. al. 2016b suggested 335 that mercury deposition onto the snow surface in the dark could be due to several mechanisms, 336 including gas-phase oxidation, heterogeneous reactions, or dry deposition of Hg(0) (Angot et al., 337 2016b; Song et al., 2018). This hypothesis however is based on results obtained at Dome C on the 338 Antarctic Plateau over the entire winter season, conditions very different to those in Svalbard. The 339 average mercury surface snow concentrations detected during the winter experiment are comparable 340 to those during the 2015 experiment (Figure 2 and Table 1), this might be due, as for iodine, to the 341 lack of light induced snow re-emission, but might also be caused by different background 342 concentrations independent of any seasonal effect.

343 The most interesting experiment is the one conducted during early April in 2016 when a day and 344 night cycle was still present (Figure 3). During this experiment, mercury and iodine, show a similar 345 pattern with a distinct diurnal cycle in surface snow (I_{snow} vs Hg_{snow} R = 0.57 p-value < 0.01). For 346 both elements, the highest concentrations were detected during the night and the lowest during the 347 day. Iodine has been demonstrated to be active in the upper snow layer. Previous laboratory and 348 outdoor experiments have demonstrated two photo-induced mechanisms for the release of inorganic 349 iodine from the snowpack to the atmosphere: i) photooxidation of iodide in ice with the resulting 350 production of tri-iodide (I_3) and evaporable molecular iodine (I_2) (Kim et al., 2016), and ii) the 351 emission of an iodine photofragments following the heterogenous photoreduction of iodate in ice 352 (Gálvez et al., 2016). These experimental studies have shown that the release of iodine from the 353 snow/ice to the atmosphere depends on solar radiation. Indeed, (Raso et al., 2017) recently measured 354 I₂ in the Arctic atmosphere under natural sunlight conditions with results that are in agreement with 355 the supposed photochemical production mechanisms.

356 Kim et al., 2016, showed that the iodide photooxidation to I_3 -strongly depended on irradiation time 357 following the UV-Visible absorption spectrum of iodide in ice. This would explain the observations 358 of reduced iodine concentrations in ice during the sunlit parts of the day. Although we do not have 359 observations of atmospheric iodine, it is very likely that snow re-emission during the day leads to a 360 peak in reactive gas phase iodine in the overlying polar boundary layer at low solar zenith angles. 361 The emitted gas phase iodine would then readily form reservoir species (HOI, IONO₂, HI) (Saiz-362 Lopez et al., 2014) that once photochemistry ceases could deposit and accumulate in the snow/ice 363 until the following sunrise, when re-emission starts again. 364 Active mercury recycling from the snow pack has already been suggested/observed by several authors 365 (Dommergue et al., 2012; Durnford and Dastoor, 2011; Song et al., 2018; Steffen et al., 2008). 366 Mercury in its oxidized forms can be deposited onto the snowpack, increasing total Hg concentrations 367 in the upper snow strata. Once present in the snowpack, Hg is very labile, it can be reduced back to 368 Hg(0) and can undergo dynamic exchange with the atmosphere above (Steffen et al., 2002). 369 Photochemical reactions are important in altering the speciation of Hg in the snowpack and depend 370 on environmental properties and snowpack chemistry. Spolaor et al. 2018 shows that total Hg 371 concentrations in the surface snow in the inner Antarctic Plateau do not exhibit a clear diurnal cycle 372 as has been determined for gaseous elemental mercury (Angot et al., 2016c; Dommergue et al., 2012). 373 However Hg in surface snow shows the highest values during the insolation minima, suggesting that 374 its concentration in the snow might be influenced by daily differences in incoming solar radiation. 375 The experiment at Dome C (Spolaor et al. 2018) was carried out under full polar day conditions with 376 incoming solar radiation reaching the snow surface for the entire period of the experiment. The experiment conducted at Ny-Ålesund between the 6th to the 9th of April 2016 was characterized by a 377 378 night and day cycle. Similar to iodine, a clear diurnal cycle has been detected for atmospheric and 379 surface snow mercury. Snow mercury shows the highest concentrations during the night, with a 380 minimum during the daytime (night periods are highlighted in Figure 3 by the grey rectangular). 381 Contrary to this, the GEM shows a minimum during the nighttime and a maximum during the daytime. 382 This antiphase behaviour (Figure 3 and Table 2) suggests that under day light conditions, mercury in 383 the surface snow can be reduced and released by photochemical processes from the snow surface, 384 resulting in increases in atmospheric concentrations. During the night, mercury can be oxidized to 385 Hg(II) and re-deposited onto the snow surface. In addition to this diurnal oscillation during the 386 experiment, if we exclude the snowfall that caused a re-enrichment of surface snow for both elements, 387 we detected a decreasing trend for mercury in snow as well as in the atmosphere (Figure 4 and Table 388 2), from the beginning to the end of the experiment. This decreasing trend may be ascribed to re-

emission during the daytime and an incomplete deposition during the night due to possibledilution/removal processes caused by the surrounding atmosphere, with air mass movements as well

391 for mixing within the upper atmospheric strata. This suggested atmospheric removal could explain

the positive correlation between GEM and snow surface Hg seen in Table 2 that is masking the antiphase caused by the diurnal daylight cycle. When the two series are de-trended by removing the overall decreasing trend, (by considering 6-hour average values) the correlation between atmospheric and snow mercury becomes significantly negative (Figure 4 upper panel and Table 2).

396 At the end of the 2016 experiment, a snowfall event occurred (Figure 3 pink rectangular). The net 397 effect of the snowfall was to increase the mercury concentration in the upper snow surface. 398 Precipitation events seem to be associated with elevated total Hg concentrations in surface snow 399 samples (Figure 2 and Figure 3). Angot et al., 2016c have suggested that the presence of ice crystals 400 could enhance the dry deposition of Hg(II). Indeed, due to an elevated specific surface area, the 401 mercury-capture efficiency of ice crystals is high (Douglas et al., 2008). Although there is a 402 deposition of mercury to surface snow, atmospheric mercury did not show a decrease in concomitance 403 with the snowfall but continued to show the usual diurnal pattern. In Antarctica, it has been 404 demonstrated that snow and atmospheric mercury concentrations are related but it should be taken 405 into consideration that the boundary layer can be confined to the first 30 meters above the snow 406 surface (Angot et al., 2016a). The mercury released from the snow after snowfall may not be enough 407 to impact the GEM due to dilution effects. Is also possible that the Zeppelin station is located often 408 above the marine boundary layer and the mercury released from the snow is confined and is not able 409 to influence the mercury concentration in the free troposphere. Zeppelin station is at a higher elevation 410 (approximately 400 meters above the sampling site) compared to the snow-sampling site, but is the 411 only site giving hourly mercury atmospheric measurements in the area. Although the two sites might 412 not be directly connected, the atmospheric concentrations and their diurnal cycle may be 413 representative of the atmospheric cycle above the surrounding snow field as suggest by a previous 414 study (Aspmo et al., 2005).

415 Surface snow iodine concentrations, similarly to mercury, are enhanced during liquid or solid 416 deposition. Several studies have demonstrated that rain, snow and aerosol are enriched in soluble organic iodine as well as inorganic iodine (iodide and iodate) (Baker, 2005; Saiz-Lopez and von 417 418 Glasow, 2012). Uptake of iodine species by cloud droplets and snowflakes followed by wet 419 deposition or snowfall are major atmospheric iodine removal processes, which would enhance the 420 concentration of iodine in the snow/ice. It is interesting to note that after the snowfall events, the 421 enhanced concentrations in surface snow rapidly decrease. This phenomenon is more evident during 422 the 2015 experiment (Figure 2) when 24 hours of solar irradiation occur. In the 2016 experiment after 423 the snowfall, the iodine decrease is probably masked by nocturnal deposition. Bromine was also 424 measured during the 2016 experiment (Figure 6) to understand if, as for iodine and mercury, it can 425 undergo surface recycling. Bromine shows a correlation of r = 0.85 with sodium and, the Br_{enr} factor 426 (calculated as Brenr=Brsnow x (Nasnow* [Br/Na]sw, where Br/Nasw = 0.006), does not show a diurnal 427 cycle as for iodine (and its enrichment factor) and mercury. As has already been proposed, bromine

428 after deposition is probably preserved in surface snow (Spolaor et al. 2014). During snowfall, both 429 sodium and bromine decrease, most likely due to the dilution effect caused by new snowfall. It is 430 likely that the main sodium and bromine deposition occurred by sea spray deposition caused by wave 431 breaking (no sea ice was present in the fjord in front of Ny-Alesund during the experiments so the 432 bromine explosion over sea ice did not occur). Windblown snow and, eventual snowfall, can affect 433 the deposition of what is present in the atmosphere and dilute the concentrations in surface snow. 434 However, it should be noted that although Br and Na surface snow concentrations decrease during 435 snowfall, the Br enrichment factor increased, suggesting that snowfall is able to scavenge gas phase 436 bromine present in the atmosphere in addition to the aerosol phase and deposit it onto the snow surface. 437 The experiment conducted in 2015 was characterized by full light conditions (Figure 2) similar to 438 those encountered in Antarctica (Spolaor et al., 2018). Both iodine and mercury in surface snow did 439 not show any diurnal cycle suggesting that a continuous recycling process may act on the snow surface. Iodine shows an almost constant concentration in the first part of the experiment with some 440 441 oscillations, connected to sodium variations, hence possible sea spray deposition, occurring in the 442 second part of the experiment. While GEM still shows a clear diurnal cycle, the mercury in the snow 443 does not (Figure 2). The Hg concentration in the surface snow has some variations that are not 444 connected with changes in incoming solar radiation. As for the 2016 experiment, during the last days 445 of the experiment, a snowfall occurred, causing a rapid enrichment of iodine and Hg in the surface 446 snow followed by a rapid decrease most likely due to photo induced re-emission processes.

447

448 **5.** Conclusions

449 Three high temporal resolution experiments have been carried out between 2015 and 2017. The three 450 experiments were aimed at studying the behaviour of iodine and mercury (and bromine only in 2016) 451 in snow during the different polar seasons. One was conducted during the polar night (2017), one 452 during the spring when the night and day cycle was present (2016) and one during late spring when 453 sunlight was present for 24 hours a day (2015). The results obtained show that these elements have 454 markedly different behaviours in surface snow that are mainly governed by sunlight and snow 455 deposition. For iodine, the highest snow concentrations were detected during the winter polar night 456 experiment (2017), while the lowest were during late spring (2015) when continuous solar radiation 457 reaches the snow surface. For mercury the highest concentrations were detected in the winter (2017) 458 and during late spring experiment (2015). 459 Our high temporal resolution experiments did not have the aim of characterizing the average surface 460 snow concentrations but were designed to understand the behaviour of these elements in surface snow 461

- 461 within specific seasonal changes that can occur. A clear diurnal cycle for mercury and iodine has 462 been determined when a day and night cycle was still present, however, for Br (and its enrichment
- 463 factor) no diurnal cycle has been detected showing it has a more conservative behaviour in snow.

Total mercury concentrations in surface snow peak during the night and decreases during the day, the opposite of its behaviour in the atmosphere. Iodine, acts similarly to mercury, peaking during the night and decreasing during the day. Considering our finding that up to 70% of the iodine present in the snow can be released to the atmosphere by photo-induced reactions. the active role of snow in providing gas phase iodine should be considered in studies of nucleation processes in the polar atmosphere.

470 This unique set of experiments has demonstrated for the first time the different behaviours of these 471 target elements under different irradiation conditions and demonstrate that snow is an active substrate. 472 The results obtained in Arctic snow could be translated to alpine regions and, more generally, 473 anywhere in the presence of snow. The diurnal cycle determined for mercury in the Arctic, if 474 demonstrated occurring in other places with high snow cover, could have an impact on water 475 resources, with higher concentrations of mercury deposited in the water basin at night. These 476 experiments have underlined some specific processes that can occur in surface snow, however 477 additional studies are planned to better understand the real impact of these processes on the overlying 478 atmosphere.

479

480

481 Author contribution

482 A.S., E.B., D.C. conceived the experiment; A.S., E.B., D.C., F.G., F.D. collected the samples; A.S.,

C.T., F.L., E.B. measured the samples; M.M., M.Mat. provide the meteorological and radiation data;
K.A.P. provide the mercury atmospheric data; A.S. ASL, WRLC, HA wrote the paper with inputs

- 485 from A.D., C.B., M.B.
- 486

487 Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 689443 via project iCUPE (Integrative and Comprehensive Understanding on Polar Environments). We thank the support received at the Dirigibile Italia Arctic Station from the National Research Council — Department of Earth System Science and Environmental Technologies (CNR-DSSTTA). We acknowledge the help of ELGA LabWater in providing the PURELAB Pulse and PURELAB Flex which produced the ultrapure water used in these experiments.

- 495
- 496
- 497
- 498
- 499
- 500

501 TABLES

502 Table 1. Concentration of iodine and its enrichment in surface snow (I_{snow}, I_{enr}), surface snow mercury 503 (Hg_{snow}), atmospheric mercury (Hg_{atm}) and surface snow sodium (Na_{snow}) during the different 504 experiments. Concentrations and standard deviation (in brackets) are calculated for the entire dataset; 505 when marked with (*) indicates that the concentration has been calculated without considering the 506 snow fall events.

5	n	7
Э	υ	/

	Isnow (ngg ⁻¹)	Na _{snow} (ngg ⁻¹)	Hg _{snow} (ngg ⁻¹)	Hg _{atm} (ngm ⁻³)	Ienr
2015 (day)	0.147 (0.162)	3442 (1180)	0.010 (0.006)	1.45(0.18)	10.7 (25.5)
2015*	0.090 (0.027)	3502 (1030)	0.009 (0.004)	1.46(0.19)	4.59 (1.43)
2016 (day\night)	0.167 (0.076)	2041 (777)	0.007 (0.008)	1.35 (0.13)	25.7 (46.4)
2016*	0.142 (0.057)	2317 (498)	0.007 (0.009)	1.40 (0.08)	10.2 (3.28)
2017 (night)	0.382 (0.175)	1518 (749)	0.009 (0.006)	1.26 (0.07)	44.3 (11.2)
2017*	0.433 (0.185)	1786 (770)	0.008 (0.004)	1.26 (0.06)	41.8 (8.40)

508

509

510 **Table 2.** Correlation coefficient between Iodine and sodium, bromine and sodium (only 2016) and 511 atmospheric and snow mercury. The correlation is calculated for the entire dataset. When the 512 correlation is marked with "*", this indicates that the correlation has been calculated without 513 considering the snow fall events. During the 2016 experiment the correlation between Hg_{snow} vs 514 Hg_{atm} * has been detrended to highlight the antiphase between Hg_{atm} and Hg_{snow} . The plus and minus 515 indicate if the association is positive or negative, which the values in parenthesis are the p-values.

516

	I vs Na	I vs Na*	Br vs Na	Br vs Na*	Hg _{snow} vs Hg _{atm}	Hg _{snow} vs Hg _{atm} *
2015	0.24 (0.052)+	0.63 (<0.01)+	NA	NA	0.18 (0.13)+	0.36 (0.011)+
2016	0.21 (0.041)+	0.62 (<0.01)+	0.91 (<0.01)+	0.74 (<0.01)+	0.12 (<0.01)+	0.43 (<0.01)+**
2017	0.90 (<0.01)+	0.89 (<0.01)+	NA	NA	0.22 (0.05)+	0.062 (0.63)+

**detrended 0.61 (0.056)-

517

_

518

519

520

521

522

524 FIGURES

525

- 526 Figure 1. Location of the experimental area in the proximity of Ny-Ålesund research village (black
- 527 rectangular - right panel) and the site of experiments (grey rectangular - left panel) behind the
- 528 "Gruvebadet" Aerosol Laboratory. Maps from toposvalbard.npolar.no.
- 529

550 Figure 2. The 2015 experiment: continuous light conditions. The hourly sodium (dark red) 551 concentrations are connected with iodine concentrations (light green for the raw data and green for 552 the three-point smoothing) except during the snowfall where the signals decouple. Iodine enrichment 553 (dark green) demonstrates the effect of snowfall on iodine concentration in surface snow. Gaseous 554 elemental mercury (blue) exhibit a diurnal pattern while total mercury in surface snow (grey line and 555 black line three-point smoothing) does not. Snowfall occurrence is highlighted by the pink rectangle. 556 Snow and air temperature (dark blue and red) show the diurnal cycle connected with incoming solar 557 radiation (ISR - solid yellow). Wind speed is not shown since it was almost constant during the entire 558 experiment. Dashed vertical lines indicate local midnight time.

560 Figure 3. The 2016 experiment took place when a day and night cycle was available (night periods 561 highlighted by grey rectangular). Iodine concentration (light green line for the raw data and green 562 light for the three-point smoothing) exhibited a diurnal variability (except during the snow fall event), 563 not detected for sodium (dark red line). The Iodine enrichment factor (dark green solid line) also 564 exhibited a diurnal cycle and highlights the effect of snowfall on iodine concentration in surface snow 565 (pink rectangle shows the snow fall event). De-trended GEM (blue line) and the surface snow de-566 trended total mercury concentrations (grey lines for raw data and black line for the three-point 567 smoothing) show opposing diurnal patterns. Additional information can be found in Figure 4. Air temperature does not show a pronounced diurnal cycle (purple line) connected with incoming solar 568 569 radiation (ISR - yellow solid). Wind speed is shown in grey. Dashed vertical lines indicate local 570 midnight time.

572 **Figure 4.** The lower panel shows the two series without any statistical treatment (Hg_{atm}=black; 573 Hg_{snow}=red). The regression line obtained for surface snow mercury is Hg_{snow}=-0.0004t + 16.136, 574 while for atmospheric mercury is GEM=-0.1127t + 4787.8. The middle panel shows the de-trended 575 Hg series in surface snow (in red/orange) and atmosphere (grey/black). The upper panel shows the

576 correlation between detrended Hg_{snow} and Hg_{atm} considering 6-hour average value.

Figure 5. The 2017 experiment was conducted during the polar night. Iodine concentration (green line) correlated with sodium concentration (dark red line). The Iodine enrichment factor (dark green solid line) did not exhibit any diurnal cycle and had the higher value compare the three experiments. Gaseous elemental mercury (blue line) and the surface snow total mercury concentrations did not exhibit any diurnal pattern (light grey line for raw data and black line for three-point smoothed). Snow and air temperature (dark blue and red) did not show any diurnal cycle. Wind speed is shown in grey. Dashed vertical lines indicate local midnight time.

Figure 6. Surface Bromine recycle during the 2016 experiment. The Bromine concentration (light blue line) does not show a diurnal variability and follows the sodium surface concentration (dark red line). Bromine enrichment factor (blue solid line calculated as $Br_{enr}=Br_{snow}/(Na_{snow} \times 0.006)$ where 0.006 is the Br\Na sea water mass ratio) do not show a diurnal cycle but it is evident that snowfall effects the bromine concentration and its enrichment factor during snowfall (pink rectangle). Air temperatures do not show a pronounced diurnal cycle (red line) connect with the incoming solar radiation (solid yellow). Dashed vertical lines indicate local midnight time.

594 References

- 595 Allan, J. D., Williams, P. I., Najera, J., Whitehead, J. D., Flynn, M. J., Taylor, J. W., Liu, D.,
- Darbyshire, E., Carpenter, L. J., Chance, R., Andrews, S. J., Hackenberg, S. C., and McFiggans, G.:
 Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA,
 Atmos. Chem. Phys., 15, 5599-5609, 2015.
- Annos. Chem. Phys., 15, 5599-5009, 2015.
 Angot, H., Dastoor, A., De Simone, F., Gårdfeldt, K., Gencarelli, C. N., Hedgecock, I. M., Langer,
- Angot, H., Dastool, A., De Siniole, F., Galdfeldt, K., Gendafell, C. N., Heigecock, I. M., Langel,
 S., Magand, O., Mastromonaco, M. N., Nordstrøm, C., Pfaffhuber, K. A., Pirrone, N., Ryjkov, A.,
- 601 Selin, N. E., Skov, H., Song, S., Sprovieri, F., Steffen, A., Toyota, K., Travnikov, O., Yang, X., and
- Dommergue, A.: Chemical cycling and deposition of atmospheric mercury in polar regions: review
 of recent measurements and comparison with models, Atmos. Chem. Phys., 16, 10735-10763,
- 604 2016a.
- Angot, H., Dion, I., Vogel, N., Legrand, M., Magand, O., and Dommergue, A.: Multi-year record of
 atmospheric mercury at Dumont d'Urville, East Antarctic coast: continental outflow and oceanic
 influences, Atmos. Chem. Phys., 16, 8265-8279, 2016b.
- Angot, H., Magand, O., Helmig, D., Ricaud, P., Quennehen, B., Gallée, H., Del Guasta, M., Sprovieri,
 F., Pirrone, N., Savarino, J., and Dommergue, A.: New insights into the atmospheric mercury
 cycling in central Antarctica and implications on a continental scale, Atmos. Chem. Phys., 16, 82498264, 2016c.
- Ardyna, M., Babin, M., Gosselin, M., Devred, E., Bélanger, S., Matsuoka, A., and Tremblay, J.-E.:
 Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll
 maximum on regional, seasonal, and annual primary production estimates, Biogeosciences, 10,
 4383–4404, 2013.
- Aspmo, K., Gauchard, P.-A., Steffen, A., Temme, C., Berg, T., Bahlmann, E., Banic, C., Dommergue,
 A., Ebinghaus, R., Ferrari, C., Pirrone, N., Sprovieri, F., and Wibetoe, G.: Measurements of
 atmospheric mercury species during an international study of mercury depletion events at NyÅlesund, Svalbard, spring 2003. How reproducible are our present methods?, Atmospheric
- 620 Environment, 39, 7607-7619, 2005.
- Baker, A. R.: Marine Aerosol Iodine Chemistry: The Importance of Soluble Organic Iodine,
 Environmental Chemistry, 2, 295-298, 2005.
- Björkman, M. P., Kühnel, R., Partridge, D. G., Roberts, T. J., Aas, W., Mazzola, M., Viola, A.,
 Hodson, A., Ström, J., and Isaksson, E.: Nitrate dry deposition in Svalbard, Tellus B; Vol 65 (2013),
 2013. 2013.
- Björkman, M. P., Vega, C. P., Kühnel, R., Spataro, F., Ianniello, A., Esposito, G., Kaiser, J., Marca,
 A., Hodson, A., Isaksson, E., and Roberts, T. J.: Nitrate postdeposition processes in Svalbard surface
 snow, Journal of Geophysical Research: Atmospheres, 119, 12,953-912,976, 2014.
- Brage B. Hansen, Ketil Isaksen, Rasmus E. Benestad, Jack Kohler, Åshild Ø Pedersen, Leif E Loe,
- Stephen J. Coulson, Jan Otto Larsen, and Varpe., Ø.: Warmer and wetter winters: characteristics
 and implications of an extreme weather event in the High Arctic, Environ. Res. Lett., 9, 2014.
- Brooks, S., Arimoto, R., Lindberg, S., and Southworth, G.: Antarctic polar plateau snow surface
 conversion of deposited oxidized mercury to gaseous elemental mercury with fractional long-term
 burial, Atmospheric Environment, 42, 2877-2884, 2008.
- Cuevas, C. A., Maffezzoli, N., Corella, J. P., Spolaor, A., Vallelonga, P., Kjær, H. A., Simonsen, M.,
 Winstrup, M., Vinther, B., Horvat, C., Fernandez, R. P., Kinnison, D., Lamarque, J.-F., Barbante,
 C., and Saiz-Lopez, A.: Rapid increase in atmospheric iodine levels in the North Atlantic since the
 mid-20th century, Nature Communications, 9, 1452, 2018.
- Dall'Osto, M., Beddows, D. C. S., Tunved, P., Krejci, R., Ström, J., Hansson, H. C., Yoon, Y. J.,
- Park, K.-T., Becagli, S., Udisti, R., Onasch, T., O'Dowd, C. D., Simó, R., and Harrison, R. M.:
 Arctic sea ice melt leads to atmospheric new particle formation, Scientific Reports, 7, 3318, 2017.
- 641 Arctic sea ice men reads to annospheric new particle formation, Scientific Reports, 7, 5518, 2017.
 642 Dommergue, A., Barret, M., Courteaud, J., Cristofanelli, P., Ferrari, C. P., and Gallée, H.: Dynamic
- recycling of gaseous elemental mercury in the boundary layer of the Antarctic Plateau, Atmos.
- 644 Chem. Phys., 12, 11027-11036, 2012.

- 645 Dommergue, A., Ferrari, C. P., Gauchard, P.-A., Boutron, C. F., Poissant, L., Pilote, M., Jitaru, P.,
- and Adams, F. C.: The fate of mercury species in a sub-arctic snowpack during snowmelt,
- 647 Geophysical Research Letters, 30, n/a-n/a, 2003a.
- 648 Dommergue, A., Ferrari, C. P., Poissant, L., Gauchard, P.-A., and Boutron, C. F.: Diurnal Cycles of
- Gaseous Mercury within the Snowpack at Kuujjuarapik/Whapmagoostui, Québec, Canada, Environ
 Sci Technol, 37, 3289-3297, 2003b.
- 651 Dommergue, A., Sprovieri, F., Pirrone, N., Ebinghaus, R., Brooks, S., Courteaud, J., and Ferrari, C.
- P.: Overview of mercury measurements in the Antarctic troposphere, Atmos. Chem. Phys., 10, 3309-3319, 2010.
- Douglas, T. A., Sturm, M., Simpson, W. R., Blum, J. D., Alvarez-Aviles, L., Keeler, G. J., Perovich,
 D. K., Biswas, A., and Johnson, K.: Influence of Snow and Ice Crystal Formation and Accumulation
 on Mercury Deposition to the Arctic, Environ Sci Technol, 42, 1542-1551, 2008.
- Durnford, D. and Dastoor, A.: The behavior of mercury in the cryosphere: A review of what we know
 from observations, Journal of Geophysical Research: Atmospheres, 116, n/a-n/a, 2011.
- 659 Ferrari, C. P., Gauchard, P.-A., Aspmo, K., Dommergue, A., Magand, O., Bahlmann, E., Nagorski,
- S., Temme, C., Ebinghaus, R., Steffen, A., Banic, C., Berg, T., Planchon, F., Barbante, C., Cescon,
 P., and Boutron, C. F.: Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-
- 662 Ålesund, Svalbard, Atmos Environ, 39, 7633-7645, 2005.
- Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E., and Skaugen, T. E.: Temperature and
 Precipitation Development at Svalbard 1900-2100, Advances in Meteorology, 2011, 14, 2011.
- Frieb, U., Deutschmann, T., Gilfedder, B. S., Weller, R., and Platt, U.: Iodine monoxide in theAntarctic snowpack, Atmos. Chem. Phys., 10, 2439-2456, 2010.
- Gabrieli, J., Carturan, L., Gabrielli, P., Kehrwald, N., Turetta, C., Cozzi, G., Spolaor, A., Dinale, R.,
 Staffler, H., Seppi, R., dalla Fontana, G., Thompson, L., and Barbante, C.: Impact of Po Valley
 emissions on the highest glacier of the Eastern European Alps, Atmos. Chem. Phys., 11, 8087-8102,
 2011.
- 671 Gálvez, Ó., Baeza-Romero, M. T., Sanz, M., and Saiz-Lopez, A.: Photolysis of frozen iodate salts as
- a source of active iodine in the polar environment, Atmos. Chem. Phys., 16, 12703-12713, 2016.
- Gilfedder, B. S., Petri, M., and Biester, H.: Iodine and bromine speciation in snow and the effect of
 orographically induced precipitation, Atmos Chem Phys, 7, 2661-2669, 2007.
- Han, Y., Huh, Y., Hong, S., Hur, S. D., and Motoyama, H.: Evidence of air-snow mercury exchange
 recorded in the snowpack at Dome Fuji, Antarctica, Geosciences Journal, 18, 105-113, 2014.
- Karner, F., Obleitner, F., Krismer, T., Kohler, J., and Greuell, W.: A decade of energy and mass
 balance investigations on the glacier Kongsvegen, Svalbard, Journal of Geophysical Research:
- 679 Atmospheres, 118, 3986-4000, 2013.
- Kim, K., Yabushita, A., Okumura, M., Saiz-Lopez, A., Cuevas, C. A., Blaszczak-Boxe, C. S., Min,
 D. W., Yoon, H.-I., and Choi, W.: Production of Molecular Iodine and Tri-iodide in the Frozen
 Solution of Iodide: Implication for Polar Atmosphere, Environ Sci Technol, 50, 1280-1287, 2016.
- Kohler, J. and Aanes, R.: Effect of Winter Snow and Ground-Icing on a Svalbard Reindeer Population:
- Results of a Simple Snowpack Model, Arctic, Antarctic, and Alpine Research, 36, 333-341, 2004.
- Kohler, J., James, T. D., Murray, T., Nuth, C., Brandt, O., Barrand, N. E., Aas, H. F., and Luckman,
 A.: Acceleration in thinning rate on western Svalbard glaciers, Geophys Res Lett, 34, 2007.
- Maturilli, M., Herber, A., and König-Langlo, G.: Climatology and time series of surface meteorology
 in Ny-Älesund, Svalbard, Earth Syst. Sci. Data, 5, 155-163, 2013.
- Mazzola, M., Tampieri, F., Viola, A. P., Lanconelli, C., and Choi, T.: Stable boundary layer vertical
 scales in the Arctic: observations and analyses at Ny-Ålesund, Svalbard, Q J Roy Meteor Soc, 142,
 1250-1258, 2016.
- Millero, F. J., Feistel, R., Wright, D. G., and McDougall, T. J.: The composition of Standard Seawater
 and the definition of the Reference-Composition Salinity Scale, Deep Sea Research Part I:
 Oceanographic Research Papers, 55, 50-72, 2008.
- Moroni, B., Becagli, S., Bolzacchini, E., Busetto, M., Cappelletti, D., Crocchianti, S., Ferrero, L.,
- 696 Frosini, D., Lanconelli, C., Lupi, A., Maturilli, M., Mazzola, M., Perrone, M. G., Sangiorgi, G.,
- 697 Traversi, R., Udisti, R., Viola, A., and Vitale, V.: Vertical Profiles and Chemical Properties of

Aerosol Particles upon Ny-Ålesund (Svalbard Islands), Advances in Meteorology, 2015, 11,
 2015.

- 700 Moroni, B., Cappelletti, D., Crocchianti, S., Becagli, S., Caiazzo, L., Traversi, R., Udisti, R., Mazzola,
- 701 M., Markowicz, K., Ritter, C., and Zielinski, T.: Morphochemical characteristics and mixing state
- of long range transported wildfire particles at Ny-Ålesund (Svalbard Islands), Atmos Environ, 156,
 135-145, 2017.
- Obrist, D., Agnan, Y., Jiskra, M., Olson, C. L., Colegrove, D. P., Hueber, J., Moore, C. W., Sonke, J.
 E., and Helmig, D.: Tundra uptake of atmospheric elemental mercury drives Arctic mercury
 pollution, Nature, 547, 201, 2017.
- Planchon, F. A. M., Gabrielli, P., Gauchard, P. A., Dommergue, A., Barbante, C., Cairns, W. R. L.,
 Cozzi, G., Nagorski, S. A., Ferrari, C. P., Boutron, C. F., Capodaglio, G., Cescon, P., Varga, A.,
 and Wolff, E. W.: Direct determination of mercury at the sub-picogram per gram level in polar snow
 and ice by ICP-SFMS, J Anal Atom Spectrom, 19, 823-830, 2004.
- Poulain, A. J., Amyot, M., Findlay, D., Telor, S., Barkay, T., and Hintelmann, H.: Biological and
 photochemical production of dissolved gaseous mercury in a boreal lake, Limnology and
 Oceanography, 49, 2265-2275, 2004.
- Raso, A. R. W., Custard, K. D., May, N. W., Tanner, D., Newburn, M. K., Walker, L., Moore, R. J.,
 Huey, L. G., Alexander, L., Shepson, P. B., and Pratt, K. A.: Active molecular iodine
- 716 photochemistry in the Arctic, Proceedings of the National Academy of Sciences, 114, 10053, 2017.
- Saiz-Lopez, A., Fernandez, R. P., Ordóñez, C., Kinnison, D. E., Gómez Martín, J. C., Lamarque, J.
 F., and Tilmes, S.: Iodine chemistry in the troposphere and its effect on ozone, Atmos. Chem. Phys.,
 14, 13119-13143, 2014.
- Saiz-Lopez, A., Mahajan, A. S., Salmon, R. A., Bauguitte, S. J. B., Jones, A. E., Roscoe, H. K., and
 Plane, J. M. C.: Boundary Layer Halogens in Coastal Antarctica, Science, 317, 348-351, 2007.
- Saiz-Lopez, A., Plane, J. M. C., Baker, A. R., Carpenter, L. J., von Glasow, R., Gomez Martin, J. C.,
 McFiggans, G., and Saunders, R. W.: Atmospheric Chemistry of Iodine, Chem. Rev., 112, 1773–
 1804, 2012.
- Saiz-Lopez, A., Plane, J. M. C., Cuevas, C. A., Mahajan, A. S., Lamarque, J. F., and Kinnison, D. E.:
 Nighttime atmospheric chemistry of iodine, Atmos. Chem. Phys., 16, 15593-15604, 2016.
- 727 Saiz-Lopez, A., Plane, J. M. C., McFiggans, G., Williams, P. I., Ball, S. M., Bitter, M., Jones, R. L.,
- Hongwei, C., and Hoffmann, T.: Modelling molecular iodine emissions in a coastal marine
 environment: the link to new particle formation, Atmospheric Chemestry and Physics, 6, 883-895,
 2006.
- 731 Saiz-Lopez, A., Sitkiewicz, S. P., Roca-Sanjuán, D., Oliva-Enrich, J. M., Dávalos, J. Z., Notario, R.,
- Jiskra, M., Xu, Y., Wang, F., Thackray, C. P., Sunderland, E. M., Jacob, D. J., Travnikov, O.,
 Cuevas, C. A., Acuña, A. U., Rivero, D., Plane, J. M. C., Kinnison, D. E., and Sonke, J. E.:
- Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition, Nature Communications, 9, 4796, 2018.
- Saiz-Lopez, A. and von Glasow, R.: Reactive halogen chemistry in the troposphere, Chemical Society
 Reviews, 41, 6448-6472, 2012.
- Sherman, L. S., Blum, J. D., Johnson, K. P., Keeler, G. J., Barres, J. A., and Douglas, T. A.: Massindependent fractionation of mercury isotopes in Arctic snow driven by sunlight, Nature Geosci, 3,
 173-177, 2010.
- 741 Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J.,
- 742 Carpenter, L. J., Friess, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H. W., Kaleschke, L.,
- 743 Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen,
- A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion,
 Atmos Chem Phys, 7, 4375-4418, 2007.
- 746 Sipilä, M., Sarnela, N., Jokinen, T., Henschel, H., Junninen, H., Kontkanen, J., Richters, S.,
- 747 Kangasluoma, J., Franchin, A., Peräkylä, O., Rissanen, M. P., Ehn, M., Vehkamäki, H., Kurten, T.,
- 748 Berndt, T., Petäjä, T., Worsnop, D., Ceburnis, D., Kerminen, V.-M., Kulmala, M., and O'Dowd, C.:
- Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3, Nature, 537,
 532, 2016.
 - , 552, 2010.

- Song, S., Angot, H., Selin, N. E., Gallée, H., Sprovieri, F., Pirrone, N., Helmig, D., Savarino, J.,
 Magand, O., and Dommergue, A.: Understanding mercury oxidation and air–snow exchange on the
- East Antarctic Plateau: a modeling study, Atmos. Chem. Phys., 18, 15825-15840, 2018.
- Spolaor, A., Angot, H., Roman, M., Dommergue, A., Scarchilli, C., Vardè, M., Del Guasta, M., Pedeli,
 X., Varin, C., Sprovieri, F., Magand, O., Legrand, M., Barbante, C., and Cairns, W. R. L.: Feedback
 mechanisms between snow and atmospheric mercury: Results and observations from field
 approximation on the Anterestic plottery. Chemosphere, 107, 2018
- campaigns on the Antarctic plateau, Chemosphere, 197, 306-317, 2018.
- Spolaor, A., Barbaro, E., Christille, J. M., Kirchgeorg, T., Giardi, F., Cappelletti, D., Turetta, C.,
 Bernagozzi, A., Björkman, M. P., Bertolini, E., and Barbante, C.: Evolution of the Svalbard annual
 snow layer during the melting phase, Rendiconti Lincei, doi: 10.1007/s12210-015-0500-8, 2016a.
 1-8, 2016a.

Spolaor, A., Gabrieli, J., Martma, T., Kohler, J., Björkman, M. B., Isaksson, E., Varin, C., Vallelonga,
P., Plane, J. M. C., and Barbante, C.: Sea ice dynamics influence halogen deposition to Svalbard,
The C. and Barbante, C.: Sea ice dynamics influence halogen deposition to Svalbard,

- 764 The Cryosphere, 7, 1645-1658, 2013a.
- 765 Spolaor, A., Opel, T., McConnell, J. R., Maselli, O. J., Spreen, G., Varin, C., Kirchgeorg, T., Fritzsche,

D., Saiz-Lopez, A., and Vallelonga, P.: Halogen-based reconstruction of Russian Arctic sea ice area
 from the Akademii Nauk ice core (Severnava Zemlya), The Cryosphere, 10, 245-256, 2016b.

767 Infoli die Akadelini Ivadk lee eole (Seveniaya Zeniaya), The Cryosphere, 10, 249-250, 20100.
 768 Spolaor, A., Vallelonga, P., Gabrieli, J., Martma, T., Björkman, M. P., Isaksson, E., Cozzi, G., Turetta,

769 C., Kjær, H. A., Curran, M. A. J., Moy, A. D., Schönhardt, A., Blechschmidt, A. M., Burrows, J. P.,

- Plane, J. M. C., and Barbante, C.: Seasonality of halogen deposition in polar snow and ice, Atmos.
 Chem. Phys., 14, 9613-9622, 2014.
- Spolaor, A., Vallelonga, P., Plane, J. M. C., Kehrwald, N., Gabrieli, J., Varin, C., Turetta, C., Cozzi,
 G., Kumar, R., Boutron, C., and Barbante, C.: Halogen species record Antarctic sea ice extent over
 glacial-interglacial periods, Atmos. Chem. Phys., 13, 6623-6635, 2013b.
- Spolaor, A., Vallelonga, P., Turetta, C., Maffezzoli, N., Cozzi, G., Gabrieli, J., Barbante, C., GotoAzuma, K., Saiz-Lopez, A., Cuevas, C. A., and Dahl-Jensen, D.: Canadian Arctic sea ice
 reconstructed from bromine in the Greenland NEEM ice core, Scientific Reports, 6, 33925, 2016c.

Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., Bottenheim, J., Brooks, S.,
 Cobbett, F., Dastoor, A., Dommergue, A., Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M.

- Cobbett, F., Dastoor, A., Dommergue, A., Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M.
 E., Lean, D., Poulain, A. J., Scherz, C., Skov, H., Sommar, J., and Temme, C.: A synthesis of
 atmospheric mercury depletion event chemistry in the atmosphere and snow, Atmos. Chem. Phys.,
 8, 1445-1482, 2008.
- Steffen, A., Schroeder, W., Bottenheim, J., Narayan, J., and Fuentes, J. D.: Atmospheric mercury
 concentrations: measurements and profiles near snow and ice surfaces in the Canadian Arctic during
 Alert 2000, Atmospheric Environment, 36, 2653-2661, 2002.
- 786 Udisti, R., Bazzano, A., Becagli, S., Bolzacchini, E., Caiazzo, L., Cappelletti, D., Ferrero, L., Frosini,
- 787 D., Giardi, F., Grotti, M., Lupi, A., Malandrino, M., Mazzola, M., Moroni, B., Severi, M., Traversi,
- R., Viola, A., and Vitale, V.: Sulfate source apportionment in the Ny-Ålesund (Svalbard Islands)
 Arctic aerosol, Rendiconti Lincei, 27, 85-94, 2016.
- Vecchiato, M., Barbaro, E., Spolaor, A., Burgay, F., Barbante, C., Piazza, R., and Gambaro, A.:
 Fragrances and PAHs in snow and seawater of Ny-Ålesund (Svalbard): Local and long-range contamination, Environmental Pollution, 242, 1740-1747, 2018.
- Wang, J., Zhang, L., and Xie, Z.: Total gaseous mercury along a transect from coastal to central
 Antarctic: Spatial and diurnal variations, Journal of Hazardous Materials, 317, 362-372, 2016.
- 795 Westermann, S., Boike, J., Langer, M., Schuler, T. V., and Etzelmüller, B.: Modeling the impact of 796 wintertime rain events on the thermal regime of permafrost, The Cryosphere, 5, 945-959, 2011.
- 797 Zangrando, R., Barbaro, E., Zennaro, P., Rossi, S., Kehrwald, N. M., Gabrieli, J., Barbante, C., and
- 798 Gambaro, A.: Molecular Markers of Biomass Burning in Arctic Aerosols, Environ Sci Technol, 47,
- 799 8565-8574, 2013.