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Abstract 

The modeling study presented here aims to estimate how uncertainties in global hydroxyl radical (OH) 

distributions, variability, and trends may contribute to resolve discrepancies between simulated and 

observed methane (CH4) changes since 2000. A multi-model ensemble of 14 OH fields were analysed 50 

and were aggregated into 64 scenarios to force the offline atmospheric chemistry transport model LMDz 

with a standard CH4 emission scenario over the period 2000-2016. The multi-model simulated global 

volume-weighted tropospheric mean OH concentration([OH]) averaged over 2000-2010 ranges between 

8.7×105 and 12.8×105 molec cm-3. The inter-model differences in tropospheric OH burden and vertical 

distributions are mainly determined by the differences in the nitrogen oxide (NO) distributions, while the 55 

spatial discrepancies between OH fields are mostly due to differences in natural emissions and VOC 

chemistry. From 2000 to 2010, most simulated OH fields show an increase of 0.1-0.3×105 molec cm-3 in 

the tropospheric mean [OH], with year-to-year variations much smaller than during the historical period 

1960-2000. Once ingested into the LMDz model, these OH changes translated into a 5 to 15 ppbv 

reduction in CH4 mixing ratio in 2010, which represent 7%-20% of the model simulated CH4 increase 60 

due to surface emissions. Between 2010 and 2016, the ensemble of simulations showed that OH changes 

could lead to a CH4 mixing ratio uncertainty of >±30 ppbv. Over the full 2000-2016 time period, using a 

common state-of-the-art but non-optimized emission scenario, the impact of [OH] changes tested here 

can explain up to 54% of the gap between model simulations and observations. This result emphasizes 

the importance of better representing OH abundance and variations in CH4 forward simulations and 65 

emission optimizations performed by atmospheric inversions.  
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1 Introduction 

The hydroxyl radical (OH) is the main oxidizing agent in the troposphere (Levy, 1971). OH is produced 70 

by the reaction of water vapor with excited oxygen atoms (O(1D)), produced by ozone (O3) photolysis (λ

<340nm). In the troposphere, OH is rapidly removed by reactions with carbon monoxide (CO), methane 

(CH4) and non-methane volatile organic compounds (NMVOCs) to generate hydroperoxyl radical (HO2) 

or organic peroxy radicals (RO2), resulting in a short lifetime of a few seconds (Logan et al., 1981; 

Lelieveld et al., 2004). HO2 and RO2 can further react with nitrogen oxide (NO) to regenerate OH (Crutzen, 75 

1973; Zimmerman et al., 1987). At high latitudes, such a secondary production plays an important role, 

because the OH primary production is limited by the supply of O(1D) and water vapor (Spivakovsky et al., 

2000). The abundance of OH reflects the combined effects of atmospheric composition (tropospheric O3, 

and NO, CO, CH4, and NMVOCs) and of meteorological factors such as humidity, UV radiation, and 

temperature. 80 

 

Due to its short lifetime, global [OH] is difficult to estimate from direct measurements. Current 

understanding on global [OH] has been obtained either from inversion of 1-1-1trichloroethane (methyl 

chloroform, MCF) (Prinn et al., 2005; Bousquet et al., 2005; Montzka et al., 2011; Rigby et al., 2017; 

Turner et al., 2017), or using atmospheric chemistry models (Naik et al., 2013; Voulgarakis et al., 2013, 85 

Lelieveld et al., 2016). The former approach relies on the fact that OH is the main sink of MCF and on 

the hypotheses that emissions and concentrations of MCF are well known and well measured, respectively. 

The latter approach relies on chemistry-transport modeling with chemistry schemes of varying complexity. 

The global mass-weighted tropospheric mean [OH] in the 2000s calculated by atmospheric chemistry 

models was found to be about 11.5×105 molec cm-3, with an inter-model dispersion of ±15% (Naik et al., 90 

2013; Voulgarakis et al., 2013). Atmospheric chemistry models usually calculate higher [OH] over the 

Northern hemisphere than the Southern hemisphere (N/S ratio>1) (Naik et al., 2013) whereas MCF and 

14CO observations indicate a N/S ratio slightly smaller than 1 (Brenninkmeijer et al., 1992; Bousquet et 
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al., 2005; Patra et al., 2014). 

 95 

OH determines the lifetime of most pollutants and non-CO2 greenhouse gases including CH4, the second 

most important anthropogenic greenhouse gas after carbon dioxide (CO2) (Ciais et al., 2013). About 90% 

of tropospheric CH4 is removed by reacting with OH (Ehhalt et al., 1974; Kirschke et al., 2013; Saunois 

et al., 2016). The tropospheric CH4 chemical lifetime against OH oxidation (global annual mean 

atmospheric CH4 burden divided by annual CH4 tropospheric loss by OH) calculated by the models that 100 

participated in the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP) is 

9.3±1.6 years, and the CH4 total lifetime including all sink processes is 8.3±0.8 years (Naik et al., 2013; 

Voulgarakis et al., 2013), smaller than that of 9.1±0.9 years lifetime constrained by observations (Prather 

et al., 2012). 

 105 

The tropospheric CH4 burden has more than doubled compared to the pre-industrial era due to 

anthropogenic activities and climates change, resulting in about 0.62 W m-2 additional radiative forcing 

(Etminan et al., 2016). The global mean CH4 growth rate decreased to near zero in the early 2000s but 

resumed increasing at ~5ppbv yr-1 since 2006 and reached more than 10 ppbv yr-1 in 2014 and in 2018 

(Ed Dlugokencky, NOAA/ESRL, 2019). The growth rate of CH4 is determined by the imbalance of its 110 

sources, primarily from anthropogenic activities (agriculture, waste, fossil fuel production and usage, and 

biomass burning) but also from natural emissions (mainly wetland and other inland waters), and sinks 

(OH oxidation, other chemical reactions with chlorine and oxygen radicals, and soil uptake). The precise 

reasons for the stagnation and renewed CH4 growths still remains unclear (e.g. Rigby et al 2017; Saunois 

et al., 2017; Nisbet et al., 2019; Turner et al., 2019).  115 

 

Several studies have linked such CH4 variations to inter-annual variations and trend of OH. Based on 

MCF inversions, McNorton et al. (2016) concluded that an increase in [OH] significantly contributed to 
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the stable atmospheric CH4 before 2007; Rigby et al. (2008) found that a decrease of 4±14% in [OH] 

could partly explain the CH4 growth between 2006 and 2007. Bousquet et al. (2011) found a smaller 120 

decrease in [OH] (<1% over the two years) and attributed the increase in CH4 mostly to enhanced 

emissions over tropical regions; Montzka et al. (2011) also calculated a small inter-annual variation of 

2.3±1.5% in [OH] during 1998 to 2007. More recently, based on multi-species box model inversions, 

Rigby et al. (2017) and Turner et al. (2017) inferred a decrease of 8±11% and 7% in [OH] during 2004-

2014 and 2003-2016 respectively. Both of these studies suggested that such a decrease in [OH] is 125 

equivalent to an increase of more than 20 Tg yr-1 in CH4 emissions, and therefore could significantly 

contribute to explain the post-2007 CH4 atmospheric growth, although a solution with constant OH cannot 

be discarded. Meanwhile, not only the OH trend calculated by atmospheric chemistry models cannot reach 

consensus, but it can also be different from the OH trend inferred by top-down approaches from 

observations. Indeed, Dalsøren et al. (2016) simulated ~ 8% increase in OH during 1970 to 2012, while 130 

other models mostly calculated only a small increase of [OH] (decrease in CH4 lifetime) or no trend in 

[OH] from 1980s to 2000s (e.g. Voulgarakis et al., 2013; Nicely et al., 2018). Top-down observation-

constrained approaches (e.g. Rigby et al., 2017) tend to find flat to decreasing OH trend over this period 

but with larger year-to-year variations than models. The discrepancy between individual process-based 

models and MCF-proxy approaches, and the uncertainties, limit our ability to be conclusive on the role 135 

of [OH] changes to explain the CH4 changes over the past decades.  

 

To better understand OH distributions, trends, and influences on CH4 since 2000, we have performed an 

inter-model comparison of 14 OH fields, including 11 derived from chemistry transport and chemistry-

climate models that took part in the phase 1 of the Chemistry-Climate Model Initiative (CCMI) (Hegglin 140 

and Lamarque, 2015; Morgenstern et al., 2017), 2 from different configurations of the LSCE atmospheric 

chemistry transport model LMDz-INCA (Hauglustaine et al., 2004;Szopa et al., 2013), and 1 from the 

TRANSCOM 2011 inter-comparison exercise (Patra et al., 2011). We then conducted an ensemble of CH4 
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simulations with different OH fields using the LMDz chemistry-transport model to estimate a range for 

the contribution of changes in [OH] to the atmospheric CH4 mixing ratio changes since 2000, and to relate 145 

this contribution to spatio-temporal characteristics of the different OH fields. Year-to-year integrations of 

CCMI and INCA models driven by time-varying emissions and meteorology facilitate the investigation 

of interannual variability in OH, which was not possible using the ACCMIP time-slice simulations. In the 

following, our analysis first provides a brief description of the OH fields used in this study and the LMDz 

offline model (section 2). Section 3 compares the OH fields, analyses the factors contributing to inter-150 

model differences and presents their inter-annual variability. Section 4 presents and discusses the impact 

of the different OH fields on the global CH4 burden and growth rates simulated by LMDz. Section 5 

summarizes the results and conclusion. 

 

2 Method 155 

 

2.1 OH fields  

The CCMI project aims to conduct a detailed evaluation of atmospheric chemistry models in order to 

assess uncertainties in the models’ projections of various climate-related topics such as tropospheric 

composition (Hegglin and Lamarque, 2015; Morgenstern et al., 2017). The CCMI OH fields used in our 160 

study are obtained from 10 different models and 3 CCMI reference experiments: REF-C1 (covering the 

time period 1960-2010), REF-C2 (covering 1960-2100), and REF-C1SD (1980-2010). The REF-C1 

experiment is driven by state-of-the-art historical forcings and sea surface temperatures (sst) and sea ice 

concentrations (sic) based on observations, while the REF-C2 experiment is using either coupled ocean 

and sea ice modules or prescribes sst and sic obtained from another climate model. Since the REF-C1 165 

experiment is supposed to be more realistic regarding sea surface conditions, our analysis focused on OH 

fields from the REF-C1 experiment before 2010 and only tested the influences of OH on CH4 simulations 

after 2010 by applying the inter-annual variability from the REF-C2 experiment. The models of REF-



8 
 

C1SD experiment are nudged towards reanalysis datasets. The REF-C1SD experiment is not analyzed in 

the main text since it has been conducted by only part of the models and covers a shorter time period. A 170 

comparison of spatial and vertical distributions of OH fields from REF-C1 experiment with that from 

REF-C1SD reveals only small latitudinal differences (<10%, see Section S1). Detailed descriptions of 

CCMI simulations can be found in Morgenstern et al. (2017). 

 

In this study, we used only the CCMI models that include detailed tropospheric ozone chemistry as listed 175 

in Table 1. Note that EMAC offers fields at two different model resolutions. The level of detail in chemical 

mechanism, in particular with respect to included NMVOCs, varies among the models. For example, 

CMAM does not include any NMVOC species, but added 250 Tg CO emissions to account for CO 

production from isoprene oxidation. UMUKCA-UCAM only include HCHO (formaldehyde) and 

SOCOL3 only include HCHO and C5H8 (isoprene). Other models include multiple primary NMVOC 180 

species and more complex VOC chemistry.  

 

The anthropogenic emissions recommended for the two CCMI reference simulations are the MACCity 

inventory (Granier et al., 2011) for 1960-2000. After 2000, the REF-C1 experiment continued to use the 

MACCity inventory (which follow the RCP8.5 inventory after 2000), while the REF-C2 used the RCP6.0 185 

inventory (Masui et al., 2011). The CMAM model did not follow this procedure and used the ACCMIP 

historical database of emissions (Lamarque et al., 2010) until 2000 followed by RCP8.5 emissions (Riahi 

et al., 2011) instead. Biomass burning emissions used in REF-C1 are RETRO inventory (Schultz et al. 

2008) before 1996 and GFEDv3 inventory (van der Werf et al., 2010) for 1997-2010 with interannual 

variability. CCMI model simulations also include natural emissions from lightning, soil and biogenic 190 

sources. Lightning NOx emissions are calculated based on meteorological data such as cloud top height 

(Price and Rind, 1994; Grewe et al., 2001) and updraft mass flux (Allen and Pickering, 2002). Soil NOx 

emissions are calculated interactively in EMAC and GEOSCCM using the scheme described by Yienger 
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and Levy (1995), but are prescribed in other models. Biogenic NMVOC emissions in CESM and 

GEOSCCM are calculated based on the distribution of plant functional types and meteorology conditions 195 

with MEGAN, whereas the other models apply prescribed biogenic NMVOC emissions.  

 

The CCMI models do not represent CH4 emissions explicitly but prescribe CH4 surface mixing ratios vary 

in time according to the RCP6.0 scenario (global mean of ~1750ppbv averaged over 2000-2010) with 

different spatial distributions: GEOSCCM, CESM and EMAC models consider the full latitudinal 200 

gradient and prescribe CH4 surface mixing ratios about 50 ppbv higher over the Northern hemisphere 

than over the Southern hemisphere; while CMAM, MRI-ESM1r1, and SOCOL3 use global uniform 

values. Photolysis rates are calculated either following online schemes such as FAST-JX (Neu et al., 2007; 

Telford et al., 2013) by GEOSCCM, HadGEM3-EA, UMUKA-UCAM, JVAL (Sander et al., 2014) by 

EMAC, or based on look-up tables with online cloud corrections by the rest of the models used in this 205 

study. Kinetics and photolysis data are mainly from Sander et al. (2011) with a few exceptions. More 

information on model characteristics can be found in Morgenstern et al. (2017) and references listed in 

Table 1. 

 

Additionally to CCMI OH fields, we also included 2 OH fields simulated by the Interaction with 210 

Chemistry and Aerosols (INCA) coupled to the general circulation model of the Laboratoire de 

Meteorologie Dynamique (LMD), LMDz (Sadourny and Laval, 1984; Hourdin and Armengaud, 1999; 

Hourdin et al., 2006; Hauglustaine et al., 2004). The two INCA simulations are driven by different 

versions of the LMDz GCM (INCA NMHC-AER-S covering time period 2000-2010 (Terrenoire et al., 

2019), and INCA NMHC covering time period 2000-2009 (Szopa et al., 2013)), which provide different 215 

water vapor fields, and include different chemistry and emissions. The INCA NMHC-AER-S used the 

latest version of INCA model including both gas phase (NMHC) and aerosol (AER) chemistry in the 

troposphere and the stratosphere (S) (Terrenoire et al., 2019), while INCA NMHC used a former version 
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that only includes tropospheric gas-phase chemistry (Szopa et al., 2013). Anthropogenic emissions from 

Short-Lived Pollutants (ECLIPSE) inventory (Stohl et al., 2015) for 2005 and RCP 85 emission inventory 220 

(Riahi et al., 2011)) for 2010 are applied to every year of INCA NMHC-AER-S and INCA NMHC 

simulations, respectively. 

 

Finally, we included in this study the OH field used in TransCom simulations, which results from a 

combination of the semi-empirical tropospheric 3-dimensional OH field from Spivakovsky et al. (2000) 225 

and a 2-dimensional simulated stratospheric OH for year 2000. The tropospheric OH was calculated using 

prescribed chemical species (O3, nitrogen oxides, and CO) as well as meteorological fields (temperature, 

humidity, and cloud optical depth) to fit the observations. The original tropospheric [OH] has been 

reduced by 8% to match CH3CCl3 observations (Patra et al., 2011). The TransCom OH field is only 

climatological (one year of monthly fields). 230 

 

In total, we compared 14 OH fields: 11 from CCMI, 2 from the online LMDz-INCA model and 1 from 

TransCom. We analyzed spatial distributions and annual variations of OH fields by calculating volume-

weighted tropospheric mean [OH] with tropopause pressure using WMO tropopause definition on 3D 

temperature for each model (World Meteorological Organization, 1957). Since employing different 235 

weightings can results in large differences in mean [OH] (Lawrence et al., 2001), we also calculated dry 

air mass-weighted tropospheric mean [OH] to better compare with previous studies. 

 

2.2 LMDz model simulations 

2.2.1 Model description and setup 240 

We have run the offline version LMDz5B of the LMDz model (Locatelli et al., 2015) at a horizontal 

resolution of 3.75°×1.85° with 39 vertical layers up to 3 hPa to assess the impact of OH on tropospheric 

CH4. All monthly mean OH fields have been interpolated to the LMDz model grid. The transport of 
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atmospheric tracers is driven by prescribed air mass fluxes provided by the general circulation model 

LMDz with horizontal wind fields nudged to ERA-Interim re-analysis meteorology data produced by the 245 

European Center for Medium-Range Weather Forecasts (Dee et al, 2011). The vertical transport is 

parameterized according to updates of the Emanuel (1991) scheme for convection and of the Louis (1979) 

scheme for boundary layer mixing (Hourdin et al., 2016; Locatelli et al., 2015). Chemistry module applied 

here is the simplified chemistry module SACS (Pison et al., 2009). Chemical sinks of CH4 are calculated 

using prescribed three-dimensional OH and O(1D) fields, and variation in CH4 cannot feedback on OH. 250 

No chlorine-related sink is simulated in this version of the model. To assess the influences of OH only, 

all LMDz simulations used the same O(1D) fields generated by INCA model simulations. The reaction rate 

coefficient (k) for CH4 destruction by OH in the model is computed depending on temperature following 

Sander et al. (2011): 

                        k = 2.45 × 10−12𝑒−1775×(
1

𝑇
)
                  (1) 255 

The LMDz model has been applied in various studies focusing on long-lived gases such as CH4, CO2 and 

MCF (Bousquet et al., 2005; Pison et al., 2009; Lin et al., 2018). It has also been used in model inter-

comparison projects such as the TransCom experiment (Patra et al., 2011) with the simplified chemistry 

module SACS (Pison et al., 2009) and CCMI (Morgenstern et al., 2017) but only with the stratospheric 

chemistry model PEPROBUS (Jourdain et al., 2008). 260 

 

The CH4 emissions input to LMDz simulations are provided by the Global Carbon Project (GCP) methane 

and include anthropogenic and biofuel emissions from EDGARv4.3.2 (Janssens-Maenhout et al., 2017), 

the mean wetland emissions from Poulter et al., (2017), fire emissions from the Global Fire Emissions 

Database Version 4.1 (GFED4) (Randerson et al., 2018), termite emissions as described by Saunois et al. 265 

(2016), geological emissions based on the spatial distribution of Etiope (2015), ocean emissions from 

Lambert and Schmidt (1993) and soil uptake from Ridgwell et al. (1999). EDGARv4.3.2 data, available 
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until 2012, were extrapolated from 2013 to 2016 using economical statistics according to the methodology 

described by Saunois et al., (2016). Anthropogenic and fire emissions vary from 2000 to 2016 while 

natural emissions are applied as a climatology. 270 

 

The spatial distributions and annual variations of the CH4 emissions during the study period are shown in 

Fig.1. CH4 emissions range from 10 to 40 kg ha-1 yr1 over most natural ecosystems and can exceed 100 

kg ha-1 yr-1 over wetlands in Canada, South America, and Central Africa, as well as over densely 

populated regions such as South and East Asia. Global net CH4 emissions (soil uptake included) increased 275 

by 15% from 482 Tg yr-1 in 2000 to 552 Tg yr-1 in 2016. Of this 70 Tg yr-1 increase, 60 Tg yr-1 (85%) are 

emissions from the Northern hemisphere, mainly contributed by livestock (18 Tg yr-1, 25%), oil and gas 

(16 Tg yr-1, 23%), coal burning (17 Tg yr-1, 24%) and waste (13Tg yr-1, 18%). The three emission peaks 

in 2002, 2006 and 2015 are driven by biomass burning. This CH4 emission scenario is state-of-the-art but 

has not been optimized for the simulated CH4 mixing ratios to fit the observations.    280 

 

2.2.2 Model simulations 

Two sets of experiments (steady-state and transient simulations) have been performed to examine the 

impacts of the input OH fields on the global CH4 burden as well as the CH4 spatial distribution and annual 

variation. These tests excluded the OH fields from CESM1-CAM4chem and EMAC-L47MA, since they 285 

are similar to those of CESM1-WACCM and EMAC-L90MA, respectively. We also discarded the OH 

fields from HadGEM3-ES and UMUKCA-UCAM because output from these two models has been 

supplied on too coarse vertical pressure levels. Finally, 10 different OH fields (seven from CCMI, two 

from LMDz-INCA and one from Transcom) were used in the two sets of simulations. 

 290 

Initially, for each OH field described in Sect. 3, we ran 30 consecutive years of LMDz simulations (with 

recycled same emissions, sinks, and meteorology of the year 2000) to allow the simulation to reach a 
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steady-state (CH4 has an approximate lifetime of 9 years in the atmosphere). This step aims to examine 

the impact of the magnitude and distribution of OH on the global CH4 burden. 

 295 

Secondly, we performed transient simulations starting from the year 2000, which are forced by time-

varying OH fields as well as time-varying emissions and meteorology fields. In order to compare the 

impacts of the different OH fields on realistic CH4 mixing ratios, for each simulation (except the one 

using the OH fields from INCA NMHC), the OH field has been scaled to get the same LMDz simulated 

CH4 loss as the one calculated by INCA NMHC in 2000, as INCA is the OH field consistently obtained 300 

using the LMDz transport. Then a series of LMDz model simulations is conducted to investigate the 

impact of the various OH fields on CH4 growth rates between 2000 and 2016 as summarized in Table 2.  

 

The standard simulations (Run_standard in Table 2) using the 10 different OH fields (7 are from CCMI 

REF-C1), included annual variations and were performed from 2000 to 2010. Since REF-C1 experiments 305 

are only available up to 2010, the influence of OH on CH4 mixing ratios after 2010 have been tested based 

on alternative scenarios. First, for CCMI simulations, we tested a scenario that takes into account the 

annual variability from the REF-C2 experiments (Run_REF-C2 in Table 2). Previous ACCMIP model 

experiments showed slightly decreasing or increasing [OH] from 2000 to 2030 according to the largest or 

lowest radiative forcing pathways (RCP8.5 or RCP2.6), respectively (Voulgarakis et al., 2013). Top-down 310 

approaches suggested that global OH decreased by 0.5-1% annually from 2003 to 2016 (Rigby et al., 

2017; Turner et al., 2017). In order to assess the recent change in [OH], we tested two additional scenarios 

between 2010 and 2016: one with [OH] increase of +0.1% yr-1 (Run_OH_inc) according to the slightly 

changing of OH calculated by ACCMIP models and one with [OH] decrease of -1% yr-1 (Run_OH_dec) 

according to obviously decreasing of OH calculated by top-down approaches constrained by observations. 315 

To assess influences from OH alone, we also conducted additional simulations of the period 2000 to 2016 

with annually repeated prescribed [OH] equal to the year 2000 (Run_fix_OH) for each OH field. The 
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differences between these constant OH simulations and the corresponding time-varying OH simulations 

indicate the impact of OH inter-annual variations and trends on atmospheric CH4 changes. In addition, 

we conducted two simulations during 2000-2010 driven by emission inventories fixed to the year 2000 320 

to test the influences of the emission bias on our results. The two simulations use OH fields simulated by 

CESM-WACCM, one with inter-annual variations of OH (Run_fix_emis) and the other one with OH field 

fixed to 2000 (Run_fix_emis_OH).  

 

3 Analysis of OH fields 325 

 

3.1 Spatial distributions of tropospheric OH 

Fig. 2 shows the spatial distributions of volume-weighted tropospheric mean [OH] averaged from 2000 

to 2010. Based on the 14 OH fields we have assembled, the global mean volume-weighted tropospheric 

[OH] vary from 8.7×105 to 12.8×105 molec cm-3. SOCOL, which overestimation of [OH] have been 330 

reported by Staehelin et al. (2017), simulated the highest [OH]. To better compare with previous studies, 

we also calculated dry air mass-weighted tropospheric mean [OH] in table 4, which vary from 9.4×105 to 

14.4×105 molec cm-3 and multi-model mean value of 11.3±1.3×105 molec cm-3 . The tropospheric 

chemical CH4 lifetime of the models that provided CH4 chemical loss data are 8.7±1.1 yr. Both the multi-

model mean and the (large) range of [OH] as well as tropospheric CH4 chemical lifetime are consistent 335 

with previous multi-model results given by the ACCMIP project (Naik et al., 2013; Voulgarakis et al., 

2013), as well as with inversions based on MCF observations (Bousquet et al., 2005; Rigby et al., 2017). 

The model spread remains large as ~50% of the minimum value, as noted in previous studies (e.g. Naik 

et al., 2013).  

 340 

Table 3 summarizes their inter-hemispheric ratios of tropospheric OH and mean values over four 

latitudinal bands. The inter-hemispheric ratios (N/S ratios) of CCMI and INCA OH fields are within the 

range of 1.2-1.5, similar to those from the ACCMIP project (Naik et al., 2013). In contrast, the TransCom 
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OH field has a ratio of 1.0, which is more consistent with that of MCF and 14C constrained OH 

(Brenninkmeijer et al., 1992; Krol and Lelieveld, 2003; Bousquet et al., 2005). However, as discussed by 345 

Spivakovsky et al. (2000), the TransCom OH field may overestimate Southern Extra-tropics OH by ~25%. 

The lower N/S ratios inferred from MCF observations are mainly due to high [OH] over the Southern 

Tropics (35% higher than Northern Tropics) (Bousquet et al., 2005). In contrast, process-based simulated 

OH is 10-26% more abundant over the Northern Tropics than over the Southern Tropics, and 35% to > 

90% higher over 30°N-90°N than 30°S-90°S in the CCMI models. Previous studies have attributed the 350 

inconsistency between the simulated and the observed OH N/S ratios to a model overestimation of O3 and 

underestimation of CO over the Northern Hemisphere (Naik et al., 2013; Young et al., 2013; Strode et al., 

2015), which also have been reported for CCMI models (Strode et al., 2016; Revell et al., 2018), as well 

as to a lack of OH recycling due to the presence of VOCs over rainforest (mainly located in the Southern 

Tropics) (Lelieveld et al., 2008; Archibald et al., 2011). 355 

 

We further assessed the simulated OH spread by comparing the detailed spatial distributions of OH fields 

in Fig. 2 and Fig.S2. Nearly all CCMI models and two versions of the INCA model simulated high [OH] 

over eastern North American and South and East Asia, which is related to higher tropospheric O3 

concentrations (Cooper et al., 2014; Lu et al., 2018) and NOx emissions from human activities (Lamarque 360 

et al., 2010; Miyazaki et al., 2012). High [OH] over these emission hotspots dominate the aforementioned 

simulated large N/S ratio. Some models also simulated high OH values over the African savanna plains 

(MOCAGE and INCA excluded), regions with intense biomass burning (van der Werf et al., 2006) and 

soil NOx emissions (Yienger and Levy 1995; Vinken et al., 2014). The O3 concentrations used to generate 

the TransCom OH field were larger in the Southern Tropics than in the Northern latitudes (Spivakovsky 365 

et al., 2000), in contrast to recent observations (Cooper et al., 2014). Therefore, TransCom shows the 

highest [OH] over the Southern Tropics during biomass burning seasons (Spivakovsky et al., 2000) and 

thus a lower N/S ratio.  
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Despite consistency on high OH values over regions influenced by human activities and biomass burning, 370 

models show the largest discrepancies over some natural ecosystem such as tropical rainforests (Fig.S2).  

For example, INCA, CESM, HadGEM3-Es, MRI-ESM1r1, MOCAGE and GEOSCCM simulated overall 

low [OH] (4×105-14×105 molec cm-3) over tropical rainforests, despite differences in details, while 

EMAC, CMAM, SOCOL3 and UMUKCA-UCAM simulated overall high [OH] (16×105- more than 

25×105 molec cm-3). Tropospheric mean [OH] over the Amazon forest show the largest variations of >5.0 375 

×105 molec cm-3, count for more than 50% of the multi-model mean (Fig.S2). In a more diffuse way, high 

latitudes of the northern hemisphere also contribute to model spread (25-35% of the model mean, Fig. 

S2). Besides these, inter-model differences also exist over the open ocean (up to 25% of the model mean, 

Fig.S2). Most simulated OH fields show higher concentrations over continents or coastal areas due to 

higher precursor emissions, while MRI-ESM1r1, EMAC, and GEOSCCM also simulated high values 380 

(>15×105 molec cm-3) over the open ocean. Factors contributing to these inter-model differences are 

further discussed in Sect. 3.3 

 

3.2 Vertical distributions  

Figure 3 shows the vertical distribution of OH fields and Table 4 provides the volume-weighted mean 385 

[OH] averaged over the troposphere and over three pressure latitudinal intervals representing the planetary 

boundary layer, the mid-troposphere, and the upper troposphere (surface-750, 750-500, and 500-250 hPa, 

respectively). At the global scale, the mean tropospheric concentration of TransCom OH increases by a 

factor of nearly two from the surface (7×105 molec cm-3) to 600hPa (13×105 molec cm-3) and then 

decreases rapidly with altitude (7×105 molec cm-3 at 250hPa). UMUKA-UCAM, HadGEM3-ES, CMAM, 390 

MOCAGE, and SOCLO3 on the other hand all show a continuous decrease of [OH] with altitude from 

the surface to the upper troposphere (e.g. the global mean concentrations of MOCAGE OH decreases 

from 23.6 ×105 molec cm-3 at the surface to 6.4×105 molec cm-3 at 250hPa). Other OH profiles show much 



17 
 

smaller vertical variations in the troposphere (standard deviations of mean value below 200hPa < 2×105 

molec cm-3). 395 

 

Model simulated OH vertical distributions can also be different over land versus ocean (Fig. 3) and 

between the different latitudinal bands (Fig. S3). For example, SOCOL3 [OH] continuously decreases 

with altitude over both, land and ocean; MOCAGE OH increases from the surface (14.9×105 molec cm-

3) to 800hPa (18.2×105 molec cm-3) and then decreases over land but almost continuously decreases over 400 

the ocean; CMAM and UMUKCA-UCAM only show significant vertical variations in [OH] over land. 

Vertical variations of most OH fields can be attributed to mid and low latitude regions, except for those 

of SOCOL3 and MOCAGE, that also decrease with altitude over mid and high northern latitudes (45°N 

-90°N, see Fig. S3). 

 405 

3.3 Factors contributing to inter-model differences 

Tropospheric OH is produced primarily through the reaction of O(1D) with H2O and secondarily through 

the reaction of NO with HO2 and RO2, and is removed primarily by reacting with CO and CH4 (Logan et 

al., 1981). Hence, factors controlling inter-model OH discrepancies can be complex as differences in 

model emissions, chemistry, physics, and dynamics can together impact [OH] (Nicely et al., 2017). Here 410 

we propose a qualitative analysis focusing on both, emissions and chemical mechanisms. A more 

quantitative analysis would require a detailed model output of production and loss pathways and is beyond 

the scope of this work.  

 

To analyze inter-model differences in OH vertical distributions, we compared CO, NO, and O3 mixing 415 

ratios in table 5 as well as O(1D) photolysis rates and specific humidity in Table S4. The inter-model 

variations (calculated as standard deviation/multi-model mean) in tropospheric O(1D) photolysis rates, 

specific humidity, and CO mixing ratios are usually <10%-20%, while NO mixing ratios show a larger 
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variation of 38% (12-32pptv). MRI-ESM1r1 simulated the highest NO tropospheric mixing ratio, mainly 

attributable to high values above 250hPa, where OH formation is limited by H2O. In addition, MRI-420 

ESM1r1 has ~20% more CO emissions than MOCAGE and GEOSCCM (Fig. S5), leading to about 10 

ppbv higher CO mixing ratios, offsetting (for [OH]) its higher NOx emissions and NO mixing ratios. The 

high NO mixing ratios near the surface and mid-troposphere simulated by SOCOL3 (48 pptv below 

750hPa and 10 pptv from 750 to 500hPa), MOCAGE (26 pptv below 750hPa and 14 pptv from 750 to 

500hPa) and CMAM (17 ppbv below 750hPa) are consistent with their high tropospheric and near-surface 425 

[OH]. Tropospheric O3 can also influence primary production of OH, and tropospheric O3 burden reflects 

combined effects of NOx, CO, and VOCs. The high O3 over the lower troposphere simulated by SOCOL3 

and low the O3 over upper troposphere simulated by MOCAGE can contribute to explain the high and 

low [OH] simulated the two models over the corresponding altitudes, respectively.  

 430 

Lighting NOx, which are mainly emitted in the middle and upper troposphere, can contribute to inter-

model differences in NO and OH distributions (Murray et al., 2013; 2014). We compare lighting NOx 

emissions calculated by CCMI models in Table S3. High lighting NOx emissions simulated by MRI-

ESM1r1 above 250hPa can explain high NO mixing ratios and increasing OH with altitude over the upper 

troposphere for this model (Fig.3.). However, High NO mixing ratios in the lower troposphere simulated 435 

by MOCAGE and SOCOL3 are not corresponding to high lighting NOx emissions for these models. 

Besides emissions, previous studies have reported additional factors leading to high surface NO and NO2. 

The overestimation of NO by MOCAGE could be due to the lack of N2O5 heterogeneous hydrolysis on 

tropospheric aerosol, which is an efficient sink for NOx (Teyssèdre et al., 2007). SOCOL3 does not include 

N2O5 heterogeneous hydrolysis and also overestimates tropospheric NO production by NO2 photolysis 440 

compared to other models, due to issues with the look-up tables used in the calculation of photolysis rates 

(Revell et al. 2018). We conclude here that physical and chemical processes related to NO production and 

loss can have a large impact on OH burden and its vertical distribution. In this context, an improved 
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representation of the partitioning between NO and other nitrogen species in the models seems of great 

importance to correctly simulate tropospheric [OH]. 445 

 

Concerning the spatial distributions, as aforementioned in Sect. 3.1, the largest model discrepancies are 

found over tropical rain forests. The [OH] over tropical rainforest regions are mostly sensitive to natural 

emissions including NOx and NMVOCs, which vary among the models. Previous studies showed that 

[OH] is more sensitive to soil and lightning emissions than to wildfires, because the former sources only 450 

emit NOx (OH source), whereas the latter emits NOx, CO and VOCs together (OH sources and OH sinks, 

see Murray et al., 2014). Soil NOx emissions in CCMI models range from around 4 Tg N yr-1 in MOCAGE 

to more than 7 Tg N yr-1 in GEOSCCM and 9Tg N yr-1 in CMAM (Naik et al., 2013; Yienger and Levy, 

1995); Lighting NOx emissions range from 3.7-10.2 Tg yr-1(table S3). In particular, lower NOx emissions 

over South America and Africa in MOCAGE might be linked to lower [OH] over this region (Fig. S5). 455 

Isoprene and other NMVOCs remove about 3% and 7% of tropospheric OH on a global scale, respectively 

(Spivakovsky et al., 2000; Murray et al., 2014) and can be more important over tropical regions with 

higher emission rates (Sindelarova et al., 2014). The higher [OH] over tropical rainforests simulated by 

CMAM and UMUKCA-UCAM may be due to a lack of or the lower OH destruction by VOCs in these 

models. Therefore, the inter-model differences in OH spatial distributions over tropical rainforests may 460 

result from differences in natural emissions of VOC species and different related chemical reactions. The 

stratospheric ozone can contribute to inter-model OH discrepancies through influencing O(1D) photolysis 

rates. However, we find that models that simulated lower stratosphere and total ozone column are not 

corresponding to higher O(1D) photolysis rates and [OH] (table S5 and Fig. S4), since differences in 

photolysis schemes coupled to CCMI models can also influence the calculation of O(1D) photolysis 465 

rates(Sukhodolov et al., 2016).  

 

3.4 Inter-annual variations of OH 



20 
 

Figure 4 shows the time series of volume-weighted tropospheric mean [OH] from 1960 to 2010 (from 

REF-C1 CCMI comparison). During this period, all OH fields show small year-to-year variations of 470 

1.9±1.2%, remaining within ±0.5×105 molec cm-3. CCMI models simulated significantly different OH 

long-term evolutions from 1960 to 1980. For example, [OH] continuously decrease in the CMAM and 

HadGEM3-ES simulations (~-0.3×105 molec cm-3; -3.4%); and increase in SOCOL3 (~+0.6×105 molec 

cm-3; +4.5%), UMUKCA-UCAM (~+0.5×105 molec cm-3; +4.8%), and MOCAGE (~+0.5×105 molec cm-

3; +4.8%) during 1960-1980, while other models show no obvious long-term trend. After 1980 (1990 for 475 

CMAM), all models show stabilized or slightly increasing [OH]. For our period of interest (after 2000) 

and focusing on the anomaly in [OH] compared to the 2000-2010 mean (Fig. 4b), OH year-to-year 

variations are found to be smaller than in previous decades and [OH] only increases by about 0.1-0.3×105 

molec cm-3 from 2000 to 2010. 

 480 

Previous atmospheric chemistry model studies have concluded that anthropogenic activities lead to only 

a small perturbation of the OH burden, as the increased OH production tend to be compensated by an 

increased loss through reactions with CO and CH4 (Lelieveld et al., 2000; Naik et al., 2013). Recent 

studies highlighted that the El Niño–Southern Oscillation can significantly contribute to the [OH] inter-

annual variations (Turner et al., 2018; Rowlinson et al., 2019). By combining factors that influencing OH, 485 

Nicely et al. (2018) modeled a small inter-annual variability of 1.6% during 1980-2015. The year-to-year 

variations of most CCMI and INCA OH fields are consistent with Nicely et al. (2018) but much smaller 

than the OH inter-annual variability based on MCF observations (e.g. Bousquet et al., 2005; Montzka et 

al., 2011), which can reach 8.5±1.0% from 1980 to 2000, and 2.3±1.5% from 1998 to 2007, as compared 

to 2.1±0.8% and 1.0±0.5% here for these two periods. As for OH trend, the ensemble of ACCMIP models 490 

simulated large divergent OH changes (even in their signs) from 1850 to 2000 but revealed a consistent 

and significant increase of 3.5±2.2% from 1980 to 2000 (Naik et al., 2013). Here, for the same period the 

increase of CCMI [OH] is 4.6±2.4%, consistent with the ACCMIP project (Naik et al., 2013) and with 
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other atmospheric chemistry model studies (Dentener et al., 2003; John et al., 2012; Holmes et al., 2013; 

Dalsøren et al., 2016). The slightly increasing [OH] after 2000 inferred here as well as previous model 495 

simulations (e.g. Nicely et al., 2018) cannot help to explain stalled and renewed CH4 growth during the 

2000s, as opposed to the decreasing in [OH] from mid-2000s calculated by Rigby et al. (2017) and Turner 

et al (2107) based on MCF observations.  

 

We further analyzed regional [OH] trends from 2000 to 2010 in Fig. 5. Instead of dividing subdomains as 500 

Naik et al. (2013) did, we calculated the trend for each model grid-cell to identify and distinguish regions 

with different trends. Most models show significant positive [OH] trends over tropical regions (0.05-

0.1×105molec cm-3 yr-1) and over East and Southeast Asia (>0.1×105 molec cm-3 yr-1). By comparing 

spatial distribution of OH trend with specific humidity (Fig.S6a), NOx and CO emissions (Fig. S6b), and 

stratosphere O3 column trend, we find that positive OH trend over tropical regions are mainly 505 

corresponding to increases in water vapor (Fig. S6a) while faster NOx emission increases (>5% yr-1) than 

CO (<2% yr-1) are consistent with positive OH trend over East and Southeast Asia (Fig. S6b). From 2000 

to 2010, NOx emissions in the MACCity (RCP85) inventory increased by 83% over East Asia, which is 

much larger than the CO increase (8%) (Riahi et al., 2011). Over the rest of the extra-tropical regions such 

as North America and Western Europe, the models disagree on the sign of OH change. In the Southern 510 

hemisphere, where biogenic and fire emissions dominate, most OH fields do not show clear trends and 

the inter-model differences are even larger. For example, MOCAGE simulated and OH decrease of >0.1 

×105 molec cm-3 yr-1 over the Amazon, South Africa, and Indonesia, whereas MRI-ESM and EMAC-

L90MA simulated positive OH trends over these regions. CMAM and HadGEM3-ES show significant 

increasing and decreasing OH trend over the Antarctic region, respectively, consistent with the significant 515 

changes found for stratospheric O3 (Fig. S6c). 

 

In the following, we investigate how the differences in mean [OH] and variations presented in this section 
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affect CH4 burden and its variations for the period 2000-2016. 

 520 

4 Influences of OH fields on CH4 simulations 

 

4.1 Global total CH4 burden 

We now present the results based on the first set of LMDz experiments, where the LMDz model was run 

for 30 years recycling the year 2000 until the steady-state is reached. The simulations using the OH fields 525 

as given by CCMI and INCA models provide a wide range of values for the tropospheric global mean 

CH4 mixing ratios (Table 6), from 1204 ppbv (SOCOL3, with a global volume-weighted tropospheric 

mean [OH] of 12.8×105 molec cm-3) to 1822 ppbv (INCA NMHC-AER-S, with a global volume-

weighted tropospheric mean [OH] of 8.7×105 molec cm-3). It appears that the global CH4 burden is not 

only sensitive to the global mean [OH], but also to its vertical distribution. Indeed, the OH radicals in the 530 

lower troposphere are more efficient to oxidize CH4 molecules, because the CH4+OH reaction rate 

increases with temperature (Eq. 1). When considering the standard atmosphere, the reaction rate 

corresponding to the surface temperature of 288K (5.2×10-15 s-1) is more than twice that for the 500hPa 

temperature of 253K (2.2×10-15 s-1). Despite similar volume-weighted tropospheric mean [OH] of ~10.4

×105 molec cm-3, MOCAGE simulated much lower CH4 mixing ratios (1275 ppbv) than CMAM (1540 535 

ppbv) and MRI-ESM1r1 (1639 ppbv) because of its higher near surface [OH] (19×105 molec m-3) (Table 

4). Previous studies have demonstrated that the sensitivity of CH4 oxidation to lower tropical temperature 

(Spivakovsky et al., 2000; John et al., 2012), and our simulations show that 36%-46% of CH4 is oxidized 

over lower tropical region (surface-750hPa, 30°S-30°N) (Table S6).The spatial distribution of the OH 

radicals also slightly influences CH4 oxidation. Indeed, the [OH] of EMAC-L90MA are higher than those 540 

of CESM-WACCM for both, tropospheric (11.1×105 versus 10.7×105 molec cm-3) and near-surface 

(12.5×105 versus 12.4×105 molec cm-3) means, but a slightly higher CH4 burden is found for the former 

(1579 versus 1575ppbv, Table 6). This is because EMAC-L90MA simulated higher [OH] over the ocean, 
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while CESM-WACCM OH is more concentrated over land closer to CH4 source regions. The model 

experiments also emphasize that volume-weighted tropospheric concentrations cannot fully indicate the 545 

atmospheric oxidizing efficiency for CH4, as has been discussed by Lawrence et al. (2001). Tropospheric 

mean [OH] weighted by reaction rates with CH4, which consider both temperature and CH4 distributions, 

can be a better indicator for CH4 oxidation (Lawrence et al., 2001). 

 

4.2 Impacts on CH4 spatial distribution and growth rate 550 

In order to address the question of inter-annual variability of atmospheric CH4, we scaled each OH field 

globally to get the same CH4 loss (for the year 2000) as the one obtained with INCA NMHC OH field 

(see Sect. 2.2.2). The single global scaling factor (per OH field) for the year 2000 is applied to every year 

between 2000 and 2010. As listed in Table 4, after scaling most OH fields have volume-weighted 

tropospheric mean concentrations closer to INCA NMHC (9.7 ×105 molec cm-3), within the range of 9.0-555 

10.4×105 molec cm-3. One exception is MOCAGE, with tropospheric mean [OH] scaled to 7.7×105 molec 

cm-3, due to its distinct vertical distribution (Sect.3.2). This scaling of OH makes it possible to start model 

experiments at the same initial CH4 burden. Although slightly modifying the magnitude of the global 

mean [OH], this scaling maintained the spatial and temporal differences and trend over the 2000-2010 

period.  560 

 

4.2.1 Spatial distributions of tropospheric CH4 mixing ratios 

We used the scaled OH fields to perform simulations between 2000 and 2010. Figure 6 shows the spatial 

distribution of tropospheric CH4 mixing ratios for the simulation Run_standard (Table. 2, driven by OH 

with inter-annual variations) averaged over 2000-2010. Although all simulations started from the same 565 

initial conditions and OH fields were scaled to give the same global CH4 loss as INCA NMHC in 2000, 

LMDz simulations using the different scaled OH fields still generated a spread of tropospheric mean 

(8ppbv) and spatial distribution of CH4 mixing ratios averaged during 2000-2010. Differences between 
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the global tropospheric mean [OH] cannot explain these differences (see Table 4).Clearly the different 

spatial (horizontal and vertical) and temporal variations of the OH fields (as described in Sect. 3), which 570 

were kept in this experiment by only scaling [OH] globally, significantly modify the simulated CH4 

mixing ratios (Table 7 and Fig. 6). OH fields with increasing trend will lead to lower LMDz simulated 

CH4 mixing ratios. The LMDz simulations using the TransCom OH fields (without inter-annual 

variability) shows the highest CH4 mixing ratios (1735 ppbv), while the one using the CMAM OH (with 

slightly increasing OH trend during the decade) shows the lowest mixing ratios (1727 ppbv).  575 

 

The differences in spatial distribution of OH fields can influence LMDz simulated CH4 spatial 

distributions. Looking at latitudinal CH4 mixing ratios, the inter-model differences appear larger than in 

the global mean (Fig. 6 and Table 7). The model spreads of the mean CH4 mixing ratios over 60°S-90°S 

and 60°N-90°N range from 1771 to 1794ppbv and 1784 to 1812ppbv, respectively. Here, we define the 580 

N/S gradient of CH4 as the difference in mean CH4 mixing ratio between the latitudinal bands 60°N - 

90°N and from 60°S - 90°S. With the TransCom OH field (N/S ratio =1.0), the model simulated 12-43% 

larger N/S gradients of CH4 (129 ppbv) than other simulations (90-115 ppbv) driven by OH fields with 

higher N/S OH ratios of 1.2-1.5. Previous model studies have attributed the overestimation of the CH4 

N/S ratio to an underestimation of model inter-hemispheric exchange time (e.g. Zimmermann et al., 2018). 585 

Our results show that uncertainties in OH distributions can also contribute to such model biases.  

 

4.2.2 Changes in CH4 mixing ratios 

To assess the influence of OH inter-annual variations on CH4 mixing ratios, we calculated the difference 

in the simulated CH4 between the standard run (Run_standard) and the simulations with fixed [OH] 590 

(Run_fix_OH, Table 2). The Run_fix_OH simulations show that global tropospheric mean CH4 mixing 

ratios increased by 75 ppbv from 2000 to 2010 (Fig. 7, black dashed lines), due to the enhanced emissions 

(Fig.1). The increase in [OH] can obviously reduce CH4 growth. An increase in [OH] by 0.1-0.3×105 
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molec cm-3 (1%-3%) (Fig. 7, orange lines) during this period leads to a reduction of the CH4 mixing ratios 

by 5-15 ppbv by 2010 (Fig. 7, blue lines).The largest reductions are found when using CESM1-WACCM 595 

and CMAM OH fields, given the continuous OH growth in these models. Compared to Run_fix_OH, we 

estimated that such reductions in CH4 mixing ratios offset 7- 20% of the CH4 increase driven by the rising 

CH4 emissions of our scenario over the period 2000 to 2010.   

 

To test whether the impacts of [OH] year-to-year variations on CH4 mixing ratios the chosen emission 600 

scenarios, we compare the above results with that calculated by an extreme scenario where model 

simulations are driven by fixed emission(year 2000, Run_fix_emis and Run_fix_emis_OH, table 2). With 

emissions fixed to 2000, the CH4 mixing ratio increased by 2ppbv from 2000 to 2010, and increasing OH 

(CESM-WACCM OH fields) can reduce CH4 mixing ratio by 13.5ppb in 2010, comparable to 13.9 ppb 

calculated by Run_std and Run_fix_OH with CESM-WACCM OH fields. The results indicate only a 605 

small effect of emission scenario choices on the absolute changes of CH4 mixing ratios due to OH 

variations. However, our choices have a large effect on relative change to the total modeled CH4 increase. 

Indeed, if we use the emission scenarios that match observations (~+25ppbv of CH4 mixing ratio increase 

from 2000-2010, Ed Dlugokencky, NOAA/ESRL, 2019) instead of ~70ppb here , the CH4 mixing ratio 

changes due to OH can contribute to more than half (13.5-13.9ppbv versus 25ppbv) of the changes driven 610 

by emissions.   

 

After 2010, CCMI REF-C2 experiments simulated increasing, relatively stable, or decreasing OH 

variations, thus having a variable influence on CH4 variations. Over the period 2011-2016, [OH] 

simulated by EMAC-L90MA, CESM-WACCM and CMAM stabilizes at a level 0.2-0.4×105 molec cm-3 615 

higher than the concentrations in 2000, further reducing CH4 mixing ratios by up to 20-30 ppbv in 2016 

(Fig. 7, blue lines). Other OH fields have similar concentrations over 2010-2016 as in the early 2000s 

(Fig. 7, orange lines), thus simulating CH4 mixing ratios that remain close to Run_fix_OH with 
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differences less than a few +/-ppbv.  

 620 

As large uncertainties remain regarding the inter-annual variations and trend of OH after 2010, we have 

tested two additional OH scenarios: Run_OH_inc (with an annual increase of 0.1% yr-1) and Run_OH_dec 

(with an annual decrease of 1% yr-1), to assess the uncertainty range of the impact of OH changes (the 

orange areas in Fig. 7) on CH4 mixing ratios (the blue areas in Fig. 7). In these two scenarios, the mean 

[OH] of run_OH_dec is ~ 7×105 molec cm-3 (7%) lower than run_OH_inc in 2016 relative to the 625 

Run_fix_OH . If OH decreases at 1% yr-1 after 2010, by 2016, the differences in CH4 mixing ratios 

between Run_OH_dec and Run_fix_OH range -7–30ppbv, with the lower end (-7ppbv) simulated by OH 

from CESM1-WACCM given its highest [OH] in 2010. On the contrary, Run_OH_inc simulated 3-39 

ppbv lower CH4 mixing ratios compared to Run_fix_OH (the blue areas in Fig. 7). As such, uncertainties 

in the OH trend can clearly lead to >±30 ppbv changes in CH4 mixing ratios (the gray areas in Fig. 7) 630 

after only 6 years of simulations, as compared to the fix-OH case.  

 

It is now interesting to compare the range of simulated [CH4] changes induced by OH scenarios to changes 

in surface CH4 observations, in order to quantify how much of the model-observation mismatch could 

potentially be attributed to uncertainties in [OH] and its variability (Fig. 8). To do so, we used surface 635 

CH4 observations from the National Oceanic and Atmospheric Administration (NOAA) networks and 

selected stations with 17 years continuous records over 2000-2016. The modeled surface CH4 mixing 

ratios are sampled according to station locations. Since the simulated absolute CH4 mixing ratios largely 

depend on the initial conditions and OH fields, we compared changes in the simulated and observed global 

CH4 mixing ratios starting at the same point in 2000. The observed CH4 shows zero growth between 2000 640 

and 2006 and then increases by 5.6 ppbv yr-1 between 2006 and 2012 (6.4 ppb yr-1 for 2006-2010) and by 

9.4 ppbv yr-1 after 2012(Fig.8). In this study, we do not expect to fit these CH4 trends as this inter-

comparison was not conducted with a set of optimized emissions. It has already been noticed that standard 



27 
 

CH4 emission inventories lead to overestimated CH4 mixing ratios (e.g. Saunois et al., 2016). Indeed, 

neither Run_standard nor Run_fix_OH simulations do capture the stagnation during 2003-2006, and 645 

overestimated surface CH4 increments by 2.5-5.2 ppbv yr-1 during the period 2006-2010. We define 

highest CH4 mixing ratios simulated by different OH as CH4-H, lowest CH4 mixing ratios as CH4-L, and 

CH4 simulated by Run_fix_OH as CH4-fix_OH. Based on Run_fix_OH, on average over 2000-2016 and 

depending on the OH scenario, we found that [OH] changes can emphasize the model-observation 

mismatch by up to 19% (mean values of (CH4-H－CH4-fix_OH )/( CH4-fix_OH- observed CH4)) during 2000-650 

2016), or limit the model-observation mismatch by up to 54% (mean values of (CH4-fix_OH－CH4-

fix_L )/( CH4-fix_OH- observed CH4) during 2000-2016) (figure 8). Such comparisons strongly suggest that 

a better understanding of OH inter-annual variations and trends is required in order to simulate more 

reliable CH4 trends in atmospheric chemistry models. Atmospheric chemistry transport model (Dalsøren 

et al., 2016) and box model studies (Rigby et al., 2017; Turner et al., 2017) have pointed out that variations 655 

in OH can partly explain the recent CH4 trends. However, current top-down estimates of CH4 emissions 

usually assume constant [OH] (Saunois et al., 2017) and attribute the model-observation discrepancies 

only to surface emissions rather than changes in [OH]. Our results confirm the potentially significant role 

played by the still uncertain OH changes in the actual changes of methane emissions since 2000.  

 660 

5 Conclusions 

 

We have analyzed 14 OH fields (11 from CCMI experiments, 2 from INCA model simulations, 1 from 

TransCom) to investigate the inter-model differences in the spatial distributions and trends of tropospheric 

OH, and estimated the influences of OH spatio-temporal distributions on tropospheric CH4 by feeding 665 

them in different simulations with LMDz offline chemistry transport model.  
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Simulated global volume-weighted tropospheric mean [OH] is within the range of 8.7×105-12.8×105 

molec cm-3, which is consistent with the (large) multi-model range of previous estimates. CCMI and 

INCA models simulated larger [OH] in the Northern hemisphere than in the Southern hemisphere (N/S 670 

ratio of 1.2-1.5), with consistently high OH values over anthropogenic emission hotspots in North 

America, East and Southeast Asia, while TransCom OH shows a N/S ratio close to 1.0. In the vertical, 

TransCom OH reaches its maximum value at about 600 hPa, while CCMI and INCA OH fields either 

continuously decrease with altitude or show very small vertical variations in the troposphere. The factors 

most likely responsible for these inter-model differences include i) large NO mixing ratios leading to high 675 

surface and mid-tropospheric [OH] (Teyssèdre et al., 2007; Pevell et al. 2018), and ii) different natural 

emissions as well as VOC species and chemical mechanisms driving spatial model discrepancies over 

natural ecosystems. 

 

Simulated OH fields show small year-to-year variations, within ±0.5×105 molec cm-3 during 1960-2010. 680 

From 2000 to 2010, year-to-year variations in OH are smaller than in previous decades and all OH fields 

increase by about 0.01-0.03×105 molec cm-3 yr-1. Such an increase in OH is mainly attributed to the 

significant positive OH trend over East and Southeast Asia (>0.1×105molec cm-3 yr-1) in response to more 

OH production by NOx than OH destruction by CO, and over tropical regions in response to increasing 

water vapor.  685 

 

The inter-model differences in tropospheric OH burden generate a wide range of CH4 burdens (1204-

1882ppbv) when used to simulate steady-state CH4 mixing ratios in the atmospheric chemistry model 

LMDz. Our findings suggest that not only different global mean [OH], but also differences in the 

horizontal and vertical distributions between OH fields are responsible for this range (CH4 destruction 690 

rates by OH increase with temperature).   
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The CH4 simulations for 2000-2016 using OH with inter-annual variation show that inter-model 

differences of the OH N/S ratio lead to 12-43% differences in the CH4 N/S gradient. For the time period 

2000-2010, we found that a 1%-3% increase in [OH] leads to a 5-15 ppb reduction of the CH4 mixing 695 

ratio until 2010, accounting for 7-20% of the simulated emission driven CH4 increase over this period. 

After 2010, the ensemble of OH scenarios tested here leads to differences in the CH4 mixing ratio of up 

to 30 ppb by 2016. Comparing with surface observations, we found that [OH] changes can emphasize the 

model-observation mismatch by up to 19%, or fill the gap between model simulations and observations 

by up to 54% (Figure 8). Therefore, addressing the OH variability in CH4 source inversions seems critical 700 

to avoid a wrong attribution of CH4 changes to emission changes only. Future work is needed to quantify 

the impact of this ensemble of OH fields on CH4 emissions obtained by inversion and to generate 

improved OH fields to be used in CH4 inversion studies. 
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Most of the CCMI datasets are available at the Centre for Environmental Data Analysis (CEDA, at 
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Tables 

 

Table 1. List of CCMI models included in this study with model versions and references.1 

Model Version References 

CESM1-CAM4chem CCMI_23 Tilmes et al.(2015, 2016)  

CESM1-WACCM CCMI_30 
Solomon et al. (2015); Garcia et al. (2016); Marsh et 

al. (2013) 

CMAM v2.1 Jonsson et al. (2004); Scinocca et al. (2008) 

EMAC(offers two 

resolutions: EMAC-

L47MA and EMAC-

L90MA) 

v2.51 Jöckel et al. (2010, 2016) 

GEOSCCM v3 
Molod et al. (2012, 2015); Oman et al. (2011, 2013); 

Nielsen et al. (2017) 

HadGEM3-ES 

HadGEM3 

GA4.0, NEMO 

3.4, CICE, 

UKCA, 

MetUM8.2 

Walters et al.(2014); Madec(2008); Hunke and 

Lipscombe(2008); Morgenstern et al.(2009); 

O’Connor et al.(2004); Hardiman et al.(2017) 

MOCAGE v2.15.1 Josse et al. (2004); Guth et al. (2016) 

MRI-ESM1r1 v1.1 
Yukimoto et al. (2012, 2011); Deushi and Shibata 

(2011) 

SOCOL3 v3 Revell et al. (2015); Stenke et al. (2013) 

UMUKCA-UCAM MetUM 7.3 Morgenstern et al. (2009); Bednarz et al. (2016) 
1 The table refers to Table 2 in Morgenstern et al. (2017) 
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Table 2. List of LMDz experiments and model setups. 
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Simulation 

period 
Inter annual variability in [OH] 

Inter annual 

variability in 

CH4 emissions 

Run_standard 2000-2010 2000-2010 2000-2010 

Run_REF-C2 2011-2016 2010 apply inter-annual variability from REF-C2 2011-2016 

Run_OH_inc 2011-2016 2010 apply annual growth rate of 1‰ 2011-2016 

Run_OH_dec 2011-2016 2010 apply annual decrease rate of 1% 2011-2016 

Run_fix_OH 2000-2016 Constant OH (year 2000) 2010-2016 

Run_fix_emis 2000-2010 2000-2010(CESM-WACCM only) Constant (2000) 

Run_fix_emis_oh 2000-2010 Constant OH (year 2000 CESM-WACCM only) Constant (2000) 
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Table 3. Inter-hemispheric ratios (N/S) of hemispheric mean OH and volume-weighted tropospheric mean 

[OH] for four latitude bands (in 105 molec.cm-3) averaged over the years 2000 to 2010. Multi-model 

means and standard deviations (Mean ± stand. dev.) are also shown.  

OH fields N/S ratio  
90°S-30°S 

(105 molec.cm-3) 

30°S-0° 

(105 molec.cm-3) 

0°-30°N 

(105 molec.cm-3) 

30°N-90°N 

(105 molec.cm-3) 

TransCom 1.0 5.8 12.7 11.8 6.2 

INCA NMHC-AER-S 1.3 4.7 10.6 12 7.5 

INCA NMHC 1.2 5.7 11.9 13.4 7.8 

CESM1-CAM4Chem 1.4 5.7 12.4 15.3 9.2 

CESM1-WACCM 1.3 5.9 12.3 15.1 9.3 

CMAM 1.2 5.6 13.1 14.3 8.3 

EMAC-L47MA 1.2 6 13.5 15.6 8.4 

EMAC-L90MA 1.2 6.3 13.8 15.7 8.6 

GEOSCCM 1.2 6.5 14.8 16.8 9.1 

HadGEM3-ES 1.4 4.1 10.4 12.5 8.1 

MOCAGE 1.5 5.5 11.4 14.3 10.2 

MRI-ESM1r1 1.2 4.7 13.7 15.3 7.3 

SOCOL3 1.5 6.8 13.5 17.0 14.0 

UMUKCA-UCAM 1.3 5.6 13.7 14.9 9.9 

Mean ± stand. dev. 1.3±0.1 5.6 ±0.7 12.7±1.3 14.6±1.6 8.9±1.8 
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Table 4. Global mean [OH] averaged over the troposphere and three vertical pressure levels (in 105 molec 

cm-3) over the years 2000 to 2010. Multi-model means and standard deviations (Mean ± stand. dev.) are 

also shown.  

 

 Tp-v1 Tp-m2 7503 500 250 Tp scaled4 CH4 lifetime5 

TransCom 9.1 10.0 9.9 12.8 9.2 9.5 / 

INCA NMHC-AER-S 8.7 9.4 11.3 10.4 7.8 9.3 / 

INCA NMHC 9.7 10.4 11.8 11.4 8.9 9.7 / 

CESM1-CAM4Chem 10.7 11.3 12.2 12.3 10.7 / 9.4 yr 

CESM1-WACCM 10.7 11.4 12.4 12.5 10.7 9.9 9.3 yr 

CMAM 10.4 11.3 14.3 11 10.5 9.3 9.0 yr 

EMAC-L47MA 10.9 11.3 12.1 12 10.3 / / 

EMAC-L90MA 11.1 11.5 12.5 12.2 10.2 10.3 / 

GEOSCCM 11.8 12.3 12.3 13.7 12 10.4 8.9 yr 

HadGEM3-ES 8.8 9.9 12.7 10.8 7.7 / / 

MOCAGE 10.4 12.5 19 13.5 7.7 7.7 7.5 yr 

MRI-ESM1r1 10.3 10.6 12.2 10.4 9.4 10.2 10.0 yr 

SOCOL3 12.8 14.4 19.4 15.1 10.9 9.0 7.1 yr 

UMUKCA-UCAM 11.0 11.9 14.9 11.7 10.5 / / 

Mean ± stand. Dev. 10.5±1.1 11.3±1.3 13.4±2.7 12.1±1.3 9.8±1.3 9.5±0.8 8.7±1.1 yr 

1 Tp-v refers to the volume-weighted tropospheric mean [OH]. 1210 
2 Tp-m refers to the mass-weighted tropospheric mean [OH]  
3 750 refers to the volume-weighted average from the surface to 750hPa, 500 refers to the volume-

weighted average from 750hPa to 500 hPa, and 250 refers to the volume-weighted average from 500 to 

250hPa. 
4 Tp scaled refer to the volume-weighted global tropospheric mean [OH] after scaling to the same CH4 1215 

loss as with INCA NMHC in 2000.  
5 CH4 lifetime is calculated global atmospheric CH4 burden divided by annual total CH4 tropospheric 

chemical loss. 

Table 5. Global volume-weighted mean CO, N, and O3 mixing ratios averaged over the whole 

troposphere and three pressure altitude levels for CCMI models over 2000 to 2010.1 Multi-model means 1220 

and standard deviations (Mean ± stand. dev.) are also shown.  

 CO ppbv NO pptv O3 ppbv 

 750 500 250 Tp 750 500 250 Tp 750 500 250 Tp 

CESM1-CAM4Chem 76 71 70 71 9 4 12 13 32 42 57 48 

CESM1-WACCM 75 70 69 70 9 5 12 12 31 41 55 47 
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CMAM 77 68 64 69 17 4 17 26 34 43 60 52 

EMAC-L47MA 85 77 70 75 8 4 11 14 38 48 63 56 

EMAC-L90MA 84 76 69 74 8 5 11 17 38 48 61 54 

GEOSCCM 78 74 73 74 9 5 13 13 33 43 61 49 

MOCAGE 67 68 67 67 26 14 17 20 37 42 46 43 

MRI-ESM1r1 93 86 83 86 10 5 20 32 36 48 67 56 

SOCOL3 79 73 74 74 48 10 14 25 43 54 67 61 

Mean ± stand. dev. 79±7 74±6 71±5 73±5 16±13 6±3 14±3 19±7 36±4 45±5 60±7 52±6 

 

1 HadGEM3-ES and UMUKCA-UCAM are not analyzed since model output has been regridded to too 

coarse vertical pressure levels. 

2 Tp refers to the total tropospheric average, 750 refers to the average from the surface to 750hPa, 500 1225 

refers to the average from 750hPa to 500hPa, and 250 refers to the average from 500hPa to 250hPa. 
 

Table 6. Global mean tropospheric CH4 mixing ratios as simulated by LMDz using different OH fields 

and repeating year 2000 over 30 times.  

  CH4 mixing ratio (ppbv) 

INCA NMHC-AER-S 1822 CESM1-WACCM  1575 

TransCom  1776 CMAM  1540 

INCA NMHC 1709 GEOSCCM  1503 

MRI-ESM1r1  1693 MOCAGE  1275 

EMAC-L90MA  1579 SOCOL3  1204 

 1230 

 

Table 7. LMDz simulated CH4 mixing ratios (in ppbv) averaged over each latitudinal band and the years 

2000 to 2010 simulated from the standard experiment (Run_standard) using different OH fields. Multi-

model means and standard deviations (Mean ± stand. dev.) are also shown.  

 1235 

 90°S-60°S 60°S-0° 0°-60°N 60°N-90°N N/S gradient1 

TransCom 1683 1697 1769 1812 129 

INCA NMHC-AER-S 1687 1698 1757 1795 108 

INCA NMHC 1687 1700 1762 1802 115 

CESM1-WACCM 1688 1701 1757 1794 106 

CMAM 1682 1694 1756 1796 114 

EMAC-L90MA 1685 1698 1759 1798 113 
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GEOSCCM 1688 1701 1764 1803 115 

MOCAGE 1686 1699 1753 1788 102 

MRI-ESM1r1 1691 1702 1762 1803 112 

SOCOL3 1694 1707 1754 1784 90 

Mean ± stand. dev. 1687±4  1700±3  1759±5  1798±8  110±10  
1 N/S gradient is defined as the difference between 60°N to 90°N and 60°S to 90°S. 
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Figures 

 
Figure 1. Spatial distribution of global CH4 emissions averaged between 2000 and 2016 (left) and a time 

series of CH4 emissions relative to year 2000 emissions (482 Tg CH4 a
-1) (right) for the globe (black line), 

Northern hemisphere (NH, blue line) and Southern hemisphere (SH, yellow line), respectively. 1245 
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Figure 2. The spatial distributions of volume-weighted tropospheric mean OH fields of TransCom, INCA, 

and CCMI models averaged for 2000-2010. Global mean values (105 molec cm-3) are shown as insets. 

 1250 

 

 

 
Figure 3. Vertical distributions of [OH] averaged over the globe (left), land (middle) and ocean (right) 

for 2000-2010. Color lines represent [OH] from individual model simulations, black lines represent multi-1255 

model mean values and grey shades represent the standard deviations.      
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Figure 4. Left: Inter-annual variations of global volume-weighted tropospheric mean [OH] from CCMI 1260 

and INCA model simulations from 1960 to 2010. Right: OH anomaly during 2000-2010, in reference to 

the mean concentration over the period 2000-2010 for each model. 

 

 

Figure 5. Spatial distribution of tropospheric OH trends from 2000 to 2010 (in 103 molec cm-3 yr-1). Black 1265 

dots denote model grid-cells with statistically significant trends (p-value < 0.05) 
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Figure 6. Spatial distribution of volume-weighted tropospheric mean CH4 mixing ratios averaged from 

2000 to 2010 as simulated by LMDz with different OH fields in the LMDz model. The global mean values 1270 

in units of ppbv are shown as insets. 

 

  

Figure 7. Time-series of global tropospheric CH4 mixing ratios and [OH] associated with the model 

experiments listed in Table 2. The black lines represent the evolution of CH4 mixing ratios with varying 1275 

(solid lines) or with constant (dashed lines) OH. The varying OH case is obtained using OH inputs from 

Run_standard from 2000 to 2010 followed by Run_REF-C2 from 2011 to 2016 (see Table 2). The blue 

solid lines represent the corresponding differences between the simulations with varying OH and with 
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constant OH. The orange solid line represents the corresponding anomalies in tropospheric [OH] (with 

the average over 2000-2010 as reference). The shaded areas correspond to the range obtained from all 1280 

simulations over 2010-2016 (Table 2) for tropospheric CH4 mixing ratios (grey), for changes in 

tropospheric CH4 mixing ratios (blue) and for changes in tropospheric [OH] (orange). 

 

 

 1285 

 

Figure 8. Time series of surface CH4 mixing ratio increments compared to 2000 for NOAA observations 

(black line) and model ranges from all the LMDz experiments collected at observation sites (shades) and 

described in the text and in Table 2.  
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