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Answer to Co-Editor Decision 

We thank the co-editor for managing our manuscript and providing additional comments that we think helped sharpen the 

message, especially regarding the concept of representativeness errors. The comments are repeated below in black font and 

our answers are given in blue. 

thanks for posting your authors comments and providing an updated version of the manuscript. You mostly addressed in your 5 

comments the issues raised by the 2 reviewers, but I would like to have those answers more included in the manuscript itself. 

After all, most readers will only read the manuscript.  

We indeed answered all the referee comments in the previous response letter, but it is true that we did not implement all of 

them in the manuscript. The reason is that we felt that not all of them were calling for modifications of the manuscript.  

This certainly applies to the comments raised by both reviewers about the applicability of the method for homogeneity checks 10 

of the datasets. Based on the log-files of the different IGS stations, some obvious breaks can be detected in the time series and 

have already been reported for some stations. Therefore, it would be nice if you could give some examples (not the full 

statistical linking between your representativeness statistic and the results from a homogenization method you are referring to) 

for some stations about a possible link between the values of the representativeness statistics and a break point in the GPS time 

series. Moreover, in this context, it can also be very instructive to show the time series (probably best the monthly mean time 15 

series, although most of the representativeness statistics are calculated from daily values) of both the GPS and ERA-Interim 

for some example outlying sites (section 4). This can make the discussion of the characteristics of the outlying site differences 

between GPS and ERA-Interim less heavy to read and might give you the opportunity to illustrate why your method might be 

an interesting tool to identify the stations for which the GPS-ERA-Interim IWV differences cannot be used for breakpoint 

identification.  20 

We actually answered the comments about the homogeneity issues but it was clearly stated in the manuscript discussion of the 

effect of inhomogeneities in either the GPS or the reanalysis data is not the purpose of this paper. Here we want to analyse the 

cause of systematic model and observation differences that show up in the statistical comparison parameters (mean and 

standard deviation of differences). We want to emphasize the role of representativeness errors and their variation as a function 

of space, time, and climatic conditions. We know that the impact of breaks in the GPS or ERAI time series on these statistical 25 

parameters is rather small compared to the representativeness errors due to the coarse model resolution. This idea is actually 

supported by a previous publication by Parracho et al., 2018, and by the strong systematic seasonal variation in all parameters 

(see Fig. 8 and 9). However, we agree that further insight into the nature of the discrepancies can be brought by inspecting the 

time series. We inspected time series of daily IWV data (not shown) but the day-to-day variability is usually so large that it is 

difficult to see the small inhomogeneities. They can be better seen on monthly time series. So we refer now to Figure B2 of 30 

Parracho et al., 2018, where monthly time series of IWV and IWV differences are shown for four of the outlying sites discussed 

in Section 4.  

=> sentence added P8: “The time series of IWV and IWV differences for four of the worst cases (CFAG, KIT3, MCM4, and 

SYOG) can be found in Figure B2 of Parracho et al., 2018.” 
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From this figure it can be seen that CFAG and KIT3 have a strong seasonal modulation in the mean IWV differences. The 

same information can be seen in our Figure 8a,b for all 15 stations. In addition, our Figure 8c,d show that all 15 sites exhibit a 

rather strong seasonal modulation either in absolute or relative standard deviation which is not related to breakpoints 

(breakpoints would not have a systematic effect). So we don’t think it is necessary to include more examples of times series. 

Regarding the implication of this work to the homogenization topic, we added a sentence P12:  5 

“unless the homogenization method explicitly models the seasonality in the bias and the non-stationarity of the noise variance 

(Quarello et al., 2018).” 

Also the point raised by the second reviewer about ”the current knowledge of the spatial representativeness error of the GPS 

derived PWV and whether and how this study tackles this issue” has not been treated in the manuscript. This is however a 

very important point. Also the first reviewer has some difficulties with interpreting the definition of representativeness error 10 

(P2,L32-34: Are representativeness errors never to be referred to model errors? I interpret the definition of a representativeness 

error as that the only cause is the limited model resolution? If this is correct it can be stated explicitly, because I can also argue 

that the limited resolution of a model can be the cause of “model errors”) and your answer has not been implemented in the 

manuscript itself. In this context, I miss a reference in your manuscript to earlier papers investigating the concept of 

representativeness error (the second reviewer already provided a reference to the work by Liou et al. 2001). One such a 15 

publication that I missed in particular is the ACP paper by Buehler et al. (2012). In their section 3.5, they give a nice description 

of the concept of representativeness error, in general terms, and distinguish between two effects: (i) the measurements may 

not be perfectly collocated in space and time, and (ii), they may have different sampling characteristics – one may be an 

instantaneous point measurement and the other an average over some distance in space and time. To my opinion, you should 

be more specific about which representativeness you are considering in the manuscript, which not (or are cancelled out by 20 

exact temporal matching e.g.) and how this related to earlier concepts of representativeness. As already mentioned, I also 

missed references to past studies explaining for which area (cone) a GPS IWV measurement is representative. With this more 

specific definition of representativeness error, you can also be more specific about the motivation and applications of your 

study, another remark made by the two reviewers (“applications are not very appealing” and “the stated motivation for the 

work was to identify GPS stations where ERA Interim is not recommended to be used when searching for inhomogeneities in 25 

the GPS time series of IWV”).  

 

The Introduction has been significantly revised to address these points: 

- We enhanced the discussion of representativeness errors in the data assimilation context and cite 3 three references 

(Lorenc 1986; Janjic 2006; Waller 2014) 30 

- We discuss the representativeness errors/differences in the context of IWV measurement comparisons and now cite 

Liou 2001 and Buehler 2012. 

- We better define what we call representativeness errors in this study (i.e. the effect of the coarse spatial resolution 

of the reanalysis)  

- We removed the reference to model errors because it is ambiguous and can be understood in different ways (e.g. 35 

model errors traditionally refer to errors in model physics/parameterizations, but in the assimilation context they 
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rather refer to errors in the background forecast) and we cannot actually isolate the contribution of model errors 

here. Reanalysis data also include errors from the assimilation scheme which in the present context would be 

included into “model errors”. 

- The concept of representativeness error discussed by Buehler 2012 and the idea that GPS measurements are 

representative of a cone and not a straight vertical line are not emphasized here because: (i) the representativeness 5 

errors considered in this study are from the model/reanalysis and not from GPS; (ii) the model/reanalysis 

representativeness errors are typically much larger than observation system sampling/measurement characteristics 

(Janjic 2006) which is also true here for GPS; (iii) discussing the GPS sampling/measurement characteristics would 

thus distract the message. We simply take the GPS measurements as the reference. 

- We reformulated the sentence relative to the implication of this work for homogenization. It should be understood 10 

that we propose a methodology to detect outlying sites. After that, the decision to reject or keep the stations depends 

on the capability of the homogenization method to account for a seasonality in the bias and noise variance. This is 

also more explicitly written in the Conclusion section as mentioned above. 

We hope these clarifications and corrections make the paper more appealing. 

 15 

Other examples where you should include your answer to a reviewer comment in the manuscript are: 

 

“RC1: Related to this it is clearly stated that the method is subjective. Nevertheless, if the method is to be applied by others, it 

would be informative to also document the reasoning behind the choices. For example, why did you choose non-symmetric 

limits for the mean differences in Figures 2 and 3?” 20 

Done: “The reason why we chose non-symmetric limits with respect to zero for the mean differences is because the distribution 

is not centred on zero.” 

“ RC1: P4,L9-11: I think you should mention that the GPS time series used have passed some kind of quality check, because 

a very large break should have an impact on the overall standard deviation of the differences GPS – ERA Interim”: be more 

specific on which data screening has been applied to detect e.g. very large breaks. 25 

It was already mentioned: “ZTD estimates… are first screened for outliers as described in Parracho et al., 2018.” 

Note that the purpose of the screening is not to detect breaks but outliers. 

“RC1: P6,L5: It cannot be taken for granted that the discrepancy is not due to GPS errors just because the formal errors do not 

increase. For example, a nearby installation of say a metallic structure may introduce significant multipath errors without 

affecting the formal errors.” 30 

We don’t agree with this statement. See our answer to the referee’s comment. 

 “RC1: P7,L2-5: Can you compare this standard deviation of 0.81 kg/m2 to what is obtained for stations located in the same 

area of the present study, in order to quantify the improvement obtained for the higher resolution model?” 

Done: “The median standard deviation of GPS-ERAI differences over 12 stations in the same domain amounts to 0.98 kg m-

2, so there is clear benefit of higher resolution and more modern physics.” 35 
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“RC1: P7,L13-15: Perhaps the GPS sites that do not show an improvement using bi-linear interpolation are located close to 

one of the four grid points that is more representative compared to the others?” 

Actually this question is not relevant (and the referee could check it directly from Figure 7), this is why we didn’t mention it 

in the manuscript.  

We also provide all the numerical results presented in the figures in a supplement for the readers who want to make their own 5 

complementary analysis of our results. 

Some other specific comments 

 

P6,L13-15: to which representativeness “differences” in the reanalysis humidity field are you referring to here? Please be more 

specific.  10 

We meant the model representativeness error, but this is in the context of data assimilation. The sentence was changed to: 

“This tendency can be explained by larger representativeness errors in the reanalysis humidity field as a function of altitude as 

also found by Waller et al. (2014) in the Met Office high-resolution UK variable resolution model.” 

P6,L23-24: ”a mistake which has been made in several past studies and led to the erroneous statement that IWV differences 

increase towards the equator due to the increasing mean IWV”: without a proper referencing to those several past studies in 15 

which this statement is literally present, this is a very suggestive statement.  

We prefer not to cite the papers which made this erroneous statement. So we removed this sentence. 

P7,L14-16: ”The slight shift of the ensemble of results below the 1:1 line is reflecting the fact that a majority of sites exhibit 

small positive bias (0.47 kg m-2 on average) as already noticed in Figs. 2a, c, 15 which is not due to representativeness 

differences”: give the reason for the small positive bias once again here. 20 

Done: added “but rather to the type of assimilated data (see Section 3).” 
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Abstract. This study examines the consistency and representativeness differences of daily integrated water vapour (IWV) data 

from ERA-Interim reanalysis and GPS observations at 120 global sites over a 16-year period (1995-2010). Various comparison 

statistics are analysed as a function of geographic, topographic, and climatic features. A small (±1 kg m-2) bias is found in the 10 

reanalysis across latitudes (moist in northern and southern mid-latitudes and dry in the tropics). The standard deviation of daily 

IWV differences is generally below 2 kg m-2 but peaks in the northern and southern storm-tracks regions. In general, the larger 

IWV differences are explained by increased representativeness errors, when GPS observations capture some small-scale 

variability that is not resolved by the reanalysis. A representativeness error statistic is proposed which measures the 

spatiotemporal variability in the vicinity of the GPS sites, based on reanalysis data at the four surrounding grid points. It allows 15 

to predict the standard deviation of daily IWV differences with a correlation of 0.73. In general, representativeness differences 

can be reduced by temporal averaging and spatial interpolation from the four surrounding grid points. A small number of 

outlying cases (15 sites) which do not follow the general tendencies are further examined. It is found that their special 

topographic and climatic features strongly enhance the representativeness errors (e.g. steep topography, coast-lines, and strong 

seasonal cycle in monsoon regions). Discarding these sites significantly improves the global ERA-Interim and GPS comparison 20 

results. The selection of site a priori, based on the representativeness error statistic, is able to detect 11 out of the 15 sites and 

improve the comparison results by 20 to 30%. 

1. Introduction 

Quantifying the global atmospheric moisture distribution and its variability across time scales remains a challenge to the 

climate community. Atmospheric reanalyses offer a comprehensive representation of the various components of the 25 

hydrological cycle, among which precipitation and evaporation are the dominant terms at the larger space and time scales. 

However, both quantities result from model integrations and are not strongly constrained by observations (Trenberth et al., 

2011). The difference of precipitation minus evaporation corresponds to the net vertically integrated atmospheric moisture 

convergence, a quantity which can also be computed from analysed three-dimensional moisture and wind fields which benefit 

directly from the assimilation of observations (Trenberth and Fasullo, 2013). However, due to the high spatiotemporal 30 
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variability of atmospheric moisture, the quality of moisture fields in the reanalyses remains limited, especially in data-sparse 

areas (Trenberth et al., 2005; Meynadier et al., 2010).  

 Ground-based Global Positioning System (GPS) Integrated Water Vapour (IWV) observations have been used for some 

time as an independent validation source for global atmospheric reanalyses over limited regions and periods (Hagemann et al., 

2003; Bock et al., 2005; Heise et al., 2009; Bock and Nuret, 2009; Bock et al., 2016) and moist atmospheric process studies 5 

(Bastin et al., 2007; Bock et al., 2008; Koulali Idrissi et al., 2012; Means, 2013; Adler et al., 2015; Khodayar et al., 2018). 

More recently, the value of continuous long time series of GPS IWV data has been investigated for the purpose of studying 

global and regional climate variability and validating climate models (Nilsson and Elgered, 2008; Vey et al., 2009; Roman et 

al., 2012; Ning et al., 2013; Chen and Liu, 2016; Wang et al., 2016; Parracho, 2017; Bastin et al., 2018). These studies reported 

various levels of agreement between GPS and atmospheric models/reanalyses making it difficult to draw general conclusions 10 

on the consistency between products. Indeed, the results depend on the model horizontal and vertical resolution, the method 

employed (or not employed) for the correction of vertical displacement between the model grid points and stations, and the 

considered geographical area and period of time. Though tThe influence of the model horizontal resolution suggests that 

representativeness differences exist between the model gridded data and station point observations. Such situation is commonly 

faced in data assimilation  when the station observations capture small-scale variability that is not resolved by the numerical 15 

model (Lorenc, 1986; Janjić and Cohn, 2006; Waller et al., 2014). In this context it is tradition to include the representativeness 

error into the observation error in addition to the instrument error. For observations of highly variable fields such as humidity, 

representativeness errors can be considerably larger than instrument error and are state dependent and correlated in time (Janjić 

and Cohn, 2006). A proper treatment of representativeness errors, especially for humidity observations, is thus expected to 

improve the assimilation scheme (Waller et al., 2014). To our knowledge, representativeness errors of IWV observations, 20 

either from ground-based GPS or satellites, have not been discussed in this context. Representativeness errors arise also when 

measurements from different instruments are compared. This situation has been discussed for IWV measurements, e.g., by 

Liou et al., 2001, and Buehler et al., 2012. The representativeness errors represent in this case the effect of measurements not 

being perfectly co-located in space and time and using different sampling/measurement characteristics (e.g. point measurement 

vs. average over area/volume, instantaneous vs. time average; Buehler et al., 2012).  25 

 In the present study, we seek at analysing differences in daily IWV from ground-based GPS observations and the ECMWF 

global reanalysis, ERA-Interim (Dee et al., 2011), and identifying the proportion due to representativeness errors. In this 

context, we consider the GPS IWV observations as the reference and attribute the source of the representativeness errors to 

the coarse spatial resolution of the reanalysis. This choice is arbitrary and the results could be interpreted the other way round. 

Since GPS observations and model fields do not represent exactly the same quantity, representativeness errors can also be 30 

understood as representativeness differences more generally. Representativeness differences set a limit on the best achievable 

agreement between global reanalyses and station observations., representativeness errors in IWV data have not so far carefully 

assessed in these studies. Representativeness differences arise when the station observations capture some small-scale 

variability that is not resolved by the model/reanalysis. Indeed, model values are representative of spatial averages.  
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Among the motivations of this work, one is to explain the Llarge biases systematic differences (biases) between GPS and 

atmospheric models are thus often observed in coastal and mountainous regions (Hagemann et al., 2003; Bock et al., 2005; 

Parracho et al., 2018). In coastal areas, model grid cells can contain a fraction of IWV over sea not consistent with the GPS 

observations over land. In mountains, the model IWV can be strongly biased compared to GPS observations made in valleys 

or uphill. Biases amount typically to -40% IWV per km of height difference (Bock et al., 2005). Since model values are 5 

computed above a smoothed orography, which can strongly depart locally from the real topography, a vertical correction is 

generally must be applied within a limited altitude range (e.g. ± 500 m), . Vertical correction is especially important for 

variables such as IWV because the water vapour mixing ratio is the largest in the atmospheric boundary layer. Variation of 

biases/differences between GPS and models is also observed as a function of latitude and season (Roman et al., 2012; Ning et 

al., 2013; Parracho et al., 2018). Absolute IWV differences have a tendency to be larger in moister and warmer regions/periods 10 

while relative differences tend to be larger in colder and drier regions/period, globally. The reasons for these spatial and 

temporal variations are not clearly understood yet, though it can be guessed that. There are a multitude of possible explanations. 

For instance, the atmospheric processes the IWV fields in the model/reanalysis do not have the same quality in can be less 

well represented in the model/reanalysis (model errors) in some all regions of the globe and all periods of the year, the 

representativeness differences can be for some unknown reason enhanced, . Similarly, the GPS IWV estimates can have 15 

increased measurement and/or processing errors can change over space and time (e.g. during disturbed/severe meteorological 

events the mapping function errors would be larger (Boehm et al., 2007)), etc.  

 The primary goal of this study is thus to analyse the consistency global of daily IWV data better understand to which extent 

model errors, GPS errors, and representativeness errors can be distinguished, what is the limit set by representativeness 

differences on the best achievable agreement between from the ERA-Interim global reanalysies and GPS station observations, 20 

and explain their contribution of representativeness errors/differencesto the geographical and seasonal dependencies reported 

in previous publications. To this purpose we analyse the differences in IWV data from the ECMWF reanalysis, ERA-Interim 

(Dee et al., 2011), and from a global network of 120 GPS stations (Bock, 2016). We use simple statistics (mean differences 

and standard deviations, such as found in most past studies) to quantify the consistency differences between both datasets. We 

investigate the dependence of these statistics upon latitude, altitude, and time, as well as mean atmospheric moisture content 25 

and its spatial and temporal variability. A representativeness error statistic is introduced which quantifies the spatial variability 

in the ERA-Interim data at the surrounding grid points and explains partly to a good degree the observed differences between 

the reanalysis and the observations. All the statistics are computed over a period of 16 years because we want to characterize 

the systematic ERA-Interim minus GPS differences and not their changes over time (e.g. due to inhomogeneity and/or changes 

in the quality in either of the datasets). The changes over time are small in magnitude (Parracho et al. 2018) and have negligible 30 

impact on the average statistics computed here. After establishing the contribution of representativeness errors, we address the 

following specific questions: 1) by which means is it possible to mitigate the representativeness errors? 2) does horizontal 

interpolation of model values degrade or increase their the representativeness errorin comparison to nearby point station 

observations? 3) can we separate outlying results (e.g. sites with extreme biases and dispersion) be explained as special due to 
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enhanced representativeness errors or are they rather due to model or those due to enhanced GPS instrument observation 

errors? To tackle this question, the seasonal variation of the comparison statistics and of the atmospheric environment (mean 

IWV and variability) is also analysed. 4) how efficient is the representativeness error statistic in detecting these outlying sites? 

The results from this study are important to various applications homogenization work where IWV data from reanalyses and 

GPS observations are used jointly. For example, recent attempts have been made to use the ERA-Interim reanalysis  (Vey et 5 

al., 2009; Ning et al., 2016; Van Malderen, 2017). Indeed, large representativeness differences put a limit to the use of 

reanalyses data as a reference for detecting breaks in the GPS time series (Vey et al., 2009; Ning et al., 2016; Van Malderen, 

2017). Outlying sites should be detected and discardedinspected more carefully to determine if the causes for the discrepancy 

are rather with GPS instrument errors or with reanalysis representativeness errors. This study may also contribute to a better 

treatment of ground-based GNSS observation error in data assimilation (in this case interpreting the representativeness error 10 

as an observation error), e.g. by establishing a parametric model of observation error depending on the spatio-temporal 

variability of IWV around the GNSS site computed from the model fields. 

 The paper is organised as follows. Section 2 describes how the IWV data from the two datasets are prepared. Special effort 

is made to use a procedure that maximizes the consistency between the datasets. Section 3 presents the results of IWV 

difference statistics and analyses their dependence upon a variety of parameters. General tendencies are derived that describe 15 

the consistency between the reanalysis and GPS globally. Section 4 introduces a range check which detects 15 outlying sites 

for which the IWV differences are especially large. The geographic, topographic, and seasonal characteristics of these sites 

are analysed and site-specific representativeness errors are highlighted. Section 5 discusses the possibility for detecting 

outlying sites a priori and concludes.  

2. Data and methods 20 

2.1 GPS 

In this study we use the tropospheric delay estimates from the first reprocessing of the International GNSS (Global Navigation 

Satellite System) Service (IGS), referred to as IGS repro1 (Byun and Bar-Server, 2009; IGSMAIL-6298). It includes results 

for 456 stations over the period from January 1995 to December 2010. Because we are interested in characterizing the 

systematic differences between GPS and atmospheric reanalyses, a sub-set of 120 stations which have the longest time series 25 

(16 years) is extracted. The Zenith Tropospheric Delay (ZTD) estimates, which are available with a time sampling of 5 minutes, 

are first screened for outliers as described in Parracho et al., 2018, and averaged in hourly bins centred on the round hours (00 

UTC, 01 UTC…). Next, the hourly ZTDs are converted to IWV using 6-hourly surface pressure, Ps, and weighted mean 

temperature, Tm, computed from ERA-Interim pressure level data (see Appendix B in Parracho et al., 2018). No temporal 

interpolation is applied here so that only the 1-hourly ZTD estimates matching the times of the reanalysis (00 UTC, 06 UTC…) 30 

are converted. Finally, the daily IWV values are computed from five 6-hourly values between 00 UTC of the current day and 

00 UTC of the next day, with weights 1/8, 1/4, 1/4, 1/4, 1/8, respectively. Monthly averages are computed directly from the 6-
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hourly values within the given month to the condition that at least 60 values are available (similar to Parracho et al., 2018). As 

already mentioned above, inhomogeneities in the GPS IWV time series due to equipment changes are not corrected here. This 

does not impact the conclusions since we analyse only overall statistics (means and standard deviations) computed over 16 

years but not linear trends and the data have been screening beforehand. Figure 1 shows the stations used in this study. The 

GPS coordinates, the altitudes of the reanalysis grid points in the vicinity of the GPS stations, and the number of daily and 5 

monthly values for each station are given in the Supplement Table S1. 

2.2 ERA-Interim reanalysis 

ERA-Interim is a modern reanalysis produced by ECMWF using the Integrated Forecasting System (IFS) forecast model and 

the 4D-Var assimilation system in 12-hourly analysis cycles (Dee et al., 2011). The number of observations has increased from 

106 in 1989 per day to 107 per day in 2010. The majority of data, and most of the increase over time, are from satellites. 10 

Ground-based GPS data were not assimilated, which make the GPS ZTD and IWV an independent validation dataset. We use 

ERA-Interim analysis pressure-level data (geopotential, air temperature and specific humidity) extracted from the 

Meteorological Archival and Retrieval System (MARS) on a regular latitude-longitude grid with a horizontal resolution of 

0.75° x 0.75°. For each and every GPS site, 6-houly ERA-Interim fields are extracted for the four grid points surrounding the 

GPS station. The IWV contents are computed by integrating the reanalysis specific humidity between the GPS station altitude 15 

and the top of atmosphere (1 hPa). For GPS station altitudes located between two pressure levels the ERA-Interim data at the 

station is interpolated from the adjacent levels. For stations located below the lowest pressure level (1000 hPa), the reanalysis 

data is extrapolated. Interpolation and extrapolation are done linearly for specific humidity and temperature, and 

logarithmically for geopotential, as a function of pressure. To insure the best spatial matching between GPS and ERA-Interim 

data, the IWV estimates from the four grid points surrounding the GPS station, IWV1 to IWV4, are combined by bi-linear 20 

interpolation, resulting in a value denoted by IWVinterp. Daily and monthly IWV values are computed afterwards in the same 

manner as for the GPS IWV data (see above). 

2.3 Comparison method 

Daily and monthly time-matched IWV values from GPS and ERA-Interim are compared for each and every station and overall 

statistics are computed using the full time series (16 years). The overall statistics reveal the systematic or persistent biases and 25 

discrepancies between the two datasets. The goal is to identify the main causes of differences among the representativeness 

differences, errors in the GPS data, and deficiencies in the reanalysis (e.g. in data-sparse regions). The identification of 

representativeness differences is made by inspection of a number of statistics and their dependence upon characteristics of the 

GPS station’s environment: moist or dry climate (measured by the mean IWV), strength of temporal variability (measured by 

the standard deviation of IWV and of its first derivative), and spatiotemporal variability of IWV in the vicinity of the station. 30 

The latter is computed from the ERA-Interim IWV values at the four grid points surrounding the GPS stations. The maximum 

absolute deviation of the four IWV values, denoted 𝛿𝑚𝑎𝑥𝐼𝑊𝑉, can reach values as extreme as 18 kg m-2 in situations of strong 
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large-scale moisture transport (e.g. in the case of tropical plumes reaching the mid-latitudes). When averaged over one year, 

the quantity 𝜇𝑅 = mean (𝛿𝑚𝑎𝑥𝐼𝑊𝑉) is around 2 kg m-2 for a typical mid-latitude station and grows up to 6 kg m-2 for stations 

located in regions of complex topography (e.g. station AREQ in the Andes Cordillera). This quantity is referred to as the 

“representativeness error statistic” in the following. 

 All the statistics are defined by equations in Appendix A. The values computed for each station are given in the Supplement 5 

Table S2. They may be useful to readers who want to make their own statistical analysis of our results and/or detect outlying 

sites based on different thresholds than those we used in Section 4. 

3. Analysis of the general tendency of IWV differences 

The mean and standard deviation of IWV differences (ERA-Interim minus GPS) for all 120 stations over the 16-year period 

are shown in Figs. 2 to 5. Figure 2 shows the results as a function of station latitude. The general tendency is depicted by the 10 

fitted polynomials (the outlying stations, defined beyond the red dotted lines,will be discussed in Section 4). The different 

plots show a clear dependence of the results on latitude. The mean difference (Figs. 2a, c) is positive at northern and southern 

extra-tropical latitudes (30-80°N and 30-60°S) while it is negative in the inter-tropical band (30°S – 30°N). This result is 

consistent with the results of Schröder et al. (2016) who compared ERA-Interim to satellite data. The alternation of positive 

and negative differences is most likely due to biases in the ERA-Interim reanalysis reflecting the difference in moisture 15 

information entering the reanalysis over ocean (mainly microwave satellite data) and land (mainly radiosonde and infrared 

satellite data) (Dee et al., 2011). Indeed, the tropical GPS stations used here are mostly representative of oceanic areas while 

the extra-tropical GPS stations are mainly continental. Similar biases in ERA-Interim were also highlighted by Trenberth et 

al., 2011, and Parracho et al., 2018, in comparison to other atmospheric reanalyses. The biases remain small, however (below 

±1 kg m-2 or ± 10%). The absolute standard deviation of IWV differences (Fig. 2b) also shows a latitudinal variation with two 20 

peaks, around 30°S and 30°N, and dips around the equator and towards the poles. The equatorial dip is more marked in the 

relative standard deviation plot (Fig. 2d) because the mean IWV is the largest at these altitudes (~ 40 kg m-2, see the blue 

dashed line in Fig. 2c). The enhanced discrepancy between ERA-Interim and GPS daily IWV estimates in the sub-tropics 

coincide quite well with the highest day-to-day variability in both hemispheres (see the superposed blue lines in Figs. 2b, d). 

This strong day-to-day variability is mainly due to the moisture transport associated with the extra-tropical cyclones in the 25 

northern and southern hemisphere storm tracks (Chang et al., 2002; Pfahl et al., 2014). It is not uncommon to observe IWV 

variations exceeding 20 kg m-2 day-1 at GPS sites located in the storm track (Bock et al. 2005; Bock et al. 2016). Increased 

discrepancy between ERA-Interim and GPS at those sites can be due to the imperfect spatiotemporal location of such large 

moisture variations in the reanalysis or to a representativeness difference between the GPS observations and the reanalysis. 

No systematic increase in GPS formal error was found in these situations, i.e. the discrepancy is not due to GPS errors. 30 

 Figure 3 shows the mean and standard deviation of IWV differences as a function of altitude of the GPS stations. The mean 

differences (Fig. 3a, c) show no dependence on altitude, meaning that the method of computation of GPS IWV (from ERA-
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Interim Ps and Tm estimates) and ERA-Interim IWV (from pressure levels) are highly consistent throughout a large altitude 

range. The standard deviation (Fig. 3b) shows no dependence on altitude either but the relative standard deviation (Fig. 3d) 

does. The fitted straight line in Fig. 3d shows that this statistic is increasing quite fast as a function of altitude. This tendency 

can be explained by larger representativeness differences errors in the reanalysis humidity field as a function of altitude as also 

found by (Waller et al., (20134) in the Met Office high-resolution UK variable resolution model. 5 

 Figure 4 shows the standard deviation of IWV differences, 𝜎∆, as a function of a few other parameters which give further 

insight into possible reasons for the discrepancy between GPS and ERA-Interim. Figures 4a and 4b indicate that, apart from 

the outliers, there is a moderate tendency for increased discrepancy with increased mean IWV (i.e. warmer and moister climate) 

and increased IWV variability (including the seasonal variations). The slope of the tendency is actually steeper at the lower 

IWV bound (mean IWV < 25 kg m-2) corresponding to mid and high latitude sites, while it vanishes at the upper bound, 10 

corresponding to inter-tropical sites (mean IWV ≥ 25 kg m-2). The standard deviation of IWV differences reaches a nearly 

constant level of 𝜎∆ ≈ 2 kg m-2 throughout the equator and the inter-tropical band. This finding shows that mid-latitude results 

should not be extrapolated towards the equator (a mistake which has been made in several past studies and led to the erroneous 

statement that IWV differences increase towards the equator due to the increasing mean IWV). Figure 4c shows that there is a 

strong tendency for increased discrepancy with increased spatiotemporal variability around the GPS site measured by 𝜇𝑅 (see 15 

Section 2.3). This interrelation is actually the strongest among all the tested relations between 𝜎∆  and other statistics. It 

indicates that representativeness differences are a major source of discrepancy between GPS and ERA-Interim IWV estimates. 

Finally, Fig. 4d shows that there is only a small tendency for increased discrepancy with increased GPS formal errors.  

 Figure 5 shows that time averaging is a means of reducing the representativeness differences, as smaller scale local features 

captured by the GPS point observations get smoothed out. The mean differences (Figs. 5a, c) are not impacted by the averaging, 20 

as expected. The standard deviation of differences (Figs. 5b, d) on the other hand decrease for the monthly averages, both in 

absolute and relative units, at all sites. The median standard deviation of the daily IWV differences (ERA-Interim minus GPS) 

is 1.2 kg m-2 while the value for the monthly series is 0.51 kg m-2. The reduction of standard deviation due to averaging is 2.35 

which is smaller than the value of √30 = 5.48 that one would expect with independent normally distributed data (when 

averaging over a mean month of 30 days). This inconsistency can be due to the serial correlation in the IWV differences 25 

revealing a dependence of the IWV differences upon the meteorological situation. This point might be further investigated by 

e.g. separating the IWV differences in different weather regimes. Another means of reducing the discrepancy due to 

representativeness differences is to use a reanalysis with higher spatial resolution and improved physics representing the 

smaller scale atmospheric processes. We compared for instance daily GPS IWV data to the AROME West-Mediterranean 

operational analysis of Meteo-France (this model has a horizontal resolution of 2.5 km x 2.5 km) and found a median standard 30 

deviation of difference of 0.81 kg m-2 over a period of 2 months (we used the GPS and AROME data from the HYMEX Special 

Observing Period, 5 September – 6 November 2012, described in Bock et al., 2016). The median standard deviation of GPS-

ERAI differences over 12 stations in the same domain amounts to 0.98 kg m-2, so there is clear benefit of higher resolution and 

more modern physics. 
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 Since representativeness differences impose a strong limitation on the agreement between GPS and reanalysis, one may 

wonder if the horizontal interpolation from the four surrounding ERA-Interim grid points does not further enhance the 

differences by mixing information from the different grid points. We investigated this question by computing the statistics for 

each of the four surrounding grid points. Figure 6 shows the results in comparison to the results obtained with the bi-linearly 

interpolated IWV values. The comparison of the mean values (Figs. 6a and 6b) emphasizes large variations in the biases at 5 

some stations which will be further discussed in Section 4. The slight shift of the ensemble of results below the 1:1 line is 

reflecting the fact that a majority of sites exhibit small positive bias (0.47 kg m-2 on average) as already noticed in Figs. 2a, c, 

which is not due to representativeness differences but rather to the type of assimilated data (see Section 3). The comparison of 

standard deviations (Figs. 6c and 6d) shows unambiguously that at almost all sites, the results for the bi-linearly interpolated 

IWV values are better than for any one of the four surrounding grid-points (almost all results sit above the 1:1 line). This 10 

conclusion holds for 112 out of 120 stations for the absolute standard deviation (Fig. 6c) and 111 out of 120 stations for the 

relative standard deviation (Fig. 6d). It indicates that the temporal variability represented by the bi-linearly interpolated ERA-

Interim IWV data matches best the temporal variability observed by the GPS (i.e. better than from the nearest grid point in the 

horizontal or in the vertical dimension). When monthly IWV data are compared (not shown), the conclusions are similar, 

though the number of sites of improved results drops to 71 out of 120 (both for absolute and relative standard deviations). The 15 

drop confirms again that the representativeness differences can be reduced by the temporal averaging. 

4. Analysis of outlying sites 

In the previous section we have seen that the general agreement between GPS and ERA-Interim is limited by representativeness 

differences which are enhanced in regions of strong temporal variability (Figs. 2b, d), at higher altitude (where mainly the 

relative standard deviation of differences is impacted, Fig. 3d), and at sites where the mean spatial variability at the 4 20 

surrounding ERA-Interim grid points is large (Fig. 4c). The standard deviation of differences, 𝜎∆, is actually well predicted by 

our representativeness error statistic, 𝜇𝑅 , with a linear correlation coefficient of 𝑟(𝜎∆, 𝜇𝑅) = 0.73. This strong correlation 

suggests that the outlying sites, i.e. sites with the largest discrepancy, may have enhanced representativeness errors (Fig. 4c). 

To investigate this idea, we will analyse in more detail these sites here. First, let us define range limits for each of the four 

statistics of differences to separate the acceptable sites (i.e. those satisfying the following conditions) from the outliers: 25 

-1 kg m-2 < 𝜇∆ < 2 kg m-2 

-6% < 𝜇∆
𝑟  < 12% 

𝜎∆ < 2.1 kg m-2 

𝜎∆
𝑟 < 18% 

The values of the limits were determined from visual inspection of Figs. 2, 3, and 5, and shown as the red dotted lines in these 30 

figures. The method is subjective, but the chosen values permit to well separate the acceptable from outlying results 

independently of the latitude and altitude of the sites. The choice for the limits is subjective because we think that the results 

Mis en forme : Normal
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are very unpredictable when analysing a global network (due to the variety of climates, equipment, and reanalysis 

performance). So it is necessary to inspect visually the results and determine the limits beyond which the results do not look 

“normal”. We believe this approach is quite robust thanks to the combination of several representations of the results such as 

shown in Figure 2-6 (i.e. function of latitude, altitude, mean vs. std. scatter plots, etc.). This methodology can be safely applied 

to other datasets. The reason why we chose non-symmetric limits with respect to zero for the mean differences is because the 5 

distribution is not centred on zero. The result is a detection of 15 outlying sites, some of which exceed the limits in more than 

one test: 3 sites have excessive absolute bias (CFAG, KIT3, and SANT); 9 sites have excessive relative bias (CFAG, COSO, 

DAV1, KIT3, MAW1, MCM4, POL2, SANT, and SYOG); 8 sites have excessive standard deviation of differences (AREQ, 

BLYT, CFAG, DHLG, IISC, KIT3, LONG, and SANT); and 9 sites have excessive relative standard deviation of differences 

(AREQ, CFAG, KIT3, MAW1, MCM4, MKEA, POL2, SANT, and SYOG). Three sites have statistics exceeding the limits 10 

in all four tests (CFAG, KIT3, and SANT). Two of these sites (CFAG and KIT3) are also characterized by among the largest 

representativeness error statistics (Fig. 4c). The time series of IWV and IWV differences for four of the worst cases (CFAG, 

KIT3, MCM4, and SYOG) can be found in Figure B2 of Parracho et al., 2018. 

 Figure 7 shows the values of the four comparison statistics for the 15 outlying cases for the bi-linearly interpolated ERA-

Interim values and also from the values at the four surrounding grid points (ordered by increasing distance to the GPS station). 15 

The results are grouped by region as outlying sites appear to form several clusters located in specific areas of the globe (see 

Fig. 1). In addition to the four statistics (Figs. 7a to d), we included the altitudes of the GPS stations, ℎ𝐺𝑃𝑆, and of the four 

surrounding grid points (Fig. 7e). The above-chosen range limits are superposed in Figs. 7a to d, and a range limit for the 

altitudes is indicated as ℎ𝐺𝑃𝑆 ± 500 m (Bock et al., 2014). 

 AREQ , SANT, and CFAG are all three located in the Andes cordillera, with AREQ (ℎ𝐺𝑃𝑆 = 2470 m) and SANT (ℎ𝐺𝑃𝑆 = 20 

696 m) on the western flank of the mountain range facing the sea, and CFAG (ℎ𝐺𝑃𝑆 = 680 m) on its eastern flank. The local 

topography peaks above 3000 m, 4000 m, and 3000 m within a radius of 100 km from these three sites, respectively. The 

altitudes of the four surrounding ERA-Interim grid points are very variable (Fig. 7e), and for AREQ (SANT), all (some) of 

them are exceeding the altitude range limit. At AREQ, absolute and relative standard deviations of the interpolated data exceed 

slightly the limits, with 𝜎∆ = 2.4 kg m-2 and 𝜎∆
𝑟 = 21 %, while the bias is almost zero. Moreover, most of the statistics at the 25 

four surrounding grid points exceed the range limits. There is thus a significant representativeness difference between the four 

grid points which is not surprising given the steep orography and the very different altitudes of the grid points. Three of the 

grid points are actually located more than 500 m higher than the GPS station. For these grid points, the validity of the lower 

pressure level data can be questioned as the atmospheric variables are extrapolated far below the model’s surface. The results 

at SANT have similar issues with biases again correlated with variations in the model topography. At both sites, issues with 30 

the GPS measurements were eliminated by verifying their consistency with collocated DORIS measurements (Bock et al., 

2014). Compared to AREQ and SANT, CFAG has much worse results and gets actually the worst statistics of all 15 sites: 𝜇∆ 

= 5.8 kg m-2, 𝜇∆
𝑟  = 35 %, 𝜎∆ = 3.7 kg m-2, and 𝜎∆

𝑟 = 22 %. Contrary to the previous sites, the results for the four grid points are 

very similar, though the biases vary slightly (from 5.9 to 4.1 kg m-2), which suggests that the discrepancy at this site may not 
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be due that much to spatiotemporal variability in the IWV field. Problems with the GPS measurements cannot be excluded at 

this site and should be checked by comparison with independent observations.  

 Further insight into the nature of the discrepancies is given by inspection of the seasonal variation of the comparison 

statistics (Fig. 8) and of the atmospheric environment (Fig. 9). Figure 8 shows that at all three sites, the biases and standard 

deviations vary over the year, in relation with the variation of the mean IWV (𝜇𝑊 , Fig. 9a) and the day-to-day variability (𝜎𝑊 5 

and 𝜎𝑑𝑊/𝑑𝑡, Figs. 9b and 9c, respectively). Both the 𝜇∆ and 𝜎∆ are peaking when 𝜇𝑊 is peaking, during the austral summer 

months. The relative differences, 𝜇∆
𝑟  and 𝜎∆

𝑟, and IWV variability, 𝜎𝑊
𝑟  and 𝜎𝑑𝑊/𝑑𝑡

𝑟 , are peaking in winter when the mean IWV 

is low. Inspection of 𝜇𝑅 (Fig. 9d) confirms the strong impact of spatiotemporal variability at all three sites, but especially at 

AREQ where it is the largest among all sites (peaking at 𝜇𝑅= 6.4 kg m-2). It is noticeable that at CFAG the yearly mean and 

the seasonal cycle of IWV in ERA-Interim are larger than observed by GPS (Fig. 9a), which suggests that a representativeness 10 

difference is most likely the explanation rather than GPS measurement issues evoked above. 

 The next two sites, KIT3 (ℎ𝐺𝑃𝑆  = 659 m) and POL2 (ℎ𝐺𝑃𝑆  = 1755 m), are located in Uzbekistan and Kyrgyzstan, 

respectively, close to the Alai/Tien Shan mountain range. They both show large difference statistics, with 𝜇∆, 𝜇∆
𝑟 , 𝜎∆, and 𝜎∆

𝑟 

exceeding the limits for KIT3 and 𝜇∆
𝑟  and 𝜎∆

𝑟 for POL2 (Figs. 7a to 7d). Considering the individual grid points, they almost all 

also exceed the limits, with large variations both in the bias and standard deviation at KIT3, with somewhat smaller differences 15 

at POL2. These variations can again be related to variations in the grid point altitudes, some of which exceed the range limits 

(Fig. 7e). The difference statistics at these sites exhibits large seasonal variations, with 𝜇∆, 𝜇∆
𝑟  and 𝜎∆, peaking in boreal summer 

(Fig. 8) when 𝜇𝑊 and 𝜇𝑅 are peaking (Fig. 9). The representativeness error statistics peaks are particularly marked at these 

stations, with KIT3 showing the largest monthly values among all sites (𝜇𝑅,𝑖 = 8.8 kg m-2 in August, Fig. 9d). At this site, the 

GPS measurements were also verified with collocated DORIS measurements (Bock et al., 2014), confirming that 20 

representativeness differences between ERA-Interim and GPS IWV data are the main reason for this discrepancy. Interestingly, 

it can be noticed that the peak in IWV during summer is significantly larger in ERA-Interim compared to GPS (Fig. 9a), 

suggesting excessive moisture transport into this region in the reanalysis, possibly connected with the too smooth topography 

in the model. 

 The next five sites belong to two geographical regions: IISC, in India, and DHLG, BLYT, LONG, and COSO in California, 25 

USA, which are all characterized by small discrepancies with only one statistic exceeding the range limits (𝜎∆ for the first four, 

and 𝜇∆
𝑟  for COSO). At all five sites, the variation of statistics among the four grid points are small (Figs. 7a to 7d), as are the 

variations of the altitudes (Fig. 7e). Station IISC shows a small seasonal variation in the bias and standard deviation (Fig. 8) 

which might be linked to the variation in IWV temporal variability (Figs. 9b, c, e, f) and spatiotemporal variability (Figs. 9d 

and g) that show peaks in spring and autumn, i.e. during transitions seasons between the summer monsoon (June to October) 30 

and the cooler winter season (December to March). It has been shown previously that monsoon transition periods are 

accompanied by strong spatial and temporal variability in IWV which is difficult to represent in atmospheric reanalyses (Bock 

et al., 2008; Bock and Nuret, 2009; Meynadier et al., 2010; Means, 2013). 
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 The four outlying Californian sites can be separated into two groups: DHLG, BLYT, and LONG, located south of the Sierra 

Nevada mountain range, in a region of moderate topography, and COSO located in the Basin and Range Province, a narrow 

valley at the southern exit of the Sierra Nevada. The higher altitude (1485 m) and more complex topographic environment of 

COSO enhances the representativeness differences. Interestingly, all four sites show a step-like variation of the mean IWV 

and variability (Figs. 9a, b, c) peaking in July-August-September associated with the North American monsoon (Adams and 5 

Comrie, 1997; Means, 2013). This feature is very contrasting with the Indian monsoon observed at IISC where variability was 

enhanced during the transition seasons and not during the monsoon. At DHLG and BLYT the biases actually reverse signs in 

July-August (Figs. 8a, b) and the standard deviation peaks at 𝜎∆ > 4 kg m-2 (Fig. 8c). Figure 9b and c show that ERA-Interim 

underestimates IWV variability at these sites which suggests that GPS observations capture some small-scale moisture 

variability not represented in the reanalysis. 10 

 The next site, MKEA (ℎ𝐺𝑃𝑆 = 3730 m) is located on the Mauna Kea volcano on the island of Hawaii. Due to smallness of 

the emerged land area (ca 104 km2), the imprint of the island is almost inexistent in the reanalysis’ topography (Fig. 7e). Hence, 

it is not surprising that the comparison statistics are bad (although only 𝜎∆
𝑟 is exceeding the range limits). The relative IWV 

differences are huge (Figs. 9e and f) when computed with respect to the low GPS IWV content of this high altitude site.  

 The last group of sites is located in eastern Antarctica (Fig. 1). Unfortunately, four of the five Antarctica sites used in this 15 

study suffer from large discrepancies. Three of them have two statistics (𝜇∆
𝑟  and 𝜎∆

𝑟) exceeding the range limits (Figs. 7b and 

d). MCM4 is the worst case and has the largest relative standard deviation among all 15 sites: 𝜎∆
𝑟 = 32%. This station is located 

in McMurdo Detroit, an area with complex landscape, including local low mountain peaks, valleys and glacier corridors, and 

sea within a radius of 100 km. The other three stations are located close to the coast line backed to the main ice shelf with large 

surface elevation variations (up to 2000 m within a distance of 100 km). The grid points in ERA-Interim are at different 20 

altitudes associated with differences in representativeness leading to IWV biases (Fig. 7b). The marked seasonal variation of 

𝜇∆
𝑟  and 𝜎∆

𝑟 (Figs. 8b and d) also confirm a dependence of the IWV differences on the atmospheric state and especially on IWV 

variability which is enhanced during the austral winter months (Figs. 9e and f). The winter variability is actually much 

underestimated in ERA-Interim as seen in Figs. 9e and f at MCM4, SYOG, and MAW1, and, quite surprisingly, the 

spatiotemporal variability, 𝜇𝑅
𝑟 , remains nearly constant in ERA-Interim (Fig. 9g). These differences point to an issue in ERA-25 

Interim IWV contents in Antarctica, especially during austral winter, as also suggested by Parracho et al., 2018, who compared 

ERA-Interim to the NASA Modern Era Retrospective-Analysis for Research and Applications version 2 (MERRA-2) 

reanalysis. These authors also pointed to some issues in the GPS measurements at MCM4 and SYOG between 2002 and 2006, 

as well as a break in the IWV series at all sites in Antarctica due to a discontinuity in the GPS processing. The IWV issues in 

ERA-Interim may be linked to the large surface air temperature biases of the reanalysis diagnosed by Bracegirdle and Marshall, 30 

2012, from coastal station observations which are related to its too smooth orography. In addition, Xie et al., 2016, showed 

that the replicability of daily and annual variance of surface air temperature in this reanalysis decreases from the coast to the 

interior of the continent. These result also support the findings of Parracho et al., 2018, that the IWV variability and trends in 

ERA-Interim reanalysis are more realistic near the coast where in-situ observations are assimilated than in the interior where 
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the reanalysis mainly relies on satellite observations and short-term model forecasts. Representativeness differences between 

GPS and ERA-Interim in Antarctica are thus be enhanced by deficiencies in the reanalysis. 

5. Discussion and conclusions 

In this study we first analysed the general tendency of IWV difference between ERA-Interim reanalysis and global GPS 

observations. We found that the mean difference, interpreted as the bias of the reanalysis with respect to the observations, 5 

exhibits a latitudinal variation of ±1 kg m-2, consistent with the fact that different moisture information is entering the reanalysis 

over ocean and land. As a result, the northern and southern mid-latitudes exhibit a moist bias, while the tropics are to dry. This 

bias is not changing with the altitude of the observation site. The standard deviation of daily IWV differences is generally 

below 2 kg m-2 but peaks at the northern and southern storm-tracks latitudes. This result suggests that GPS observations capture 

some small-scale variability that is not resolved by the reanalysis. Another indication that the discrepancies are process-related 10 

is that the relative standard deviation is increasing with altitude (from about 8% at sea level to 16% at 2.5 km). More generally, 

it is shown that discrepancies are due to representativeness differences between the gridded reanalysis field and the GPS point 

observations. A strong correlation (r = 0.73) is found between the standard deviation of IWV differences, 𝜎∆ , and our 

representativeness error statistic, 𝜇𝑅, which measures the spatiotemporal variability in the vicinity of the GPS site based on the 

analysis of the ERA-Interim IWV data at the four surrounding grid points. However, it is shown that in general (for 112 sites 15 

out of 120), bi-linearly interpolated IWV values from the four surrounding grid points are in better agreement with the GPS 

observations than any of the grid points individually. Even if the horizontal resolution of the reanalysis grid is quite coarse 

(0.75° x 0.75°), spatial interpolation does not reduce the representativeness. It is also shown that the standard deviation of IWV 

differences is further reduced when data are time-averaged (e.g. in monthly bins). Indeed, spatial and temporal averaging 

smooths out the variability due to smaller scale phenomena and make the reanalysis and observations more consistent at 20 

representing the larger-scale meteorological systems. 

 In a second part we analysed in more detail the possible reasons for the very bad comparison results obtained at 15 outlying 

sites. It is shown that at most of the sites, representativeness errors are the most plausible cause for discrepancies which are 

enhanced because of local topographic and climatic features. The problematic topographic features include steep orography 

such as found for sites in the Andes cordillera (AREQ, CFAG, and SANT), on the island of Hawaii (MKEA), close to the 25 

Himalayas chain (KIT3 and POL2), as well as coastal sites in Antarctica (MCM4, SYOG, MAW1, and DAV1). The climatic 

features include large seasonal changes in the total IWV, such as associated with the Indian monsoon (IISC, KIT3, POL2) or 

the North American monsoon (DHLG, BLYT, LONG, and COSO), and/or in the IWV synoptic variability (observed at most 

sites during either the transition seasons, winter, or summer, depending on the geographic location). When these 15 stations 

are eliminated from the dataset, the comparison statistics become: 𝜇∆=0.36 ± 0.49 kg m-2, 𝜇∆
𝑟  = 2.7 ± 3.5 %, 𝜎∆ = 1.22 ± 0.38 30 

kg m-2, and 𝜎∆
𝑟 = 8.2 ± 3.0 % (mean ± standard deviation over the 105 sites). They are significantly improved compared to the 

initial results including the 120 sites: the standard deviations of 𝜇∆ and 𝜇∆
𝑟  are reduced by 30%, the means of 𝜎∆ and 𝜎∆

𝑟 by 
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20% and the standard deviations of 𝜎∆ and 𝜎∆
𝑟 are reduced by 40%. Because the comparison of GPS and ERA-Interim is not 

relevant at these sites, we recommend not to use ERA-Interim in the homogenization process of these GPS time series (Ning 

et al., 2016; Van Malderen et al., 2017) unless the homogenization method explicitly models the seasonality in the bias and 

the non-stationarity of the noise variance (Quarello et al., 2018).. 

 These results lead to a more general question whether it is possible to eliminate problematic stations a priori, i.e. before 5 

the comparison statistics are computed? Inspection of the elevation of the four surrounding grid points with respect to the 

elevation of the GPS station and with respect to each other provides some indication of possible representativeness errors. 

Some correlation between IWV biases and altitudes at the individual grid points was found in extreme cases (Fig. 7). A simple 

a priori check based on the comparison of grid point altitudes to station altitudes would eliminate some of the problematic 

cases. We compared the statistics with and without selection of sites where the elevation of the grid points differs by more 10 

than 500 m from the GPS station. When the selection is applied to the nearest grid point only, 15 stations are eliminated, 

including 4 of the outlying sites discussed in Section 4. This test is not very efficient. When applied to all 4 surrounding grid 

points, 34 stations are eliminated, including 11 of the outlying sites (only CFAG, MCM4, BLYT, and IISC remain then in the 

dataset). On average, the statistics of the mean differences (𝜇∆ and 𝜇∆
𝑟) do not change very much in that case, mainly because 

the stations with the largest absolute and relative biases (CFAG and MCM4) are not eliminated. However, the statistics of the 15 

standard deviation of differences (𝜎∆ and 𝜎∆
𝑟) are reduced by about 20%. However, the benefit is at the expense of a strong 

reduction of the number of sites (34 stations eliminated). Though altitude differences have been shown to explain discrepancies 

at certain stations a posteriori in Section 4, this altitude check appears too excessive to be applied in a systematic way a priori. 

We also tested the use of the absolute and relative representativeness error statistics, 𝜇𝑅 and 𝜇𝑅
𝑟 , and found that a threshold of 

20 % on 𝜇𝑅
𝑟  eliminates 13 stations, including 8 out of the 15 outlying sites, and reduces the error statistics 𝜎∆ and 𝜎∆

𝑟 by 20 to 20 

30 % on average. This outlier check is efficient and is thus recommended. However, none of the checks that we tested was 

able to detect all the 15 outlying sites. Hence, it is also advised to carefully analyse the comparison statistics in order to 

understand the possible causes of discrepancies and eliminate outlying stations a posteriori on a subjective basis as we have 

done in this study. This was possible here because the number of stations was small. In more extended networks, an automatic 

selection method based on e.g. on a clustering algorithm would be necessary.  25 

 Asides from the large representativeness errors found at a small number of sites, one should recognize that ERA-Interim 

and GPS IWV data are generally in good agreement globally, except perhaps in Antarctica where the comparison failed at 4 

sites out of 5. One of the remaining error sources not addressed in this study is the temporal consistency of both data sources. 

Therefore, other statistics are more relevant such as trend estimates (Schröder et al., 2016; Parracho et al., 2018). The 

methodology described in this paper can also be applied to assess the consistency and representativeness of other data sources 30 

(e.g. climate models, satellite IWV data) and other observation types (e.g. surface humidity, temperature, etc.). 

Data availability. GPS IWV data have the following DOI: global GPS IWV data at 120 stations of IGS permanent network, 

https://doi.org/10.14768/06337394-73a9-407c-9997-0e380dac5591 (Bock, 2016). ERA-Interim data can be downloaded at 
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https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim (last access: October 2018; Dee et al., 2011). 

The results presented in the paper are also provided in the Supplement. 

Appendix A:  Definition of variables and comparison statistics 

Throughout this study, the GPS IWV data at a given station is denoted by 𝐼𝑊𝑉𝐺𝑃𝑆 and the corresponding ERA-Interim IWV 

data is denoted  𝐼𝑊𝑉𝐸𝑅𝐴𝐼 . When the subscript is not specified, the IWV data may refer interchangeably to GPS and ERA-5 

Interim. When the ERA-Interim IWV data from four surrounding grid points need be distinguished, subscript 𝑖 is added, with 

i=1..4, and the bi-linearly interpolated value is then denoted by 𝐼𝑊𝑉𝑖𝑛𝑡𝑒𝑟𝑝.  

GPS and ERA-Interim IWV data are analysed using the following statistics, where the mean and standard deviation are 

computed over the number of days (months) of the time-matched daily (monthly) data: 

 The mean and standard deviation of IWV: 10 

𝜇𝑊 = 𝑚𝑒𝑎𝑛(𝐼𝑊𝑉)          (A1) 

𝜎𝑊 = 𝑠𝑡𝑑. 𝑑𝑒𝑣. (𝐼𝑊𝑉)          (A2) 

 The relative standard deviation of IWV: 

𝜎𝑊
𝑟 =

𝑠𝑡𝑑.𝑑𝑒𝑣.(𝐼𝑊𝑉)

𝑚𝑒𝑎𝑛(𝐼𝑊𝑉)
          (A3) 

 The standard deviation and relative standard deviation of IWV time derivate: 15 

𝜎𝑑𝑊/𝑑𝑡 = 𝑠𝑡𝑑. 𝑑𝑒𝑣(𝑑𝐼𝑊𝑉/𝑑𝑡)         (A4) 

𝜎𝑑𝑊/𝑑𝑡
𝑟 =

𝑠𝑡𝑑.𝑑𝑒𝑣(𝑑𝐼𝑊𝑉/𝑑𝑡)

𝑚𝑒𝑎𝑛(𝐼𝑊𝑉)
          (A5) 

The ERA-Interim representativeness error statistic is based on the maximum absolute difference in IWV from the four 

surrounding grid points, 𝛿𝑚𝑎𝑥𝐼𝑊𝑉 = max
𝑖

(𝐼𝑊𝑉𝐸𝑅𝐴𝐼,𝑖) − min
𝑖

(𝐼𝑊𝑉𝐸𝑅𝐴𝐼,𝑖): 

 The absolute and relative mean “representativeness error statistic”:  20 

𝜇𝑅 = 𝑚𝑒𝑎𝑛(𝛿𝑚𝑎𝑥𝐼𝑊𝑉)          (A6) 

𝜇𝑅
𝑟 =

𝑚𝑒𝑎𝑛(𝛿𝑚𝑎𝑥𝐼𝑊𝑉)

𝑚𝑒𝑎𝑛(𝐼𝑊𝑉𝐸𝑅𝐴𝐼,𝑖𝑛𝑡𝑒𝑟𝑝)
          (A7) 

The ERA-Interim minus GPS differences are analysed using the following statistics: 

 The mean and standard deviation of IWV differences: 

𝜇∆ = 𝑚𝑒𝑎𝑛(𝐼𝑊𝑉𝐸𝑅𝐴𝐼 − 𝐼𝑊𝑉𝐺𝑃𝑆)          (A8) 25 

𝜎∆ = 𝑠𝑡𝑑. 𝑑𝑒𝑣. (𝐼𝑊𝑉𝐸𝑅𝐴𝐼 − 𝐼𝑊𝑉𝐺𝑃𝑆)         (A9) 

 The relative mean and standard deviation of IWV differences: 

𝜇∆
𝑟 =

𝑚𝑒𝑎𝑛(𝐼𝑊𝑉𝐸𝑅𝐴𝐼−𝐼𝑊𝑉𝐺𝑃𝑆)

𝑚𝑒𝑎𝑛(𝐼𝑊𝑉𝐺𝑃𝑆)
         (A10) 

𝜎∆
𝑟 =

𝑠𝑡𝑑.𝑑𝑒𝑣(𝐼𝑊𝑉𝐸𝑅𝐴𝐼−𝐼𝑊𝑉𝐺𝑃𝑆)

𝑚𝑒𝑎𝑛(𝐼𝑊𝑉𝐺𝑃𝑆)
         (A11) 
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 In equations (A6) to (A9), the ERA-Interim IWV values can be 𝐼𝑊𝑉𝑖𝑛𝑡𝑒𝑟𝑝 (as in Figs. 2 to 5) or any one of the 𝐼𝑊𝑉𝐸𝑅𝐴𝐼,𝑖  

when individual grid points are discussed (as in Figs. 6 and 7). In Section 4 of the manuscript, statistics from Fig. 7 are referred 

to 𝜇𝑅,𝑖 , 𝜇𝑅,𝑖
𝑟 … when the representativeness error estimates from individual grid points are discussed. 

 The units of the values computed using Eqs. (A1, A2, A6, A8, A9) is kg m-2.  

 The units of the values computed using Eqs. (A3, A10, A11) is % when multiplied by 100.  5 

 The units of the values computed using Eq. (A4) is kg m-2 day-1 and for Eq. (A5) it is % day-1 when multiplied by 100. 

Supplement. This article includes 2 supplement tables. 
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Figures 

 

 

Figure 1. Map showing the 120 GPS stations used in this study. A dynamic map including geographical and technical 

information for all the GPS sites can be found on http://www.igs.org/network. Outlying sites (named in red) are detected using 5 

a range check based on IWV difference statistics (ERA-Interim minus GPS). The grey shading shows the surface elevation 

represented in ERA-Interim, from 0 to 5000 m. 
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Figure 2. (a, c) Mean and (d, d) standard deviation of daily IWV difference (ERAI minus GNSS) for 120 global stations as a 5 

function of station latitude. (a, b) in kg m-2; (c, d) in % of GNSS IWV. The black dashed lines show polynomial fits of order 

5 and 9 for the mean difference and the standard deviation, respectively. The blue dashed lines show polynomial fits of order 

7 for (b) the standard deviation of dIWV/dt (kg m-2 day-1); (c) the mean IWV (kg m-2); (d) the relative standard deviation of 

dIWV/dt (% day-1) computed from GPS IWV data. The red dotted lines show the range-check limits used to detect outlying 

sites (named stations). 10 
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Figure 3. Similar to Fig. 2 but plotted as a function of GPS station altitude. The black dashed lines show linear fits. 

  



22 

 

  

Figure 4. Standard deviation of daily IWV difference (ERAI minus GNSS) for 120 global stations, as a function of (a) mean 

GPS IWV; (b) standard deviation of GPS IWV; (c) mean spatial variability of ERAI IWV from the 4 grid-points surrounding 

the GPS sites used as representativeness statistic (see text); (d) formal error of GPS IWV estimates. Only three outlying stations 

are named on these plots for clarity. 5 
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Figure 5. Mean vs. standard deviation of IWV difference (ERAI minus GNSS) for (a, b) daily values and (c, d) monthly 

values. The median values of mean and standard deviation over all 120 stations are: 0.47 kg m-2 and 1.2 kg m-2 (3.1 and 8.3 

%), for the daily results, and 0.47 kg m-2 and 0.51 kg m-2 (3.1 and 3.8 %) for the monthly results, respectively. The red dotted 

lines show the range-check limits used to detect outlying sites (named stations) in the case of the daily data. 5 
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Figure 6. Scatter plots of (a, b) mean and (c, d) standard deviation of daily IWV difference (ERAI minus GPS) when ERAI 

IWV is bi-linearly interpolated from 4 surrounding grid-points (x-axis) versus the spread of the mean (a, b) or standard 5 

deviations (c, d) for the four surrounding grid-points (y-axis). The spread is plotted as vertical error-bars from the minimum 

to maximum values. In (c, d), vertical bars extending below the 1:1 line indicate sites where at least one of the surrounding 

grid-points is in better agreement with GPS than the bi-linearly interpolated values; the corresponding stations are named and 

indicated by a black dot. The red dotted lines show the range check limits as in previous figures. In (a, b), some of the sites 

with statistics outside the limits indicated by the red dotted lines are named as well. 10 
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Figure 7. (a, b) Mean and (c, d) standard deviation of daily IWV difference (ERAI minus GNSS) for 15 outlying sites grouped 

by region: Andes (cfag, sant, areq), Central Asia (kit3, pol2), India (iisc), western USA (dhlg, blyt, long, coso), Hawaii (mkea), 

and Antarctica (mcm4, syog, maw1, dav1). In plots (a) to (d), the black bars show results for the bi-linearly interpolated ERA-5 

Interim data, and the grey bars the results for the four surrounding grid points, ordered by increasing horizontal distance from 

the GPS station. Plot (e) shows the altitudes of the GPS stations (black bar) and the altitudes of the four surrounding grid points 

(grey bars). The red dotted lines show the acceptable range limits, similar to Fig. 2 for plots (a) to (d), and ± 500 m around the 

GPS station’s altitude in plot (e). 
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Figure 8. Seasonal variation of (a, b) mean and (c, d) standard deviation of daily IWV difference (ERAI minus GNSS) for 15 

outlying sites. The grey bars show the statistics computed for each month (January to December, from left to right) over the 

16-year period. The red dotted lines show the range check limits. 5 
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Figure 9. Seasonal variation of daily IWV data: (a) mean IWV; (b, e) absolute and relative standard deviation of IWV; (c, f) 

absolute and relative standard deviation of IWV derivative; (d, g) absolute and relative mean spatial variability of ERAI IWV 5 

from the 4 grid-points surrounding the GPS sites. The grey (blue) bars show GPS (ERA-Interim) statistics computed for each 

month (January to December, from left to right) over the 16-year period. 


