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General comments 

This manuscript attempts to distinguish contributions from meteorology and emissions 

reduction to PM2.5 trends from 2013 to 2018 in five target regions in China. A multiple linear 

regression model (MLR) is developed using de-seasonalized (by taking 10-day average of 

hourly data) and detrended (by subtracting 50-day moving average of 10-day average from 10-

day average) PM2.5 observations and corresponding five meteorological variables. The 

coefficients and intercepts obtained for each season and grid are applied to de-seasonalized but 

not detrended anomalies of meteorological variables (i.e., 50-day moving average minus 6-year 

average) to calculate PM2.5 anomalies attributable to meteorology. Consequently, residual 

anomalies are attributed to other factors, mainly changes in emissions. The attempt is valuable 

as the research question, contribution from meteorology to the PM2.5 trend, is crucial to East 

Asian countries. Overall, the results with the MLR is acceptable. I would support publication 

of this manuscript with minor revision mostly asking clarification. 

 

Specific comments  

1) L25 ‘minor but significant’: ambiguous expression. Can you add more explanation?  

Thanks. We have rephrased this part to: 

The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can 

be viewed as driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is 

-4.6 μg m-3 a-1 in the meteorology-corrected data, 12% weaker than in the original data. The trends in 

the meteorology-corrected data for the five megacity clusters are: … 

 

2) L26 ‘residual anthropogenic trends’: anthropogenic emissions?  

We have rephrased this sentence to: 

The trends in the meteorology-corrected data for the five megacity clusters are: …  

 

3) Section 2.3: You may consider adding another variable for grid. For now, i represents both 

season and grid which made me difficult to follow at first. Explicit description of Ya,i(t) is 

needed. It is not clear to me whether the anomaly is Ya,i(t) = 50-day moving average – 6-year 

average at the grid or Ya,i(t) = 10-day averge – (50-day moving average – 6-year average) at the 

grid.  

Thanks for pointing this out.  

𝑌𝑎,𝑖 = 10-day average – 6-year average of 50-day moving average;  

An explanation in brackets (Line 134) is added to explain the way to obtain the PM2.5 anomaly 𝑌𝑎,𝑖: 

Consider now the PM2.5 anomaly Ya,i for grid square and season i obtained by deseasonalizing but 



not detrending the PM2.5 data (by removing the 6-year means of the 50-day moving averages), in the 

same way as for the meteorological variables.  

 

4) Figure S2: How come PM2.5 anomalies are greater than deseasonalized and detrended 

PM2.5? It makes sense if Ya,i(t) is as the second definition as I mentioned above.  

PM2.5 anomalies (𝑌𝑎,𝑖) can be greater than deseasonalized and detrended PM2.5 (𝑌𝑑,𝑖 ). 

𝑌𝑎,𝑖 = 10-day average – 6-year average of 50-day moving average;  

𝑌𝑑,𝑖 = 10-day average – 50-day moving average. 

From above we can see that trends are not removed from 𝑌𝑎,𝑖 , and that both trends and seasonal 

variations are removed from 𝑌𝑑,𝑖. Therefore, the difference between PM2.5 anomalies and 

deseasonalized and detrended PM2.5 is that PM2.5 anomalies contain trend information. This is 

clarified in the manuscript in Line130 as: “The anomalies calculated in this manner are 

deseasonalized but not detrended”. 

 

Technical corrections  

L131 K. Li et al. (2019): Couldn’t find this reference. Did you mean Yi et al. (2019)? 

Thanks for pointing this out. We have added this reference in the reference section: 

Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013-2017 trends in 

summer surface ozone in China, Proceedings of the National Academy of Sciences, 116, 422-427, 2019. 
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Anonymous Referee #2 

In this study Zhai et al. use a combination of PM2.5 observations and multiple linear regression 

modelling to analyse the trend in PM2.5 concentration across mainland China during 2013-2018 

and to quantify the meteorological contribution to this trend. Overall the paper is well thought-

out and written, and figures are well presented. The topic of the study is interesting and well 

within the scope of ACP. I recommend publication once the comments below (mostly regarding 

the processing of the data) have been addressed. 

 

1. Abstract, L25: I suggest specifying that the contribution is “statistically” significant, 

otherwise the sentence reads a bit odd. 

Thanks. To make it clear, we have rephrased this part to: 

The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can 

be viewed as driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is 

-4.6 ug m-3 a-1 in the meteorology-corrected data, 12% weaker than in the original data. The trends in 

the meteorology-corrected data for the five megacity clusters are: … 

 

2. Abstract, L26: I think the statement “reduces the uncertainty on the emission-driven trends” 

needs more explanation in the abstract. Earlier in the abstract you refer to the difficultly of 

trend attribution because of the meteorologically driven interannual variability in PM2.5 

concentrations. However, it is not immediately clear what you mean by “uncertainty on the 

emission-driven trends”. (It is worded more clearly in the conclusions section). 

To make it clear, we deleted ‘reduces the uncertainty on the emission-driven trends’, and reworded 

this part in the abstract as: 

The meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can 

be viewed as driven by trends in anthropogenic emissions. The mean PM2.5 decrease across China is 

-4.6 μg m-3 a-1 in the meteorology-corrected data, 12% weaker than in the original data. The trends in 

the meteorology-corrected data for the five megacity clusters are: … 

 

3. Introduction, L52: Please add an explanation to why the PM2.5 concentration is correlated to 

V850, particularly in the NCP. 

Explanation is added in lines 93-94: V850 in particular is a strong predictor of PM2.5 wintertime 

pollution events in the North China Plain, because northerly winds (negative V850) ventilate the 

region with clean dry air (Cai et al., 2017; Pendergrass et al., 2019). 

Added reference: 

Cai, W., Li, K., Liao, H., Wang, H., and Wu, L.: Weather conditions conducive to Beijing severe haze more 

frequent under climate change, Nature Climate Change, 7, 257-263, 2017. 

 



4. Introduction, final paragraph: References to a few papers that have identified/quantified 

recent trends in PM2.5 concentrations across China seem to be missing from the introduction 

(Ma et al., 2019; Silver et al., 2018; Liang et al., 2016). 

Added. Thanks. 

 

5. Section 2.1, L88: Can you give any example references here for these previous studies? 

Example references (Wang et al., 2014; Cai et al., 2017; Shen et al., 2017; Leung et al., 2018; Song 

et al., 2019; Zou et al., 2017) are added. 

 

6. Section 2.1, L90: Why was 70% chosen? It seems quite low to me. Please add some 

justification. Did you do any sensitivity tests changing the threshold to a higher percentage? 

This threshold is aimed to include sites that have continuous observations since early 2013 (mainly 

sites locates in the 74 major cities). We have tried to use data from the 74 major cities and obtained 

identical trend results. I then improved the threshold to 80% and 90% and find that although the 

number of valid sites in each target region decreased a little bit, the pollutants trends have negligible 

differences compared with the trends when the ‘70% threshold’ was used.  

Added justification in Lines 96-97: We did sensitivity tests with data coverage thresholds changing 

from 70% to 90% and obtained similar pollutants trends. To make the most use of available data, 

70% is chosen. 

 

7. Section 2.1, L90-91: As above, can you add some justification for the coarse grid chosen? Is 

this recommended by Tai et al. (2012)? Did you test any other grid resolutions? 

It is recommended by Tai et al. (2012) and Shen et al. (2017). I have tried to use 0.5°×0.625° grid 

resolution. However, finer resolution will result in too few valid grids (grids that have both PM2.5 and 

meteorology observations).  

We have reworded the text in the manuscript as: For the MLR model, we further average all data on 

a 2o×2.5o grid to increase statistical robustness following Tai et al. (2012) and Shen et al. (2017). 

 

8. Section 2.1: I see that you removed severe outliers from the observation dataset but what did 

you do about repeating consecutive values in the dataset (e.g. identified in Rohde and Muller 

(2015)) and day-to-day repeating sequences of values (e.g. identified by Silver et al., 2018)? If 

these were not removed, please at least acknowledge that data issues are likely remain in the 

dataset. 

Reply: Thank you for pointing this out. I then checked the impacts of those consecutive repeats on 

this study. It turned out that these consecutive repeating values have negligible impacts on results in 

this study. Nevertheless, consecutive repeats identified by Rohde and Muller (2015) and Silver et al. 

(2018) are unlikely ‘realistic’ values, and are then removed throughout this study. We removed 

values from the hourly time series when there are >24 consecutive repeats. The threshold of ‘>24 

consecutive repeats’ were chosen by applying a series of thresholds from ‘>4’ to ‘>24’, and we find 

that different thresholds lead to negligible changes in this study results.  

Changes in the manuscript (Line80-83): 

At the end of Section 2.1: There are also occasional consecutive repeats of data that may be caused by 

faulty instruments or reporting (Rohde and Muller, 2015; Silver et al., 2018). Here we removed values 



from the hourly time series when there are >24 consecutive repeats. This in whole removed 7.4%, 

7.0%, 6.4%, and 6.7% of the PM2.5, SO2, NO2, and CO data respectively. 

Added reference: 

Rohde, R. A., and Muller, R. A.: Air pollution in China: mapping of concentrations and sources, PloS one, 10, 

e0135749, 2015. 

 

9. Section 2.1: If each year of data and each station were considered separately when applying 

the 70% data threshold, what does the introduction of more stations/data towards the end of 

the sampling time period (as more stations come online) do to the trends? I realize the data is 

averaged over large grid cells, but introduction of many stations later in the time-series (that 

are not consistent) may impact the trends calculated. Please add some explanation. Did you 

attempt to calculate the trends based only on data from stations that were online in 2013? 

Thanks. This is a good point and we have already considered this in this study. For trend analysis, we 

only retained data from sites with at least 70% of data coverage for each year from 2013 to 2018. 

That is, the selected sites must have at least 70% data coverage for each of the 6 years from 2013 to 

2018 simultaneously. In this way, we are using consistent sites throughout 2013-2018 for trend 

analysis. To make it clear, we have made modifications in Lines 96, 106 & 449: for each of the 6 

years from 2013 to 2018. 

 

10. Section 2.2 and 2.3: I am slightly confused by the explanation of the deseasonalizing and 

detrending process. Perhaps the explanation could be reworded slightly? I have understood it 

as: the data is de-seasonalized and detrended by taking the 50-day moving average from the 

10-day means; whereas the anomalies are deseasonalized (but not detrended) by taking the 6-

year mean 50-day moving average from the 10-day means; is this correct? 

Yes, this is correct. Explanations in the manuscript are reworded as follows: 

P4, Line 112-113: The deseasonalized and detrended time series are obtained by removing the 50-

day moving averages from the 10-day mean time series.  

P5, Line 129-130: We thus apply equation (1) to the meteorological anomalies Xa,i,k, obtained by 

removing the 6-year means of the 50-day moving averages from the 10-day mean time series. 

 

11. Section 3.1: I think this section is really nice and gives some good explanations (with 

references) for the drivers of the changes in pollutants and/or emissions. However, there is no 

comparison with previous studies that have calculated trends in PM2.5 concentrations over 

similar time periods (e.g. Ma et al., 2019; Silver et al., 2018; there may be others). Are the 

calculated trends consistent between studies, despite differences in the data or data processing? 

I understand that the trends are all calculated over slightly different time periods, but at least a 

qualitative comparison should be added to the text. 

Thanks, the following line is added in P9, Line 168-169: Trends in China PM2.5, SO2, and NO2 

presented here are consistent with previous studies (Silver et al., 2018; Ma et al., 2019) that cover a 

shorter time period than 2013-2018. 

 

12. Conclusions: this section is a nice summary of the main points of the paper. However, it 

would make the results even clearer if the percentage difference from the original trend was 



quoted here again as in the abstract and it also might be worth explaining again here what is 

meant by meteorologically corrected data. 

P9, Lines 241-245 are revised as: 

We refer to the data series after removal of meteorological variability as the meteorology-corrected 

data. Thus the 2013-2018 PM2.5 decrease for Beijing-Tianjin-Hebei is -9.3 ± 1.8 μg m-3 a-1 in the 

original data and is 14% weaker in the meteorology-corrected data (-8.0 ± 1.1 μg m-3 a-1). For the 

Sichuan Basin where the meteorological correction is particularly large, the PM2.5 decrease is -6.7 ± 

1.3 μg m-3 a-1 in the original data and is reduced by 27% to -4.9 ± 0.9 μg m-3 a-1 in the meteorology-

corrected data.  

Explanation of the meteorology-corrected data are also added in the Lines 24-26 and in Lines 137-

138. 

 

Additional changes: 

1) References updated or newly added: 

Cheng, J., Su, J., Cui, T., Li, X., Dong, X., Sun, F., Yang, Y., Tong, D., Zheng, Y., Li, Y., Li, J., Zhang, Q., and He, K.: 

Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013-2017: a model-based 

decomposition analysis, Atmos. Chem. Phys., 19, 6125-6146, 10.5194/acp-19-6125-2019, 2019. 

Song, S., Gao, M., Xu, W., Sun, Y., Worsnop, D. R., Jayne, J. T., Zhang, Y., Zhu, L., Li, M., Zhou, Z., Cheng, C., Lv, 

Y., Wang, Y., Peng, W., Xu, X., Lin, N., Wang, Y., Wang, S., Munger, J. W., Jacob, D. J., and McElroy, M. B.: Possible 

heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze, Atmos. Chem. Phys., 19, 

1357-1371, 10.5194/acp-19-1357-2019, 2019. 

Zou, Y., Wang, Y., Zhang, Y., and Koo, J.-H.: Arctic sea ice, Eurasia snow, and extreme winter haze in China, Science 

Advances, 3, e1602751, 10.1126/sciadv.1602751, 2017. 

2) Emission trends in Figure 2 for Pearl River Delta and Sichuan Basin are correctly reversed. 
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Abstract. Fine particulate matter (PM2.5) is a severe air pollution problem in China. Observations of PM2.5 have been 

available since 2013 from a large network operated by the China National Environmental Monitoring Center (CNEMC). The 15 

data show a general 30-50% decrease of annual mean PM2.5 across China over the 2013-2018 period, averaging -5.2 μg m-3 

a-1. Trends in the five megacity cluster regions targeted by the government for air quality control are -9.3 ± 1.8 μg m-3 a-1 (± 

95% confidence interval) for Beijing-Tianjin-Hebei, -6.1 ± 1.1 μg m-3 a-1 for Yangtze River Delta, -2.7 ± 0.8 μg m-3 a-1 for 

Pearl River Delta, -6.7 ± 1.3 μg m-3 a-1 for Sichuan Basin, and -6.5 ± 2.5 μg m-3 a-1 for Fenwei Plain (Xi’an). Concurrent 

2013-2018 observations of sulfur dioxide (SO2) and CO show that the declines in PM2.5 are qualitatively consistent with 20 

drastic controls of emissions from coal combustion. However, there is also a large meteorologically driven interannual 

variability of PM2.5 that complicates trend attribution. We used a stepwise multiple linear regression (MLR) model to 

quantify this meteorological contribution to the PM2.5 trends across China. The MLR model correlates the 10-day PM2.5 

anomalies to wind speed, precipitation, relative humidity, temperature, and 850 hPa meridional wind velocity (V850). The 

meteorology-corrected PM2.5 trends after removal of the MLR meteorological contribution can be viewed as driven by trends 25 

in anthropogenic emissions.  We find that meteorology made a minor but statistically significant contribution to the 

observed 2013-2018 PM2.5 trends across China and that removing this influence reduces the uncertainty on the emission-

driven trends. The mean PM2.5 decrease across China is -4.6 μug m-3 a-1 in the meteorology-corrected data, 12% weaker than 

in the original data. The residual trends in the meteorology-corrected data for the five megacity clusters attributable to 
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changes in anthropogenic emission are -8.0 ± 1.1 μg m-3 a-1 for Beijing-Tianjin-Hebei (14% weaker than the observed trend), 30 

-6.3 ± 0.9 μg m-3 a-1 for Yangtze River Delta (3% stronger), -2.2 ± 0.5 μg m-3 a-1 for Pearl River Delta (19% weaker), -4.9 ± 

0.9 μg m-3 a-1 for Sichuan Basin (27% weaker), and -5.04.9 ± 1.9 μg m-3 a-1 for Fenwei Plain (Xi’an; 235% weaker). 2015-

2017 observations of flattening PM2.5 in the Pearl River Delta, and increases in the Fenwei Plain, can be attributed to 

meteorology rather than to relaxation of emission controls.  

1. Introduction 35 

PM2.5 (particulate matter with aerodynamic diameter less than 2.5μm) is a severe air pollution problem in China, responsible 

for 1.1 million excess deaths in 2015 (Cohen et al., 2017). The Chinese government introduced in 2013 the Action Plan on 

the Prevention and Control of Air Pollution (Chinese State Council, 2013a), called Clean Air Action for short, to 

aggressively control anthropogenic emissions. Starting that year, PM2.5 data from a nationwide monitoring network of about 

1,000 sites also became available from the China National Environmental Monitoring Center (CNEMC) of the Ministry of 40 

Ecology and Environment of China (MEEC). These data show 30-40% decreases of PM2.5 across eastern China over the 

2013-2017 period (Chinese State Council, 2018a; X. Zhang et al., 2019). However, interpretation of these trends in terms of 

emission controls may be complicated by interannual variability and trends in meteorology (R. Zhang et al., 2014; Y. Wang 

et al., 2014; Zhu et al., 2012; Jia et al., 2015; K. Li et al., 2018; Yang et al., 2018; Yang et al., 2016; Liang et al., 2016; Cheng 

et al., 20198; Chen et al., 2019; Silver et al., 2018). Here we use a stepwise multi-linear regression (MLR) model to separate 45 

the effects of meteorological variability and emission controls on the 2013-2018 trends in PM2.5 across China. 

Meteorology drives large day-to-day, seasonal, and interannual variations in PM2.5 in China by affecting transport, 

scavenging, emissions, and chemical production (Y. Wang et al., 2014; Leung et al., 2018; Tai et al., 2012; Zou et al., 2017). 

The relationships between PM2.5 and meteorological variables are complex and differ by region and time of year (Shen et al., 

2017). For example, wintertime PM2.5 pollution events in central and eastern China are associated with low wind speed and 50 

high relative humidity (RH) (Y. Wang et al., 2014; R. Zhang et al., 2014; Pendergrass et al., 2019; Moch et al., 2018; Song et 

al., 2019). On the other hand, high wind speeds in northern China in spring and summer promote dust emission (Lyu et al., 

2017; X. Wang et al., 2004). Precipitation scavenging is a major factor driving PM2.5 variability in southern and coastal 

China (Chen et al., 2018; Leung et al., 2018).  

Anthropogenic emissions of PM2.5 and its precursors including sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), 55 

and nonmethane volatile organic compounds (NMVOCs) have undergone large changes in China over the past decades. 

Rapid growth in emissions from 1980 to 2006 led to a general increase in PM2.5 over China, as demonstrated by visibility 
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data (Che et al., 2007; Han et al., 2016; Wang and Chen, 2016; Fu et al., 2014; X. Zhang et al., 2012) and since 1999 by 

satellite aerosol optical depth (AOD) data (Ma et al., 2016; Lin et al., 2018; Zhao et al., 2017). SO2 emissions peaked in 

2006/2007, NOx emissions peaked in 2011, and NH3 emissions peaked around 1996, as estimated from emission inventories 60 

(Zhao et al., 2017; J. Wang et al., 2017b; Xia et al., 2016; F. Liu et al., 2016a; Lu et al., 2010; Xu et al., 2016; Kang et al., 

2016) and observed from satellites (Xia et al., 2016; F. Liu et al., 2016a; de Foy et al., 2016; van der A et al., 2017). SO2 and 

NOx emissions have declined since their peaks, whereas NH3 emissions have remained relatively stable (Zhao et al., 2017). 

The onset of emission controls led to slight decreases in PM2.5 over the 2006-2012 period as indicated by satellite AOD data 

(Ma et al., 2016; Lin et al., 2018; Zhao et al., 2017; Ma et al., 2019) and surface observations (Tao et al., 2017; J. Wang et 65 

al., 2017). The Clean Air Action greatly increased the scope of emission controls. The Multi-resolution Emission Inventory 

for China (Zheng et al., 2018) (MEIC, http://www.meicmodel.org) estimates nationwide emission decreases over the 2013-

2017 period of 59% for SO2, 33% for primary PM2.5, 21% for NOx, and 3% for NH3, with NMVOCs increasing by 2%. 

Continued reductions in emissions are required and implemented in 2018 (Chinese State Council, 2018b). Quantifying the 

response of PM2.5 to these rapid emission changes by resolving the effect of meteorological variability is an important 70 

question for measuring the success of the Clean Air Action.  

2. Data and methods 

2.1. Observations 

We use 2013-2018 hourly data for surface air PM2.5 together with SO2, nitrogen dioxide (NO2), and carbon monoxide (CO) 

concentrations from the CNEMC network (http://106.37.208.233:20035/). The network started in January 2013 with 496 sites 75 

in 74 major cities across the country (Chinese State Council, 2013b), growing to ~1540097 sites in 454 cities by 2018. PM2.5 

mass concentrations are measured using the micro oscillating balance method and/or the β absorption method (MEP, 2012; 

Zhang and Cao, 2015). SO2, NO2, and CO concentrations are measured at the same sites as PM2.5. NO2 concentrations are 

measured by the molybdenum converter method known to have positive interferences from NO2 oxidation products (Dunlea 

et al., 2007). SO2 and CO are respectively measured using ultraviolet fluorescence and infrared absorption (MEP, 2012; Zhang 80 

and Cao, 2015). We applied quality control to the hourly CNEMC data following Barrero et al. (2015) to exclude severe 

outliers. In addition,There are also occasional consecutive repeats of data that may be caused by stuckfaulty instruments in the 

CNEMC data are identified byor reporting ( Rohde and Muller,  (2015; ) and Silver et al.,  (2018). Here we removed values 

from the hourly time series when there are >24 consecutive repeats. This in whole removed 76.47%, 75.07%, 65.47%, and 

65.79% of the PM2.5, SO2, NO2, and CO data respectively. 85 
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We correlated these air quality observations with meteorological observations from 839 stations distributed across China 

(Figure S1) and compiled in the Surface Daily Climate Dataset (V3.0) released by the China National Meteorological 

Information Center (CNMIC; http://data.cma.cn/). These include data for wind speed (WDS), precipitation (PRECIP), relative 

humidity (RH), and temperature (TEM). We also used the 850-hPa meridional wind velocity (V850) from the MERRA-2 

reanalysis produced at 0.5ox0.625o horizontal resolution by the NASA Global Modeling and Assimilation Office 90 

(https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2). We choose these meteorological variables for their strong correlations with 

PM2.5 identified in previous studies (Y. Wang et al., 2014; Cai et al., 2017; Shen et al., 2017; Leung et al., 2018; Song et al., 

2019; Zou et al., 2017). V850 in particular is a strong predictor of PM2.5 wintertime pollution events in the North China Plain, 

because northerly winds (negative V850) ventilate the region with clean dry air (Cai et al., 2017; Pendergrass et al., 2019). 

All data in this work are averaged over 10 days (10-day time resolution). Trend analyses use only those sites with at least 95 

70% data coverage for each of the 6 years fromof the 2013- to 2018 simultaneouslyperiod. We did sensitivity tests with data 

coverage thresholds changing from 70% to 90% and obtained similar pollutants trends. To make the most use of available 

data, 70% is chosen. For the MLR model, we further average all data on a 2o×2.5o grid to increase statistical robustness 

following (Tai et al. (, 2012) and Shen et al. (2017). 

The 2013 Clean Air Action (Council, 2013a) identified three megacity clusters as target regions for reducing air pollution: 100 

Beijing-Tianjin-Hebei (BTH; 35-41°N, 113.75-118.75°E), Yangtze River Delta (YRD; 29-33°N, 118.75-123°E), and Pearl 

River Delta (PRD; 21-25°N, 111.25-116.25°E). The more recent plan released in July 2018 (Chinese State Council, 2018b) 

removed PRD from the list of target regions and added Fenwei Plain (FWP; 33-35°N, 106.25-111.25°E & 35-37°N, 108.75-

113.75°E). Previous studies (X. Zhang et al., 2012) also identified Sichuan Basin (SCB; 27-33°N, 103.75-108.75°E) as one 

of the major haze regions in China. We present analyses for these five target regions by averaging the data from all sites with 105 

more than 70% data coverage for each of the 6 years from of 2013- to 2018. The only continuous record for 2013-2018 in 

the FWP region is for Xi’an (13 sites). Additional FWP sites outside Xi’an started operating in early 2015 and are consistent 

with the Xi’an data, as will be shown below.  

2.2.  Multiple linear regression model 

We construct a stepwise multiple linear regression (MLR) model to quantify the effect of meteorology on PM2.5 variability. 110 

The model fits the deseasonalized and detrended 10-day PM2.5 mean time series on the 2o×2.5o grid to the five deseasonalized 

and detrended 10-day mean meteorological variables (WDS, PRECIP, RH, TEM, and V850). The deseasonalized and 

detrended time series are obtained by subtractinremovingg the 50-day moving averages from the 10-day mean time series (Tai 
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et al., 2010). This focuses on synoptic scales of variability and avoids aliasing from common seasonal variations and long-

term trends between variables (Shen et al., 2017).  115 

Separate fits of PM2.5 to the meteorological variables are done for each 2o×2.5o grid square and season (DJF, MAM, JJA, SON). 

The fit has the form: 

𝑌𝑑𝑖,𝑠(𝑡) =  ∑ 𝛽𝑘,𝑖,𝑠𝑋𝑑𝑘,𝑖,𝑠(𝑡) + 𝑏𝑖,𝑠
5
𝑘=1                                      (1) 

where 𝑌𝑑,𝑖(𝑡)  is the deseasonalized and detrended PM2.5 time series for grid square and season i, and 𝑋𝑑,𝑖,𝑘(𝑡)  is the 

corresponding time series for the deseasonalized and detrended meteorological variable k  [1,5]. We fit the regression 120 

coefficients 𝛽
𝑖,𝑘

 and the intercept 𝑏𝑖. The regression is done stepwise, adding and deleting terms based on their independent 

statistical significance to obtain the best model fit (Drapper and Smith, 1998). The fits and the selected meteorological variables 

differ by location and season but with regional consistency (Table S1). For meteorological variables not in the final MLR 

model, the regression coefficients 𝛽
𝑖,𝑘

 in equation (1) are zero.  

2.3. Application to 2013-2018 PM2.5 trends 125 

We use the MLR model to remove the effect of meteorological variability from the 2013-2018 PM2.5 trends, including not only 

the 10-day synoptic-scale variability but also any interannual variability and 6-year trends. This makes the standard assumption 

that the same factors that drive synoptic-scale variability also drive interannual variability (Jacob and Winner, 2009; Tai et al., 

2012). We thus apply equation (1) to the meteorological anomalies Xa,i,k, obtained by removing the 6-year means of the 50-day 

moving averages from the 10-day mean time series. The anomalies calculated in this manner are deseasonalized but not 130 

detrended. This yields the meteorology-driven PM2.5 anomalies Ym,i: 

𝑌𝑚,𝑖(𝑡) =  ∑ 𝛽
𝑖,𝑘

𝑋𝑎,𝑖,𝑘(𝑡) + 𝑏𝑖
5
𝑘=1                                    (2) 

Consider now the PM2.5 anomaly Ya,i for grid square and season i obtained by deseasonalizing but not detrending the PM2.5 

data (by removing the 6-year means of the 50-day moving averages), in the same way as for the meteorological variables. The 

residual anomaly Yr,i after removing meteorological influence from the MLR model is given by 135 

𝑌𝑟,𝑖(𝑡) =  𝑌𝑎,𝑖(𝑡) −  𝑌𝑚,𝑖(𝑡)                                      (3) 

The residual is the component of the anomaly that cannot be explained by the MLR meteorological model and we will refer to 

it as the meteorology-corrected data. It includes noise due to limitations of the MLR model and other factors, but also a long-





 

6 

 

term trend over the 6-year period that we can attribute to changes in anthropogenic emissions. The same approach was recently 

applied by Li et al. (2019) to separate anthropogenic and meteorological drivers of ozone trends in China.  140 

3. Results and Discussion 

3.1.  PM2.5 trends in China, 2013-2018 

Figure 1 shows annual mean observed PM2.5 concentrations from the CNEMC over China for 2013 and 2018, and the linear 

regression trends on the 2o×2.5o grid based on the PM2.5 anomalies Ya,i(t) including effects of both changing emissions and 

meteorology. In 2013, PM2.5 across most of China was well above the Chinese national air quality standard (annual mean of 145 

35 μg m-3). BTH and FWP (Xi’an) had the highest PM2.5 among the five target regions, with annual average concentrations of 

108 ± 34 μg m-3 (standard deviation describes variability of the annual average across sites in the region) and 108 ± 11 μg m-3 

respectively, followed by SCB (712 ± 17 μg m-3), YRD (67 ± 12 μg m-3), and PRD (47 ± 7 μg m-3). PM2.5 decreased dramatically 

from 2013 to 2018, by 34-49% for the five target regions. Mean 2018 concentrations were 55 ± 13 μg m-3 in BTH, 62 ± 4 μg 

m-3 in FWP (Xi’an), 401 ± 67 μg m-3 in SCB, 401 ± 715 μg m-3 in YRD, and 31 ± 5 μg m-3 in PRD.  150 

Figure 2 shows the 2013-2018 relative trends of annual mean PM2.5 for the five target regions, along with the corresponding 

trends of SO2, NO2, and CO concentrations measured at the same sites. Also shown in the bottom panels are the MEIC 

inventory trends in emissions of primary PM2.5, SO2, NOx, NH3, and CO for 2013-2017. The PM2.5 observations show steady 

decreases for BTH, YRD, and SCB. PRD flattens out in 2015-2017 before decreasing again in 2018. FWP (Xi’an) decreases 

sharply by 47% from 2013 to 2015 but rebounds in 2015-2017 before decreasing again in 2018. Trends at other FWP sites 155 

that became operational in early 2015 are similar to Xi’an. We argue in Section 3.3 that the 2015-2017 flattening at PRD and 

the anomalously 2013-2015 sharp decrease and 2015-2017 rebound at FWP are driven by meteorology.  

We see from Figure 2 that only SO2 has a decrease steeper than PM2.5, indicating that SO2 emission controls have been a 

major driver of the PM2.5 trend (Lang et al., 2017; Shao et al., 2018). The overall SO2 decrease for the five regions is 57-76% 

from 2013 to 2018. The SO2 decrease is quantitatively consistent with the decrease of SO2 emissions estimated by MEIC 160 

(Zheng et al., 2018). This drastic cut of China SO2 emissions is due to installation of scrubbers at coal-fired power plants 

(Siwen et al., 2015; Karplus et al., 2018; Silver et al., 2018), elimination of small coal boilers, improvement of coal quality 

(Zheng et al., 2018), and switch from residential coal to cleaner fuels (Zhao et al., 2018). We also see a significant decrease 

in CO of 18-43% for the five regions from 2013 to 2018, again consistent with the MEIC emission inventory and suggesting 

a reduction in organic PM2.5 emissions. Primary PM2.5 emissions in the MEIC inventory decreased at a rate comparable or 165 
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steeper than CO. Trends in China PM2.5, SO2, and NO2 presented here are consistent with previous studies (Silver et al., 

2018; Ma et al., 2019) that cover a shorter time period inthan 2013-2018. 

Figure 3 shows the time series of monthly mean PM2.5 for the five target regions, illustrating the seasonal and interannual 

variability. All regions show winter maxima that can be mostly attributed to meteorology including shallower mixing depth, 

lower precipitation, and increased stagnation in winter (X. Wang et al., 2018). Residential heating emissions in winter also 170 

contribute to the seasonality in northern China (J. Liu et al., 2016b; Xiao et al., 2015). There is a large interannual variability, 

particularly in winter, that must be largely driven by meteorology. Studies for BTH have shown that high PM2.5 in winter 

months is associated with weak southerly winds, low mixing depths, and high relative humidity (R. Zhang et al., 2014; 

Chang et al., 2016; K. Li et al., 2018; Shao et al., 2018). The relatively clean 2017-2018 winter was due in part to a higher 

frequency of northerly flow and associated ventilation (Administration, 2018; Yi et al., 2019). In addition, particularly 175 

aggressive actions by the government to restrict coal use that winter may have played a role in reducing PM2.5 levels (X. 

Zhang et al., 2019). 

3.2. Meteorological influence on PM2.5 

Figure 4 shows the correlations of 10-day PM2.5 concentrations with the individual meteorological variables used in the MLR 

model. Wind speed is negatively correlated with PM2.5, as would be expected from ventilation, except in areas of the north 180 

where wind promotes dust formation (Lyu et al., 2017; X. Wang et al., 2004). Precipitation is also generally negatively 

correlated with PM2.5, as one would expect from scavenging (Chen et al., 2018). The positive correlation between 

precipitation and PM2.5 over north China in spring is likely a result of high RH associated with precipitation in adjacent days.  

Correlation between RH and PM2.5 is positive over northern China, especially in winter, and negative over southern China, 

especially in summer. The positive correlation between PM2.5 and RH over northern China in winter has been reported by 185 

previous studies and attributed in part to the role of aqueous-phase aerosol chemistry in driving secondary PM2.5 formation 

(Zheng et al., 2015; He et al., 2018; Song et al., 20198; Pendergrass et al., 2019; Tie et al., 2017). The negative correlation of 

PM2.5 with RH over south China likely reflects the association of high RH with precipitation and onshore wind, which 

facilitate PM2.5 wet removal and ventilation (Zhu et al., 2012; Leung et al., 2018).  

Temperature has a positive correlation with PM2.5 year round over most of China (Y. Wang et al., 2014; Leung et al., 2018), 190 

even though there is no strong direct dependence of PM2.5 on temperature (Jacob and Winner, 2009). The correlation likely 

reflects the covariation of temperature with the other meteorological variables (Tai et al., 2012; Zhu et al., 2012). A possible 

explanation for the negative correlation with temperature in summer over North China Plain could be the volatilization of 
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ammonium nitrate at high temperature (Kleeman, 2008). V850 shows strong positive correlations with winter PM2.5 over 

most of China, and strong negative correlations with summer PM2.5 over south China, especially for the Pearl River Delta.  195 

Figure 5 (left panel) describes the ability of the MLR model to account for PM2.5 variability in relation to wind speed, 

precipitation, RH, temperature, and V850 as potential predictor variables. Results are presented as the coefficients of 

determination R2 (fraction of variance explained) between observed and model PM2.5 in the detrended deseasonalized time 

series. The R2 values have been adjusted to account for different numbers of significant explanatory terms (predictor 

variables). R2 values for the five target regions are: 0.59 (BTH), 0.46 (YRD), 0.65(PRD), 0.65 (SCD), and 0.41 (FWP). The 200 

right panel of Figure 5 shows the meteorology-corrected PM2.5 trends after removal of meteorological variability predicted 

by the MLR model, i.e., the trends in the residuals Yr,i(t) in equation (3). The meteorology-corrected decreasing trend 

averaged across China is -4.6 μg m-3 a-1, 12% weaker than the trend in the original data (Figure 1). We elaborate below for 

the five target regions.  

3.3. Meteorology-corrected PM2.5 trends for the five target regions 205 

Figure 6 shows the 10-day mean PM2.5 anomalies in the deseasonalized (but not detrended) data for the five target regions 

(Ya(t) in Section 2.3). Also shown is the meteorological component Ym(t) derived from the MLR meteorological model, and 

the residual Yr(t) (meteorology-corrected, equation (3)) whose long-term trend can be interpreted as due to changes in 

anthropogenic emissions. The PM2.5 anomalies show large features on ten-day basis that can be mostly captured by the MLR 

model. The residual meteorology-corrected time series is much smoother, as depicted by the narrower 95% confidence 210 

intervals in the anthropogenic residual trends than in the original observed trends. The meteorology-corrected trends differ 

by 3% (YRD) to 27% (SCB) from the observed trends. The YRD trend reflects a significant contribution from the December 

2013 outlier, which reflects unfavorable meteorological conditions (Figure S2) that are not adequately captured by the MLR 

model. If we exclude this outlier month from the time series, the observed YRD trend becomes -5.7 ± 0.9 μg m-3 a-1 and the 

meteorology-corrected trend becomes -5.9 ± 0.7 μg m-3 a-1. 215 

Most remarkably, it appears that the 2015-2017 flattening in the PRD and 2015-2017 increase in the FWP can be mostly 

attributed to meteorological variability as resolved by the MLR model, rather than to emissions. The trend in the residual is 

more consistent with a steady 2013-2018 anthropogenic decrease in both regions. The MLR model shows that meteorology 

accelerated the PM2.5 decline in PRD and FWP from 2013 to 2015, and contributed partly to the 2015-2017 PM2.5 rebound 

over FWP. In particular, the high PM2.5 anomalies in PRD in 2013 and early 2014 are driven by anomalously low V850, and 220 

the low PM2.5 in winter 2015-2016 is associated with anomalously high southerly flow and precipitation (Figure S4). The 
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low PM2.5 in FWP in the winter 2014-2015 is associated with anomalously high wind speed, low RH, and low temperature, 

while the high anomalies in the winter 2016-2017 are associated with anomalously low wind speed, high RH, and high 

temperature (Figure S5). 

4. Conclusions 225 

Observations of fine particulate matter (PM2.5) pollution in China from the extensive CNEMC network established in 2013 

show large 2013-2018 decreases in apparent response todriven by emission controls with complicating influences from 

meteorology. Here we used a stepwise multiple linear regression (MLR) meteorological model to investigate and quantify 

the meteorological contributions to these 6-year trends. 

The CNEMC observations show 34-49% decreases in PM2.5 in the five megacity clusters targeted by the Chinese 230 

government’s Clean Air Action to reduce anthropogenic emissions. Concurrent observations of SO2, CO, and NO2 are 

qualitatively consistent with these PM2.5 decreases being driven by drastic cuts in emissions from coal combustion. At the 

same time, there is large interannual variability driven by meteorology particularly in winter when PM2.5 is highest. 

We used the stepwise MLR meteorological model to relate PM2.5 anomalies across China to wind speed, precipitation, 

relative humidity (RH), temperature, and meridional velocity at 850 hPa (V850) as potential predictors. The model accounts 235 

for ~50% of the variance in the deseasonalized detrended PM2.5 data, including 41-65% for the five megacity clusters. 

Application to the PM2.5 time series shows that meteorological variability contributed significantly to the 6-year trends across 

China and in the megacity clusters. Removing meteorological variability as given by the MLR model also reduces the 

uncertainty in the trend that can be attributed to emission controls. We refer to the data series after removal of meteorological 

variability as the meteorology-corrected data. Thus the 2013-2018 PM2.5 decrease for Beijing-Tianjin-Hebei is -9.3 ± 1.8 μg 240 

m-3 a-1 in the original data and is 14% weaker in the  meteorology-corrected data,  (-8.0 ± 1.1 μg m-3 a-1 ).in the 

meteorology-corrected data. For the Sichuan Basin where the meteorological correction is particularly large, the PM2.5 

decrease is -6.7 ± 1.3 μg m-3 a-1 in the original data and is reduced by 27% to -4.9 ± 0.9 μg m-3 a-1 in the meteorology-

corrected data4.9 ± 0.9 μg m-3 a-1 in the meteorologically corrected data. The average 2013-2018 PM2.5 decrease over our 

study domain is -5.2 μg m-3 a-1 in the original data (Figure 1 (right panel)), and is reduced by 12% to -4.6 μg m-3 a-1 in the 245 

meteorology-corrected data (Figure 5 (right panel)). 

Observations for the 2015-2017 period indicate a flattening of the PM2.5 trend in the Pearl River Delta and an increase in the 

Fenwei Plain. We find from the MLR model that these 3-year trends can be explained by meteorological variability 

(including particularly steep 2013-2015 decreases) rather than by relaxation of emission controls.  
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Figure 1 Annual mean PM2.5 concentrations in China from the CNEMC network. Left and middle panels show values for 2013 and 

2018 for sites with more than 70% data coverage for each the corresponding year. The right panel shows the ordinary linear 

regression trends on a 2ox2.5o grid for sites with more than 70% data coverage for each of the five six years from 2013 to 2018. The 

trends are based on the timeseries of 10-day mean anomalies as described in the text. Polygons in the left panel define the four 455 

target regions of the Clean Air Action (Beijing-Tianjin-Hebei (BTH; 35-41°N, 113.75-118.75°E), Yangtze River Delta (YRD; 29-

33°N, 118.75-123°E), Pearl River Delta (PRD; 21-25°N, 111.25-116.25°E), and Fenwei Plain (FWP; 33-35°N, 106.25-111.25°E & 35-

37°N, 108.75-113.75°E)), to which we add Sichuan Basin (SCB; 27-33°N, 103.75-108.75°E). Number inset in the right panel is the 

trend in mean PM2.5 over the study region (21-41°N, 103.75-123°E). Dots in the right panel indicate grid squares with significant 

trends (p < 0.05). 460 

  



 

16 

 

 

Figure 2. Relative trends of 2013-2018 observed concentrations and 2013-2017 MEIC emission estimates for the five target regions 

of Figure 1. Values are annual means referenced to 2013. The observed concentrations are averaged over all sites in each region 

with at least 70% data coverage for each year. The number of sites for each region is indicated. Fenwei Plain trends are for Xi’an 465 

as other sites did not start operating until early 2015. Post-2015 relative PM2.5 trends at these other sites are shown as the dashed 

line.  
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Figure 3 2013-2018 time series of monthly mean PM2.5 concentrations over the five target regions. Values are averages from all 470 

sites in the region with over 70% data coverage for each yearof the six years.  

  



 

18 

 

 

Figure 4 Correlation coefficients (r) of PM2.5 concentration with the individual meteorological variables used in the MLR model: 

surface wind speed (m s-1), precipitation (mm d-1), relative humidity (RH; %), surface air temperature (°C), and 850hPa 475 

meridional wind velocity (m s-1) for different seasons in China. The correlations are based on 10-day average observations on a 

2o×2.5o grid. 
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Figure 5 Resolving meteorological influences on PM2.5 2013-2018 trends in China. The left panel shows the fraction of detrended 480 

and deseasonalized variance in 10-day PM2.5 means explained by the stepwise multi linear regression (MLR) meteorological model. 

The right panel shows the meteorology-corrected trends, to be compared to the trends in the original data shown in Figure 1. 

Number inset in the right panel is the trend in mean PM2.5 over the study region (same definition as in Figure 1). Dots indicate 

significant correlations (p < 0.05) in the left panel and significant trends (p < 0.05) in the right panel. 
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Figure 6. Time series of 2013-2018 PM2.5 10-day mean anomalies for the five target regions of Figure 1. The anomalies are relative 

to the 2013-2018 means. The data are averaged over all measurement sites in each region with at least 70% of data coverage for 

each year (same as for Figure 2). The meteorological contribution to the anomalies as diagnosed from the MLR model is shown in 

red. The long-term trend in the meteorology-corrected residual in blue (equation (3)) is interpreted as driven by changes in 490 

anthropogenic emissions. Values inset each panel are the ordinary linear regression trends with 95% confidence intervals obtained 

by the bootstrap method. 
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