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Abstract. A deep recurrent neural network system based on a long short-term memory (LSTM) model was developed for 

daily PM10 and PM2.5 predictions in South Korea. The structural and learnable parameters of the newly developed system 

were optimized from iterative model trainings. Independent variables were obtained from ground-based observations over 

2.3 years. The performance of the particulate matter (PM) prediction LSTM was then evaluated by comparisons with ground 

PM observations and with the PM concentrations predicted from two sets of 3-D chemistry-transport model (CTM) 15 

simulations (with and without data assimilation for initial conditions). The comparisons showed, in general, better 

performance with the LSTM than with the 3-D CTM simulations. For example, in terms of IOAs (index of agreements), the 

PM prediction IOAs were enhanced from 0.36-0.78 with the 3-D CTM simulations to 0.62-0.79 with the LSTM-based model. 

The deep LSTM-based PM prediction system developed at observation sites is expected to be further integrated with 3-D 

CTM-based prediction systems in the future. In addition to this, further possible applications of the deep LSTM-based 20 

system are discussed, together with some limitations of the current system.  

1 Introduction 

Over the past several decades, South Korea has made continuous economic growth; however, in accordance with this rapid 

economic development, emissions of air pollutants from various sources such as industrial, transportation, and power 

generation sectors have increased, and air quality has thus deteriorated (Wang et al., 2014). Among the atmospheric 25 

pollutants, particulate matter (PM) plays an important role in human health and climate change (Davidson et al., 2005; 

Forster et al., 2007). Several epidemiological studies have reported clear statistical relationships between aerosol 

concentrations and human mortality and morbidity (Dockery et al., 1992; Hope III and Dockery, 2006). To minimize the 

public damage caused by air pollution and to alert Korean citizen about high PM events, the National Institute of 
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Environmental Research (NIER) of South Korea has carried out daily air quality (or chemical weather) forecasting using 

multiple 3-D chemistry-transport models (CTMs) since 2014.  

However, the accuracy of the 3-D CTM simulations has been reported to be low. Researchers believe that this low accuracy 

originates from uncertain sources of emission inventory, meteorological fields, initial and boundary conditions, and CTMs 

themselves (Seaman, 2000; Berge et al., 2001; Liu et al., 2001; Holloway et al., 2008; Tang et al., 2009; Han et al., 2011). 5 

Many efforts have been made to enhance the accuracy of the 3-D CTM-based forecasting system. As a part of the efforts, the 

Korean government decided to develop its own air quality forecasting system mainly based on a new CTM in 2017. This 

project entailed establishing better bottom-up and top-down emissions, developing improved meteorological fields over East 

Asia, developing a data assimilation system using satellite-retrieved and ground-based observations, and incorporating new 

atmospheric chemical/physical processes into the new Korean CTM. Despite all the ongoing efforts, the traditional chemical 10 

weather forecasts based on the CTM are still poor at conducting accurate air quality forecasts over South Korea.  

In contrast, statistical models based on artificial neural networks (ANNs) have also been applied to air quality predictions. 

Because these approaches are based on a statistical method instead of sophisticated mathematical model-based computations 

(i.e., without considerations of advection/convection, photochemistry, or emissions), they are more cost-effective than 3-D 

CTM simulations. In previous studies, simple ANN models were applied to air quality predictions. The time-series 15 

concentrations of ambient pollutants have been predicted by, for example, supported vector machine (SVM) and radial basis 

function (RBF) neural network models (Lu and Wang, 2005). Furthermore, ambient levels of ozone were predicted by a 

simple feed-forward neural network (FFNN) models (Yi and Rybutok, 1996; Abdul-Wahab and Al-Alawi, 2002). However, 

such simple models have the limitation of neglecting relationships among data at the different time steps. Recently, more 

complex ANN models have been developed with recurrent neural networks (RNNs). Although RNNs have typically been 20 

used for natural language recognition, they have the special advantage of remembering the experiences of past events 

because they maintain the activated vectors at each time step (Cho et al., 2014). Because of this advantage, RNNs also make 

accurate time-series predictions (Che et al., 2018). Several investigators used a shallow (single hidden layer) RNN model to 

predict the peak mixing ratios of ambient pollutants such as NO2, SO2, O3, CO, and PM10 (Brunelli et al., 2007), and others 

used a deep RNN model to predict ambient levels of PM2.5 (Ong et al., 2016). However, RNN models have generally shown 25 

serious exploding and/or vanishing gradient problems (Bengio et al., 1994; Hochreiter, 1998). To resolve these problems, 

researchers developed the long short-term memory (LSTM) cell (Hochreiter and Schmidhuber, 1997). Unlike traditional 

RNNs, LSTM is known to be free from exploding or vanishing gradient problems, and it is better suited for long time-series 

predictions than are traditional RNNs. Recently, researchers used a deep LSTM neural network to conduct a number of air 

quality studies (Li et al., 2017; Freeman et al., 2018).  30 

Although ANN-based predictions are not mathematics-based, deep learning has demonstrated strong potential in the areas of 

weather and air quality forecasts; for example, the Weather Channel in the United States uses IBM Watson for its operational 

weather predictions (Mourdoukoutas, 2015). Another example is bias corrections based on several machine-learning 

techniques. Authors of one study reported that the biases (or errors) between the operational CTM-based air quality 
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predictions and observations can be reduced by utilizing machine learning algorithms (Reid et al., 2015). There must be 

many creative ways to improve the accuracy of air quality forecasts by combining 3D CTM-based predictions with artificial 

intelligence (AI)-based techniques. These combined approaches have now begun, and this manuscript intends to present one 

of these efforts in the area of air quality predictions.    

For this study, we developed a deep LSTM model to more accurately predict ambient PM concentrations. We evaluated the 5 

model performance by comparing the CTM-predicted and observed PM10 and PM2.5 with the LSTM-predicted PM10 and 

PM2.5. The details of the system development and prediction procedures are presented in Sects. 2 and 3, and limitations of 

the model are discussed in Sect. 4. 

2 Model development 

Fig. 1 shows the schematic procedures for the deep LSTM model-based PM predictions. There were two main processes in 10 

developing this prediction system: (i) data preprocessing and (ii) structure design and optimization of the deep neural 

network. It is essential to prepare time-series sequential data sets for both model training and predictions. In this study, we 

collected ambient pollutant concentrations and meteorological data from ground-based observations. To construct the system, 

we first screened several AI-based methods including LSTM, such as SVM, relevance vector machine (RVM), and a 

technique from convolutional neural network (CNN). Based on the results from the screening, we chose a multi-layered deep 15 

LSTM neural network and conducted iterative model training to optimize the weights and biases of models at 7 individual 

site. We present the details on developing the system in the following sections.   

2.1 Data preprocessing 

We collected the observation data from both the NIER AIR KOREA measurement network and the Korea Metrological 

Administration (KMA) automatic weather station (AWS) network to prepare the input variables. Fig. 2 presents the locations 20 

of the AIR KOREA and KMA AWS observation sites throughout South Korea; the networks consist of 323 and 494 ground-

based monitoring stations, respectively. They provide hourly mixing ratios of the ambient pollutants such as SO2, CO, NO2, 

O3, PM10, and PM2.5 and the metrological parameters such as temperature, wind direction, wind speed, hourly precipitation, 

and relative humidity. Both PM10 and PM2.5 are measured by -ray absorption and gravimetric method, respectively (Shin et 

al., 2011). The ambient mixing ratios of SO2, CO, NO2, and O3 are measured by pulse ultraviolet fluorescence, non-25 

dispersive infrared, chemiluminescence, and ultraviolet methods, respectively.  

Among the observation sites, we chose seven monitoring sites located in the major cities in South Korea (two sites in Seoul, 

Daejeon, Gwangju, Daegu, Ulsan, and Busan) for PM10 and PM2.5 predictions (refer to Fig. 2 (a)-(f) regarding the locations). 

There were two main criteria in our selecting the seven sites: (i) the distances between air quality and meteorological 

monitoring stations should be the shortest (i.e., collocation), and (ii) the number of missing observation data should be 30 

minimal. Because there are sometimes too many missing values in the monitoring data prior to 2013, we used observations 
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from January 2014 to April 2016 for training. After the model training, actual predictions of PM10 and PM2.5 were conducted 

for the period of the Korea-United States Air Quality (KORUS-AQ) campaign (from May 1 to June 11, 2016). The KORUS-

AQ campaign period is now an official model testing window in South Korea. 

High quality of input data is critical for LSTM-based time-series predictions. In the current study, the missing values in 

ground-based air quality monitoring data were produced by using the pre-trained deep LSTM model. The percentages of 5 

missing observations at the seven AIR KOREA sites are summarized in Table S1. The percentage ranged between 0.7 % and 

13.9 %. The schematic diagram of missing value generation is presented in Fig. S1. As shown in Fig. S1, when the missing 

data were detected, the corresponding values were generated from a pre-trained model. For example, the accuracy of the 

missing values generated for Seoul-1 site is summarized in Fig. S2. It is shown from Fig. S2 that the pollutant concentrations 

generated by the pre-trained model correlated well with the observed concentrations. The correlation coefficients for the 10 

model training and validation ranged from 0.60 to 0.91 and from 0.52 to 0.93, respectively. The accuracy of the generated 

missing values from the seven selected monitoring stations is summarized in Table S2. For the meteorological parameters, 

we determined the missing variables by interpolating the observed data; in the meteorological data, fewer than 0.01 % of 

values were missing. 

In particular, information on various pollutants is important in the LSTM-based predictions of PM10 and PM2.5. Because 15 

H2SO4 and HNO3 are main precursors of inorganic sulfate (SO4
2-) and nitrate (NO3

-), respectively, correct information on the 

levels of their precursors (SO2 and NO2) is important. Although CO is not directly related to producing particulate matter, we 

included the mixing ratios in the input data because these are somehow related to the mixing ratios of ozone and hydroxyl 

radicals (OH). 

Meteorological conditions also play an important role in particulate matter concentrations. Both wind direction and speed 20 

can represent the origin of air pollutants and intensity of atmospheric turbulences, and precipitation directly affects PM10 and 

PM2.5 by wet scavenging. In addition, there is a relationship between relative humidity and the levels of hydroxyl radicals 

because H2O is a main precursor of OH. Water vapor can also influence the amounts of particulate water and nucleation rates 

in the atmosphere. Therefore, all meteorological parameters measured in the AWS monitoring data set can possibly affect 

PM concentrations, and thus we used them in the LSTM-based prediction system.  25 

Before feeding the input variables into the LSTM system, one important step is data normalization. All the input parameters 

were re-scaled between 0 and 1: 
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where inormalx ,  is the normalized values of species i; ix  is the observed value; ixmax,  and ixmin,  are the maximum and 

minimum values of species i, respectively. Because the LSTM system was designed for daily prediction of PM10 and PM2.5, 30 

the normalized observations of the previous day were mapped with the PM concentrations of the next day (i.e., there is a 24-

hr time-lag between independent and dependent variables). Thus, the shapes of one unit of training data are 2411 and/or 
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2412. This structured data set was then re-shaped as a three-dimensional vector matrix to feed them into the hidden LSTM 

layers. In addition, we excluded the observation data during the dust event periods in the model training; because these 

episodes are infrequent, including data on them could have interfered with establishing an accurate PM prediction system 

(i.e., they can be noisy signals).  

2.2 System construction 5 

As mentioned previously, the LSTM has the special advantage of remembering the past experiences. Because of this 

advantage, the LSTM has a strong capability for identifying highly complex relationship in the sequential data (i.e., the 

LSTM-based deep neural network has the strong potential in the time-series predictions). In general, the accuracy of the 

time-series prediction with the deep LSTM model is relatively higher than those with other deep neural networks (Ma et al., 

2015; Amarasinghe et al., 2017). Several previous studies have proposed the use of the LSTM for more accurate time-series 10 

predictions (e.g. Connor et al., 1994; Saad et al., 1998). Based on this, in this study we used the LSTM cells in the 

construction of the deep hidden layers of daily PM10 and PM2.5 prediction model. 

The developed system has two schemes: PM10 prediction and PM2.5 prediction; the prediction model is designed to have 

three to five hidden LSTM layers; one layer consists of one hundred hidden nodes, and the layers capture sequential 

temporal information. The last LSTM hidden layer is connected to the output layer, which performs feature mapping 15 

between the output vectors from deep hidden layers and the actual PM10 and/or PM2.5.  

In order to learn complicated and nonlinear mappings between the layers, activation functions are applied to get the output of 

a layer, which is then fed into the next layer as an input. There are several activation functions that can be used in neural 

networks; among them, a sigmoid function has been typically used because it has characteristics of being bounded and being 

differentiable; however, this function has a vanishing gradient problem due to continuous multiplication of gradients. In this 20 

study, therefore, we used the rectified linear unit (ReLU) to activate output layer (Nair and Hinton, 2010).  The ReLU is 

expressed by:  
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As shown in Eq. (2), the ReLU ranges from 0 to . Because the derivative of the ReLU is 0 or 1, the vanishing gradient does 

not occur during the back propagations. In Supplementary Material (SM), we give a detailed description of the LSTM 25 

architecture used in this study.  

In traditional statistics, the close relationship among the input variables (i.e., multicollinearity) can lead to instability of 

regression coefficients and can distort the effect of the regressive variables on dependent variables. For the deep learning, the 

multicollinearity requires relative long computation time, because it is slow to converge. We evaluated the multicollinearity 

of the independent variables by estimating the Pearson correlation coefficient (R) between the observed atmospheric 30 

pollutants at the different time steps because the purpose of recurrent neural network is to identify the relationships in 
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sequential data. The correlation coefficients are summarized in Table S3; as shown in Table S3, there are relatively low 

correlations among the concentrations of atmospheric pollutants. In addition, the LSTM-based deep neural network is 

effective for analyzing the relationships between highly correlated time-series sequential data (Fan et al., 2014). Furthermore, 

the problem of the multicollinearity can be resolved by adopting ReLU as an activation function (Ayinde et al., 2019). 

2.3 Model training 5 

The model training is a process for optimizing the structural and learnable parameters of the deep LSTM system; we 

determined the PM10 and PM2.5 prediction system’s structure from the iterative trainings, and the structure was described in 

Sect. 2.2. In addition to the activation functions described in Sect. 2.2, there are two more main components in the deep 

neural network training: (i) cost function and (ii) optimization algorithm. The cost function usually measures how well the 

neural network works with respect to given training samples and corresponding predicted outputs. In other words, it is used 10 

for evaluating the accuracy of predicted values. When the prediction accuracy is poor, the cost is high, whereas as the 

model’s predictions are more accurate, the cost decreases.  

There are several cost functions commonly used in deep learning, and the cost function can be classified by its application 

purpose. In this study, the purpose of the cost function was to minimize the regression cost, and we thus used mean squared 

error (MSE) as a cost function, expressed as: 15 
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where ix  is the input vector for ith training; iy  is the target value (or true value) for the ith training; and  ixh  is the 

predicted vector corresponding to iy  for a given deep neural network model  . It should be noted here that   means the 

LSTM network with different parameters (see Eqs. (S1)-(S6) in SM). In Eq. (3),  MSEJ  represents the MSE between the 

target vector, iy , and its predicted vector,  ixh , when the number of training vectors is N . 20 

The role of an optimization algorithm is to find an efficient and stable pathway for minimizing the gradient descent of a cost 

function. In this study, we utilized adaptive moment estimation (ADAM) to train the neural networks (Kingma and Ba, 

2015). The ADAM is one of the extended algorithms for stochastic gradient descent, and its detailed explanation is also 

given in SM. 

In order to train the LSTM system for the PM10 and PM2.5 predictions, the observations from January 2014 to April 2016 25 

(2.3-year data) were used, as mentioned previously. Because Asian dust was regarded as noisy atmospheric signals, we 

removed the observations during dust events in the course of the model training. We divided the training data set into two 

groups with ratios of 0.85 to 0.15 for the model training and validation, respectively (Guyon, 1997). 

First, we measured the variations of training and validation costs (i.e., the outcome of MSE cost) during the model training. 

In the early stages of the model training, updating the weights and biases decreases the training and validation costs. Because 30 
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the training data set is only considered for updating weights and biases, the training cost is smaller than the validation cost. 

With the same reason, the training cost continues to decrease during the model training. In contrast, the validation cost 

decreases until the certain point of iterations, and then it starts to increase. Optimization of the deep neural network model is 

to update the weight and bias vectors until the validation cost reaches such inflection point (Mahsereci et al., 2017). In 

addition, the model training can also be verified by comparing two statistical parameters, MSE and root mean squared error 5 

(RMSE); these values at the inflection point are summarized in Table 1. For properly-trained models, the training cost should 

be slightly smaller than the validation cost. If the validation cost is much higher than training cost and the slope of validation 

cost is positive, it is called “over-fitting”, which means that both the weight and bias vectors of the model have been 

overturned. Based on the above two essential requirements of the model training, we concluded that our LSTM PM 

prediction model was well trained via general rules of the model training (refer to Table 1). 10 

Second, the accuracy of the deep LSTM model training for PM10 and PM2.5 predictions is summarized in Figs. 3 and 4, 

respectively; in the figures, the black and red dots denote the comparison results between the predicted and observed PM 

concentrations in the model training and validation, respectively. As shown in Fig. 3, there was reasonable agreement in the 

PM10 predictions. The R for PM10 training and validation ranged from 0.61 to 0.81 and from 0.55 to 0.71, respectively. The 

training results for the PM2.5 model also showed reasonable correlations (0.59  R for training  0.80; 0.54  R for validation 15 

 0.75).  

2.4 3-D CTM simulations 

In order to assess the accuracy of the LSTM-based predictions in this study, we compared them with 3-D CTM-based 

predictions with and without data assimilation (DA). We employed the Community Multiscale Air Quality (CMAQ) model 

v5.1 for the 3-D CTM simulations. We acquired the metrological fields from Weather Research and Forecasting v3.8.1 20 

model simulations. The domain of the CMAQ model simulations is presented in Fig. 5; the model domain covers Northeast 

Asia with a horizontal resolution of 1515 km2 and with 27 sigma vertical levels. We used the KORUS v1.0 emission 

inventory for anthropogenic emissions; this inventory was made for the KORUS-AQ campaign based on three emission 

inventories: (i) CREATE (Comprehensive Regional Emission inventory for Atmospheric Transport Experiment); (ii) MICS-

Asia (Model Inter-Comparison Study for Asia); and (iii) SEAC4RS (Studies of Emissions and Atmospheric Composition, 25 

Clouds, and Climate Coupling by Regional Surveys) (Woo et al., 2017). We estimated biogenic emissions from MEGAN 

v2.1 (Model of Emissions of Gases and Aerosols from Nature) simulations (Guenther et al., 2006). We obtained biomass 

burning emissions from FINN (Fire INventory from NCAR, http://bai.acom.ucar.edu/Data/fire/) (Wiedinmyer et al., 2011). 

We obtained lateral boundary conditions from the MOZART-4 model simulations (https://www.acom.ucar.edu/wrf-

chem/mozart.shtml) (Emmons et al., 2010). 30 

To prepare the initial conditions (ICs) for the CMAQ model simulations, we used optimal interpolation method with Kalman 

filter (OI with Kalman). The DA with the OI technique has been used in several previous studies (Carmichael et al., 2009; 

Chung et al., 2010). The assimilation system is defined as follows: 



8 
 

 momm HK  '                (4) 

  1
 OHBHBHK TT                  (5)  

where '
m  represents the assimilated product; o  and m  denote the observed and modeled values, respectively; H  

represents the observation and/or forward operator; K  represents the Kalman gain matrix; and B  and O  are the covariance 

of modeled and observed field, respectively. B  and O  can be defined with several free parameters.  5 
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where mf , m , xd , zd , mxl , and mzl  represent the fractional error coefficient, minimum error coefficient, horizontal 

resolution, vertical resolution, horizontal correlation length for errors in modeled values, and vertical correlation length for 

errors in modeled values, respectively, and of , o , and I  denote the fractional error coefficient, minimum error coefficient 10 

in the observed values, and unit matrix, also respectively. The six parameters in Eq. (6) are called the free parameters, which 

we used to calculate the observation and model error covariance matrix, respectively. In this study, we determined these 

parameters by finding the minimum of
2 : 
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here obsx  and assimx  represent the observed and data-assimilated values. More detailed explanations regarding the data 15 

assimilation can be found elsewhere (Collins et al., 2001; Yu et al., 2003; Park et al., 2011). 

For the DA runs, we integrated the CMAQ model simulations with three observation data sets: (i) the Communication, 

Ocean, and Meteorological Satellite (COMS)/Geostationary Ocean Color Imager (GOCI) aerosol optical depth (AOD); (ii) 

ground-based observations in China; and (iii) AIR KOREA observations in South Korea. The locations of the observation 

stations are presented in Fig. 5. Because the GOCI sensor is geostationary, it can provide hourly spectral images with spatial 20 

resolution of 500500 m2 from 00:00 to 07:00 UTC. Detailed procedures can also be found in previous publications (Park et 

al., 2014; Park et al., 2014). 

3 Results and Discussion 

PM10 and PM2.5 were predicted for the period of the KORUS-AQ campaign. To evaluate the performance of the LSTM 

system, we compared the LSTM-based predictions with the observations and two CMAQ-based predictions. 25 
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3.1 System evaluation 

We evaluated the accuracy of the LSTM-based PM predictions by comparing them with the observed PM10 and PM2.5. We 

also compared PM10 and PM2.5 predicted from two sets of CMAQ model simulations with the PM10 and PM2.5 predicted from 

the deep LSTM; these results are presented in Figs. 6 and 7. In Figs. 6 and 7, the black circles and blue-dashed lines 

represent the observed and LSTM-predicted PM10 and PM2.5, respectively. The green- and red-dashed lines denote CMAQ-5 

predicted PM10 and PM2.5 with and without DA, respectively. The CMAQ model simulations with DA showed better 

agreement with the observations than did those without DA (see Figs. 6 and 7). The LSTM-predicted PM10 also showed 

good agreement with the observed PM10.  

However, the results from the CMAQ model simulations were not intended to be directly compared with those from the 

LSTM predictions. In general, Eulerian CTMs calculate average concentrations of air pollutants in a grid box, but in the real 10 

world the concentrations of air pollutants inside a gird box can be (highly) variable with the proximity to the local sources 

(in other words, the air pollutant concentrations in a gird box cannot be uniform). This is well-known problem called “sub-

grid variability”. In this sense, both the CMAQ-model results and LSTM predictions were not directly compared. Instead, in 

this comparison the CMAQ model simulations provide reference values to give a sense for the accuracy of LSTM 

predictions. An intension to develop the LSTM prediction system is to establish a prediction system at the observation sites 15 

(i.e., point site), and we then eventually plan to integrate the CTM-LSTM prediction (gird-based prediction and point-based 

prediction) system for more comprehensive PM forecasting in South Korea. This will be discussed further in Sect. 4.   

For further statistical evaluations, we introduced the following five statistical parameters: (i) IOA; (ii) RMSE; (iii) MB 

(Mean Bias); (iv) MNGE (Mean Normalized Gross Error); and (v) MNB (Mean Normalized Bias). 
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Here, ModeliC ,  and ObsiC ,  represent the modeled and observed concentrations of species i; ObsiC ,  is the averaged ObsiC , . 

The results from the statistical analysis are summarized in Table 2 and are also shown in Figs. 6 and 7.  

For the daily PM10 predictions, the LSTM-based predictions (0.62  IOA  0.79) were always more accurate than two 

CMAQ-based PM10 predictions (0.36  IOA  0.78). RMSE and MB between the CMAQ-based and observed PM10 ranged 5 

between 33.11 g/m3 and 51.40 g/m3 and between -40.35 g/m3 and -15.95 g/m3, respectively. These negative MBs 

indicate that the CMAQ model simulations underestimated PM10. RMSE and MB between the LSTM-based predictions and 

observations ranged from 18.57 g/m3 to 24.23 g/m3 and from -3.20 g/m3 to 6.28 g/m3, respectively. The RMSEs for the 

LSTM-based predictions are 1.90 times smaller than those for the CMAQ-based predictions. Among the seven sites chosen, 

the PM10 predictions at the Daegu, Ulsan, and Busan sites showed the best agreement (0.71  IOA  0.79) and the lowest 10 

errors and biases (16.46  RMSE  18.57; -1.00  MB  6.02) compared with the two CMAQ-based PM10 predictions (0.45 

 IOA  0.65; 26.23  RMSE  55.09; -37.69  MB  -15.92).  

Fig. 7 presents the comparisons for PM2.5. During the KORUS-AQ campaign, there were no ground PM2.5 observations at the 

Daejeon site between May 1 and June 11 because of instrument malfunction. The LSTM-predicted PM2.5 again showed good 

agreement with the observations (0.63  IOA  0.79); however, the deep LSTM system was not always able to more 15 

accurately predict PM2.5. As with PM10, the LSTM PM2.5 predictions at the Daegu, Ulsan, and Busan sites showed better 

performance (0.78  IOA  0.79) than the CMAQ-based predictions (0.59  IOA  0.75), but at the two Seoul sites (Seoul-1 

and Seoul-2), the LSTM PM2.5 predictions were inferior to those from the CMAQ model simulations with DA (green-dashed 

lines in Fig. 7). This could have been because the AIR KOREA observation sites are densely located in and around Seoul 

Metropolitan Area (refer to Fig. 2). Therefore, data assimilation appears to more strongly influence the accuracy of the 20 

CMAQ predictions. 

As shown in Figs. 6 and 7, there were nationwide high PM episodes from May 25 to 28, 2016; these high PM events were 

caused by long-distance transport of atmospheric pollutants from China due to westerlies, and the relatively high errors and 

biases in the LSTM-based predictions occurred during these high PM events. Because the model’s weights and biases were 

optimized based on previous memories, frequent high PM episodes can affect the accuracy of the predictions. The 25 

frequencies of the high PM10 (daily average of PM10  70 g/m3) and high PM2.5 (daily average of PM2.5  40 g/m3) 

episodes in the training data set are summarized in Fig. 8. The fractions of the high PM2.5 episodes at the Seoul and Gwangju 

sites were between 0.04 and 0.09, clearly smaller than those at Daegu, Ulsan, and Busan (0.12  high PM2.5 episode  0.18). 

At Gwangju, the effectiveness of DA and frequency of high PM episodes were the lowest. As mentioned previously, the 

LSTM-based PM10 and PM2.5 prediction system was trained using the observation data for only 2.3 years because these were 30 

the only available data. The optimized weights and biases are governed by the variety of input features in the training. If 
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more PM2.5 data are available in the future, the prediction accuracy of deep LSTM systems will improve, and in fact, 

continuous data accumulation with more recent PM data is now underway. 

Imbalance of the training data set has deteriorated the performances of the deep neural network model. As shown in Fig. 8, 

the frequency of high PM10 and PM2.5 events is very low. There are a number of ways to balance data, such as minority 

oversampling and majority subsampling. The prerequisite for the data balancing is that the amounts of available data should 5 

be very large. As mentioned previously, the AIR KOREA network has monitored ground PM2.5 only since 2015. Therefore, 

the amount of available data is relatively small, and compulsory data balancing is highly likely to hinder the generalization 

of the PM prediction model. Therefore, we did not perform the data balancing in this study. 

To test the effectiveness of the data balancing, we did balance the data for the observations of Seoul-1 site; at this site, the 

CMAQ-based PM2.5 predictions were better than the LSTM-based PM2.5 predictions. Because of the data availability, it was 10 

impossible to balance the training data set with subsampling method, and thus we oversampled atmospheric conditions 

during the high PM2.5 events. To balance the numbers of high and non-high events, we replicated the ground observations 

during the high PM2.5 events; then we generated 5% Gaussian random noise on these oversampled data to reflect the 

observational errors. The PM2.5 predictions with and without the data balancing are represented in Fig. S4. As shown in Fig. 

S4, the data balancing did not improve the prediction performances of the LSTM model. This is because we could not 15 

sample the various types of high PM2.5 events, and similar patterns of atmospheric conditions were consistently considered in 

the model training. Therefore, to improve the performances of the LSTM-based PM prediction model, it is necessary to 

collect various atmospheric conditions through continuous ground-based observations. 

3.2 Dependence on input parameters 

In deep learning, the relationships between input variables and predictions cannot be identified directly because of the high 20 

non-linearity in the hidden layers. In the present study, we indirectly investigated the influences of the input parameters on 

the PM10 and PM2.5 predictions with and without considering each variable in the model operations. The influences on the 

input parameters are summarized in Figs. 9 and 10; in the figures, TA, WD, WS, RN, RNH, and RH represent temperature, 

wind direction, wind speed, daily cumulative precipitation, hourly precipitation, and relative humidity on the previous day, 

respectively. SO2, O3, NO2, CO, PM10, and PM2.5 are the concentrations of the respective air pollutants on the previous day. 25 

The positive and negative values in each figure represent the directionality of the influences on the PM10 and PM2.5 

predictions; that is, for instance, the variables with positive dependence indicate increasing influence on the predicted PM10 

and PM2.5. The figures show that among the meteorological variables, temperature and wind direction generally had great 

influence on the PM10 and PM2.5 predictions; among the pollutant variables, previous day’s PM10 and PM2.5 mainly affected 

the predictions for the next day. In particular, the dependencies of PM10 and PM2.5 ranged from 38.48 % to 60.12 % and from 30 

28.80 % to 83.38 %, respectively. In most cases, the influence of the pollutant variables (PM10 and PM2.5) was greater than 

that of the meteorological parameters. However, at Daejeon, the most influential parameter on the PM10 predictions was 

wind direction (45.67 %), while the contributions of other parameters were relatively small. The difference in the 
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contributions is mainly due to the persistence of each variable. In other words, the variables with low dependence on the 

PM10 and PM2.5 predictions were those that change rapidly in the atmosphere, and thus their effects are scarcely incorporated 

into the trained model.  

4 Outlook and future works 

In this study, we established a deep RNN system for daily PM10 and PM2.5 predictions and evaluated the newly developed 5 

system’s performance by comparing its PM10 and PM2.5 predictions with the observed and CMAQ-predicted levels. In the 

comparisons, the LSTM-based PM predictions were, in general, superior to the CMAQ-based PM predictions. In terms of 

IOA, the accuracies of the LSTM predictions were 1.01-1.72 times higher than those for the CMAQ-based predictions. 

Based on this, we concluded that the LSTM-based system could be applied to daily “operational” PM10 and PM2.5 forecasts. 

The LSTM-based predictions at the observation sites can provide useful and complementary information for air quality 10 

forecasters, synthesizing all the information available such as CTM air quality predictions, AI predictions, weather 

predictions, and satellite-derived information. 

In the future, Korea’s air quality forecasting system will be improved by continuous development of CTM-based prediction 

system including the uses of more advanced DA techniques, together with continuous sophistication of AI-based prediction 

system. If the AI-based predictions at the observation sites are consistently better than the CTM-based predictions, the two 15 

elements will be more systematically combined within a prognostic mode, which will be our final research goal. In addition, 

a similar LSTM-based prediction system can also be applied to the daily forecasts of gas-phase air pollutants such as NO2, 

SO2, CO, and O3. These works are also now in progress. 

Although the current LSTM-based system can accurately predict PM10 and PM2.5, it also has some limitations. One, for better 

prediction accuracy, we need more air quality data for model optimization. Because PM2.5 has only been monitored in South 20 

Korea since 2015, there are too few observations to optimize the PM2.5 predictions, which require continuous accumulation 

of PM2.5 observations. In addition, the limited number of input variables is another obstacle to optimal model performance. 

The current LSTM-based PM10 and PM2.5 prediction system contains 10-12 input parameters. If more useful parameters such 

as mixing layer height (MLH) and barometric distribution are available, its performance would improve further (Hooyberghs 

et al., 2005; Liu et al., 2007). Therefore, future efforts should be made with more PM2.5 data and more input variables such as 25 

mixing layer heights entered into our system. 
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Figure 1. Schematic diagram of how the LSTM-based PM10 and PM2.5 prediction system was developed. 
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Figure 2. Locations of NIER AIR KOREA and KMA AWS sites in South Korea. 
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Figure 3. Training and validating the daily PM10 prediction model: (a) Seoul-1; (b) Seoul-2; (c) Daejeon; (d) Gwangju; (e) 

Daegu; (f) Ulsan; (g) Busan. Black and red dots represent the training and validation results, respectively. 
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Figure 4. As Figure 3, except for PM2.5.  
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Figure 5. Domains of CMAQ model simulations (red line) and GOCI sensor (blue line). Green triangles and red dots 

represent the locations of ground-based monitoring sites in China and South Korea, respectively.  
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Figure 6. Comparisons between the CMAQ-calculated and LSTM-predicted and the observed PM10. Black open circles 
show observed PM10 at seven sites. Green- and red-dashed lines represent CMAQ-predicted PM10 with and without data 
assimilation. Blue-dashed lines represent LSTM-predicted PM10. From May 26 to June 7, the LSTM-based PM10 predictions 
at Daejeon site were not performed due to the continuous missing observations.  5 
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Figure 7. As Figure 6, except for PM2.5.  
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Figure 8. Percentage (%) of high particulate matter episodes in the training data set. 
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Figure 9. Dependencies of input variables on the daily PM10 predictions. TA, WD, WS, RN, RNH, and RH represent 

temperature, wind direction, wind speed, daily cumulative precipitation, hourly precipitation, and relative humidity, 

respectively. SO2, O3, NO2, CO, PM10, and PM2.5 refer to the previous day’s levels of these atmospheric pollutants. 
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Figure 10. As Figure 9, except for PM2.5. 



28 
 

Table 1. Summary of model training and validation results1) 

Species Site 
Training Validation 

R MSE RMSE R MSE RMSE 

PM10 

Seoul-1 0.66 379.63 19.48 0.71 589.83 24.29

Seoul-2 0.72 347.62 18.65 0.59 551.71 23.49

Daejeon 0.74 303.48 17.42 0.61 471.32 21.71

Gwangju 0.61 326.98 18.08 0.55 362.88 19.05

Daegu 0.81 259.39 16.11 0.63 378.18 19.45

Ulsan 0.72 318.41 17.84 0.57 382.37 19.55

Busan 0.71 230.59 15.19 0.55 394.44 19.86

PM2.5 

Seoul-1 0.68 106.73 10.33 0.57 118.24 10.87

Seoul-2 0.69 121.07 11.00 0.54 131.36 11.46

Daejeon - - - - - - 

Gwangju 0.59 112.61 10.61 0.59 151.99 12.33

Daegu 0.80 92.32 9.61 0.66 179.67 13.40

Ulsan 0.75 145.16 12.05 0.75 165.26 12.86

Busan 0.75 107.63 10.37 0.55 170.53 13.06
1) The units for MSE and RMSE are g/m3.  
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Table 2. Statistical analysis with modeled and observed PM10 and PM2.5
1) 

Station Species Model 
Statistical parameter 

IOA RMSE MB MNGE MNB 

Seoul - 1 

PM10 
CMAQ w/o DA 0.50 48.37 -40.35 65.89 -65.17
CMAQ w/ DA 0.61 37.85 -26.96 50.53 -43.54
LSTM 0.62 24.22 -3.20 49.72 -5.27

PM2.5 
CMAQ w/o DA 0.72 17.27 -9.34 54.01 -33.06
CMAQ w/ DA 0.78 15.24 -0.86 51.44 -3.21
LSTM 0.71 12.51 -1.33 56.03 -4.58

Seoul - 2 

PM10 
CMAQ w/o DA 0.51 45.87 -34.78 63.07 -62.20
CMAQ w/ DA 0.61 37.12 -20.99 49.62 -37.53
LSTM 0.76 21.19 -1.29 46.72 -2.40

PM2.5 
CMAQ w/o DA 0.72 19.99 -11.95 53.04 -39.11
CMAQ w/ DA 0.78 17.21 -3.62 52.26 -11.84
LSTM 0.77 15.14 -1.09 57.60 -3.48

Daejeon 

PM10 
CMAQ w/o DA 0.46 36.52 -24.68 61.06 -59.08
CMAQ w/ DA 0.78 26.97 -9.43 51.58 -22.57
LSTM 0.67 19.17 6.28 72.01 15.51

PM2.5 
CMAQ w/o DA 0.45 22.04 -11.94 55.74 -45.00
CMAQ w/ DA 0.62 18.40 -3.29 53.03 -12.40
LSTM 0.67 12.17 3.99 72.01 16.49

Gwangju 

PM10 
CMAQ w/o DA 0.36 51.40 -29.27 70.36 -63.56
CMAQ w/ DA 0.43 46.05 -15.80 57.19 -34.19
LSTM 0.67 18.92 1.69 74.68 3.96

PM2.5 
CMAQ w/o DA 0.62 16.55 -8.47 74.54 -37.62
CMAQ w/ DA 0.74 14.69 -0.40 74.58 -1.79
LSTM 0.63 11.53 -0.23 82.74 -0.98

Daegu 

PM10 
CMAQ w/o DA 0.48 35.73 -28.84 66.86 -65.17
CMAQ w/ DA 0.65 26.23 -16.29 46.69 -36.78
LSTM 0.71 16.46 6.02 44.12 15.26

PM2.5 
CMAQ w/o DA 0.62 17.49 -11.85 59.82 -46.06
CMAQ w/ DA 0.74 13.89 -4.78 43.85 -18.56
LSTM 0.78 9.91 0.00 39.07 0.01

Ulsan 

PM10 
CMAQ w/o DA 0.46 55.09 -37.69 67.31 -70.50
CMAQ w/ DA 0.57 44.44 -26.05 52.46 -48.38
LSTM 0.79 18.57 -1.00 37.33 -2.21

PM2.5 
CMAQ w/o DA 0.59 23.17 -18.21 68.97 -64.28
CMAQ w/ DA 0.75 16.95 -11.33 52.08 -40.02
LSTM 0.79 12.75 2.52 64.04 9.39

Busan 

PM10 
CMAQ w/o DA 0.45 41.79 -27.16 59.77 -60.13
CMAQ w/ DA 0.61 33.11 -15.95 46.28 -35.31
LSTM 0.74 16.58 0.41 44.37 1.03

PM2.5 
CMAQ w/o DA 0.62 19.31 -14.97 64.64 -55.68
CMAQ w/ DA 0.73 15.78 -8.11 49.01 -30.15
LSTM 0.79 11.13 0.82 38.63 3.05

1) The units for RMSE and MB are g/m3, and those for MNGE and MNB are in  
 


