Response to reviewer’s comments:

First of all, thank you for your valuable comments and suggestions. In the revised manuscript,
we attempt to improve the manuscript based on your comments and suggestions. The
added/modified parts are painted in a red color in the revised manuscript. Here, we would like to
reply to some specific comments raised by you below:

Author’s comments to anonymous referee #2

1. “Authors selected variables for machine learning using their knowledges and experiences.
However, the square of the pearson correlation coefficient (R2) in Fig 3. and 4 looks not
greater than 0.5. meaning that the input variables have only 50% of explanatory power. Can
this not limit the performance of machine learning based model?”

Reply) The predication accuracy of deep neural network models is, in general, known to be very
high. The performances of these models are mainly determined by input data used in the model
training. We organized the current data set with 11 to 12 independent variables that were all
information that could be collected from the ground-based observations (i.e., AIR KOREA and
KMA AWS networks). This indicates that we used almost all chemical and meteorological
variables available from the observations. In the model training, we used the observations for a
period of 2.3 years because there was limited data availability. We expect that the performance
of the LSTM-based PM prediction model would improve if more independent variables were
obtained from ground observations and longer time-series observations were utilized in the

model optimization in the future.

2. “In major cities in Korea, NO, and CO are likely to be correlated due to share the common
emission source. Does the dependency between input variables worsen LSTM performance or
have little effect on it?.”

Reply) We added more detailed discussions about the multicollinearity issue in the revised
manuscript (please, see pp. 5:27-6:4).

3. “The high pollution events of PMyo/PM,s in Korea are usually caused by long-range
transport(LRT) and atmospheric congestion(AC). In most cases both LRT and AC play a role
sequentially in polluted days. However, LSTM showed poor prediction at LRT case of May 25 to
28, 2016. Did authors consider any other model or any combination of LSTM and CNN(or DNN)
in order to capture both LRT and AC.”

Reply) We may be able to improve the performances of the LSTM-based PM prediction model
by combining different types or methods of neural network model that can predict high
pollution events more accurately. To develop these models (or methods), it is essential to



identify high PM episode events and collect more amounts of variables, but these preliminary
studies require considerable time. One example is the balancing the data for better predictions of
high PM events. This issue is discussed in reply 4. However, this was not working very well. We
think this issue will be able to be covered by future work!!

4. “Air quality forecasting is usually intended for high pollution events. Did authors consider to
estimate the LSTM by categorical statistics such as critical success index(CSl), probability of
detection(POD), false alarm ratio(FAR), and etc? If then, as high pollution events are not
frequent, did authors consider the issue of data imbalance between normal and polluted days?.”
Reply) We added a more detailed discussion on data imbalance in the revised manuscript
(please, refer to pp. 11:3-18).

5. “Several things such as data representation, activation function, weight initialization, pre-
processing, hyper parameter are important for determining machine learning model. | believe
that authors performed a number of test to find the optimal method. Did authors not present for
any reason all the information about them?”

Reply) We carried out several pre-tests to find out the optimized structure of the deep LSTM
model. Recent deep learning studies have not provided detailed information about determining
model structure because such descriptions must be extensive. In addition, the structure of deep
neural network should change according to the configuration of independent and dependent
variables. Therefore, we did not describe these contents in the manuscript.

The results of important sensitivity tests to determine the structure of PM,s prediction model
for Seoul-1 site are presented in Fig. R1. As shown in Fig. R1, the validation cost of the LSTM
model training was the lowest when there were 100 hidden nodes (i.e., hidden neurons) and 5
hidden layers. In addition, the deep LSTM model showed optimal performances, when ReLU
was embedded as an activation function, which is similar to previous studies (Nair and Hinton,
2010). Recent studies rarely used the sigmoid function, because of the gradient vanishing
problem. For weight initialization, we applied the Xavier algorithm. This initialization method
finds the optimal initial weight vectors according to the structure of the deep neural network
(Glorot and Bengio, 2010). Because we adopted ADAM as an optimizer, the learning rate,
which determines adjustment rate of weight and bias, continuously changed to find the global
minima (Kingma and Ba, 2015).

6. “Correction of missing data is very important, especially, in machine learning algorithm.
Authors developed the pre-trained deep LSTM model in order to generate missing data. As a
result, the performance of the pre-trained deep LSTM model varies considerably with pollutant



species. Does this affect the low dependance of SO2 and NO2 on PM10/PM2.5 prediction or
not??”

Reply) As we described in Sec. 2.3, one of the main criteria in selecting the PM prediction sites
was the number of missing observations. The percentage of missing observations at seven sites
is summarized in Table S1. As shown in Table S1, the fractions of missing observations are
relatively small. Therefore, the values generated by the pre-trained model are unlikely to affect
the dependencies of atmospheric pollutants. In order to confirm this, we performed the LSTM
model training without missing observations. The dependence of the independent variables on
the PM predictions of the previous model (including the missing values generated by the pre-
trained model) and the newly trained model (excluding the missing observations) is summarized
in Table R1. As shown in Table R1, the dependencies of SO, and NO, were also low, although
the missing observations were not considered in the model training. In addition, we compared
the performances of both models to evaluate the effects of missing observations on the PM
predictions. The prediction accuracy of the two models is summarized in Table R2. In general,
the PM predictions by the previous model were superior to those by the newly trained model,
except at Gwangju site. This is because the missing observations generated by the pre-trained
model enabled us to train the LSTM model for more various atmospheric conditions.
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Figure R1. Results of sensitivity test to determine the structure of PM, s prediction model for Seoul-1
site.



Table R1. Dependency comparison between the LSTM model with and without considerations of missing observations

Input variable

TA WD WS RN RNH RH SO, 0O; NO, CO PMyy  PMys
LSTM w/ MO -26.93 1878 -1.44 020 -0.27 265 1292 1247 1564 -0.35 4298 -

Species  Station Model

Seoull  'orMwio MO  -190.25 1698 430 048 013 281 1258 1184 1635 222 3675 -
Seouly LSTMW/MO 2207 3229 1005 022 -014 291 087 474 1242 570 4755 -

LSTMw/o MO  -3259 31.08 343 032 -025 379 134 1007 1854 -205 4941 -
Dasjeon LSTMW/MO 2417 4567 997 023 025 1L72 090 2437 923 098 3997 -

LSTMw/o MO  -16.74 22.07 -15.13 079 -0.33 1857 1.28 26.08 5.65 2.83  43.93 -

PMy  Gwangju LSTM w/ MO -18.34 23.68 -13.94 1.02 -050 - -9.62 31.84 20.09 158 4361 -
LSTM w/o MO -1.43 2578 -9.18 0.87  -0.58 - -9.62 3115 17.66 6.53 48.56 -
Daegu LSTM w/ MO 885 1659 -439 -0.04 -0.40 - 240 10.18 10.49 8.65 37.87 -
LSTM w/o MO 211 587 -705 -001 -0.63 - 330 1642 1481 1097 4094 -
Ulsan LSTM w/ MO 1719 1193 -8.32 020 -051 1113 -1.39 1978 1416 -3.99 60.12 -
LSTM w/o MO 16.19 1495 -6.33 0.03 -0.50 5.10 031 2372 1147 -6.26 47.84 -
Busan LSTM w/ MO -283 2295 -295 -003 -008 -1040 -0.35 18.30 567 1224 38.48 -
LSTM w/o MO 1144 1925 -10.77 -0.04 -0.04 -18.37 1.80 1466 11.20 7.74  30.97 -
Seoul-1 LSTM w/ MO -25.85 2423  -5.67 040 -0.33 8.32 574 11.06 8.04 164 1054 37.05
LSTMw/oMO -33.87 2521 -6.30 0.10 -0.38 1141 -599 1474 13.66 220 1174 3594
Seoul-2 LSTM w/ MO 6.46 17.38 -8.70 014 -0.16 10.28 -0.36 524 1221 -6.17 1829 33.89
LSTMw/oMO -21.21 2068 -884 -0.10 -0.18 1033 -3.38 3.75 1072 -6.73 1632 28.33
Dagjeon LSTM w/ MO -24.17 45,67  -9.97 023 -025 1172 -090 24.37 9.23 0.98 39.97 -
LSTMw/o MO  -16.74 22.07 -15.13 079 -0.33 1857 1.28 26.08 5.65 2.83 43.93 -
PMys  Gwangju LSTM w/ MO -5.86 968 -893 -049 -049 - -3.92 1855 1629 -2.82 7.27 28.80
' LSTM w/o MO -1.31 1315 -354 125 -0.58 - -1349 26.10 18.18 -5.90 9.69 31.37
Daegu LSTM w/ MO 9.05 -10.16 -6.13 -0.04 -0.38 - 5.20 8.28 10.90 6.74 214 4411
LSTM w/o MO 1193 -096 -10.68 -0.06 -0.52 - 1.52 7.96 222 11.78 9.80 32.66
Ulsan LSTM w/ MO -8.11 5.63 -10.52 0.07 -0.15 11.56 1.75 7.14 854 -382 -051 83.38
LSTM w/o MO 431 7.13 -10.70 032 -023 1402 -126 21.07 11.87 -1040 -150 81.17
Busan LSTM w/ MO -11.75  16.47 -24.01 0.19 -0.06 -3.59 0.96 7.83 829 16.23 -6.36 48.77

LSTM w/o MO 17.44 8.70 -25.10 0.06 0.12 1.80 -2.13 7.65 6.35 8.99 149 58.50
YLSTM w/ MO and LSTM w/o MO represent the LSTM model with and without consideration of missing observations in the model training; TA, WD, WS, RN, RNH,
and RH denote temperature, wind direction, wind speed, daily accumulative precipitation, hourly precipitation, and relative humidity of previous day; SO,, Os;, NO,, CO,
PMy, and PM, are the concentrations of the respective air pollutants on the previous day.




Table R2. Performance comparison between the LSTM model with and without considerations of
missing observations®

Statistical parameter

Station Species Model
IOA RMSE MB  MNGE MNB
N LSTM w/ MO 062 2422 320 4972  -527
' LSTM wio MO 057 2535 091  57.16 1.49
Seoul -1
o LSTM w/ MO 071 1251  -133 5603  -458
** LSTM wlo MO 071 1295 256 5353  -8.81
N LSTM w/ MO 076 2119  -129 4672  -2.40
" LSTM wio MO 069 2353  -490 4835  -9.14
Seoul - 2
o LSTM w/ MO 077 1514  -1.09  57.60  -3.48
** LSTM wlo MO 075 1606  -462 5152  -14.78
N LSTM w/ MO 067 1917 628 7201 1551
_ ' LSTM wio MO 059 1913  -044 6207  -1.16
Daejeon
o LSTM w/ MO 067 1217 399 7201 1649
** LSTM wlo MO 059 1215 028 6207  -1.16
N LSTM w/ MO 067  18.92 160  74.68 3.96
_ ' LSTM wio MO 072 1841 074  66.60 1.72
Gwangju
o LSTM w/ MO 063 1153 023 8274  -0.98
** LSTM wlo MO 068  11.86 240 9592 1046
N LSTM w/ MO 071  16.46 602 4412 1526
' LSTM wio MO 071 1651 534 4330  12.67
Daegu
o LSTM w/ MO 0.78 9.91 000 3907 0.01
** LSTM wlo MO 067 1155 079 4378 3.06
N LSTM w/ MO 079 1857  -1.00 3733  -2.21
| ' LSTM wio MO 069 1860  -155 3737  -341
Ulsan
o LSTM w/ MO 079 1275 252  64.04 9.39
** LSTMwlo MO 072 1295 014 5743  -0.21
N LSTM w/ MO 074 1658 041 4437 1.03
' LSTM wio MO 068  17.62 189 4821 4.69
Busan
o LSTM w/ MO 079  11.13 082 3863 3.05
** LSTM wlo MO 077 12,07 091 4098 3.39

YLSTM w/ MO and LSTM w/o MO represent the trained LSTM model with and without missing observations;
the units for RMSE and MB are pg/m?, and those for MNGE and MNB are in %.



