
Response to reviewer’s comments: 

First of all, thank you for your valuable comments and suggestions. In the revised manuscript, 

we attempt to improve the manuscript based on your comments and suggestions. The 

added/modified parts are painted in a red color in the revised manuscript. Here, we would like to 

reply to some specific comments raised by you below: 

 

Author’s comments to anonymous referee #2 

1. “Authors selected variables for machine learning using their knowledges and experiences. 

However, the square of the pearson correlation coefficient (R2) in Fig 3. and 4 looks not 

greater than 0.5. meaning that the input variables have only 50% of explanatory power. Can 

this not limit the performance of machine learning based model?” 

Reply) The predication accuracy of deep neural network models is, in general, known to be very 

high. The performances of these models are mainly determined by input data used in the model 

training. We organized the current data set with 11 to 12 independent variables that were all 

information that could be collected from the ground-based observations (i.e., AIR KOREA and 

KMA AWS networks). This indicates that we used almost all chemical and meteorological 

variables available from the observations. In the model training, we used the observations for a 

period of 2.3 years because there was limited data availability. We expect that the performance 

of the LSTM-based PM prediction model would improve if more independent variables were 

obtained from ground observations and longer time-series observations were utilized in the 

model optimization in the future.  

 

2. “In major cities in Korea, NO2 and CO are likely to be correlated due to share the common 

emission source. Does the dependency between input variables worsen LSTM performance or 

have little effect on it?.” 

Reply) We added more detailed discussions about the multicollinearity issue in the revised 

manuscript (please, see pp. 5:27-6:4). 

 

3. “The high pollution events of PM10/PM2.5 in Korea are usually caused by long-range 

transport(LRT) and atmospheric congestion(AC). In most cases both LRT and AC play a role 

sequentially in polluted days. However, LSTM showed poor prediction at LRT case of May 25 to 

28, 2016. Did authors consider any other model or any combination of LSTM and CNN(or DNN) 

in order to capture both LRT and AC.” 

Reply) We may be able to improve the performances of the LSTM-based PM prediction model 

by combining different types or methods of neural network model that can predict high 

pollution events more accurately. To develop these models (or methods), it is essential to 



identify high PM episode events and collect more amounts of variables, but these preliminary 

studies require considerable time. One example is the balancing the data for better predictions of 

high PM events. This issue is discussed in reply 4. However, this was not working very well. We 

think this issue will be able to be covered by future work!! 

 

4. “Air quality forecasting is usually intended for high pollution events. Did authors consider to 

estimate the LSTM by categorical statistics such as critical success index(CSI), probability of 

detection(POD), false alarm ratio(FAR), and etc? If then, as high pollution events are not 

frequent, did authors consider the issue of data imbalance between normal and polluted days?.” 

Reply) We added a more detailed discussion on data imbalance in the revised manuscript 

(please, refer to pp. 11:3-18). 

 

5. “Several things such as data representation, activation function, weight initialization, pre-

processing, hyper parameter are important for determining machine learning model. I believe 

that authors performed a number of test to find the optimal method. Did authors not present for 

any reason all the information about them?” 

Reply) We carried out several pre-tests to find out the optimized structure of the deep LSTM 

model. Recent deep learning studies have not provided detailed information about determining 

model structure because such descriptions must be extensive. In addition, the structure of deep 

neural network should change according to the configuration of independent and dependent 

variables. Therefore, we did not describe these contents in the manuscript. 

The results of important sensitivity tests to determine the structure of PM2.5 prediction model 

for Seoul-1 site are presented in Fig. R1. As shown in Fig. R1, the validation cost of the LSTM 

model training was the lowest when there were 100 hidden nodes (i.e., hidden neurons) and 5 

hidden layers. In addition, the deep LSTM model showed optimal performances, when ReLU 

was embedded as an activation function, which is similar to previous studies (Nair and Hinton, 

2010). Recent studies rarely used the sigmoid function, because of the gradient vanishing 

problem. For weight initialization, we applied the Xavier algorithm. This initialization method 

finds the optimal initial weight vectors according to the structure of the deep neural network 

(Glorot and Bengio, 2010). Because we adopted ADAM as an optimizer, the learning rate, 

which determines adjustment rate of weight and bias, continuously changed to find the global 

minima (Kingma and Ba, 2015). 

  

6. “Correction of missing data is very important, especially, in machine learning algorithm. 

Authors developed the pre-trained deep LSTM model in order to generate missing data. As a 

result, the performance of the pre-trained deep LSTM model varies considerably with pollutant 



species. Does this affect the low dependance of SO2 and NO2 on PM10/PM2.5 prediction or 

not??” 

Reply) As we described in Sec. 2.3, one of the main criteria in selecting the PM prediction sites 

was the number of missing observations. The percentage of missing observations at seven sites 

is summarized in Table S1. As shown in Table S1, the fractions of missing observations are 

relatively small. Therefore, the values generated by the pre-trained model are unlikely to affect 

the dependencies of atmospheric pollutants. In order to confirm this, we performed the LSTM 

model training without missing observations. The dependence of the independent variables on 

the PM predictions of the previous model (including the missing values generated by the pre-

trained model) and the newly trained model (excluding the missing observations) is summarized 

in Table R1. As shown in Table R1, the dependencies of SO2 and NO2 were also low, although 

the missing observations were not considered in the model training. In addition, we compared 

the performances of both models to evaluate the effects of missing observations on the PM 

predictions. The prediction accuracy of the two models is summarized in Table R2. In general, 

the PM predictions by the previous model were superior to those by the newly trained model, 

except at Gwangju site. This is because the missing observations generated by the pre-trained 

model enabled us to train the LSTM model for more various atmospheric conditions. 
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Figure R1. Results of sensitivity test to determine the structure of PM2.5 prediction model for Seoul-1 
site. 
 

 
  



Table R1. Dependency comparison between the LSTM model with and without considerations of missing observations1) 

Species Station Model 
Input variable 

TA WD WS RN RNH RH SO2 O3 NO2 CO PM10 PM2.5 

PM10 

Seoul-1 
LSTM w/ MO -26.93 18.78 -1.44 0.20 -0.27 2.65 12.92 12.47 15.64 -0.35 42.98 - 
LSTM w/o MO -19.25 16.98 4.30 0.48 -0.13 2.81 12.58 11.84 16.35 2.22 36.75 - 

Seoul-2 
LSTM w/ MO -22.07 32.29 10.05 0.22 -0.14 2.91 -0.87 4.74 12.42 -5.70 47.55 - 
LSTM w/o MO -32.59 31.08 3.43 0.32 -0.25 3.79 1.34 10.07 18.54 -2.05 49.41 - 

Daejeon 
LSTM w/ MO -24.17 45.67 -9.97 0.23 -0.25 11.72 -0.90 24.37 9.23 0.98 39.97 - 
LSTM w/o MO -16.74 22.07 -15.13 0.79 -0.33 18.57 1.28 26.08 5.65 2.83 43.93 - 

Gwangju
LSTM w/ MO -18.34 23.68 -13.94 1.02 -0.50 - -9.62 31.84 20.09 1.58 43.61 - 
LSTM w/o MO -1.43 25.78 -9.18 0.87 -0.58 - -9.62 31.15 17.66 6.53 48.56 - 

Daegu 
LSTM w/ MO 8.85 16.59 -4.39 -0.04 -0.40 - 2.40 10.18 10.49 8.65 37.87 - 
LSTM w/o MO 2.11 5.87 -7.05 -0.01 -0.63 - 3.30 16.42 14.81 10.97 40.94 - 

Ulsan 
LSTM w/ MO 17.19 11.93 -8.32 0.20 -0.51 11.13 -1.39 19.78 14.16 -3.99 60.12 - 
LSTM w/o MO 16.19 14.95 -6.33 0.03 -0.50 5.10 0.31 23.72 11.47 -6.26 47.84 - 

Busan 
LSTM w/ MO -2.83 22.95 -2.95 -0.03 -0.08 -10.40 -0.35 18.30 5.67 12.24 38.48 - 
LSTM w/o MO 11.44 19.25 -10.77 -0.04 -0.04 -18.37 1.80 14.66 11.20 7.74 30.97 - 

PM2.5 

Seoul-1 
LSTM w/ MO -25.85 24.23 -5.67 0.40 -0.33 8.32 5.74 11.06 8.04 1.64 10.54 37.05 
LSTM w/o MO -33.87 25.21 -6.30 0.10 -0.38 11.41 -5.99 14.74 13.66 2.20 11.74 35.94 

Seoul-2 
LSTM w/ MO 6.46 17.38 -8.70 0.14 -0.16 10.28 -0.36 5.24 12.21 -6.17 18.29 33.89 
LSTM w/o MO -21.21 20.68 -8.84 -0.10 -0.18 10.33 -3.38 3.75 10.72 -6.73 16.32 28.33 

Daejeon 
LSTM w/ MO -24.17 45.67 -9.97 0.23 -0.25 11.72 -0.90 24.37 9.23 0.98 39.97 - 
LSTM w/o MO -16.74 22.07 -15.13 0.79 -0.33 18.57 1.28 26.08 5.65 2.83 43.93 - 

Gwangju
LSTM w/ MO -5.86 9.68 -8.93 -0.49 -0.49 - -3.92 18.55 16.29 -2.82 7.27 28.80 
LSTM w/o MO -1.31 13.15 -3.54 1.25 -0.58 - -13.49 26.10 18.18 -5.90 9.69 31.37 

Daegu 
LSTM w/ MO 9.05 -10.16 -6.13 -0.04 -0.38 - 5.20 8.28 10.90 6.74 2.14 44.11 
LSTM w/o MO 11.93 -0.96 -10.68 -0.06 -0.52 - 1.52 7.96 2.22 11.78 9.80 32.66 

Ulsan 
LSTM w/ MO -8.11 5.63 -10.52 0.07 -0.15 11.56 1.75 7.14 8.54 -3.82 -0.51 83.38 
LSTM w/o MO 4.31 7.13 -10.70 0.32 -0.23 14.02 -1.26 21.07 11.87 -10.40 -1.50 81.17 

Busan 
LSTM w/ MO -11.75 16.47 -24.01 0.19 -0.06 -3.59 0.96 7.83 8.29 16.23 -6.36 48.77 
LSTM w/o MO 17.44 8.70 -25.10 0.06 0.12 1.80 -2.13 7.65 6.35 8.99 1.49 58.50 

1) LSTM w/ MO and LSTM w/o MO represent the LSTM model with and without consideration of missing observations in the model training; TA, WD, WS, RN, RNH, 
and RH denote temperature, wind direction, wind speed, daily accumulative precipitation, hourly precipitation, and relative humidity of previous day; SO2, O3, NO2, CO, 
PM10, and PM2 are the concentrations of the respective air pollutants on the previous day.



Table R2. Performance comparison between the LSTM model with and without considerations of 
missing observations1) 

1) LSTM w/ MO and LSTM w/o MO represent the trained LSTM model with and without missing observations; 
the units for RMSE and MB are g/m3, and those for MNGE and MNB are in %.　　　 
 

Station Species Model 
Statistical parameter 

IOA RMSE MB MNGE MNB 

Seoul - 1 

PM10 
LSTM w/ MO 0.62 24.22 -3.20 49.72 -5.27

LSTM w/o MO 0.57 25.35 0.91 57.16 1.49

PM2.5 
LSTM w/ MO 0.71 12.51 -1.33 56.03 -4.58

LSTM w/o MO 0.71 12.95 -2.56 53.53 -8.81

Seoul - 2 

PM10 
LSTM w/ MO 0.76 21.19 -1.29 46.72 -2.40

LSTM w/o MO 0.69 23.53 -4.90 48.35 -9.14

PM2.5 
LSTM w/ MO 0.77 15.14 -1.09 57.60 -3.48

LSTM w/o MO 0.75 16.06 -4.62 51.52 -14.78

Daejeon 

PM10 
LSTM w/ MO 0.67 19.17 6.28 72.01 15.51

LSTM w/o MO 0.59 19.13 -0.44 62.07 -1.16

PM2.5 
LSTM w/ MO 0.67 12.17 3.99 72.01 16.49

LSTM w/o MO 0.59 12.15 -0.28 62.07 -1.16

Gwangju 

PM10 
LSTM w/ MO 0.67 18.92 1.69 74.68 3.96

LSTM w/o MO 0.72 18.41 0.74 66.60 1.72

PM2.5 
LSTM w/ MO 0.63 11.53 -0.23 82.74 -0.98

LSTM w/o MO 0.68 11.86 2.40 95.92 10.46

Daegu 

PM10 
LSTM w/ MO 0.71 16.46 6.02 44.12 15.26

LSTM w/o MO 0.71 16.51 5.34 43.30 12.67

PM2.5 
LSTM w/ MO 0.78 9.91 0.00 39.07 0.01

LSTM w/o MO 0.67 11.55 0.79 43.78 3.06

Ulsan 

PM10 
LSTM w/ MO 0.79 18.57 -1.00 37.33 -2.21

LSTM w/o MO 0.69 18.60 -1.55 37.37 -3.41

PM2.5 
LSTM w/ MO 0.79 12.75 2.52 64.04 9.39

LSTM w/o MO 0.72 12.95 -0.14 57.43 -0.21

Busan 

PM10 
LSTM w/ MO 0.74 16.58 0.41 44.37 1.03

LSTM w/o MO 0.68 17.62 1.89 48.21 4.69

PM2.5 
LSTM w/ MO 0.79 11.13 0.82 38.63 3.05

LSTM w/o MO 0.77 12.07 0.91 40.98 3.39


