
 

Response to reviewer’s comments: 

First of all, thank you for your valuable comments and suggestions. In the revised manuscript, we 

attempt to improve the manuscript based on your comments and suggestions. The added/modified 

parts are painted in a red color in the revised manuscript. Here, we would like to reply to some 

specific comments raised by you below: 

 

Author’s comments to anonymous referee #1 

1. “The authors should better clarify what the intended use-case is for the machine learning model. In 

particular, there is some ambiguity in the word ‘prediction’ as it means different things in machine 

learning (where it means the ‘guess’ of the model) and atmospheric chemistry (where it refers to 

concentration estimates in the future): is the goal of the LSTM model to make a prediction of 

PM2.5/PM10 concentrations 24 hours from now - based on current conditions? If so, I assume the 

inputs/outputs have been prepared in such a way that they incorporate this 24-hour time lag? Or is 

the LSTM designed to make an optimal prediction of the concentration at a given time based on 

current conditions? In this case, it is not fully clear what the use-case for such a model would be. In 

general, the mapping between input features and the predictor variable needs more explanation. For 

example, based on Figures 9 and 10 one would conclude that the variables needed to make a model 

prediction are the current meteorological conditions as well as the previous day pollutant 

concentrations? If this is the case, was there a rationale for this choice? Also, PM2.5 concentration is 

not used as an input for the PM10 prediction model (Figure 9), but seems to be used for the prediction 

of PM2.5 (Figure 10)?” 

Reply) The aim of the LSTM system is daily prediction of PM10 and PM2.5 with one hour resolution. 

In this study, we used the meteorological conditions and atmospheric pollutant concentrations of the 

previous day as input parameters to predict the next 24 hour PM concentrations (i.e., there is a 24-hr 

time lag between the independent and dependent variables). Regarding this, we added a brief 

explanation about the mapping between the input and target values in the revised manuscript (please, 

refer to pp. 4:30-5:2). 

Based on the reviewer’s comment, we conducted a sensitivity test for the new input variable of 

PM2.5 to the PM10 predictions. The accuracy of PM10 predictions with and without the added 

independent variable of PM2.5 is summarized in Table R1. Even with the PM2.5, no significant changes 

were found in the LSTM-based PM10 predictions. In terms of IOA, most of the LSTM-based PM10 

predictions without PM2.5 are correlated better with the observed PM10 than did those with PM2.5 

except for the Seoul-2 and Daegu sites. Several AIR KOREA sites did not have monitored PM2.5. In 

addition, this variable is not always available for the PM10 predictions because of instrument 

malfunction such as at the Daejeon site. Therefore, the current combination of independent variables 

is more suitable for daily PM10 prediction, we believe (please, also check out Table R1 attached in this 

reply). 

 



 

2. “The motivation to choose LSTM over another architecture should be discussed in more detail. Was 

LSTM selected because urban PM concentrations are expected to be dominated by local processes 

(e.g., emissions) and thus have a local, time-persistent signal? This would be a reasonable argument, 

but possibly also limits the usefulness of this approach to (urban) areas where PM concentrations are 

primarily determined by local processes? Based on the current version of the manuscript, it is not 

obvious why a simpler architecture (e.g., XGBoost) wouldn’t yield a comparable (or even better) 

result.” 

Reply) We added more explanations for why we selected the deep LSTM neural network to develop 

the daily PM prediction system in South Korea (please, see pp. 5:6-12) 

 

3. “The authors should clarify whether they trained just one LSTM model (for all 7 locations 

combined) or an individual LSTM for each station. If the former, can the LSTM model then also be 

used for PM predictions for a different city? This would be a powerful argument for this methodology 

and worthwhile testing.” 

Reply) We developed individual PM prediction models for seven selected sites (please, see pp. 3:15-

17). 

 

4. “Did the authors consider to use the logarithmic of NO2 and SO2 before normalizing the inputs? 

These species are often log-normally distributed and applying the regular normalization function to 

them (Eq. 1) might not be optimal. The generated missing values for both NO2 and SO2 are much 

worse than the predictions for the other four species (Figure S2), which might be further indication 

that these two species are not treated optimally. At the very least, a justification for using non-

logarithmic concentration values for NO2 and SO2 should be provided.” 

Reply) To optimize data preprocessing, we conducted several sensitivity tests including converting 

the input variables into logarithmic values. The generation accuracy of missing SO2 and NO2 with and 

without logarithmic conversion (LC) of SO2 and NO2 is summarized in Table R2. As shown in Table 

R2, in general the generated missing values without LC showed better correlations with the 

observations than did those with LC.  

In addition, we evaluated the impact of LC on the PM predictions. The performance of LSTM-

based PM predictions with and without the LC of SO2 and NO2 is summarized in Table R3. The PM 

predictions without LC were more accurate (0.62  IOAPM10  0.79; 0.63  IOAPM2.5  0.79) than were 

those with LC (0.60  IOAPM10  0.74; 0.63  IOAPM2.5  0.77).  

  

5. “The paragraph on model overfitting is confusing (page 6, line 14ff.): an overfitted model will 

produce better skill scores against the training data vs. the validation data since it has learned to fit 

well to the training data, but the model doesn’t generalize. The results shown in Table 1 are not 

particularly encouraging in that regard and need more explanation. It would also be helpful to 

provide more information on the network architecture, in particular the number of hidden nodes. 



 

Given that the number of input features is relatively small (11 variables per station per hour) and the 

training period only covers 2.3 years, it seems plausible that a complex model with too many modes 

will (a) overfit or (b) not converge to a (local) minimum in time because the training sample is too 

small. With regards to the latter, it would be instructive to show the MSE as a function of training 

cycles.” 

Reply) We added more detailed explanations for model training in the revised manuscript (please, 

refer to pp. 6:29 – pp. 7:10).  

 

6. “Another issue that should be addressed in the context of overfitting is the correlation of input 

variables: I assume some of the input features are highly correlated (e.g. NO2 and SO2, PM2.5 and 

PM10, temperature and O3, etc.). While this is not a problem for the LSTM, per se, it lowers the 

amount of (independent) information contained in the training data and will likely slow convergence 

of the LSTM model as the model ‘wastes time’ learning these correlations first. In that regard it is 

surprising to see that, for a number of stations, the PM2.5 prediction strongly depends on the previous 

day PM2.5 concentration but shows little dependency (or even a negative dependency) on PM10 

concentration (Figure 10). Is this an expected result?” 

Reply)We added more detailed discussions about the multicollinearity in the revised manuscript 

(please, see pp. 5:27-6:4). 

We also agree with the reviewer’s opinion that the number of available independent variables is 

very important for improving the performances of the LSTM-based PM prediction model. We 

organized the current data set with 11 to 12 independent variables that all could be collected from the 

ground-based observations (i.e., AIR KOREA and AWS networks). As mentioned in Sect. 4, if more 

useful independent variables are obtained from ground observations, we expect that the performances 

of the LSTM-based model could be improved further. This is also our research topic in the future. 

The model training is a process to find the optimized weight and bias vectors to minimize the 

outcome of cost function (i.e., general scientific knowledge is not taken into account in the model 

training). In the deep learning, it is impossible to identify the causal relationships between 

independent and dependent variables (black box). In general, the prediction of the deep neural 

network model is mainly determined by input features used in the model training. Therefore, it is 

expected that the unusual correlations between PM10 and PM2.5 would be originated from the principle 

of model training and the characteristics of training data.  

 

7. “The CTM used in this study was run at 15x15 km2 horizontal resolution, which can make it 

challenging to compare its output against ground-based observations due to representation error. 

This is particularly true for urban sites that might be heavily influenced by local, smallscale emission 

sources that are difficult to capture at this model resolution. As such, the comparison between CTM 

vs. LSTM predictions is somewhat unfair as it seems likely that a CTM with a local bias correction 

applied to it would perform significantly better. While this might be difficult to quantify, it should at 



 

least be addressed in the revised version of the manuscript.” 

Reply)This is well-known sub-grid variability problem!! We added discussion into pp. 9:9-17. Please, 

take a look at this part!  

Minor comments: 

“Page 4, line 12: it would be helpful to provide the number of missing values (in %) for the pollutant 

concentrations ” 

Reply)The number of missing observations is summarized in Table S1.  

 

“Page 6, line 17: I assume the authors mean ‘overtuned’, not ‘overturned’” 

Reply)We corrected it (please, see pp. 7:9). 

 

“Page 21/22: the authors should explain why the LSTM predictions are missing for Daejeon from 

approximately 5/27 to 6/7.’” 

Reply)We added an explanation of why there were no PM10 predictions on those days (please, see pp. 

23).  

 

“Appendix, equation S4: Isn’t the sigmoid function defined as: s(x) = 1 / ( 1 + e-x ) ?’” 

Reply)In this study, we used the hard sigmoid function to activate the LSTM gate. We corrected the 

description (please, check out pp. S2:13-14). 

 

  



 

Table R1. Accuracy of the LSTM-based PM10 predictions with and without the input variable of 

PM2.5
1) 

Site Statistical parameter Without PM2.5 With PM2.5 

Seoul-1 

IOA 0.62 0.61
RMSE 24.22 23.81
MB -3.2 -2.81
MNGE 49.72 49.50
MNB -5.27 -4.64

Seoul-2 

IOA 0.76 0.79
RMSE 21.19 21.29
MB -1.29 0.02
MNGE 46.72 47.53
MNB -2.4 0.04

Daejeon 

IOA 0.67 - 
RMSE 19.17 - 
MB 6.28 - 
MNGE 72.01 - 
MNB 15.51 - 

Gwangju 

IOA 0.67 0.66
RMSE 18.92 18.10
MB 1.69 -1.88
MNGE 74.68 67.85
MNB 3.96 -4.39

Daegu 

IOA 0.71 0.72
RMSE 16.46 15.71
MB 6.02 4.82
MNGE 44.12 41.81
MNB 15.26 11.45

Ulsan 

IOA 0.79 0.76
RMSE 18.57 17.25
MB -1 0.08
MNGE 37.33 34.05
MNB -2.21 0.18

Busan 

IOA 0.74 0.71
RMSE 16.58 17.39
MB 0.41 1.48
MNGE 44.37 46.33
MNB 1.03 3.69

1) The units for RMSE and MB are g/m3, and those for MNGE and MNB are in %. 

 

 

 



 

Table R2. Accuracy comparison of missing SO2 and NO2 generations using log and non-log scale SO2 and NO2
1) 

Site 
 non-log scale  log scale 

Statistics Tr. SO2 Val. SO2 Tr. NO2 Val. NO2 Statistics Tr. SO2 Val. SO2 Tr. NO2 Val. NO2 

Seoul-1 

IOA 0.74 0.46 0.92 0.88 IOA 0.74 0.47 0.90 0.88 
RMSE 1.83 1.93 9.48 9.87 RMSE 1.83 2.25 10.33 9.50 
MB 0.13 -0.75 0.54 -0.39 MB -0.46 -1.37 -1.46 -1.89 
MNGE 43.75 24.62 26.55 26.77 MNGE 35.62 27.73 26.13 25.35 
MNB 2.72 -17.00 1.49 -1.26 MNB -9.64 -26.56 -4.07 -5.96 

Seoul-2 

IOA 0.84 0.56 0.91 0.88 IOA 0.74 0.51 0.90 0.88 
RMSE 1.13 1.32 8.15 9.69 RMSE 1.30 1.30 8.24 9.96 
MB -0.08 0.21 1.29 0.86 MB -0.44 -0.26 -1.33 -2.51 
MNGE 14.52 18.31 21.05 27.30 MNGE 14.59 16.32 17.56 24.17 
MNB -1.36 3.50 3.19 2.41 MNB -7.72 -4.38 -7.24 -7.06 

Daejeon 

IOA 0.93 0.84 0.84 0.77 IOA 0.92 0.81 0.85 0.76 
RMSE 0.79 0.86 6.03 6.09 RMSE 0.84 0.91 6.11 6.24 
MB -0.01 -0.27 0.06 -0.79 MB -0.14 -0.32 -0.66 -1.20 
MNGE 27.08 21.93 54.69 45.76 MNGE 25.02 23.36 45.08 41.44 
MNB -0.19 -9.65 0.45 -7.03 MNB -5.46 -11.52 -5.43 -10.79 

Gwangju 

IOA 0.87 0.67 0.79 0.79 IOA 0.75 0.59 0.77 0.79 
RMSE 1.06 1.11 9.07 9.38 RMSE 1.32 1.21 9.66 9.28 
MB -0.06 -0.42 -0.28 1.36 MB -0.40 -0.65 -0.56 0.49 
MNGE 24.21 23.74 37.55 49.96 MNGE 25.36 23.47 34.72 46.32 
MNB -1.64 -13.83 -7.46 6.41 MNB -11.81 -21.24 -13.75 2.33 

Daegu 

IOA 0.81 0.68 0.88 0.89 IOA 0.68 0.59 0.87 0.85 
RMSE 2.38 2.46 8.83 11.30 RMSE 2.72 2.55 9.08 12.25 
MB 0.08 0.01 0.66 -5.08 MB -0.94 -1.08 -0.30 -6.60 
MNGE 65.92 54.14 38.95 28.68 MNGE 48.15 43.04 37.11 29.65 
MNB 2.15 0.23 2.82 -15.71 MNB -27.10 -28.78 -1.30 -20.42 

Ulsan 

IOA 0.85 0.70 0.89 0.88 IOA 0.77 0.76 0.90 0.87 
RMSE 5.72 5.92 7.64 7.99 RMSE 6.46 4.61 7.37 8.13 
MB -0.22 1.65 0.77 2.51 MB -1.06 0.64 -1.21 0.63 
MNGE 44.70 52.01 41.18 34.88 MNGE 36.62 41.42 29.06 31.05 
MNB -2.82 26.50 3.98 12.53 MNB -13.51 10.21 -6.26 3.16 

Busan 

IOA 0.65 0.63 0.75 0.67 IOA 0.65 0.63 0.68 0.60 
RMSE 2.48 2.56 9.34 11.85 RMSE 2.51 2.38 10.04 13.08 
MB -0.23 0.58 0.13 -2.78 MB -0.69 0.11 -2.44 -5.84 
MNGE 26.36 36.95 46.96 40.16 MNGE 23.07 30.56 41.69 37.52 
MNB -3.36 9.26 0.61 -10.56 MNB -10.19 1.84 -11.40 -22.21 

1) Tr. and Val. represent training and validation; the units for RMSE and MB are g/m3, and those for MNGE and MNB are in %.



 

Table R3. Accuracy comparison of PM predictions using log and non-log scale NO2 and SO2
1) 

1) The units for RMSE and MB are g/m3, and those for MNGE and MNB are in % 
 
 
 
 
 
 

Station 
Statistical 
parameter 

non-log scale log scale 

PM10 PM2.5 PM10 PM2.5 

Seoul-1 

IOA 0.62 0.71 0.60 0.69

RMSE 24.22 12.51 24.66 13.03

MB -3.2 -1.33 1.06 0.08

MNGE 49.72 56.03 54.99 59.06

MNB -5.27 -4.58 1.74 0.27

Seoul-2 

IOA 0.76 0.77 0.72 0.76

RMSE 21.19 15.14 22.25 15.92

MB -1.29 -1.09 -3.90 -3.56

MNGE 46.72 57.6 46.00 53.65

MNB -2.4 -3.48 -7.28 -11.39

Daejeon 

IOA 0.67 - 0.66  
RMSE 19.17 - 17.57  
MB 6.28 - 6.16  
MNGE 72.01 - 52.56  
MNB 15.51 - 20.84  

Gwangju 

IOA 0.67 0.63 0.67 0.63

RMSE 18.92 11.53 19.02 11.65

MB 1.69 -0.23 -3.55 -1.49

MNGE 74.68 82.74 63.13 78.93

MNB 3.96 -0.98 -8.31 -6.52

Daegu 

IOA 0.71 0.78 0.72 0.73

RMSE 16.46 9.91 17.50 10.27

MB 6.02 0.00 8.17 -0.17

MNGE 44.12 39.07 45.98 39.56

MNB 15.26 0.01 19.40 -0.66

Ulsan 

IOA 0.79 0.79 0.74 0.77

RMSE 18.57 12.75 16.93 12.35

MB -1.00 2.52 -0.60 -1.41

MNGE 37.33 64.04 32.63 50.31

MNB -2.21 9.39 -1.47 -5.46

Busan 

IOA 0.74 0.79 0.72 0.74

RMSE 16.58 11.13 17.22 11.71

MB 0.41 0.82 1.81 -2.46

MNGE 44.37 38.63 46.13 36.08

MNB 1.03 3.05 4.50 -9.12


