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Response to referee #1 

In this work, Li et al. proposed “equivalent uptake coefficient”, used this term to compare the 
relative importance of gas uptake onto aerosol surface versus group surface, and concluded 
that some uptake processes onto aerosol particles can be very important. The methodology is 
novel, and the results can be interesting for the atmospheric chemistry community. The 
manuscript can be accepted after the following comments are addressed. 

Response: We thank the positive and constructive comments given by the referee #1, which 
are very helpful to improve the manuscript. Our response to each specific comment is 
presented below. 

Detailed Comments and Responses: 

1. P41, Table 1: There are some experimental studies (by Joel A Thornton, Jon Abbatt, Tim 
Bertram, and likely other) which explored the effect of organics on N2O5 uptake. In addition, 
there may be more studies on H2O2 uptake. Please check the IUPAC evaluation online as well 
as relevant literature. 

Response: We thank the referee’s comments. In the last version, we have already included the 
following experimental studies suggested by the referee in Table A.3 regarding N2O5 uptake 
on organics, i.e., Thornton et al. (2003), Griffiths et al. (2009), and Badger et al. (2006). In the 
revised manuscript, we have tried to complete the list by including Folkers et al. (2003), 
Gross et al. (2009) and Anttila et al. (2006) as in the new Table A.3.  

For H2O2, we checked the IUPAC evaluation online data and related literature. We now add 
one more measurement of H2O2 uptake on mineral dust (Zhao et al., 2011) in the revised 
manuscript. We are still unable to find more laboratory measurements of H2O2 uptake on 
aerosols other than mineral dust, thus more measurements are needed in the future.  

2. P42, Table 2: I am not sure why the work by Wang et al. (2012) is used a representative 
example here. In fact, the uptake coefficients used by Wang et al. are far from being updated, 
and they mainly used uptake coefficients adopted by two modeling studies almost 20 years 
ago (Dentener et al., 1996; Zhang and Carmichael, 1999). For mineral dust in specific, the 
uptake coefficients used by Zhu et al. 2010 were updated values recommended by IUPAC. In 
addition, some of the studies which are cited as the sources of uptake coefficients measured by 
laboratory work are in fact pure modeling work, such as Bauer et al. (2004), Dentener et al. 
(1996), and so on. The author may consider updating this table. 

Response: We thank the referee’s comments. The scheme of Wang K et al. (2012) is taken as 
an example considering the large impact/applications of this scheme within the community 
(e.g., Wang et al., 2014; Li et al., 2015; Zheng et al., 2015). We update the table in the revised 
manuscript by including the scheme of Zhu et al. (2010) which uses updated values 
recommended by IUPAC. It should be addressed that we only provide examples of model 
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schemes that have considered the heterogeneous reactions to give an overall implication for 
modelers, rather than to give a complete overview of the parameterizations of uptake 
coefficients covering all modeling studies, which is out of the scope of this paper. To avoid 
misunderstanding, we revise the caption to “Examples of aerosol uptake coefficients used in 
atmospheric models”, add more illustrations in the footnote and main text, and move Table 2 
to the supplement.  

Uptake coefficients with sources listed as Dentener et al. (1996), Bauer et al. (2004), Song 
and Carmichael (2001) in the table are from model parameterization, and the specific 
laboratory measurements are not found in the literature. We have already noted this issue in 
the last version (see footnote b).  

3. P3, L23-25: HO2 uptake can be very important for tropospheric chemistry (George et al., 
2013; Mao et al., 2013; Taketani et al., 2008; Thornton et al., 2008). Is there a reason why 
HO2 has not been discussed in this paper? 

Response: We agree that HO2 uptake on aerosol is important for atmospheric chemistry. The 
motivation of our work is to compare the fluxes of dry deposition and aerosol uptake, which 
is difficult for radicals like HO2 because the required parameters to calculate dry deposition 
are not available from current literature. The reason could be that the other pathways are too 
fast compared to the deposition of HO2. 

4. P2, L29-30: Very recently I reviewed heterogeneous reactions of mineral dust (Tang et al., 
2017). Should this paper be cited here? 

Response: We have included this review paper in the revised manuscript along with other 
original research articles.   

5. P3, L12-15: Another convenient way to assess the relative importance of aerosol uptake 
and dry deposition is to calculate their lifetimes with respect to individual processes, as 
discussed by Tang et al. (2017).  

Response: We agree with the referee that comparison of lifetimes between aerosol uptake and 
dry deposition is another feasible method, as discussed in Tang et al. (2017). The method 
proposed in our study share the same basic formulations with Tang et al. (2017), and 
velocities can be easily converted to lifetime.  

6. P4, L24-26: This sentence is not easy to follow. I assume that the authors wanted to state 
that for smaller particles, gas phase diffusion would not be a limiting step and thus can be 
neglected. Please consider rephrasing it, and refer to Tang et al. (2014) for a comprehensive 
discussion on the role of gas phase diffusion. 

Response: We thank the referee’s comments. We have referred to the original formation of 
Jacob 2000 as follows: 
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“For atmospheric aerosols with a diameter of ~0.2 µm or smaller, the related gaseous uptake 
tends to be limited by the free molecular collision rate (uptake rate → ωαA[Xg]/4) (Jacob, 
2000). Thus in the following analyses, we mainly focus on the discussion of γeff, and neglect 
the diffusion resistance in the gas phase.” 

7. P12-13: In a paper published in 2017 (Tang et al., 2017), I provided a comprehensive and 
in depth discussion on the two factors the authors mentioned in Section 4.2, and would like to 
refer the authors to take a look at that paper. 

Response: Thanks for the referee’s comments. We refer to this work in our discussion as 
follows: 

“More than three orders of magnitudes of differences are derived by whether to consider the 
pores within the microstructure of solid aerosol surface or not (see Table A.1). Using the same 
method to calculate the available surface area may reconcile these differences (Tang et al., 
2017).”   

8. P14, L19-21 as well as related content in the abstract It is proposed that the following four 
groups of gas uptake onto aerosols can be important: 1) N2O5 on all types of aerosols, 2) 
HNO3 and H2O2 on mineral dust, 3) O3 on liquid organic aerosols; and 4) NO2, SO2, HNO3 
on sea salt aerosols. The four groups have some overlaps and not easy to follow. I would 
suggest re organizing them according to either types of gases or types of aerosol s 

Response: This is re-organized to present the most intensive summary of our conclusion.  

We will add the following table to better illustrate it. According to Table 2, there is no 
overlapped information and four bullets are already the minimum number of vectors from this 
matrix.  

Table 2. Gas uptake processes that are potentially important compared to dry deposition across various 

environments (marked with √).  

Gases Mineral dust Soot Organic aerosol-solid Organic aerosol-liquid Sea salt aerosol 

O3    √  

NO2     √ 

SO2 √    √ 

N2O5 √ √ √ √ √ 

HNO3 √    √ 

H2O2 √     
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Response to referee #2 

The manuscript “Relative importance of gas uptake on aerosol and ground surfaces 
characterized by equivalent uptake coefficients” presented a theoretical approach to 
characterize the relative importance of uptake of trace gases on aerosols versus on ground. 
The authors proposed a new parameter “equivalent uptake coefficient” (γeqv) at which the flux 
of gas uptake on aerosols is equal to that on ground and derived γeqv under various 
environment (vertical velocity and particle surface concentration). By comparing γeqv with the 
effective uptake coefficient of gases on aerosols (γeff) reviewed from literature, the authors 
assessed the relative importance of gas uptake on aerosols to dry deposition. It was found that 
under urban environment, gas uptake on all types of aerosols (mineral dust, sea salt, organic 
aerosol, and soot) is important, while in pristine Amazonia forest the contribution of uptake 
on aerosols to gas loss is minor. N2O5 uptake on all types aerosol, HNO3 and H2O2 on mineral 
aerosols, O3 on liquid organic aerosol, NO2, SO2 and HNO3 on sea salt aerosol are as 
important as dry deposition. The author also pointed out that H2O2 uptake on various 
aerosols need further laboratory studies and to be evaluated. The approach presented is a 
novel and convenient way to compare the relative importance of uptake of gases on aerosols 
with dry deposit. This manuscript is well written and easy to follow. And the discussion is well 
balanced. I have only a few minor comments, mainly to clarify some discussion. I recommend 
the direct publication of this manuscript on ACP after these minor comments are fixed. 

Response: We thank the positive and constructive comments given by the referee #2, which 
are very helpful to improve the manuscript. Our response to each specific comment is 
presented below. 

1. Pg. 4 line 18, a typical value of � of 300 m s-1 is used. I understand this can simplify the 
equation and γeqv, since different gases have slightly different mean velocity, especially in 
order to get a clear picture as shown in Fig. 2. Are the γeqv values in Fig. 3-5 also calculated 
in this way? It might be helpful to briefly mention the influence of this simplification in the 
discussion part “Sect. 4.3”. 

Response: We thank the referee’s comments. We applied the same formula in Fig. 2 and Fig. 
3-5, i.e., the typical mean thermal velocity of 300 m s-1 was also used for Fig. 3-5. The biases 
due to this simplification are within 20% for calculations of γeqv for O3, NO2, SO2 and HNO3, 
and within 30% for H2O2 and N2O5. We add more discussion on this simplification in the 
revised manuscript as follows: 

“We use a unified thermal velocity (300 m s-1) for all gases, which will introduce positive 
biases of +4% ~ +30% for O3, NO2, SO2, HNO3, H2O2, and a negative bias of -24% for N2O5 
in calculations of γeqv at the same temperature” 

2. Pg. 10 line 11, I am curious why the authors mainly discussed the model schemes in the 
studies Liao and Seinfeld (2005) and Wang K et al. (2012) among other model studies 
including heterogeneous reactions. 
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Response: We thank the referee’s comments. The scheme of Liao and Seinfeld (2005) and 
Wang K et al. (2012) were taken as an example here considering the large impact/applications 
of this scheme within the community (e.g., Monks et al., 2009; Wang et al., 2014; Li et al., 
2015; Zheng et al., 2015). We update the table in the revised manuscript by including the 
scheme of Zhu et al. (2010) which uses updated values recommended by IUPAC 
(International Union of Pure and Applied Chemistry). It should be addressed that we only 
provide examples of model schemes here to give an overall implication for modelers, rather 
than to give a complete overview of the parameterizations of uptake coefficients covering all 
modeling studies, which is out of the scope of this paper. To avoid misunderstanding, we 
update the table, revise the caption to “Examples of aerosol uptake coefficients used in 
atmospheric models”, add more illustrations in the footnote and main text, and move Table 2 
to the supplement.  

3. Pg. 11 line 24, “…Sect. 3.5.1…”, I guess that the authors meant “4.1.1”. Also check line 
26. 

Response: Thanks for the careful reading and help. We correct it in the revised manuscript.  

4. Pg. 13 line 27-Pg. 14 line 5, it might be helpful to also mention that the variability of 
aerosol surface concentration under each environment could also contribute to the variability 
of γeqv. 

Response: We agree with the referee’s comments that the variability of aerosol surface 
concentration can contribute to the variability of γeqv. We have included the following 
statement to emphasize it in the revised manuscript: 

“In addition, the variability of aerosol surface area under each environment can also 
contribute to the variability of γeqv.” 

5. Pg. 14 line 25, it seems that one leading sentence is missing before “(a)…”. Please double 
check. 

Response: We appreciate the referee’s careful reading and help. We add a leading sentence 
before the statements (a)~(c). 

“There are several indications from this work of processes that should be addressed in future 
measurements and model implementations:” 

6. Pg. 14 line 20, “…HNO3 and H2O2 on mineral…”, according to Fig. 2 should SO2 be also 
listed here? 

Response: As shown in Fig. 4, there are more than three orders of magnitude of variances in 
γeff for SO2. γeff of mineral dust falls in the range of γeqv under high aerosol loadings or high 
mixing heights. The wide range of γeff for mineral dust (1.5×10-8 to 6.3×10-4) is a big 
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challenge regarding its application in models. Considering this large variations, we add SO2 
uptake on mineral dust as one of the important processes compared to dry deposition, and 
further discuss the potential uncertainty of SO2 in item (c) of the “Conclusion” section.  

7. Pg. 38 line 6, �…the purple bar…” should be “blue bar”. 

Response: Revised.  
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Correspondence to: Hang Su (h.su@mpic.de) and Yafang Cheng (yafang.cheng@mpic.de)  10 

Abstract. Quantifying the relative importance of gas uptake on the ground and aerosol surfaces helps to determine which 

processes should be included in atmospheric chemistry models. Gas uptake by aerosols is often characterized by an effective 

uptake coefficient (γeff), whereas gas uptake on the ground is usually described by a deposition velocity (Vd). For efficient 

comparison, we introduce an equivalent uptake coefficient (γeqv) at which the uptake flux of aerosols would equal that on the 

ground surface. If γeff is similar to or larger than γeqv, aerosol uptake is important and should be included in atmospheric 15 

models. In this study, we compare uptake fluxes in the planetary boundary layer (PBL) for different reactive trace gases (O3, 

NO2, SO2, N2O5, HNO3, H2O2), aerosol types (mineral dust, soot, organic aerosol, sea salt aerosol), environments (urban, 

agricultural land, Amazon forest, water body), seasons, and mixing heights.  

For all investigated gases, γeqv ranges from 10-6 ~ 10-4 in polluted urban environments to 10-4 ~ 10-1 under pristine forest 

conditions. In urban areas, aerosol uptake is relevant for all species (γeff ≥ γeqv) and should be considered in models. On the 20 

contrary, contributions of aerosol uptakes in Amazon forest are minor compared to the dry deposition. Phase state of aerosols 

could be one of the crucial factors influencing the uptake rates. Current models tend to underestimate the O3 uptake on liquid 

organic aerosols which can be important especially over regions with γeff ≥ γeqv. H2O2 uptakes on a variety of aerosols is yet 

to be measured at laboratory and evaluated.  

Given the fact that most models have considered their uptakes on the ground surface, we suggest also considering the N2O5 25 

uptake by all types of aerosols, HNO3 and SO2 uptake by mineral dust and sea salt aerosols, H2O2 uptake by mineral dust, 

NO2 uptakes by sea salt aerosols and O3 uptake by liquid organic aerosols in atmospheric models. 

Revised manuscript (changes are marked in red)
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1 Introduction 

Multiphase processes play an essential role in atmospheric chemistry and atmosphere-biosphere exchange (Ravishankara, 

1997; Ammann et al., 1998; Gard et al., 1998; Usher et al., 2003; Bauer et al., 2004; Fowler et al., 2009; Kolb et al., 2010; 

Su et al., 2011, 2013; Herrmann, 2003, 2015; Pöhlker et al., 2012; Ammann et al., 2013; Oswald et al. 2013; Andreae et al., 

2015; George et al., 2015; McNeill, 2015; Pöschl and Shiraiwa, 2015; Quinn et al., 2015; Weber et al., 2015; Cheng et al., 5 

2016; Froehlich-Nowoisky et al. 2016; Lappalainen et al. 2016; Tang et al., 2016; Meusel et al. 2018). It not only affects the 

atmospheric trace gases concentrations but also modifies the properties of condensed phases, commonly known as the aging 

process (Song and Carmichael, 1999; Cheng et al., 2006, 2012; Rudich et al., 2007; Andreae 2009; Jimenez, et al., 2009; 

Gunthe et al., 2011; Ditas et al., 2018). In the planetary boundary layer, aerosols and ground provide two kinds of surfaces 

for multiphase reactions. In previous gas uptake studies, different formulations have been used to describe and parameterize 10 

the gas uptake processes (Wesely, 1989; Ravishankara, 1997; Jacob, 2000; Wesely and Hicks, 2000; Zhang et al., 2003; 

Ammann and Pöschl, 2007; Pöschl et al., 2007; Wesely, 2007).  

A variety of ground surfaces, including vegetation, water, rock, road etc., can take up gaseous species through dry deposition, 

thus having significant impacts on the budget of these reactive gases and on the physicochemical properties of the ground 

surface itself (Lelieveld and Dentener, 2000; Ashmore, 2005). Dry deposition is one of the major removal pathways for most 15 

gaseous species and has been extensively parameterized in atmospheric models (Wesely and Hicks, 2000; Zhang et al., 2002, 

2003). A resistance model, which consists of the aerodynamic resistance, quasi-laminar resistance and surface resistance, has 

been widely applied to calculate the dry deposition flux in global and regional atmospheric models (see Fig. 1, Wesely and 

Hicks, 2000; Wesely, 2007). The dry deposition velocity, Vd (in unit of cm s-1) calculated as the reciprocal of the total 

resistance, is the key parameter to describe the uptake fluxes on the ground.  20 

From late 1990s, the importance of reactive uptake of gases by aerosols has been commonly accepted (Ravishankara, 1997; 

Gard et al., 1998; Jacob, 2000). Gas uptake by aerosols not only influences the fate of reactive gases, but also changes the 

physio-chemical properties of atmospheric aerosols (Kolb et al., 2010). Taking account of the multiphase chemistry is 

proven a key factor to explain the observations and improve the model performances (Zhang and Carmichael, 1999; Song 

and Carmichael, 2001; Liao and Seinfeld, 2005; Wang et al., 2006; McNaughton et al., 2009; Wang X et al., 2012; Zheng B 25 

et al., 2015; Tang et al., 2017; Chen et al. 2018; Mu et al., 2018). Compared to dry deposition, the parameterization of gas 

uptake on aerosols is more challenging (Jacob, 2000; Pöschl and Shiraiwa, 2015). The mass transfer between gases and 

aerosols can be described by the resistance model in analogy to electrical circuit which decoupled the physio-chemical 

limitations in the gas phase, gas-surface interface and the bulk phase under (quasi-) steady state conditions (Schwartz and 

Freiberg, 1981; Schwartz, 1986; Kolb et al., 1995). A simplified scheme, which relies on the formulation of effective uptake 30 

coefficient (γeff) has been widely used in current atmospheric models (Jacob, 2000; Liao and Seinfeld, 2005; Wang K et al., 

2012). Growing numbers of laboratory studies have reported γeff for various trace gases and aerosol particles that are 
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potentially important for atmospheric chemistry, such as O3, NO2, SO2, N2O5, HNO3 on mineral dust (Ullerstam et al., 2002; 

Mogili et al., 2006; Vlasenko et al., 2006; Wagner et al., 2008; Ndour et al., 2009), soot (Rogaski et al., 1997; Longfellow et 

al., 2000; Al-Abadleh and Grassian, 2000; Saathoff et al., 2001), and sea salt aerosols (Mochida et al., 2000; Gebel and 

Finlayson-Pitts, 2000; Hoffman et al., 2003; Thornton and Abbatt, 2005; Ye et al., 2010). A series of evaluations on the 

kinetic and photochemical data for the multiphase reactions were conducted afterwards (Crowley et al., 2010, 2013; 5 

Ammann et al., 2013; Burkholder et al., 2015). Pöschl et al. (2007) and the follow-up studies (e.g., Shiraiwa et al., 2010, 

2011) developed a comprehensive kinetic model framework, enabling consistent and unambiguous descriptions of mass 

transfer and chemical reactions in aerosol systems.  

However, which kind of surfaces is more important for gas uptake in the planetary boundary layer (PBL)? The answer is not 

straightforward because of the following reasons: 10 

(1) though the surface of the Earth seems to be much larger than that of tiny aerosols, its contribution is diluted by the large 

volume of the PBL, resulting in a surface to volume ratio close to that of aerosol. For example, for a PBL height of 1000 m, 

the corresponding surface to volume ratio is 1000 µm2 cm-3, comparable to aerosol surface area concentrations of 200 ~ 2000 

µm2 cm-3 for urban areas (Woo et al., 2001; Stanier et al., 2004; Wu et al., 2008, 2017; Ma and Birmili, 2015), and 200 ~ 

1000 µm2 cm-3 for rural environments (Ma et al., 2014; Ma and Birmili, 2015; Wu et al., 2017; Held et al., 2008).  15 

(2) different formulations also hinder the comparison. As illustrated above, different schemes, formulations and 

terminologies are applied to calculate the uptake fluxes on ground and aerosols. The dry deposition velocity (Vd) is the 

fundamental parameter to describe the deposition process on the ground while the effective uptake coefficient (γeff) is used to 

describe the uptake fluxes on aerosols.  

In this study, we conducted a comparative assessment of the gas uptake on both ground and aerosol surfaces. Our goal is to 20 

identify the prevailing multiphase process in the PBL, and especially those processes that have not yet been sufficiently 

considered in atmospheric models. Section 2 described the methods of calculation and comparison. We presented and 

discussed the main results in Section 3, which is followed by a summary of our major findings in Section 4.  

2 Methods 

In this work, we compared the relative importance of gas uptake by the ground and aerosols based on their uptake fluxes. In 25 

this comparison, resistance models were applied to calculate uptake fluxes on both ground and aerosol surfaces (see Fig. 1) 

as detailed below. The uptake fluxes of six reactive gases (O3, NO2, SO2, N2O5, HNO3, H2O2) were calculated and compared 

for four typical land use categories (urban, agricultural land, Amazon forest, water) and five aerosol types (mineral dust, soot, 

solid organic aerosol, liquid organic aerosol, sea salt aerosol). These species were chosen considering their potential 

importance regarding dry deposition on the ground and uptake on aerosols within the troposphere. 30 
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2.1 Ground gas uptake 

Dry deposition fluxes were calculated following the scheme and parameters of Wesely (1989) and Zhang et al. (2003). As 

shown in Fig. 1, the resistance model applied to characterize the dry deposition process includes the aerodynamic resistance 

(Ra), quasi-laminar resistance (Rb) and surface resistance (Rc). The basic equations for the flux calculations are: 

!"#$ = −'$ (" ×10,-	           (1) 5 

'$ =
/

0123
= /

04506507
	           (2) 

where Fgrd represents the gas deposition fluxes on various ground surfaces (mol m-2 s-1); Vd represents the deposition velocity 

(cm s-1); [Xg] is the averaged gas concentration (mol m-3); Rgrd is the total resistance in the dry deposition process (s cm-1), 

composed of Ra, Rb and Rc. The detailed equations and parameterization scheme for determination of Ra, Rb and Rc are 

provided in the supplement. A neutral meteorological condition was assumed in the calculation. We present the key input 10 

parameters and the calculated Vd in Table S1 and Table S2, respectively.  

2.2 Aerosol gas uptake and the effective uptake coefficient (γeff) 

The net flux of gas X from gas phase to the condensed phase (Jnet, mol m-2 s-1) for one aerosol particle can be expressed as Eq. 

(3) under (quasi-) steady-state conditions (Pöschl et al., 2007):  

89:; =
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@ ("              (3) 15 

The effective uptake coefficient, γeff, represents the number of gas molecules taken by the aerosol particle divided by the 

number of those impacting onto the particle surface (Pöschl et al., 2007); ω is the mean thermal velocity (m s-1), we use a 

typical value of 300 m s-1 in this study; [Xg] is the averaged gas concentration far away from the aerosol surface (mol m-3).  
/

=>??
= 	 /A1 +

/
C +

/
A6
		           (4) 

As shown in Fig. 1, resistance models have been widely applied to quantify the mass transfer of gases to aerosol particles. 20 

For gas uptake on liquid droplets, following the resistance model as described by Eq. (4), the overall resistance 1/γeff is 

composed of three resistor terms due to gas diffusion (1/Γg), interfacial mass transfer (1/α) and bulk diffusion and reaction 

(1/Γb) (Pöschl et al., 2007). The conductance of gas diffusion is commonly calculated based on Γg = 8Dgω-1dp
-1, where Dg is 

the diffusion coefficient of gas X in the gas phase (m2 s-1), and dp represents the aerosol particle diameter. For large 

particles and very fast uptake processes, the gas diffusion process can be a limiting factor for the overall uptake 25 

(Tang et al., 2014). For atmospheric aerosols with a diameter of ~0.2 µm, the related gaseous uptake tends to be limited by 

the free molecular collision rate (uptake rate → ωαA[Xg]/4) (Jacob, 2000). Thus in the following analyses, we mainly 

focus on the discussion of γeff, and neglect the diffusion resistance in the gas phase.  
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Given a mixing height of h, and aerosol surface area density of A (particle surface area per unit volume of air, µm2 cm-3), the 

total uptake flux of gas X by aerosols (Faer, mol m-2 s-1) is: 

!D:# = 89:;Eℎ =
<=>??
@ Eℎ[("]×10,I	         (5)  

where 10-6 is the unit conversion factor. We summarized the measured uptake coefficients for a variety of gas species and 

aerosol types at both initial state and steady state in Table 1 (details in Table A.1 ~ A.4). They are mainly derived from the 5 

measured values in literatures, reviewed data of IUPAC (International Union of Pure and Applied Chemistry) Task Group on 

Atmospheric Chemical Kinetic Data Evaluation (Crowley et al., 2010, 2013; Ammann et al., 2013; available at 

http://iupac.pole-ether.fr/), and NASA-JPL (Jet Propulsion Laboratory, Burkholder et al., 2015) (see references in Table A.1 

~ A.4). As we focus on PBL, those γeff measured at room temperatures (~298K) are mainly presented. Gas uptakes at very 

low temperature (e.g., polar region, stratosphere) are out of scope of this study and should be explored in future work. 10 

Though the initial and steady-state uptake coefficients are listed, it should be noted that the values at initial state may not be 

appropriate for direct application in chemical transport models (CTMs) considering the subsequent surface saturation and 

depletion of reactants for several cases (e.g., on mineral dust and soot, Ndour et al., 2009; Stephens et al., 1986; Ammann et 

al. 1998; Kalberer et al. 1999). In general, the upper limit and lower limit are determined based on those derived using the 

geometric surface and the BET (Brunauer-Emmett-Teller) surface, respectively. Preferences are given to those measured at 15 

steady state using ambient aerosols, or recommended values by the IUPAC group with relatively high reliability. As shown 

in Table A.1, more than 3 orders of magnitude of variances are found for SO2 and O3 uptake on mineral dust depending on 

the gas concentration and aerosol components (Michel et al., 2002, 2003; Mogili et al., 2006; Ullerstam et al., 2002, 2003; Li 

et al., 2006). Large discrepancies also exist for SO2 and HNO3 uptake on soot (Longfellow et al., 2000; Saathoff et al., 2001; 

Xu et al., 2015). For H2O2, limited measurements of γeff have been conducted for aerosols apart from mineral dust and soot.  20 

2.3 Uptake coefficient at equivalent flux (γeqv) 

To help the evaluation, we define an uptake coefficient at equivalent flux γeqv. Here, γeqv is the effective uptake coefficient on 

aerosols when the ground flux equals the aerosol flux within the PBL. When γeff > γeqv, the aerosol surfaces are more 

important than the ground surfaces regarding the gas uptake and vice versa. By letting Fgrd equal Faer, we can derive the 

expression of γeqv as below.    25 

J:KL =
@
M
N3
OP ×10

-	            (6) 

and in a typical mixing height of 300m, we have 

J:KL =
N3

-.-RO		             (7) 
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According to Eq. (6), γeqv is proportional to Vd, and is inversely proportional to aerosol surface area density and the mixing 

height. We calculated a series of γeqv for a variety of gas species, land use categories, seasons, aerosol surface area densities 

(A) and mixing heights (h).  

As defined, γeqv reflects the relative importance of gas uptake on aerosols compared to those on the ground surfaces. Larger 

γeqv indicates higher probability for gases to deposit on the ground rather than on aerosols for further chemical reactions on 5 

surface and bulk, and vice versa. Low dry deposition velocities and high loadings of aerosols providing large amounts of 

surface reaction sites can benefit gas uptake on aerosols. The derived γeqv and γeff from laboratory measurements are 

compared in Sect. 3.  

3. Results and discussion 

To estimate the possible range of γeqv for different environments, we designed different scenarios with mixing height h 10 

varying between 100 m and 1.0 km (a typical value of 300m), and A varying with land use categories as follows: 

(a) Range of A. We set the range of A based on measurements in various environments collected in literature. A are in the 

range of 200 ~ 2000 µm2 cm-3 for aerosols in the urban area (Woo et al., 2001; Stanier et al., 2004; Wu et al., 2008, 2017; 

Ma and Birmili, 2015), 200 ~ 1000 µm2 cm-3 in agricultural land (sub-urban and rural, Held et al., 2008; Su et al. 2008; Ma 

et al., 2014; Ma and Birmili, 2015; Wu et al., 2017), 8 ~ 700 µm2 cm-3 in Amazon forest (Zhou et al., 2002; Rissler et al., 15 

2006; Pöschl et al., 2010; Andreae et al. 2015), and 20 ~ 200 µm2 cm-3 for sea salt aerosols (SSA, O’Dowd et al., 1997; Ghan 

et al., 1998; Lewis and Schwartz, 2004).  

(b) Typical A (corresponding to the typical γeqv in Fig. 3 ~ Fig. 5). We use 1050 µm2 cm-3 for the urban environment (Wang 

et al., 2017), 230 µm2 cm-3 for the agricultural land (Held et al., 2008), 46 µm2 cm-3 for the Amazon forest (Rissler et al., 

2006), and 76 µm2 cm-3 for SSA (canonical distribution at wind speed of 10 m s-1, Lewis and Schwartz, 2004).  20 

It should be noted that the above ranges and the typical values of A are derived from current available experiments to support 

our analyses and discussions in this study, but still cannot cover all cases of particle distributions in the world.  

Figure 2 shows the calculated γeqv over a range of dry deposition velocity and aerosol surface area densities at a mixing 

height of 300m. Vd for different scenarios were calculated based on the resistance scheme illustrated above, showing a range 

of 0.01 ~ 2.3 cm s-1, with lowest for NO2 and highest for N2O5 and HNO3 (details in Table S2). Aerosol surface area 25 

densities covered a range of 8.6 µm2 cm-3 to 2139 µm2 cm-3, from pristine rainforest to polluted megacities. We show the 

calculated γeqv at typical conditions (typical A as described above, h=300m) by season in Table S3 and detailed illustrated γeqv 

for each gas species in sections below. As shown in Fig.2, γeqv decreases with increase of A, which is closely related to the air 

pollution level, and increases with increasing Vd.  
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For small Vd ( ≤ 0.1 cm s-1), γeqv lie in the range of 10-5 ~ 10-4 for clean regions, such as Leipzig, Melpitz, Pittsburgh, and 

reduced to 10-6 ~ 10-5 under polluted cities including Beijing and Wangdu. This low dry deposition can be found for NO2 

above the urban ground (0.03 cm s-1, seasonal mean), and O3, NO2, SO2 and H2O2 on water body (0.07 cm s-1, 0.01 cm s-1, 

0.03 cm s-1, and 0.08 cm s-1, respectively). The downward shift of γeqv with larger aerosol surface area density suggests an 

increasing importance of gas uptake in polluted areas than clean areas.  5 

With the increase of Vd (> 0.1 cm s-1), γeqv increases to 10-5 ~ 10-2 accordingly. In pristine region of Amazon forest, γeqv can 

reach up to 10-2. The lowest γeqv is 2.1 × 10-5 during haze events with high concentrations of fine particulate matter and 

surface area in the PBL (A=2139 µm2 cm-3). In this study, this range of Vd covers most of the investigated cases, including O3, 

SO2, H2O2 on urban/Amazon forest/agricultural land, NO2 on agricultural land/Amazon forest, and N2O5, HNO3 on all land 

use types (see Table S2). Thus we can derive a general criterion of γeff > 10-5 conservatively for aerosol uptake to compete 10 

with the dry deposition.  

In the following, we further compared γeqv to the laboratory measurements of γeff for different reactive gases (O3, NO2, SO2, 

N2O5, HNO3, H2O2). The uptake coefficients at initial state are in general 1~3 magnitudes higher than those at steady-state 

(see Table 1 and Fig. 3~5). Considering the timescale of gas uptake by aerosols in the real world and applications in models, 

we mainly focused on the comparisons of γeqv and the steady-state γeff in the following discussions.  15 

3.1 O3 

Under typical conditions (typical A by land use, h=300m, as illustrated above), γeqv for O3 are determined between 9.2 × 10-5 

and 2.2 × 10-3, lowest in urban and highest in the Amazon forest. The extended range is 1.4 × 10-5 ~ 3.8 × 10-2, varying with 

particle area densities and mixing heights (Fig. 3). There are overlaps between γeqv and γeff for liquid organic aerosols among 

all investigated typical environments, and other types of aerosols under favorable circumstances for aerosol uptake in urban. 20 

γeff lie below γeqv for other combinations of aerosol types and land use categories.  

We can only expect comparable uptake between ground and aerosol surfaces of mineral dust, soot, solid organic aerosol, and 

SSA at high aerosol loadings in urban (e.g., A=1400 µm2 m-3, Beijing) and/or high mixing layers (e.g., h=1.0 km). Combined 

with the measured uptake coefficients which lie in the range of 1.0 × 10-7 to 1.6 × 10-4 for soot, 1.1 × 10-5 to 3.0 × 10-3 for 

liquid organic aerosols and 1.3 × 10-6 to 1.0 × 10-4 for SSA, we can expect high uptake fluxes of O3 on these three kinds of 25 

aerosols when corresponding γeff larger than 10-4 for other ground surfaces. 

Complexity comes from the organic aerosols, of which the phase state has a large impact on the uptake and is subject to the 

temperature, relative humidity and particle size (see Fig. 3) (Virtanen et al. 2010; Cheng et al. 2015). For liquid organic 

aerosols, the measured γeff show large variances from 10-5 to 10-3 and corresponding γeqv fall into this range, demonstrating 

that O3 uptake on aerosols is comparable to that on the ground. Thus, multiphase reactions of O3 on liquid organic aerosols 30 
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should be included in atmospheric models. This is also consistent with the findings of Mu et al. (2018), which demonstrates 

the importance of the phase state of aerosols in multiphase reactions and transport of polycyclic aromatic hydrocarbons to 

improve the model performances at both regional and global scales.  

Shiraiwa et al. (2017) shows the global map of SOA (secondary organic aerosol) phase state at the earth’s surface. SOA in 

Southern China, Amazon forest and South Africa are mainly in liquid phase within PBL. For these regions, the comparable 5 

uptake fluxes for O3 on liquid organic aerosols compared to the dry deposition demonstrate the importance of aerosol uptake. 

Dry deposition is one of the major sinking pathways for O3 (Ganzeveld and Lelieveld, 1995). The uptakes of O3 by aerosols 

are expected to contribute comparable sink fluxes as dry deposition regionally. Inclusion of the O3 uptake by organic 

aerosols in these regions will increase the deposition rate of O3 on aerosols, affect its lifetime, and further affect the fate of 

HOx, NOx through chemical reactions in the gas phase.  10 

3.2 NO2 

For NO2, γeqv are generally above the upper limit of γeff in urban, agricultural land and forest environments, as shown in 

Figure 4, demonstrating that the ground surfaces are of greater importance than aerosols. Overlaps are found for SSA on 

various land use types and also for liquid organic aerosols under the urban environment.   

NO2 tend to deposit on ground surface instead of on mineral dust particles, soot and solid organic aerosols. As reviewed in 15 

Table A.1~A.3, the effective uptake coefficient of NO2 on these three kinds of aerosols are at magnitudes of < 10-6 under 

steady-state conditions. For A ranging from 46 µm2 cm-3 (Amazon) to 1050 µm2 cm-3 (Wangdu) and mixing height of 300 m, 

γeqv of NO2 lie between 1.4 × 10-5 and 1.3 × 10-3, 1~3 orders of magnitudes larger than γeff on these three kinds of aerosols. 

Increasing the PBL mixing height and aerosol surface area may reduce γeqv by ~1-2 magnitudes, but are still above the 

measured γeff at steady state.  20 

The reactive uptake coefficients of NO2 by SSA were quantified in the range of 10-6 to 10-4, demonstrating the ability of 

ambient sea salt aerosols to take in chemical species like NO2 (Harrison and Collins, 1998; Yabushita et al., 2009; Ye et al., 

2010). The high uptake coefficients observed for SSA (6.0 × 10-7 – 3.0 × 10-4) are probably attributed to the reactions of Cl- 

with dissolved NO2 in aqueous phase (Msibi et al., 1993; Harrison and Collins, 1998; Yabushita et al., 2009). The 

overlapped values of γeqv and γeff, show that the NO2 uptake by SSA is comparable to the uptake by land surface or water 25 

body in coastal areas and therefore should be taken into account in atmospheric models. 

Another important process is the NO2 uptake on liquid organic aerosols (γeff in the range of 2.2 × 10-7 – 7.0 × 10-6) in urban 

area of high A. As shown in Fig. 4, the lower limit of γeqv in urban is ~ 2.2 × 10-6, lying in the range of γeff. The uptake 

coefficients of NO2 on pure water are estimated around 10-7 ~ 10-6 driven by low solubility and slow hydrolysis rates 

(Kleffmann et al., 1998; Gutzwiller et al., 2002; Ammann et al., 2005; Komiyama and Inoue, 1980). Harrison and Collins 30 
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(1998) reported a high γeff of 5.4 ~ 5.8 × 10-4 for NO2 uptake on ammonium sulfate aerosols at high RH (RH=50%, 85%). 

Presence of reactants such as inorganics of HSO3
- or phenolic compounds in aqueous aerosols can promote the uptake 

significantly through chemical reactions with dissolved NO2 to 10-5 ~ 10-4 (Msibi et al., 1993; Lee and Tang, 1998; Spindler 

et al. 2003; Ammann et al., 2005; Yabushita et al., 2009; Su et al. 2008; Cheng et al., 2016). Multiple measurements and 

modeling work have also pointed out that high alkalinity of aqueous aerosols is key to promote the reactions and further 5 

increase the NO2 uptake rates (Ammann et al., 2005; Herrmann et al., 2015; Cheng et al., 2016). Therefore, the NO2 uptake 

on alkaline aqueous aerosols containing organic/inorganic reactants is competitive in the urban atmosphere, and should be 

detailed addressed in models. In Amazon forest, where A is too low (46 µm2 cm-3), corresponding to a γeqv on the order of 10-

3, even a high γeff of 10-4 is not sufficient to compete with the uptake by the ground surfaces. 

In summary, the NO2 uptake coefficients on liquid aerosol droplets can vary by three orders of magnitude with aerosol 10 

compositions (10-7~10-4). On liquid organic aerosols and sea salt aerosols, the uptake can reach up to 10-6~10-4 through 

chemical reactions (Abbatt and Waschewsky, 1998; Ammann et al., 2005; Yabushita et al.,2009), significantly larger than 

the uptake on pure water of 10-7~10-6 (Lee and Tang, 1988; Kleffmann et al., 1998; Gutzwiller et al., 2002). For liquid 

ammonium sulfate aerosols, discrepancies with two orders of magnitude (10-6~10-4) in γeff are found with reasons 

unexplained yet (Harrison and Collins, 1998; Tan et al., 2016). Considering these variances, aerosol components are 15 

important to parameterize the γeff in atmospheric models.  

3.3 SO2 

The calculated γeqv of SO2 vary between 1.0 × 10-4 and 2.1 × 10-3 for land surfaces, and 1.7 × 10-4 above water body under 

typical conditions. As shown in Fig. 4, the SO2 uptake by mineral dust is comparable to the ground uptake in urban, and 

under favorable conditions over agricultural land and water body. For soot, aerosol uptake is magnitudes lower than those on 20 

the ground (γeqv ≥ γeff), thus is unimportant for SO2. For SSA, γeff of 3.2×10-3 ~ 1.7×10-2 has been reported for SO2 at aerosol 

pH of 5.4~6.6, which is high enough to compete with dry depositions over most environments (Gebel et al., 2000). 

Additional reactions of SO2 and O3 in alkaline solutions are found to promote the SO2 uptake and form sulfate on SSA at 

first stage (Laskin et al., 2003). However, aerosol acidification due to production of H+ has been suggest to quickly suppress 

the oxidation process in the real world (Alexander et al., 2005). We suggest including both the SO2 uptake on SSA and the 25 

aerosol acidification process in models.  

The extended range of γeqv is 1.6×10-5~1.6×10-3, 5.5×10-5~2.8×10-3, and 1.9×10-5~1.9×10-3 for urban, agricultural land and 

water body, respectively. γeff of mineral dust falls in this range under high aerosol loadings or high mixing heights. The wide 

range of γeff for mineral dust (1.5×10-8 to 6.3×10-4) is a big challenge regarding its application in models, because it can be 

affected by the presence of oxidant, phase state, components of the tested dust and the use of surface area in calculation 30 
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(Huss et al., 1982; Ullerstam et al., 2003; Li et al., 2006; Alexander et al., 2009; Zhang et al., 2018). We further discuss the 

SO2 uptake on mineral dust by different conditions as below.  

Under dry conditions (as reviewed in Table A.1), γeff are measured on the order of 10-7 ~ 10-4 (Goodman et al., 2001; Usher et 

al., 2002; Ullerstam et al., 2003; Adams et al., 2005; Li et al., 2006). IUPAC recommended an averaged value of 4×10-5 for 

atmospheric modeling, based on measurements using airborne aerosols (Usher et al., 2002; Adams et al., 2005).  5 

In environments with high RH, water can enhance or inhibit the uptake by affecting reactive sites, varying with experimental 

conditions (Huang et al., 2015; Zhang et al., 2018). On the other hand, the uptake rate can be improved by several factors 

and/or aqueous chemical reactions, such as presence of O3, H2O2, and transition metal ions (TMIs), which strongly depends 

on the aerosol pH (Jayne et al., 1990; Li et al., 2006; Cheng et al., 2016; Zhang et al., 2018). The initial γeff of SO2 on pure 

water can reach as high as 10-3 ~ 0.1 varying with pH (Gardner et al., 1987; Worsnop et al., 1989; Jayne et al., 1990; Ponche 10 

et al., 1993). Depending on aerosol pH and oxidant concentrations, the regimes of SO2 uptake and sulfate formation may 

transit from TMI- or H2O2-dominated regime to NO2- or O3-dominated regime (Cheng et al., 2016). In this case, the SO2 

uptakes on aqueous aerosols are expected to play the dominant roles over dry deposition under specific circumstances such 

as the haze event (He et al., 2014; Cheng et al., 2016), which should be quantified combining in-situ measurements and 

atmospheric modeling.  15 

As shown in the examples of Table S4, several model schemes adopt an γeff of ~10-4 (Liao and Seinfeld, 2005, Wang K et al., 

2012), around one order of magnitude higher than the measured values on low RH conditions (Usher et al., 2002; Ullerstam 

et al., 2003; Adams et al., 2005;Li et al., 2006). For example, in Liao and Seinfeld (2005), γeff is 3.0×10-4 for RH < 50%, and 

0.1 for RH ≥ 50% (see Table S4 with references). At low RH, the uptake coefficient commonly used in model is based on 

the dry deposition measurement of SO2 on calcareous soils, cements and Fe2O3, rather than laboratory measured γeff values 20 

that have been recommended by IUPAC. The reason for this divergence is unclear and we are in favor of using the IUPAC 

recommended γeff (e.g., Zhu et al., 2010, as shown in Table S4). The high uptake coefficient in model at high RH is based on 

two assumptions: fast oxidation of SO2 by O3 in the aqueous phase and high alkalinity in the dust aerosols. Thus this γeff 

should be applied with caveats that these prerequisites have been fulfilled, especially when extending it for other type of 

aerosols (Zheng et al. 2015).  25 

3.4 N2O5, HNO3, and H2O2 

N2O5, HNO3, and H2O2 demonstrate their high uptake ability on atmospheric aerosols, as shown in Fig. 5. For N2O5, the 

similar or higher values of γeff over γeqv demonstrate that the multiphase uptake by all types of aerosols are as important as or 

even more important than dry deposition. The N2O5 uptake by aerosols has been widely included in models (Bauer et al., 
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2004; Liao and Seinfeld, 2005; Wang K et al., 2012). The uptake of HNO3 and H2O2 by mineral dust and HNO3 by SSA are 

important given the overlap between γeff and γeqv, thus should also also be detailed characterized in atmospheric models.  

For N2O5, the measured uptake coefficients are 4.8 × 10-3 ~ 0.20 for mineral dust, 4.0 × 10-5 ~ 6.3 × 10-3 for soot, and 6.4 × 

10-3 ~ 3.9 × 10-2 for SSA, which are comparable to or 1~2 magnitudes higher than the calculated γeqv of 9.3 × 10-4 ~ 2.1 × 10-

2 under typical conditions (details in Table A.1~A.4). For other kinds of aqueous aerosols, e.g., ammonium sulfate aerosols 5 

with high RH, N2O5 can also be taken up very efficiently with γeff of 10-3~10-2 (Kane et al., 2001; Schötze and Herrman, 

2002; Hallquist et al., 2003; Badger et al., 2006). The importance of N2O5 and HNO3 uptake by aerosols has been 

sufficiently addressed in previous studies (Evans and Jacob, 2005; Liao and Seinfeld, 2005; Stadtler et al., 2018). In current 

CTMs, γeff of N2O5 is explicitly calculated as a function of temperature and RH, of which the relation was determined from 

laboratory experiments (Kane et al., 2001; Bauer et al., 2004; Liao and Seinfeld, 2005). 10 

The extended range of γeqv for HNO3 is 1.5×10-4 ~ 1.5×10-2 (urban), 1.5×10-4 ~ 7.7×10-3 (agricultural land), 4.2×10-4 ~ 

3.7×10-1 (Amazon) and 7.0×10-4 ~ 7.0×10-2 (water), which are within or below the range of γeff for mineral dust and SSA. 

The higher γeff of 1.0×10-3 to 0.21 for mineral dust and of 5.0×10-4 to 0.25 for SSA demonstrated a more important role of 

aerosol uptake than that of the ground surfaces. The uptake of HNO3 on soot and solid organic aerosols appear to be less 

important. The HNO3 uptake on mineral dust have been implemented in current models with an uptake coefficient of 0.1, or 15 

between 1.1 × 10-3 and 0.2, consistent with the range of experimentally determined γeff reviewed in this study (Liao and 

Seinfeld, 2005; Wang K et al., 2012).  

The study on the uptake of H2O2 by aerosols is rather limited compared to other trace gases aforementioned. The reported γeff 

on dust and ambient aerosol samples suggest aerosol uptake is more important than that by the ground surface. The measured 

uptake coefficients of H2O2 on mineral dust are in the range of 1.0×10-5 ~ 9.4×10-4, overlapped with the calculated γeqv of 20 

1.5×10-4 ~ 3.0×10-3 under typical conditions. Ambient aerosols collected in urban area show similar γeff of H2O2 (8.1×10-5 ~ 

4.6×10-4) to mineral dust (Wu et al., 2015). The aerosol chemistry of H2O2 in the troposphere is complex and unclear (Liang 

et al., 2013; Li et al., 2016). In some cases, a net emission of H2O2 from aerosol surfaces was speculated instead of an uptake 

or adsorption as a result of HOx radicals cycling (Liang et al., 2013; Li et al., 2016). Most models only parameterize the 

H2O2 uptake by dust particles (Dentener et al., 1996; Wang K et al., 2012). The uptake by other aerosol types hasn’t been 25 

considered due to limited experimental data. More laboratory kinetic measurements are thus needed. Since ambient aerosol 

samples show a γeff similar to that of dust particles (Wu et al., 2015; Pradhan et al., 2010ab; Zhou et al., 2016), we suggest 

adopting the γeff of dust particles and applying it to all aerosol types before new kinetic data become available.  
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4. Discussion 

In this section, we address several important issues based on the comparisons. Large variability found in the measured γeff for 

SO2 and NO2 are discussed in Sect. 4.1. How to apply the measured γeff in atmospheric models to represent the reactivity of 

heterogeneous reactions still remains an open question. Regarding this, we discuss the underlying important factors that 

should be taken into account in Sect. 4.2. Outlooks and limitation of this work are provided in Sect. 4.3.  5 

4.1 Large variability of γeff for SO2 and NO2 

Notably, there is a large variability in the reviewed γeff of SO2 uptake by dust particles (as discussed in Sect. 3.2). For SO2 

uptake by dust particles, more than three orders of magnitude of differences are found for its uptake by mineral dust (10-

8~10-4, steady state), which may be attributed to several factors such as the experimental particle substrates, co-existing 

oxidants (O3, H2O2, NO2), RH, measurement techniques and surface area used in data processing (Ullerstam et al., 2003; Li 10 

et al., 2006; Huang et al., 2015). For example, a γeff of 1.6 × 10-4 was derived for SO2 uptake on Al2O3 powder (Usher et al., 

2002). The uptake coefficient was reduced by one order of magnitude to 1.6 ~ 6.6 × 10-5 using ambient aerosols of Chinese 

loess / Saharan dust (Usher et al., 2002; Ullerstam et al., 2003; Adams et al., 2005), indicating that the particle substrate is 

key in investigating SO2 uptake. Similarly, through cross comparisons between other different investigations shown in Table 

A.1, we anticipate that the above factors can all contribute to this large discrepancy. As recommended by IUPAC, an uptake 15 

coefficient of 4×10-5 based on airborne measurements is suggested to use in models on low RH conditions. For high RH, we 

suggest determining γeff with information of aerosol pH because of the high correlation between them as illustrated in Sect. 

3.3.  

For NO2 uptake on liquid aerosol droplets, three orders of magnitudes of differences are found (10-7~10-4), varying 

significantly with aerosol compositions. On pure water, the uptake is measured at 10-7~10-6 (Lee and Tang, 1988; Kleffmann 20 

et al., 1998; Gutzwiller et al., 2002). On liquid organic aerosols and sea salt aerosols, the uptake can be effectively 

accelerated to 10-6~10-4 through multiphase reactions (Abbatt and Waschewsky, 1998; Ammann et al., 2005; Yabushita et 

al.,2009). For ammonium sulfate aerosols, large discrepancies of 10-6~10-4 for the initial γeff are found with reasons 

unexplained yet (Harrison and Collins, 1998; Tan et al., 2016). Based on the reviewed measurements, we suggest using a 

relatively high uptake coefficient (~10-4) for aqueous aerosols containing reactants, and a lower value (<10-6) for other cases.  25 

4.2 Initial vs steady state, geometric vs BET 

Measurements of effective uptake coefficients revealed the instantly fast uptake at the initial state and gradually declined due 

to the saturation of surface reaction sites and loss of reactive substances (Hanisch and Crowley, 2003). The uptake at the 

initial state can be faster of orders of magnitudes higher than that at the steady state for aerosols (see Table 1 and Table 
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A.1~A.4). The time scale reaching surface saturation/equilibrium is dependent on the reaction system. For gas-aqueous 

particle surface, the timescale to establish equilibrium for the investigated species is less than 1s (Seinfeld and Pandis, pp 

554-557, 2006). For dust particles, it can take hours for complete saturation (Judeikis et al., 1978; Goodman et al., 2001). 

Fine particles with diameters <10 µm have lifetimes of several days in the atmosphere (Prospero, 1999; Lee et al., 2009). 

Thus using uptake coefficients at steady state maybe more representative in models, unless we can assume that the uptake 5 

process is not limited by surface accommodation and reactions (like HNO3, Goodman et al., 2000), typically when the gas 

concentration is low enough so the surface passivation is negligible compared to the lifetime of aerosols in the atmosphere 

(Hanisch and Crowley, 2003). Gas uptake on fresh aerosols may reach or even surpass the level of the ground near emitting 

sources. Using a uniform uptake coefficient in atmospheric models may not be enough to reflect the deactivation process of 

the multiphase gas uptake during aerosol aging, considering the large range of γeff varying with time.  10 

In addition, γeff are measured and reported based on the geometric surface or/and the BET surface. More than three orders of 

magnitudes of differences are derived by whether to consider the pores within the microstructure of solid aerosol surface or 

not (see Table A.1). Using the same method to calculate the available surface area may reconcile these differences (Tang et 

al., 2017). In this study, γeff with revised BET surface are generally used as the lower limit, and those using the geometric 

surface as the upper limit. Whether using BET area as a correction in the calculation of γeff or not remains discrepancy when 15 

applied in models (Hanisch and Crowley, 2001ab; Underwood et al., 2001ab). This discrepancy from measurements may 

come from the differences in experimental samples (airborne particles vs powder). To solve this issue, more studies on the 

reactive surface area for ambient aerosols are needed to guide the data processing and model parameterization.  

4.3 Outlooks and limitations 

We can conclude that phase state is a crucial factor influencing the uptake rates. The uptake rates of O3 and NO2 in liquid 20 

organic aerosols are 1~3 orders of magnitudes higher than on solid / semi-solid surfaces. In regions with high RH and 

sufficient source of organic compounds (e.g., Amazon forest, southern China), the gas uptake is anticipated to have 

considerable effect on concentrations. The effect is yet to be evaluated combined with further model simulations. 

Measurement of uptake by ambient aerosols is crucial to reconcile lab experiments and modeling results, especially for gas 

with limited investigation conducted (e.g., H2O2). Currently limited work has been done to address the uptake of H2O2 by 25 

aerosol particles other than mineral dust (Liao and Seinfeld, 2005; Pradhan et al., 2010 ab; Wang K et al., 2012; Zhou et al., 

2016). Because ambient aerosol samples show a γeff comparable to that of dust particles, we recommend similar gamma 

values of 1.0 × 10-5~9.4 × 10-4 for H2O2 uptake by other types of aerosol, which will lead a larger sink in the atmospheric 

budget of H2O2.  
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Considering the complexity of multiple factors affecting the uptake rates, such as temperature, RH, gas concentration, 

aerosol pH, and aerosol state (fresh or aged), establishing a look-up table for γeff based on available factors above should be a 

feasible way to implement the gas uptake processes in atmospheric models (Mu et al., 2018). 

There are limitations for the comparisons conducted in this study. We use a unified thermal velocity (300 m s-1) for all gases, 

which will introduce positive biases of +4% ~ +30% for O3, NO2, SO2, HNO3, H2O2, and a negative bias of -24% for N2O5 in 5 

calculations of γeqv at the same temperature. The ambient parameters to calculate the dry deposition velocities (temperature, 

radiation) refer to the standard meteorological database for construction in northern China (Zhang, 2004), which may 

introduce uncertainties for analyses of other areas. In addition, the variability of aerosol surface area under each environment 

can also contribute to the variability of γeqv. We mainly focused on the uptake fluxes at room temperature (~298K). The gas 

uptakes at very low temperature (e.g., polar region, stratosphere) are out of scope of this study but should be further explored 10 

concerning its potentially large impact. The real ambient multiphase processes are much more complex than the laboratory 

measurements nevertheless they use airborne aerosols. Ambient on-line measurements of γeff will favor the model 

parameterization and improve our understanding of the multiphase processes within PBL in the real world (Li et al., 2019). 

Moreover, more gaseous and aerosol species such as VOCs and bioaerosols should also be investigated (Zhou et al., 1996; 

Wagner et al., 2002; Fried et al., 2003; Beck et al., 2013; Li et al., 2014; Li et al. 2016; Ouyang et al., 2016; Liu et al. 2017; 15 

Meusel et al. 2017).  

5. Conclusions 

In this work, we investigated the relative importance of gas uptake fluxes on ground and aerosols for six reactive trace gases 

(O3, NO2, SO2, N2O5, HNO3, H2O2), various environments, aerosol types and mixing heights. The purpose is to identify 

aerosol uptake process which is equally or more important than the dry deposition on ground surfaces but has not been 20 

adequately addressed in models.  

For efficient comparison, we derived a criterion, γeqv, to identify which kind of surface is dominant in gas uptake. For 

investigated gas species, γeqv generally lie in the magnitude of 10-4, and can be extended to lower values in polluted areas 

and/or low dry deposition velocities. Especially, γeqv lie in the range of 10-6 ~ 10-4 in polluted urban environments and 10-4 ~ 

10-1 under pristine forest conditions. The effective uptake coefficient (γeff) derived from experiments are reviewed and 25 

compared with γeqv. Notably, the gas uptake by aerosols is comparable and should be considered in models when γeff is equal 

to or higher than γeqv. In urban environments, aerosol uptake is important for all combinations of gases and aerosols, favored 

by the high particle surface densities. On the contrary, the contribution of aerosol uptake is minor compared to dry 

deposition for gases in the Amazon forest.  
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The following gas uptake by aerosols can be as important as the dry deposition processes and should be considered in 

atmospheric models: N2O5 on all types of aerosols, HNO3 and SO2 on mineral dust and sea salt aerosols, H2O2 on mineral 

dust, NO2 on sea salt aerosols and O3 on liquid organic aerosols (γeff ≥ γeqv, as shown in Table 2). The gas uptake on mineral 

dust for most gases and sea salt aerosols uptake of SO2 and NO2 have already been parameterized in a series of models. The 

processes of H2O2 uptake on mineral dust and O3 on liquid aerosols haven’t received enough attention unfortunately. For 5 

other combinations of gas species and aerosols, the ground tends to be the dominant surface rather than aerosols to take up 

trace gases within PBL.  

There are several indications from this work of processes that should be addressed in future measurements and model 

implementations: 

(a) It is indicated that the multiphase processes for O3 on liquid organic aerosols are underestimated in current atmospheric 10 

models. For regions with high RH and the existence of organic aerosols at liquid state such as Southern China, Amazon 

forest and South Africa, the multiphase uptakes of O3 by aerosols are expected to contribute comparable sinking fluxes as 

dry deposition. Compared to the relatively low uptakes on (semi-) solid organic aerosols, we can conclude that phase state is 

a crucial factor influencing the uptake rates.  

(b) Large uncertainties should be addressed for the comparison results of SO2 and NO2. There are more than three orders of 15 

magnitude of variances in γeff for SO2 on mineral dust and NO2 on aqueous aerosols. Under low RH circumstances, dry 

deposition tends to dominate the gas uptake rather than aerosols. However, for cases in high RH, the contributions of 

aerosols should be cautiously determined with full considerations of the aerosol component, aerosol pH, etc.  

(c) H2O2 uptake on a variety of aerosols is needed to be measured and evaluated. It’s shown that the H2O2 uptake on dust is 

comparable or even more important than that by the ground surface (γeff ≥ γeqv). Measurements using ambient aerosols 20 

suggest that the uptake on aerosols other than mineral dust should be of similar magnitude.  

 

Data availability. All parameters to calculate Vd, the aerosol surface area densities (A), and the laboratory measurements of 

γeff are derived from peer-reviewed literature or publicly available database (as illustrated in the main text). 

 25 

Author contribution. H.S. and Y.C. designed the research. M.L. performed the research with input from H.S., Y.C., and 

N.M.. U.P. and G.L. discussed the results. M.L., H.S. and Y.C. wrote the manuscript with input from all-co-authors.  

 

Competing interests. The authors declare no conflict of interests. 

 30 

Acknowledgements. We acknowledge the National Natural Science Foundation of China (91644218), National Key 

Research and Development Program of China (Grant 2017YFC0210104), and Guangdong Innovative and Entrepreneurial 



16 
 
 

 

Research Team Program (2016ZT06N263). This work was supported by the Max Planck Society (MPG). Y.C. also 

acknowledges the Minerva Program of MPG. 

  



17 
 
 

 

 

References 

Abbatt, J. P. D., Lee, A. K. Y., and Thornton, J. A.: Quantifying trace gas uptake to tropospheric aerosol: recent advances 

and remaining challenges, Chemical Society Reviews, 41, 6555-6581, doi: 10.1039/C2CS35052A, 2012. 

Abbatt, J. P. D., and Waschewsky, G. C. G.: Heterogeneous Interactions of HOBr, HNO3, O3, and NO2 with Deliquescent 5 

NaCl Aerosols at Room Temperature, The Journal of Physical Chemistry A, 102, 3719-3725, doi: 10.1021/jp980932d, 

1998. 

Adams, J. W., Rodriguez, D., and Cox, R. A.: The uptake of SO2 on Saharan dust: a flow tube study, Atmos. Chem. Phys., 5, 

2679-2689, doi: 10.5194/acp-5-2679-2005, 2005. 

Andreae, M. O.: A New Look at Aging Aerosols, Science, 326, 1493, doi: 10.1126/science.1183158, 2009. 10 

Al-Abadleh, H. A., and Grassian, V. H.: Heterogeneous Reaction of NO2 on Hexane Soot:  A Knudsen Cell and FT-IR 

Study, The Journal of Physical Chemistry A, 104, 11926-11933, doi: 10.1021/jp002918i, 2000. 

Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed oxidation of atmospheric sulfur: Global 

implications for the sulfur budget, Journal of Geophysical Research: Atmospheres, 114, doi: 10.1029/2008JD010486, 

2009. 15 

Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate 

formation in sea-salt aerosols: Constraints from oxygen isotopes, Journal of Geophysical Research: Atmospheres, 110, 

doi: 10.1029/2004JD005659, 2005. 

Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: 

Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid 20 

substrates, Atmos. Chem. Phys., 13, 8045-8228, doi: 10.5194/acp-13-8045-2013, 2013. 

Ammann, M., Kalberer, M., Jost, D. T., Tobler, L., Rössler, E., Piguet, D., Gäggeler, H. W., and Baltensperger, U.: 

Heterogeneous production of nitrous acid on soot in polluted air masses, Nature, 395, 157, doi: 10.1038/25965, 1998. 

Ammann, M., and Pöschl, U.: Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions 

&ndash; Part 2: Exemplary practical applications and numerical simulations, Atmos. Chem. Phys., 7, 6025-6045, doi: 25 

10.5194/acp-7-6025-2007, 2007. 

Ammann, M., Rössler, E., Strekowski, R., and George, C.: Nitrogen dioxide multiphase chemistry: Uptake kinetics on 

aqueous solutions containing phenolic compounds, Physical Chemistry Chemical Physics, 7, 2513-2518, doi: 

10.1039/B501808K, 2005. 



18 
 
 

 

Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., 

Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., 

Heimann, M., Hoffmann, T., Kesselmeier, J., Könemann, T., Krüger, M. L., Lavric, J. V., Manzi, A. O., Lopes, A. P., 

Martins, D. L., Mikhailov, E. F., Moran-Zuloaga, D., Nelson, B. W., Nölscher, A. C., Santos Nogueira, D., Piedade, M. 

T. F., Pöhlker, C., Pöschl, U., Quesada, C. A., Rizzo, L. V., Ro, C. U., Ruckteschler, N., Sá, L. D. A., de Oliveira Sá, 5 

M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Schöngart, J., Sörgel, M., de Souza, C. M., de Souza, R. A. F., Su, H., 

Targhetta, N., Tóta, J., Trebs, I., Trumbore, S., van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J., Winderlich, 

J., Wittmann, F., Wolff, S., and Yáñez-Serrano, A. M.: The Amazon Tall Tower Observatory (ATTO): overview of 

pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols, Atmos. Chem. Phys., 15, 10723-

10776, doi: 10.5194/acp-15-10723-2015, 2015. 10 

Angelini, M. M., Garrard, R. J., Rosen, S. J., and Hinrichs, R. Z.: Heterogeneous Reactions of Gaseous HNO3 and NO2 on 

the Clay Minerals Kaolinite and Pyrophyllite, The Journal of Physical Chemistry A, 111, 3326-3335, doi: 

10.1021/jp0672656, 2007. 

Anttila, T., Kiendler-Scharr, A., Tillmann, R., and Mentel, T. F.: On the Reactive Uptake of Gaseous Compounds by 

Organic-Coated Aqueous Aerosols:  Theoretical Analysis and Application to the Heterogeneous Hydrolysis of N2O5, 15 

The Journal of Physical Chemistry A, 110, 10435-10443, doi: 10.1021/jp062403c, 2006. 

Arens, F., Gutzwiller, L., Baltensperger, U., Gäggeler, H. W., and Ammann, M.: Heterogeneous Reaction of NO2 on Diesel 

Soot Particles, Environmental Science & Technology, 35, 2191-2199, doi: 10.1021/es000207s, 2001. 

Ashmore M, R.: Assessing the future global impacts of ozone on vegetation, Plant, Cell & Environment, 28, 949-964, doi: 

10.1111/j.1365-3040.2005.01341.x, 2005. 20 

Badger, C. L., Griffiths, P. T., George, I., Abbatt, J. P. D., and Cox, R. A.: Reactive Uptake of N2O5 by Aerosol Particles 

Containing Mixtures of Humic Acid and Ammonium Sulfate, The Journal of Physical Chemistry A, 110, 6986-6994, 

doi: 10.1021/jp0562678, 2006. 

Bauer, S. E., Balkanski, Y., Schulz, M., Hauglustaine, D. A., and Dentener, F.: Global modeling of heterogeneous chemistry 

on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations, Journal of 25 

Geophysical Research: Atmospheres, 109, n/a-n/a, doi: 10.1029/2003JD003868, 2004. 

Beck, I., Jochner, S., Gilles, S., McIntyre, M., Buters, J. T. M., Schmidt-Weber, C., Behrendt, H., Ring, J., Menzel, A., and 

Traidl-Hoffmann, C.: High Environmental Ozone Levels Lead to Enhanced Allergenicity of Birch Pollen, PLOS ONE, 

8, e80147, doi: 10.1371/journal.pone.0080147, 2013. 

Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of ClNO2 from the reaction of gaseous N2O5 30 

with NaCl solution: Bulk and aerosol experiments, Journal of Geophysical Research: Atmospheres, 102, 3795-3804, doi: 

10.1029/96JD03057, 1997. 



19 
 
 

 

Berkemeier, T., Steimer, S. S., Krieger, U. K., Peter, T., Poschl, U., Ammann, M., and Shiraiwa, M.: Ozone uptake on glassy, 

semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry, 

Physical Chemistry Chemical Physics, 18, 12662-12674, doi: 10.1039/C6CP00634E, 2016. 

Börensen, C., Kirchner, U., Scheer, V., Vogt, R., and Zellner, R.: Mechanism and Kinetics of the Reactions of NO2 or 

HNO3 with Alumina as a Mineral Dust Model Compound, The Journal of Physical Chemistry A, 104, 5036-5045, doi: 5 

10.1021/jp994170d, 2000. 

Burkholder, J. B., Abbatt, J. P. D., Huie, R. E., Kurylo, M. J., Wilmouth, D. M., Sander, S. P., Barker, J. R., Kolb, C. E., 

Orkin, V. L., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation 

No. 18, JPL Publication 15-10, 2015. 

Chang, R. Y. W., Sullivan, R. C., and Abbatt, J. P. D.: Initial uptake of ozone on Saharan dust at atmospheric relative 10 

humidities, Geophys. Res. Lett., 32, doi: 10.1029/2005GL023317, 2005. 

Chen, Y., Wolke, R., Ran, L., Birmili, W., Spindler, G., Schröder, W., Su, H., Cheng, Y., Tegen, I., and Wiedensohler, A.: A 

parameterization of the heterogeneous hydrolysis of N2O5 for mass-based aerosol models: improvement of particulate 

nitrate prediction, Atmos. Chem. Phys., 18, 673-689, doi: 10.5194/acp-18-673-2018, 2018. 

Cheng, Y. F., Eichler, H., Wiedensohler, A., Heintzenberg, J., Zhang, Y. H., Hu, M., Herrmann, H., Zeng, L. M., Liu, S., 15 

Gnauk, T., Brüggemann, E., and He, L. Y.: Mixing state of elemental carbon and non-light-absorbing aerosol 

components derived from in situ particle optical properties at Xinken in Pearl River Delta of China, Journal of 

Geophysical Research: Atmospheres, 111, doi: 10.1029/2005JD006929, 2006. 

Cheng, Y., Su, H., Koop, T., Mikhailov, E., and Pöschl, U.: Size dependence of phase transitions in aerosol nanoparticles, 

Nature Communications, 6, 5923, doi: 10.1038/ncomms6923, 2015. 20 

Cheng, Y. F., Su, H., Rose, D., Gunthe, S. S., Berghof, M., Wehner, B., Achtert, P., Nowak, A., Takegawa, N., Kondo, Y., 

Shiraiwa, M., Gong, Y. G., Shao, M., Hu, M., Zhu, T., Zhang, Y. H., Carmichael, G. R., Wiedensohler, A., Andreae, M. 

O., and Pöschl, U.: Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: diurnal cycle, 

aging and parameterization, Atmos. Chem. Phys., 12, 4477-4491, doi: 10.5194/acp-12-4477-2012, 2012. 

Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., and 25 

Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science 

Advances, 2, e1601530, doi: 10.1126/sciadv.1601530, 2016. 

Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, 

T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on 

solid substrates, Atmos. Chem. Phys., 10, 9059-9223, doi: 10.5194/acp-10-9059-2010, 2010. 30 

Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, 

T. J.: Corrigendum to "Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – 



20 
 
 

 

heterogeneous reactions on solid substrates" published in Atmos. Chem. Phys. 10, 9059–9223, 2010, Atmos. Chem. 

Phys., 13, 7359-7359, doi: 10.5194/acp-13-7359-2013, 2013. 

de Gouw, J. A., and Lovejoy, E. R.: Reactive uptake of ozone by liquid organic compounds, Geophys. Res. Lett., 25, 931-

934, doi: 10.1029/98GL00515, 1998. 

de Haan, D. O., and Finlayson-Pitts, B. J.: Knudsen Cell Studies of the Reaction of Gaseous Nitric Acid with Synthetic Sea 5 

Salt at 298 K, The Journal of Physical Chemistry A, 101, 9993-9999, doi: 10.1021/jp972450s, 1997. 

Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., and Crutzen, P. J.: Role of mineral aerosol as a reactive surface 

in the global troposphere, Journal of Geophysical Research: Atmospheres, 101, 22869-22889, doi: 10.1029/96JD01818, 

1996. 

Disselkamp, R. S., Carpenter, M. A., Cowin, J. P., Berkowitz, C. M., Chapman, E. G., Zaveri, R. A., and Laulainen, N. S.: 10 

Ozone loss in soot aerosols, Journal of Geophysical Research: Atmospheres, 105, 9767-9771, 

doi:10.1029/1999JD901189, 2000. 

Ditas, J., Ma, N., Zhang, Y., Assmann, D., Neumaier, M., Riede, H., Karu, E., Williams, J., Scharffe, D., Wang, Q., Saturno, 

J., Schwarz, J. P., Katich, J. M., McMeeking, G. R., Zahn, A., Hermann, M., Brenninkmeijer, C. A. M., Andreae, M. O., 

Pöschl, U., Su, H., and Cheng, Y.: Strong impact of wildfires on the abundance and aging of black carbon in the 15 

lowermost stratosphere, Proceedings of the National Academy of Sciences, 115, E11595, doi: 

10.1073/pnas.1806868115, 2018. 

Dupart, Y., Fine, L., D’Anna, B., and George, C.: Heterogeneous uptake of NO2 on Arizona Test Dust under UV-A 

irradiation: An aerosol flow tube study, Aeolian Research, 15, 45-51, doi: https://doi.org/10.1016/j.aeolia.2013.10.001, 

2014. 20 

El Zein, A., Romanias, M. N., and Bedjanian, Y.: Heterogeneous Interaction of H2O2 with Arizona Test Dust, The Journal 

of Physical Chemistry A, 118, 441-448, doi: 10.1021/jp409946j, 2014. 

Evans, M. J., and Jacob, D. J.: Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric 

nitrogen oxides, ozone, and OH, Geophys. Res. Lett., 32, doi: 10.1029/2005GL022469, 2005. 

Fenidel, W., Matter, D., Burtscher, H., and Schmidt-Ott, A.: Interaction between carbon or iron aerosol particles and ozone, 25 

Atmospheric Environment, 29, 967-973, doi: https://doi.org/10.1016/1352-2310(95)00038-Z, 1995. 

Fenter, F. F., Caloz, F., and Rossi, M. J.: Experimental evidence for the efficient “dry deposition” of nitric acid on calcite, 

Atmospheric Environment, 29, 3365-3372, doi: https://doi.org/10.1016/1352-2310(95)00183-Y, 1995. 

Folkers, M., Mentel, T. F., and Wahner, A.: Influence of an organic coating on the reactivity of aqueous aerosols probed by 

the heterogeneous hydrolysis of N2O5, Geophys. Res. Lett., 30, doi: 10.1029/2003GL017168, 2003. 30 

Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., 

Schjoerring, J. K., Granier, C., Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt, J., Daemmgen, 



21 
 
 

 

U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J. P., Coyle, M., Gerosa, 

G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T. N., Ro-Poulsen, H., 

Cellier, P., Cape, J. N., Horváth, L., Loreto, F., Niinemets, Ü., Palmer, P. I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, 

D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U., Brüggemann, N., Zechmeister-Boltenstern, S., Williams, J., 

O'Dowd, C., Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman, J. W.: Atmospheric 5 

composition change: Ecosystems–Atmosphere interactions, Atmospheric Environment, 43, 5193-5267, doi: 

http://dx.doi.org/10.1016/j.atmosenv.2009.07.068, 2009. 

Fried, A., Crawford, J., Olson, J., Walega, J., Potter, W., Wert, B., Jordan, C., Anderson, B., Shetter, R., Lefer, B., Blake, D., 

Blake, N., Meinardi, S., Heikes, B., O'Sullivan, D., Snow, J., Fuelberg, H., Kiley, C. M., Sandholm, S., Tan, D., Sachse, 

G., Singh, H., Faloona, I., Harward, C. N., and Carmichael, G. R.: Airborne tunable diode laser measurements of 10 

formaldehyde during TRACE-P: Distributions and box model comparisons, Journal of Geophysical Research: 

Atmospheres, 108, doi: 10.1029/2003JD003451, 2003. 

Frinak, E. K., Wermeille, S. J., Mashburn, C. D., Tolbert, M. A., and Pursell, C. J.: Heterogeneous Reaction of Gaseous 

Nitric Acid on γ-Phase Iron(III) Oxide, The Journal of Physical Chemistry A, 108, 1560-1566, doi: 10.1021/jp030807o, 

2004. 15 

Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O., Lang-Yona, N., Burrows, S. 

M., Gunthe, S. S., Elbert, W., Su, H., Hoor, P., Thines, E., Hoffmann, T., Després, V. R., and Pöschl, U.: Bioaerosols in 

the Earth system: Climate, health, and ecosystem interactions, Atmospheric Research, 182, 346-376, doi: 

https://doi.org/10.1016/j.atmosres.2016.07.018, 2016. 

Ganzeveld, L., and Lelieveld, J.: Dry deposition parameterization in a chemistry general circulation model and its influence 20 

on the distribution of reactive trace gases, Journal of Geophysical Research: Atmospheres, 100, 20999-21012, doi: 

10.1029/95JD02266, 1995. 

Gard, E. E., Kleeman, M. J., Gross, D. S., Hughes, L. S., Allen, J. O., Morrical, B. D., Fergenson, D. P., Dienes, T., E. Gälli, 

M., Johnson, R. J., Cass, G. R., and Prather, K. A.: Direct Observation of Heterogeneous Chemistry in the Atmosphere, 

Science, 279, 1184, 1998. 25 

Gardner, J. A., Watson, L. R., Adewuyi, Y. G., Davidovits, P., Zahniser, M. S., Worsnop, D. R., and Kolb, C. E.: 

Measurement of the mass accommodation coefficient of SO2 (g) on water droplets, Journal of Geophysical Research: 

Atmospheres, 92, 10887-10895, doi: 10.1029/JD092iD09p10887, 1987. 

Gebel, M. E., Finlayson-Pitts Barbara, J., and Ganske Jane, A.: The uptake of SO2 on synthetic sea salt and some of its 

components, Geophys. Res. Lett., 27, 887-890, doi: 10.1029/1999GL011152, 2000. 30 

George, C., Ammann, M., D’Anna, B., Donaldson, D. J., and Nizkorodov, S. A.: Heterogeneous Photochemistry in the 

Atmosphere, Chemical Reviews, 115, 4218-4258, doi: 10.1021/cr500648z, 2015. 



22 
 
 

 

George, C., Ponche, J. L., Mirabel, P., Behnke, W., Scheer, V., and Zetzsch, C.: Study of the Uptake of N2O5 by Water and 

NaCl Solutions, The Journal of Physical Chemistry, 98, 8780-8784, doi: 10.1021/j100086a031, 1994. 

Ghan, S. J., Guzman, G., and Abdul-Razzak, H.: Competition between Sea Salt and Sulfate Particles as Cloud Condensation 

Nuclei, Journal of the Atmospheric Sciences, 55, 3340-3347, doi: 10.1175/1520-

0469(1998)055<3340:CBSSAS>2.0.CO;2, 1998. 5 

Goodman, A. L., Li, P., Usher, C. R., and Grassian, V. H.: Heterogeneous Uptake of Sulfur Dioxide On Aluminum and 

Magnesium Oxide Particles, The Journal of Physical Chemistry A, 105, 6109-6120, doi: 10.1021/jp004423z, 2001. 

Goodman, A. L., Underwood, G. M., and Grassian, V. H.: A laboratory study of the heterogeneous reaction of nitric acid on 

calcium carbonate particles, Journal of Geophysical Research: Atmospheres, 105, 29053-29064, doi: 

10.1029/2000JD900396, 2000. 10 

Griffiths, P. T., Badger, C. L., Cox, R. A., Folkers, M., Henk, H. H., and Mentel, T. F.: Reactive Uptake of N2O5 by 

Aerosols Containing Dicarboxylic Acids. Effect of Particle Phase, Composition, and Nitrate Content, The Journal of 

Physical Chemistry A, 113, 5082-5090, doi: 10.1021/jp8096814, 2009. 

Gross, S., Iannone, R., Xiao, S., and Bertram, A. K.: Reactive uptake studies of NO3 and N2O5 on alkenoic acid, alkanoate, 

and polyalcohol substrates to probe nighttime aerosol chemistry, Physical Chemistry Chemical Physics, 11, 7792-7803, 15 

doi: 10.1039/B904741G, 2009. 

Gustafsson, R. J., Orlov, A., Griffiths, P. T., Cox, R. A., and Lambert, R. M.: Reduction of NO2 to nitrous acid on 

illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry, Chemical 

Communications, 3936-3938, doi: 10.1039/B609005B, 2006. 

Guimbaud, C., Arens, F., Gutzwiller, L., Gäggeler, H. W., and Ammann, M.: Uptake of HNO3 to deliquescent sea-salt 20 

particles: a study using the short-lived radioactive isotope tracer 13N, Atmos. Chem. Phys., 2, 249-257, doi: 

10.5194/acp-2-249-2002, 2002. 

Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler, A., Kuwata, M., Takegawa, N., 

Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei (CCN) from fresh 

and aged air pollution in the megacity region of Beijing, Atmos. Chem. Phys., 11, 11023-11039, doi: 10.5194/acp-11-25 

11023-2011, 2011. 

Gutzwiller, L., George, C., Rössler, E., and Ammann, M.: Reaction Kinetics of NO2 with Resorcinol and 2,7-

Naphthalenediol in the Aqueous Phase at Different pH, The Journal of Physical Chemistry A, 106, 12045-12050, doi: 

10.1021/jp026240d, 2002. 

Hallquist, M., Stewart, D. J., Stephenson, S. K., and Anthony Cox, R.: Hydrolysis of N2O5 on sub-micron sulfate aerosols, 30 

Physical Chemistry Chemical Physics, 5, 3453-3463, doi: 10.1039/B301827J, 2003. 



23 
 
 

 

Hanisch, F., and Crowley, J. N.: Heterogeneous Reactivity of Gaseous Nitric Acid on Al2O3, CaCO3, and Atmospheric 

Dust Samples:  A Knudsen Cell Study, The Journal of Physical Chemistry A, 105, 3096-3106, doi: 10.1021/jp001254+, 

2001a. 

Hanisch, F., and Crowley, J. N.: The heterogeneous reactivity of gaseous nitric acid on authentic mineral dust samples, and 

on individual mineral and clay mineral components, Physical Chemistry Chemical Physics, 3, 2474-2482, doi: 5 

10.1039/B101700O, 2001b. 

Hanisch, F., and Crowley, J. N.: Ozone decomposition on Saharan dust: an experimental investigation, Atmos. Chem. Phys., 

3, 119-130, doi: 10.5194/acp-3-119-2003, 2003. 

Harrison, R. M., and Collins, G. M.: Measurements of Reaction Coefficients of NO2 and HONO on Aerosol Particles, 

Journal of Atmospheric Chemistry, 30, 397-406, doi: 10.1023/A:1006094304069, 1998. 10 

He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang, H., and Hao, J.: Mineral dust and NOx promote 

the conversion of SO2 to sulfate in heavy pollution days, Scientific Reports, 4, 4172, doi: 10.1038/srep04172, 2014. 

Hearn, J. D., Lovett, A. J., and Smith, G. D.: Ozonolysis of oleic acid particles: evidence for a surface reaction and 

secondary reactions involving Criegee intermediates, Physical Chemistry Chemical Physics, 7, 501-511, doi: 

10.1039/B414472D, 2005. 15 

Herrmann, H.: Kinetics of Aqueous Phase Reactions Relevant for Atmospheric Chemistry, Chemical Reviews, 103, 4691-

4716, doi: 10.1021/cr020658q, 2003. 

Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.: Tropospheric Aqueous-Phase 

Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, Chemical Reviews, 115, 4259-4334, doi: 

10.1021/cr500447k, 2015. 20 

Hoffman, R. C., Kaleuati, M. A., and Finlayson-Pitts, B. J.: Knudsen Cell Studies of the Reaction of Gaseous HNO3 with 

NaCl Using Less than a Single Layer of Particles at 298 K:  A Modified Mechanism, The Journal of Physical Chemistry 

A, 107, 7818-7826, doi: 10.1021/jp030611o, 2003. 

Held, A., Zerrath, A., McKeon, U., Fehrenbach, T., Niessner, R., Plass-Dülmer, C., Kaminski, U., Berresheim, H., and 

Pöschl, U.: Aerosol size distributions measured in urban, rural and high-alpine air with an electrical low pressure 25 

impactor (ELPI), Atmospheric Environment, 42, 8502-8512, doi: https://doi.org/10.1016/j.atmosenv.2008.06.015, 2008. 

Huang, L., Zhao, Y., Li, H., and Chen, Z.: Kinetics of Heterogeneous Reaction of Sulfur Dioxide on Authentic Mineral Dust: 

Effects of Relative Humidity and Hydrogen Peroxide, Environmental Science & Technology, 49, 10797-10805, doi: 

10.1021/acs.est.5b03930, 2015. 

Huss, A., Lim, P. K., and Eckert, C. A.: Oxidation of aqueous sulfur dioxide. 1. Homogeneous manganese(II) and iron(II) 30 

catalysis at low pH, The Journal of Physical Chemistry, 86, 4224-4228, doi: 10.1021/j100218a027, 1982. 



24 
 
 

 

Il'in, S. D.: Study of heterogeneous ozone loss on materials typical of atmospheric aerosol species, Sov. J. Chem. Phys., 8, 

1858-1880, 1991. 

Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmospheric Environment, 34, 2131-2159, doi: 

https://doi.org/10.1016/S1352-2310(99)00462-8, 2000. 

Jayne, J. T., Gardner, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: The effect of H2O2 content on 5 

the uptake of SO2(g) by aqueous droplets, Journal of Geophysical Research: Atmospheres, 95, 20559-20563, doi: 

10.1029/JD095iD12p20559, 1990. 

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., 

Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, 

J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., 10 

Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, J., Huffman, J. A., 

Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., 

Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., 

Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., 

Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of 15 

Organic Aerosols in the Atmosphere, Science, 326, 1525, doi: 10.1126/science.1180353, 2009. 

Johnson, E. R., Sciegienka, J., Carlos-Cuellar, S., and Grassian, V. H.: Heterogeneous Uptake of Gaseous Nitric Acid on 

Dolomite (CaMg(CO3)2) and Calcite (CaCO3) Particles:  A Knudsen Cell Study Using Multiple, Single, and Fractional 

Particle Layers, The Journal of Physical Chemistry A, 109, 6901-6911, doi: 10.1021/jp0516285, 2005. 

Judeikis, H. S., Stewart, T. B., and Wren, A. G.: Laboratory studies of heterogeneous reactions of SO2, Atmospheric 20 

Environment (1967), 12, 1633-1641, doi: https://doi.org/10.1016/0004-6981(78)90312-8, 1978. 

Kalberer, M., Ammann, M., Arens, F., Gäggeler, H. W., and Baltensperger, U.: Heterogeneous formation of nitrous acid 

(HONO) on soot aerosol particles, Journal of Geophysical Research: Atmospheres, 104, 13825-13832, doi: 

10.1029/1999JD900141, 1999. 

Kalberer, M., Tabor, K., Ammann, M., Parrat, Y., Weingartner, E., Piguet, D., Rössler, E., Jost, D. T., Türler, A., Gäggeler, 25 

H. W., and Baltensperger, U.: Heterogeneous Chemical Processing of 13NO2 by Monodisperse Carbon Aerosols at 

Very Low Concentrations, The Journal of Physical Chemistry, 100, 15487-15493, doi: 10.1021/jp9606974, 1996. 

Kamm, S., Möhler, O., Naumann, K. H., Saathoff, H., and Schurath, U.: The heterogeneous reaction of ozone with soot 

aerosol, Atmospheric Environment, 33, 4651-4661, doi: https://doi.org/10.1016/S1352-2310(99)00235-6, 1999. 

Kane, S. M., Caloz, F., and Leu, M.-T.: Heterogeneous Uptake of Gaseous N2O5 by (NH4)2SO4, NH4HSO4, and H2SO4 30 

Aerosols, The Journal of Physical Chemistry A, 105, 6465-6470, doi: 10.1021/jp010490x, 2001. 



25 
 
 

 

Karagulian, F., and Rossi, M. J.: Heterogeneous Chemistry of the NO3 Free Radical and N2O5 on Decane Flame Soot at 

Ambient Temperature:  Reaction Products and Kinetics, The Journal of Physical Chemistry A, 111, 1914-1926, doi: 

10.1021/jp0670891, 2007. 

Karagulian, F., Santschi, C., and Rossi, M. J.: The heterogeneous chemical kinetics of N2O5 on CaCO3 and other 

atmospheric mineral dust surrogates, Atmos. Chem. Phys., 6, 1373-1388, doi: 10.5194/acp-6-1373-2006, 2006. 5 

King, M. D., Thompson, K. C., Ward, A. D., Pfrang, C., and Hughes, B. R.: Oxidation of biogenic and water-soluble 

compounds in aqueous and organic aerosol droplets by ozone: a kinetic and product analysis approach using laser 

Raman tweezers, Faraday Discussions, 137, 173-192, doi: 10.1039/B702199B, 2008. 

Kirchner, U., Scheer, V., and Vogt, R.: FTIR Spectroscopic Investigation of the Mechanism and Kinetics of the 

Heterogeneous Reactions of NO2 and HNO3 with Soot, The Journal of Physical Chemistry A, 104, 8908-8915, doi: 10 

10.1021/jp0005322, 2000. 

Kleffmann, J. r., Becker, K. H., Lackhoff, M., and Wiesen, P.: Heterogeneous conversion of NO2 on carbonaceous surfaces, 

Physical Chemistry chemical Physics, 5443-5450, 1999. 

Kleffmann, J., Becker, K. H., and Wiesen, P.: Heterogeneous NO2 conversion processes on acid surfaces: possible 

atmospheric implications, Atmospheric Environment, 32, 2721-2729, doi: https://doi.org/10.1016/S1352-15 

2310(98)00065-X, 1998. 

Knopf, D. A., Anthony, L. M., and Bertram, A. K.: Reactive Uptake of O3 by Multicomponent and Multiphase Mixtures 

Containing Oleic Acid, The Journal of Physical Chemistry A, 109, 5579-5589, doi: 10.1021/jp0512513, 2005. 

Kolb, C. E., Worsnop, D. R., Zahniser, M. S., Davidovits, P., Keyser, L. F., Leu, M. T., Molina, M. J., Hanson, D. R., 

Ravishankara, A. R., Williams, L. R., and Tolbert, M. A.: LABORATORY STUDIES OF ATMOSPHERIC 20 

HETEROGENEOUS CHEMISTRY, in: Progress and Problems in Atmospheric Chemistry, Advanced Series in 

Physical Chemistry, Volume 3, WORLD SCIENTIFIC, 771-875, 1995. 

Kolb, C. E., Cox, R. A., Abbatt, J. P. D., Ammann, M., Davis, E. J., Donaldson, D. J., Garrett, B. C., George, C., Griffiths, P. 

T., Hanson, D. R., Kulmala, M., McFiggans, G., Pöschl, U., Riipinen, I., Rossi, M. J., Rudich, Y., Wagner, P. E., 

Winkler, P. M., Worsnop, D. R., and O' Dowd, C. D.: An overview of current issues in the uptake of atmospheric trace 25 

gases by aerosols and clouds, Atmos. Chem. Phys., 10, 10561-10605, doi: 10.5194/acp-10-10561-2010, 2010. 

Komiyama, H., and Inoue, H.: 20 Absorption of nitrogen oxides into water, Chemical Engineering Science, 35, 154-161, doi: 

https://doi.org/10.1016/0009-2509(80)80082-0, 1980. 

Lappalainen, H. K., Kerminen, V. M., Petäjä, T., Kurten, T., Baklanov, A., Shvidenko, A., Bäck, J., Vihma, T., Alekseychik, 

P., Andreae, M. O., Arnold, S. R., Arshinov, M., Asmi, E., Belan, B., Bobylev, L., Chalov, S., Cheng, Y., Chubarova, 30 

N., de Leeuw, G., Ding, A., Dobrolyubov, S., Dubtsov, S., Dyukarev, E., Elansky, N., Eleftheriadis, K., Esau, I., Filatov, 

N., Flint, M., Fu, C., Glezer, O., Gliko, A., Heimann, M., Holtslag, A. A. M., Hõrrak, U., Janhunen, J., Juhola, S., Järvi, 



26 
 
 

 

L., Järvinen, H., Kanukhina, A., Konstantinov, P., Kotlyakov, V., Kieloaho, A. J., Komarov, A. S., Kujansuu, J., 

Kukkonen, I., Duplissy, E. M., Laaksonen, A., Laurila, T., Lihavainen, H., Lisitzin, A., Mahura, A., Makshtas, A., 

Mareev, E., Mazon, S., Matishov, D., Melnikov, V., Mikhailov, E., Moisseev, D., Nigmatulin, R., Noe, S. M., Ojala, A., 

Pihlatie, M., Popovicheva, O., Pumpanen, J., Regerand, T., Repina, I., Shcherbinin, A., Shevchenko, V., Sipilä, M., 

Skorokhod, A., Spracklen, D. V., Su, H., Subetto, D. A., Sun, J., Terzhevik, A. Y., Timofeyev, Y., Troitskaya, Y., 5 

Tynkkynen, V. P., Kharuk, V. I., Zaytseva, N., Zhang, J., Viisanen, Y., Vesala, T., Hari, P., Hansson, H. C., Matvienko, 

G. G., Kasimov, N. S., Guo, H., Bondur, V., Zilitinkevich, S., and Kulmala, M.: Pan-Eurasian Experiment (PEEX): 

towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in 

the northern Eurasian region, Atmos. Chem. Phys., 16, 14421-14461, doi: 10.5194/acp-16-14421-2016, 2016. 

Laskin, A., Gaspar, D. J., Wang, W., Hunt, S. W., Cowin, J. P., Colson, S. D., and Finlayson-Pitts, B. J.: Reactions at 10 

Interfaces As a Source of Sulfate Formation in Sea-Salt Particles, Science, 301, 340, doi: 10.1126/science.1085374, 

2003. 

Lee, J. H., and Tang, I. N.: Accommodation coefficient of gaseous NO2 on water surfaces, Atmospheric Environment (1967), 

22, 1147-1151, doi: https://doi.org/10.1016/0004-6981(88)90344-7, 1988. 

Lee, Y. H., Chen, K., and Adams, P. J.: Development of a global model of mineral dust aerosol microphysics, Atmos. Chem. 15 

Phys., 9, 2441-2458, doi: 10.5194/acp-9-2441-2009, 2009. 

Lelieveld, J., and Dentener, F. J.: What controls tropospheric ozone?, Journal of Geophysical Research: Atmospheres, 105, 

3531-3551, doi: 10.1029/1999JD901011, 2000. 

Lelièvre, S., Bedjanian, Y., Laverdet, G., and Le Bras, G.: Heterogeneous Reaction of NO2 with Hydrocarbon Flame Soot, 

The Journal of Physical Chemistry A, 108, 10807-10817, doi: 10.1021/jp0469970, 2004a. 20 

Lelièvre, S., Bedjanian, Y., Pouvesle, N., Delfau, J.-L., Vovelle, C., and Le Bras, G.: Heterogeneous reaction of ozone with 

hydrocarbon flame soot, Physical Chemistry Chemical Physics, 6, 1181-1191, doi: 10.1039/B316895F, 2004b. 

Lewis, E. R., and Schwartz, S. E.: Sea salt Aerosol Production: Mechanisms, Methods, Measurements, and Models, 

American Geophysical Union, Washington, DC, 2004. 

Li, G., Cheng, Y., Kuhn, U., Xu, R., Yang, Y., Meusel, H., Wang, Z., Ma, N., Wu, Y., Li, M., Williams, J., Hoffmann, T., 25 

Ammann, M., Pöschl, U., Shao, M., and Su, H.: Physicochemical uptake and release of volatile organic compounds by 

soil in coated-wall flow tube experiments with ambient air, Atmos. Chem. Phys., 19, 2209-2232, doi: 10.5194/acp-19-

2209-2019, 2019. 

Li, G., Su, H., Li, X., Kuhn, U., Meusel, H., Hoffmann, T., Ammann, M., Pöschl, U., Shao, M., and Cheng, Y.: Uptake of 

gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions, 30 

Atmos. Chem. Phys., 16, 10299-10311, doi: 10.5194/acp-16-10299-2016, 2016. 



27 
 
 

 

Li, H., Chen, Z., Huang, L., and Huang, D.: Organic peroxides' gas-particle partitioning and rapid heterogeneous 

decomposition on secondary organic aerosol, Atmos. Chem. Phys., 16, 1837-1848, doi: 10.5194/acp-16-1837-2016, 

2016. 

Li, H. J., Zhu, T., Zhao, D. F., Zhang, Z. F., and Chen, Z. M.: Kinetics and mechanisms of heterogeneous reaction of NO2 

on CaCO3 surfaces under dry and wet conditions, Atmos. Chem. Phys., 10, 463-474, doi: 10.5194/acp-10-463-2010, 5 

2010. 

Li, L., Chen, Z. M., Zhang, Y. H., Zhu, T., Li, J. L., and Ding, J.: Kinetics and mechanism of heterogeneous oxidation of 

sulfur dioxide by ozone on surface of calcium carbonate, Atmos. Chem. Phys., 6, 2453-2464, doi: 10.5194/acp-6-2453-

2006, 2006. 

Li, X., Rohrer, F., Brauers, T., Hofzumahaus, A., Lu, K., Shao, M., Zhang, Y. H., and Wahner, A.: Modeling of HCHO and 10 

CHOCHO at a semi-rural site in southern China during the PRIDE-PRD2006 campaign, Atmos. Chem. Phys., 14, 

12291-12305, doi: 10.5194/acp-14-12291-2014, 2014. 

Liu, F., Lakey, P. S. J., Berkemeier, T., Tong, H., Kunert, A. T., Meusel, H., Cheng, Y., Su, H., Fröhlich-Nowoisky, J., Lai, 

S., Weller, M. G., Shiraiwa, M., Pöschl, U., and Kampf, C. J.: Atmospheric protein chemistry influenced by 

anthropogenic air pollutants: nitration and oligomerization upon exposure to ozone and nitrogen dioxide, Faraday 15 

Discussions, 200, 413-427, doi: 10.1039/C7FD00005G, 2017. 

Liu, Y., Cain, J. P., Wang, H., and Laskin, A.: Kinetic Study of Heterogeneous Reaction of Deliquesced NaCl Particles with 

Gaseous HNO3 Using Particle-on-Substrate Stagnation Flow Reactor Approach, The Journal of Physical Chemistry A, 

111, 10026-10043, doi: 10.1021/jp072005p, 2007. 

Liu, Y., Gibson, Cain, Wang, H., Grassian, and Laskin, A.: Kinetics of Heterogeneous Reaction of CaCO3 Particles with 20 

Gaseous HNO3 over a Wide Range of Humidity, The Journal of Physical Chemistry A, 112, 1561-1571, doi: 

10.1021/jp076169h, 2008. 

Liao, H., and Seinfeld, J. H.: Global impacts of gas-phase chemistry-aerosol interactions on direct radiative forcing by 

anthropogenic aerosols and ozone, Journal of Geophysical Research: Atmospheres, 110, doi: 10.1029/2005JD005907, 

2005. 25 

Longfellow, C. A., Ravishankara, A. R., and Hanson, D. R.: Reactive and nonreactive uptake on hydrocarbon soot: HNO3, 

O3, and N2O5, Journal of Geophysical Research: Atmospheres, 105, 24345-24350, doi: 10.1029/2000JD900297, 2000. 

Ma, N., and Birmili, W.: Estimating the contribution of photochemical particle formation to ultrafine particle number 

averages in an urban atmosphere, Science of The Total Environment, 512-513, 154-166, doi: 

https://doi.org/10.1016/j.scitotenv.2015.01.009, 2015. 30 



28 
 
 

 

Ma, N., Birmili, W., Müller, T., Tuch, T., Cheng, Y. F., Xu, W. Y., Zhao, C. S., and Wiedensohler, A.: Tropospheric aerosol 

scattering and absorption over central Europe: a closure study for the dry particle state, Atmos. Chem. Phys., 14, 6241-

6259, doi: 10.5194/acp-14-6241-2014, 2014. 

McNeill, V. F.: Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical Processing of Organic Aerosols, 

Environmental Science & Technology, 49, 1237-1244, doi: 10.1021/es5043707, 2015. 5 

McNaughton, C. S., Clarke, A. D., Kapustin, V., Shinozuka, Y., Howell, S. G., Anderson, B. E., Winstead, E., Dibb, J., 

Scheuer, E., Cohen, R. C., Wooldridge, P., Perring, A., Huey, L. G., Kim, S., Jimenez, J. L., Dunlea, E. J., DeCarlo, P. 

F., Wennberg, P. O., Crounse, J. D., Weinheimer, A. J., and Flocke, F.: Observations of heterogeneous reactions 

between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B, Atmos. Chem. Phys., 9, 

8283-8308, doi: 10.5194/acp-9-8283-2009, 2009. 10 

Meusel, H., Elshorbany, Y., Kuhn, U., Bartels-Rausch, T., Reinmuth-Selzle, K., Kampf, C. J., Li, G., Wang, X., Lelieveld, J., 

Pöschl, U., Hoffmann, T., Su, H., Ammann, M., and Cheng, Y.: Light-induced protein nitration and degradation with 

HONO emission, Atmos. Chem. Phys., 17, 11819-11833, doi: 10.5194/acp-17-11819-2017, 2017. 

Msibi, I. M., Shi, J. P., and Harrison, R. M.: Accommodation coefficient for trace gas uptake using deposition profile 

measurement in an annular reactor, Journal of Atmospheric Chemistry, 17, 339-351, doi: 10.1007/BF00696853, 1993. 15 

Mochida, M., Hirokawa, J., and Akimoto, H.: Unexpected large uptake of O3 on sea salts and the observed Br2 formation, 

Geophys. Res. Lett., 27, 2629-2632, doi: 10.1029/1999GL010927, 2000. 

Mogili, P. K., Kleiber, P. D., Young, M. A., and Grassian, V. H.: Heterogeneous Uptake of Ozone on Reactive Components 

of Mineral Dust Aerosol:  An Environmental Aerosol Reaction Chamber Study, The Journal of Physical Chemistry A, 

110, 13799-13807, doi: 10.1021/jp063620g, 2006. 20 

Moise, T., and Rudich, Y.: Reactive uptake of ozone by proxies for organic aerosols: Surface versus bulk processes, Journal 

of Geophysical Research: Atmospheres, 105, 14667-14676, doi: 10.1029/2000JD900071, 2000. 

Morris, J. W., Davidovits, P., Jayne, J. T., Jimenez, J. L., Shi, Q., Kolb, C. E., Worsnop, D. R., Barney, W. S., and Cass, G.: 

Kinetics of submicron oleic acid aerosols with ozone: A novel aerosol mass spectrometric technique, Geophys. Res. 

Lett., 29, 71-71-71-74, doi: 10.1029/2002GL014692, 2002. 25 

Ndour, M., D'Anna, B., George, C., Ka, O., Balkanski, Y., Kleffmann, J., Stemmler, K., and Ammann, M.: Photoenhanced 

uptake of NO2 on mineral dust: Laboratory experiments and model simulations, Geophys. Res. Lett., 35, doi: 

10.1029/2007GL032006, 2008. 

Ndour, M., Nicolas, M., D'Anna, B., Ka, O., and George, C.: Photoreactivity of NO2 on mineral dusts originating from 

different locations of the Sahara desert, Physical Chemistry Chemical Physics, 11, 1312-1319, doi: 10.1039/B806441E, 30 

2009. 



29 
 
 

 

Mendez, M., Visez, N., Gosselin, S., Crenn, V., Riffault, V., and Petitprez, D.: Reactive and Nonreactive Ozone Uptake 

during Aging of Oleic Acid Particles, The Journal of Physical Chemistry A, 118, 9471-9481, doi: 10.1021/jp503572c, 

2014. 

Meusel, H., Tamm, A., Kuhn, U., Wu, D., Leifke, A. L., Fiedler, S., Ruckteschler, N., Yordanova, P., Lang-Yona, N., 

Pöhlker, M., Lelieveld, J., Hoffmann, T., Pöschl, U., Su, H., Weber, B., and Cheng, Y.: Emission of nitrous acid from 5 

soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus, Atmos. 

Chem. Phys., 18, 799-813, doi: 10.5194/acp-18-799-2018, 2018. 

Michel, A. E., Usher, C. R., and Grassian, V. H.: Heterogeneous and catalytic uptake of ozone on mineral oxides and dusts: 

A Knudsen cell investigation, Geophys. Res. Lett., 29, 10-11-10-14, doi: 10.1029/2002GL014896, 2002. 

Michel, A. E., Usher, C. R., and Grassian, V. H.: Reactive uptake of ozone on mineral oxides and mineral dusts, 10 

Atmospheric Environment, 37, 3201-3211, doi: https://doi.org/10.1016/S1352-2310(03)00319-4, 2003. 

Moise, T., and Rudich, Y.: Reactive uptake of ozone by proxies for organic aerosols: Surface versus bulk processes, Journal 

of Geophysical Research: Atmospheres, 105, 14667-14676, doi: 10.1029/2000JD900071, 2000. 

Mu, Q., Shiraiwa, M., Octaviani, M., Ma, N., Ding, A., Su, H., Lammel, G., Pöschl, U., and Cheng, Y.: Temperature effect 

on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs, Science Advances, 4, 15 

2018. 

Nicolas, M., Ndour, M., Ka, O., D’Anna, B., and George, C.: Photochemistry of Atmospheric Dust: Ozone Decomposition 

on Illuminated Titanium Dioxide, Environ. Sci. & Technol., 43, 7437-7442, doi: 10.1021/es901569d, 2009. 

Ndour, M., D'Anna, B., George, C., Ka, O., Balkanski, Y., Kleffmann, J., Stemmler, K., and Ammann, M.: Photoenhanced 

uptake of NO2 on mineral dust: Laboratory experiments and model simulations, Geophys. Res. Lett., 35, doi: 20 

10.1029/2007GL032006, 2008. 

Ndour, M., Nicolas, M., D'Anna, B., Ka, O., and George, C.: Photoreactivity of NO2 on mineral dusts originating from 

different locations of the Sahara desert, Physical Chemistry Chemical Physics, 11, 1312-1319, doi: 10.1039/B806441E, 

2009. 

O'Dowd, C. D., Smith, M. H., Consterdine, I. E., and Lowe, J. A.: Marine aerosol, sea-salt, and the marine sulphur cycle: a 25 

short review, Atmospheric Environment, 31, 73-80, doi: https://doi.org/10.1016/S1352-2310(96)00106-9, 1997. 

Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C., Moravek, A., Mougin, E., Delon, C., 

Loubet, B., Pommerening-Röser, A., Sörgel, M., Pöschl, U., Hoffmann, T., Andreae, M. O., Meixner, F. X., and Trebs, 

I.: HONO Emissions from Soil Bacteria as a Major Source of Atmospheric Reactive Nitrogen, Science, 341, 1233, doi: 

10.1126/science.1242266, 2013. 30 

Ouyang, Y., Xu, Z., Fan, E., Li, Y., and Zhang, L.: Effect of nitrogen dioxide and sulfur dioxide on viability and morphology 

of oak pollen, International Forum of Allergy & Rhinology, 6, 95-100, doi: 10.1002/alr.21632, 2016. 



30 
 
 

 

Pöhlker, C., Wiedemann, K. T., Sinha, B., Shiraiwa, M., Gunthe, S. S., Smith, M., Su, H., Artaxo, P., Chen, Q., Cheng, Y., 

Elbert, W., Gilles, M. K., Kilcoyne, A. L. D., Moffet, R. C., Weigand, M., Martin, S. T., Pöschl, U., and Andreae, M. 

O.: Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon, Science, 337, 1075, doi: 

10.1126/science.1223264, 2012. 

Pöschl, U., Letzel, T., Schauer, C., and Niessner, R.: Interaction of Ozone and Water Vapor with Spark Discharge Soot 5 

Aerosol Particles Coated with Benzo[a]pyrene:  O3 and H2O Adsorption, Benzo[a]pyrene Degradation, and 

Atmospheric Implications, The Journal of Physical Chemistry A, 105, 4029-4041, doi: 10.1021/jp004137n, 2001. 

Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, S., Farmer, D. K., Garland, R. M., 

Helas, G., Jimenez, J. L., King, S. M., Manzi, A., Mikhailov, E., Pauliquevis, T., Petters, M. D., Prenni, A. J., Roldin, P., 

Rose, D., Schneider, J., Su, H., Zorn, S. R., Artaxo, P., and Andreae, M. O.: Rainforest Aerosols as Biogenic Nuclei of 10 

Clouds and Precipitation in the Amazon, Science, 329, 1513, 2010. 

Pöschl, U., Rudich, Y., and Ammann, M.: Kinetic model framework for aerosol and cloud surface chemistry and gas-particle 

interactions &ndash; Part 1: General equations, parameters, and terminology, Atmos. Chem. Phys., 7, 5989-6023, doi: 

10.5194/acp-7-5989-2007, 2007. 

Pöschl, U., and Shiraiwa, M.: Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public 15 

Health in the Anthropocene, Chemical Reviews, 115, 4440-4475, doi: 10.1021/cr500487s, 2015. 

Ponche, J. L., George, C., and Mirabel, P.: Mass transfer at the air/water interface: Mass accommodation coefficients of SO2, 

HNO3, NO2 and NH3, Journal of Atmospheric Chemistry, 16, 1-21, doi: 10.1007/BF00696620, 1993. 

Pradhan, M., Kalberer, M., Griffiths, P. T., Braban, C. F., Pope, F. D., Cox, R. A., and Lambert, R. M.: Uptake of Gaseous 

Hydrogen Peroxide by Submicrometer Titanium Dioxide Aerosol as a Function of Relative Humidity, Environmental 20 

Science & Technology, 44, 1360-1365, doi: 10.1021/es902916f, 2010a. 

Pradhan, M., Kyriakou, G., Archibald, A. T., Papageorgiou, A. C., Kalberer, M., and Lambert, R. M.: Heterogeneous uptake 

of gaseous hydrogen peroxide by Gobi and Saharan dust aerosols: a potential missing sink for H2O2 in the troposphere, 

Atmos. Chem. Phys., 10, 7127-7136, doi: 10.5194/acp-10-7127-2010, 2010b. 

Prince, A. P., Wade, J. L., Grassian, V. H., Kleiber, P. D., and Young, M. A.: Heterogeneous reactions of soot aerosols with 25 

nitrogen dioxide and nitric acid: atmospheric chamber and Knudsen cell studies, Atmospheric Environment, 36, 5729-

5740, doi: https://doi.org/10.1016/S1352-2310(02)00626-X, 2002. 

Prospero, J. M.: Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment 

of the southeastern United States, Proceedings of the National Academy of Sciences, 96, 3396, doi: 

10.1073/pnas.96.7.3396, 1999. 30 

Quinn, P. K., Collins, D. B., Grassian, V. H., Prather, K. A., and Bates, T. S.: Chemistry and Related Properties of Freshly 

Emitted Sea Spray Aerosol, Chemical Reviews, 115, 4383-4399, doi: 10.1021/cr500713g, 2015. 



31 
 
 

 

Ravishankara, A. R.: Heterogeneous and Multiphase Chemistry in the Troposphere, Science, 276, 1058, 1997. 

Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M. O.: Size distribution and hygroscopic 

properties of aerosol particles from dry-season biomass burning in Amazonia, Atmos. Chem. Phys., 6, 471-491, doi: 

10.5194/acp-6-471-2006, 2006. 

Rogaski, C. A., Golden, D. M., and Williams, L. R.: Reactive uptake and hydration experiments on amorphous carbon 5 

treated with NO2, SO2, O3, HNO3, and H2SO4, Geophys. Res. Lett., 24, 381-384, doi: 10.1029/97GL00093, 1997. 

Romanias, M. N., El Zein, A., and Bedjanian, Y.: Heterogeneous Interaction of H2O2 with TiO2 Surface under Dark and 

UV Light Irradiation Conditions, The Journal of Physical Chemistry A, 116, 8191-8200, doi: 10.1021/jp305366v, 2012. 

Romanias, M. N., El Zein, A., and Bedjanian, Y.: Uptake of hydrogen peroxide on the surface of Al2O3 and Fe2O3, 

Atmospheric Environment, 77, 1-8, doi: https://doi.org/10.1016/j.atmosenv.2013.04.065, 2013. 10 

Rudich, Y., Donahue, N. M., and Mentel, T. F.: Aging of Organic Aerosol: Bridging the Gap Between Laboratory and Field 

Studies, Annual Review of Physical Chemistry, 58, 321-352, doi: 10.1146/annurev.physchem.58.032806.104432, 2007. 

Saathoff, H., Naumann, K. H., Riemer, N., Kamm, S., Möhler, O., Schurath, U., Vogel, H., and Vogel, B.: The loss of NO2, 

HNO3, NO3/N2O5, and HO2/HOONO2 on soot aerosol: A chamber and modeling study, Geophys. Res. Lett., 28, 

1957-1960, doi:10.1029/2000GL012619, 2001. 15 

Sadanaga, Y., Hirokawa, J., and Akimoto, H.: Formation of molecular chlorine in dark condition: Heterogeneous reaction of 

ozone with sea salt in the presence of ferric ion, Geophys. Res. Lett., 28, 4433-4436, doi: 10.1029/2001GL013722, 

2001. 

Sage, A. M., Weitkamp, E. A., Robinson, A. L., and Donahue, N. M.: Reactivity of oleic acid in organic particles: changes in 

oxidant uptake and reaction stoichiometry with particle oxidation, Physical Chemistry Chemical Physics, 11, 7951-7962, 20 

doi: 10.1039/B904285G, 2009. 

Salgado-Muñoz, M. S., and Rossi, M. J.: Heterogeneous reactions of HNO3 with flame soot generated under different 

combustion conditions. Reaction mechanism and kinetics, Physical Chemistry Chemical Physics, 4, 5110-5118, doi: 

10.1039/B203912P, 2002. 

Santschi, C., and Rossi, M. J.: Uptake of CO2, SO2, HNO3 and HCl on Calcite (CaCO3) at 300 K:  Mechanism and the Role 25 

of Adsorbed Water, The Journal of Physical Chemistry A, 110, 6789-6802, doi: 10.1021/jp056312b, 2006. 

Saul, T. D., Tolocka, M. P., and Johnston, M. V.: Reactive Uptake of Nitric Acid onto Sodium Chloride Aerosols Across a 

Wide Range of Relative Humidities, The Journal of Physical Chemistry A, 110, 7614-7620, doi: 10.1021/jp060639a, 

2006. 

Schweitzer, F., Mirabel, P., and George, C.: Multiphase Chemistry of N2O5, ClNO2, and BrNO2, The Journal of Physical 30 

Chemistry A, 102, 3942-3952, doi: 10.1021/jp980748s, 1998. 



32 
 
 

 

Schwartz, S. E.: Mass-Transport Considerations Pertinent to Aqueous Phase Reactions of Gases in Liquid-Water Clouds, 

Chemistry of Multiphase Atmospheric Systems, Berlin, Heidelberg, 1986, 415-471, 

Schwartz, S. E., and Freiberg, J. E.: Mass-transport limitation to the rate of reaction of gases in liquid droplets: Application 

to oxidation of SO2 in aqueous solutions, Atmospheric Environment (1967), 15, 1129-1144, doi: 

https://doi.org/10.1016/0004-6981(81)90303-6, 1981. 5 

Schütze, M., and Herrmann, H.: Determination of phase transfer parameters for the uptake of HNO3, N2O5 and O3 on 

single aqueous drops, Physical Chemistry Chemical Physics, 4, 60-67, doi: 10.1039/B106078N, 2002. 

Seinfeld, J. H., and Pandis, S. N.: Atmosppheric chemistry and physics: From air pollution to climate change, John Wiley & 

Sons, New York, USA, 2006. 

Seisel, S., Börensen, C., Vogt, R., and Zellner, R.: Kinetics and mechanism of the uptake of N2O5 on mineral dust at 298 K, 10 

Atmos. Chem. Phys., 5, 3423-3432, doi: 10.5194/acp-5-3423-2005, 2005. 

Shiraiwa, M., Ammann, M., Koop, T., and Pöschl, U.: Gas uptake and chemical aging of semisolid organic aerosol particles, 

Proceedings of the National Academy of Sciences, 108, 11003, 2011. 

Shiraiwa, M., Li, Y., Tsimpidi, A. P., Karydis, V. A., Berkemeier, T., Pandis, S. N., Lelieveld, J., Koop, T., and Pöschl, U.: 

Global distribution of particle phase state in atmospheric secondary organic aerosols, 8, 15002, 10.1038/ncomms15002, 15 

doi: https://www.nature.com/articles/ncomms15002#supplementary-information, 2017. 

Shiraiwa, M., Pfrang, C., and Pöschl, U.: Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the 

influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone, Atmos. Chem. Phys., 10, 

3673-3691, doi: 10.5194/acp-10-3673-2010, 2010. 

Smith, M. H., Park, P. M., and Consterdine, I. E.: Marine aerosol concentrations and estimated fluxes over the sea, Quarterly 20 

Journal of the Royal Meteorological Society, 119, 809-824, doi: 10.1002/qj.49711951211, 1993. 

Smith, G. D., Woods, E., DeForest, C. L., Baer, T., and Miller, R. E.: Reactive Uptake of Ozone by Oleic Acid Aerosol 

Particles:  Application of Single-Particle Mass Spectrometry to Heterogeneous Reaction Kinetics, The Journal of 

Physical Chemistry A, 106, 8085-8095, doi: 10.1021/jp020527t, 2002. 

Song, C. H., and Carmichael, G. R.: The aging process of naturally emitted aerosol (sea-salt and mineral aerosol) during long 25 

range transport, Atmospheric Environment, 33, 2203-2218, doi: https://doi.org/10.1016/S1352-2310(98)00301-X, 1999. 

Song, C. H., and Carmichael, G. R.: A three-dimensional modeling investigation of the evolution processes of dust and sea-

salt particles in east Asia, Journal of Geophysical Research: Atmospheres, 106, 18131-18154, 

doi:10.1029/2000JD900352, 2001. 

Spindler, G., Hesper, J., Brüggemann, E., Dubois, R., Müller, T., and Herrmann, H.: Wet annular denuder measurements of 30 

nitrous acid: laboratory study of the artefact reaction of NO2 with S(IV) in aqueous solution and comparison with field 

measurements, Atmospheric Environment, 37, 2643-2662, doi: https://doi.org/10.1016/S1352-2310(03)00209-7, 2003. 



33 
 
 

 

Stadtler, S., Simpson, D., Schröder, S., Taraborrelli, D., Bott, A., and Schultz, M.: Ozone impacts of gas-aerosol uptake in 

global chemistry transport models, Atmos. Chem. Phys., 18, 3147-3171, doi: 10.5194/acp-18-3147-2018, 2018. 

Stanier, C. O., Khlystov, A. Y., and Pandis, S. N.: Ambient aerosol size distributions and number concentrations measured 

during the Pittsburgh Air Quality Study (PAQS), Atmospheric Environment, 38, 3275-3284, doi: 

https://doi.org/10.1016/j.atmosenv.2004.03.020, 2004. 5 

Stemmler, K., Vlasenko, A., Guimbaud, C., and Ammann, M.: The effect of fatty acid surfactants on the uptake of nitric acid 

to deliquesced NaCl aerosol, Atmos. Chem. Phys., 8, 5127-5141, doi: 10.5194/acp-8-5127-2008, 2008. 

Stephens, S., Rossi, M. J., and Golden, D. M.: The Heterogeneous Reaction of Ozone on Carbonaceous Surfaces, 

International Journal of Chemical Kinetics, 18, 1133-1149, doi: 10.1002/kin.550181004, 1986. 

Stewart, D. J., Griffiths, P. T., and Cox, R. A.: Reactive uptake coefficients for heterogeneous reaction of N2O5 with 10 

submicron aerosols of NaCl and natural sea salt, Atmos. Chem. Phys., 4, 1381-1388, doi: 10.5194/acp-4-1381-2004, 

2004. 

Su, H., Cheng, Y. F., Cheng, P., Zhang, Y. H., Dong, S., Zeng, L. M., Wang, X., Slanina, J., Shao, M., and Wiedensohler, A.: 

Observation of nighttime nitrous acid (HONO) formation at a non-urban site during PRIDE-PRD2004 in China, 

Atmospheric Environment, 42, 6219-6232, doi: https://doi.org/10.1016/j.atmosenv.2008.04.006, 2008. 15 

Su, H., Cheng, Y. F., Shao, M., Gao, D. F., Yu, Z. Y., Zeng, L. M., Slanina, J., Zhang, Y. H., and Wiedensohler, A.: Nitrous 

acid (HONO) and its daytime sources at a rural site during the 2004 PRIDE-PRD experiment in China, Journal of 

Geophysical Research: Atmospheres, 113, doi: 10.1029/2007JD009060, 2008. 

Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F. X., Andreae, M. O., Cheng, P., Zhang, Y., and Pöschl, U.: 

Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616, 2011. 20 

Su, H., Cheng, Y., and Pöschl, U.: The Exchange of Soil Nitrite and Atmospheric HONO: A Missing Process in the Nitrogen 

Cycle and Atmospheric Chemistry, in: Disposal of Dangerous Chemicals in Urban Areas and Mega Cities: Role of 

Oxides and Acids of Nitrogen in Atmospheric Chemistry, edited by: Barnes, I. and Rudzinski, K. J., Springer 

Netherlands, Dordrecht, 93–99, 2013. 

Sullivan, R. C., Thornberry, T., and Abbatt, J. P. D.: Ozone decomposition kinetics on alumina: effects of ozone partial 25 

pressure, relative humidity and repeated oxidation cycles, Atmos. Chem. Phys., 4, 1301-1310, doi: 10.5194/acp-4-1301-

2004, 2004. 

Tan, F., Tong, S., Jing, B., Hou, S., Liu, Q., Li, K., Zhang, Y., and Ge, M.: Heterogeneous reactions of NO2 with CaCO3–

(NH4)2SO4 mixtures at different relative humidities, Atmos. Chem. Phys., 16, 8081-8093, doi: 10.5194/acp-16-8081-

2016, 2016. 30 



34 
 
 

 

Tang, M. J., Cox, R. A., and Kalberer, M.: Compilation and evaluation of gas phase diffusion coefficients of reactive trace 

gases in the atmosphere: volume 1. Inorganic compounds, Atmos. Chem. Phys., 14, 9233-9247, doi: 10.5194/acp-14-

9233-2014, 2014. 

Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with Mineral Dust Aerosol: Water Adsorption, 

Hygroscopicity, Cloud Condensation, and Ice Nucleation, Chemical Reviews, 116, 4205-4259, doi: 5 

10.1021/acs.chemrev.5b00529, 2016. 

Tang, M. J., Huang, X., Lu, K., Ge, M., Li, Y., Cheng, P., Zhu, T., Ding, A., Zhang, Y., Gligorovski, S., Song, W., Ding, X., 

Bi, X., and Wang, X.: Heterogeneous reactions of mineral dust aerosol: implications for tropospheric oxidation capacity, 

Atmos. Chem. Phys., 17, 11727-11777, doi: 10.5194/acp-17-11727-2017, 2017. 

Tang, M. J., Thieser, J., Schuster, G., and Crowley, J. N.: Kinetics and mechanism of the heterogeneous reaction of N2O5 10 

with mineral dust particles, Physical Chemistry Chemical Physics, 14, 8551-8561, doi: 10.1039/C2CP40805H, 2012. 

Tang, M. J., Schuster, G., and Crowley, J. N.: Heterogeneous reaction of N2O5 with illite and Arizona test dust particles, 

Atmos. Chem. Phys., 14, 245-254, doi: 10.5194/acp-14-245-2014, 2014. 

Thornton, J. A., and Abbatt, J. P. D.: N2O5 Reaction on Submicron Sea Salt Aerosol:  Kinetics, Products, and the Effect of 

Surface Active Organics, The Journal of Physical Chemistry A, 109, 10004-10012, doi: 10.1021/jp054183t, 2005. 15 

Thornton, J. A., Braban, C. F., and Abbatt, J. P. D.: N2O5 hydrolysis on sub-micron organic aerosols: the effect of relative 

humidity, particle phase, and particle size, Physical Chemistry Chemical Physics, 5, 4593-4603, doi: 

10.1039/B307498F, 2003. 

Tolocka, M. P., Saul, T. D., and Johnston, M. V.: Reactive Uptake of Nitric Acid into Aqueous Sodium Chloride Droplets 

Using Real-Time Single-Particle Mass Spectrometry, The Journal of Physical Chemistry A, 108, 2659-2665, doi: 20 

10.1021/jp036612y, 2004. 

Ullerstam, M., Johnson, M. S., Vogt, R., and Ljungström, E.: DRIFTS and Knudsen cell study of the heterogeneous 

reactivity of SO2 and NO2 on mineral dust, Atmos. Chem. Phys., 3, 2043-2051, doi: 10.5194/acp-3-2043-2003, 2003. 

Ullerstam, M., Vogt, R., Langer, S., and Ljungstrom, E.: The kinetics and mechanism of SO2 oxidation by O3 on mineral 

dust, Physical Chemistry Chemical Physics, 4, 4694-4699, doi: 10.1039/B203529B, 2002. 25 

Umann, B., Arnold, F., Schaal, C., Hanke, M., Uecker, J., Aufmhoff, H., Balkanski, Y., and Van Dingenen, R.: Interaction of 

mineral dust with gas phase nitric acid and sulfur dioxide during the MINATROC II field campaign: First estimate of 

the uptake coefficient from atmospheric data, Journal of Geophysical Research: Atmospheres, 110, 

doi:10.1029/2005JD005906, 2005. 

Underwood, G. M., Li, P., Al-Abadleh, H., and Grassian, V. H.: A Knudsen Cell Study of the Heterogeneous Reactivity of 30 

Nitric Acid on Oxide and Mineral Dust Particles, The Journal of Physical Chemistry A, 105, 6609-6620, doi: 

10.1021/jp002223h, 2001a. 



35 
 
 

 

Underwood, G. M., Song, C. H., Phadnis, M., Carmichael, G. R., and Grassian, V. H.: Heterogeneous reactions of NO2 and 

HNO3 on oxides and mineral dust: A combined laboratory and modeling study, Journal of Geophysical Research: 

Atmospheres, 106, 18055-18066, doi: 10.1029/2000JD900552, 2001b. 

Usher, C. R., Al-Hosney, H., Carlos-Cuellar, S., and Grassian, V. H.: A laboratory study of the heterogeneous uptake and 

oxidation of sulfur dioxide on mineral dust particles, Journal of Geophysical Research: Atmospheres, 107, ACH 16-11-5 

ACH 16-19, doi: 10.1029/2002JD002051, 2002. 

Usher, C. R., Michel, A. E., and Grassian, V. H.: Reactions on Mineral Dust, Chemical Reviews, 103, 4883-4940, doi: 

10.1021/cr020657y, 2003. 

Vlasenko, A., Sjogren, S., Weingartner, E., Stemmler, K., Gäggeler, H. W., and Ammann, M.: Effect of humidity on nitric 

acid uptake to mineral dust aerosol particles, Atmos. Chem. Phys., 6, 2147-2160, doi: 10.5194/acp-6-2147-2006, 2006. 10 

Vogt, R., and Finlayson-Pitts, B. J.: A Diffuse Reflectance Infrared Fourier Transform Spectroscopic Study of the Surface 

Reaction of NaCl with Gaseous NO2 and HNO3, The Journal of Physical Chemistry, 98, 3747-3755, doi: 

10.1021/j100065a033, 1994. 

Wagner, C., Hanisch, F., Holmes, N., de Coninck, H., Schuster, G., and Crowley, J. N.: The interaction of N2O5 with 

mineral dust: aerosol flow tube and Knudsen reactor studies, Atmos. Chem. Phys., 8, 91-109, doi: 10.5194/acp-8-91-15 

2008, 2008. 

Wagner, V., von Glasow, R., Fischer, H., and Crutzen, P. J.: Are CH2O measurements in the marine boundary layer suitable 

for testing the current understanding of CH4 photooxidation?: A model study, Journal of Geophysical Research: 

Atmospheres, 107, ACH 3-1-ACH 3-14, doi: 10.1029/2001JD000722, 2002. 

Wang, K., Zhang, Y., Nenes, A., and Fountoukis, C.: Implementation of dust emission and chemistry into the Community 20 

Multiscale Air Quality modeling system and initial application to an Asian dust storm episode, Atmos. Chem. Phys., 12, 

10209-10237, doi: 10.5194/acp-12-10209-2012, 2012. 

Wang, X., Wang, W., Yang, L., Gao, X., Nie, W., Yu, Y., Xu, P., Zhou, Y., and Wang, Z.: The secondary formation of 

inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions, Atmospheric 

Environment, 63, 68-76, doi: https://doi.org/10.1016/j.atmosenv.2012.09.029, 2012. 25 

Wang, Y., Zhuang, G., Sun, Y., and An, Z.: The variation of characteristics and formation mechanisms of aerosols in dust, 

haze, and clear days in Beijing, Atmospheric Environment, 40, 6579-6591, doi: 

https://doi.org/10.1016/j.atmosenv.2006.05.066, 2006. 

Wagner, C., Schuster, G., and Crowley, J. N.: An aerosol flow tube study of the interaction of N2O5 with calcite, Arizona 

dust and quartz, Atmospheric Environment, 43, 5001-5008, doi: https://doi.org/10.1016/j.atmosenv.2009.06.050, 2009. 30 

Weber, B., Wu, D., Tamm, A., Ruckteschler, N., Rodríguez-Caballero, E., Steinkamp, J., Meusel, H., Elbert, W., Behrendt, 

T., Sörgel, M., Cheng, Y., Crutzen, P. J., Su, H., and Pöschl, U.: Biological soil crusts accelerate the nitrogen cycle 



36 
 
 

 

through large NO and HONO emissions in drylands, Proceedings of the National Academy of Sciences, 112, 15384, doi: 

10.1073/pnas.1515818112, 2015. 

Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, 

Atmospheric Environment (1967), 23, 1293-1304, doi: https://doi.org/10.1016/0004-6981(89)90153-4, 1989. 

Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, 5 

Atmospheric Environment, 41, 52-63, doi: http://dx.doi.org/10.1016/j.atmosenv.2007.10.058, 2007. 

Wesely, M. L., and Hicks, B. B.: A review of the current status of knowledge on dry deposition, Atmospheric Environment, 

34, 2261-2282, doi: https://doi.org/10.1016/S1352-2310(99)00467-7, 2000. 

Woo, K. S., Chen, D. R., Pui, D. Y. H., and McMurry, P. H.: Measurement of Atlanta Aerosol Size Distributions: 

Observations of Ultrafine Particle Events, Aerosol Science and Technology, 34, 75-87, doi: 10.1080/02786820120056, 10 

2001. 

Worsnop, D. R., Zahniser, M. S., Kolb, C. E., Gardner, J. A., Watson, L. R., Van Doren, J. M., Jayne, J. T., and Davidovits, 

P.: The temperature dependence of mass accommodation of sulfur dioxide and hydrogen peroxide on aqueous surfaces, 

The Journal of Physical Chemistry, 93, 1159-1172, doi: 10.1021/j100340a027, 1989. 

Wu, Z., Hu, M., Lin, P., Liu, S., Wehner, B., and Wiedensohler, A.: Particle number size distribution in the urban 15 

atmosphere of Beijing, China, Atmospheric Environment, 42, 7967-7980, doi: 

https://doi.org/10.1016/j.atmosenv.2008.06.022, 2008. 

Wu, Z. J., Ma, N., Größ, J., Kecorius, S., Lu, K. D., Shang, D. J., Wang, Y., Wu, Y. S., Zeng, L. M., Hu, M., Wiedensohler, 

A., and Zhang, Y. H.: Thermodynamic properties of nanoparticles during new particle formation events in the 

atmosphere of North China Plain, Atmospheric Research, 188, 55-63, doi: 20 

https://doi.org/10.1016/j.atmosres.2017.01.007, 2017. 

Xu, W., Li, Q., Shang, J., Liu, J., Feng, X., and Zhu, T.: Heterogeneous oxidation of SO2 by O3-aged black carbon and its 

dithiothreitol oxidative potential, Journal of Environmental Sciences, 36, 56-62, doi: 

https://doi.org/10.1016/j.jes.2015.02.014, 2015. 

Yabushita, A., Enami, S., Sakamoto, Y., Kawasaki, M., Hoffmann, M. R., and Colussi, A. J.: Anion-Catalyzed Dissolution 25 

of NO2 on Aqueous Microdroplets, The Journal of Physical Chemistry A, 113, 4844-4848, doi: 10.1021/jp900685f, 

2009. 

Ye, C., Li, H., Zhu, T., Shang, J., Zhang, Z., and Zhao, D.: Heterogeneous reaction of NO2 with sea salt particles, Science 

China Chemistry, 53, 2652-2656, doi: 10.1007/s11426-010-4159-9, 2010. 

Zhang, L., Brook, J. R., and Vet, R.: On ozone dry deposition—with emphasis on non-stomatal uptake and wet canopies, 30 

Atmospheric Environment, 36, 4787-4799, doi: http://dx.doi.org/10.1016/S1352-2310(02)00567-8, 2002. 



37 
 
 

 

Zhang, Y., and Carmichael, G. R.: The Role of Mineral Aerosol in Tropospheric Chemistry in East Asia—A Model Study, 

Journal of Applied Meteorology, 38, 353-366, doi: 10.1175/1520-0450(1999)038<0353:TROMAI>2.0.CO;2, 1999. 

Zhang, Y., Tong, S., Ge, M., Jing, B., Hou, S., Tan, F., Chen, Y., Guo, Y., and Wu, L.: The influence of relative humidity on 

the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate particles, Science of The Total 

Environment, 633, 1253-1262, doi: https://doi.org/10.1016/j.scitotenv.2018.03.288, 2018. 5 

Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. 

Chem. Phys., 3, 2067-2082, doi: 10.5194/acp-3-2067-2003, 2003. 

Zhang, Q.: China Standard Meteorological Database for Construction (CD-ROM), China Mechanical Industry Press, Beijing, 

2004. 

Zhao, Y., Chen, Z., Shen, X., and Zhang, X.: Kinetics and Mechanisms of Heterogeneous Reaction of Gaseous Hydrogen 10 

Peroxide on Mineral Oxide Particles, Environmental Science & Technology, 45, 3317-3324, doi: 10.1021/es104107c, 

2011. 

Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.: Heterogeneous 

chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 

2013 haze episode in North China, Atmos. Chem. Phys., 15, 2031-2049, doi: 10.5194/acp-15-2031-2015, 2015. 15 

Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Pöschl, U., 

Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional 

transport and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969-2983, doi: 10.5194/acp-15-2969-2015, 2015. 

Zhou, J., Swietlicki, E., Hansson, H. C., and Artaxo, P.: Submicrometer aerosol particle size distribution and hygroscopic 

growth measured in the Amazon rain forest during the wet season, Journal of Geophysical Research: Atmospheres, 107, 20 

LBA 22-21-LBA 22-10, doi: 10.1029/2000JD000203, 2002. 

Zhou, L., Wang, W., Ge, M., and Tong, S.: Heterogeneous uptake of gaseous hydrogen peroxide on mineral dust, Journal of 

Environmental Sciences, 40, 44-50, doi: https://doi.org/10.1016/j.jes.2015.08.018, 2016. 

Zhou, X., Lee, Y.-N., Newman, L., Chen, X., and Mopper, K.: Tropospheric formaldehyde concentration at the Mauna Loa 

Observatory during the Mauna Loa Observatory Photochemistry Experiment 2, Journal of Geophysical Research: 25 

Atmospheres, 101, 14711-14719, doi:10.1029/95JD03226, 1996. 

Zhu, S., Butler, T., Sander, R., Ma, J., and Lawrence, M. G.: Impact of dust on tropospheric chemistry over polluted regions: 

a case study of the Beijing megacity, Atmos. Chem. Phys., 10, 3855-3873, doi: 10.5194/acp-10-3855-2010, 2010. 

  



38 
 
 

 

 

 
Figure 1. Schematic illustration of gas uptake on the ground and on aerosols in the planetary boundary layer as characterized by 
resistance models. The relative importance of aerosol uptake and dry deposition on the ground is characterized through 
comparing the aerosol uptake coefficient (γeff) with an equivalent uptake coefficient (γeqv) corresponding to the deposition velocity 5 
(Vd). 
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Figure 2. Relation between γeqv and Vd for a mixing height of 300 m and aerosol surface area densities (A) observed at locations 
and conditions: Amazon Forest (Pöschl et al., 2010), Leipzig/Melpitz (Ma et al., 2014; Ma and Birmili, 2015), Pittsburgh (Stanier et 
al., 2004), Wangdu with and without haze event (Wu et al., 2017), and Beijing (Wu et al., 2008). For each city/condition, the line is 
labelled with the corresponding aerosol surface area density. Aerosol particle number concentrations are also provided for 5 
orientation.  
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Figure 3. Equivalent uptake coefficients (γeqv, left) and laboratory measurement values (γeff, right) for O3 on different ground types 
and aerosols.  

For γeqv, upper whiskers represent maximum values calculated at lowest A and h (h = 100 m), lower whiskers represent minimum 
values calculated at highest A and h (h = 1 km), and boxes represent typical conditions (typical A as described in Sect. 3.1, h = 300 5 
m). For γeff, the grey bar represents the range of initial values, and the blue bar represents the range of steady-state values 
observed in laboratory experiments.  
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Figure 4. Uptake coefficients (γeqv, left; γeff, right) for NO2 and SO2 on different ground types and aerosols.  
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Figure 5. Uptake coefficients (γeqv, left; γeff, right) for N2O5, HNO3 and H2O2 on different ground types and aerosols.  
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Table 1. Aerosol uptake coefficients (γeff) observed in laboratory experiments a. 

Gases Mineral dust Soot Organic aerosol-solid Organic aerosol-liquid Sea salt aerosol 

Steady state b 

O3 4.4×10-9 – 4.8×10-5 1.0×10-7 – 1.6×10-4 2.0×10-6 – 6.9×10-5 1.1×10-5 – 3.0×10-3 1.3×10-6 – 1.0×10-4 

NO2 1.0×10-9 – 2.3×10-7 < 5.0×10-8 <5.0×10-7 2.2×10-7 – 7.0×10-6 6.0×10-7 – 3.0×10-4 

SO2 1.5×10-8 – 6.3×10-4 4.0×10-9 – 2.2×10-6 n/a n/a 3.2×10-3 – 1.7×10-2 

N2O5 4.8×10-3 – 2.0×10-1 4.0×10-5 – 6.3×10-3 1.0×10-5 – 3.1×10-3 5.0×10-5 – 4.5×10-2 6.4×10-3 – 3.9×10-2 

HNO3 1.0×10-3 – 2.1×10-1 3.0×10-7 – 1.5×10-3 n/a n/a 5.0×10-4 – 2.5×10-1 

H2O2 1.0×10-5 – 9.4×10-4 n/ac n/a n/a n/a 

Initial state b 

O3 2.0×10-7 – 3.5×10-4 1.4×10-4 – 1.0×10-3 1.0×10-5 5.5×10-4 – 1.6×10-3 1.0×10-3 – 3.6×10-2 

NO2 2.5×10-9 – 2.2×10-5 1.0×10-6 – 4.0×10-4 1.0×10-7 - 5.1×10-6 2.0×10-5 1.0×10-4 

SO2 1.4×10-7 – 7.7×10-4 3.0×10-3 n/a 9.2×10-7 – 1.0×0-5 6.9×10-3 – 9.0×10-2 

N2O5 2.0×10-2 – 3.0×10-1 1.6×10-2 – 4.4×10-2 n/a n/a n/a 

HNO3 2.5×10-4 – 1.8×10-1 7.7×10-4 – 2.0×10-2 ≤ 6.6×10-5 n/a 6.6×10-2 – 7.5×10-1 

H2O2 5.0×10-5 – 4.0×10-3 n/a n/a n/a n/a 
a The detailed review table with references of γeff are in Table A.1~A.4. 
b The feature (initial or steady state) of the reported uptake coefficients are mainly derived from the literature. If no specific description is 

found, we assign the measurements on a timescale of ms or s to initial state, and those with longer exposure time (~1h or longer) to steady 

state.  5 
c n/a: not available. 
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Table 2. Gas uptake processes that are potentially important compared to dry deposition across various environments (marked 
with √).  
 

Gases Mineral dust Soot Organic aerosol-solid Organic aerosol-liquid Sea salt aerosol 

O3    √  

NO2     √ 

SO2 √    √ 

N2O5 √ √ √ √ √ 

HNO3 √    √ 

H2O2 √     

 5 
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Table A.1. Aerosol uptake coefficients (γeff) for reactive gases on mineral dust observed in laboratory experiments (T=298±2K if 
not specified otherwise). 5 

Gases 
(Unit) Aerosol type Initial γeff, 

geometric surface Initial γeff, BET Steady-state γeff, 
geometric surface 

Steady-state 
γeff, BET References 

O3 

(×10-5) 

TiO2/SiO2   0.3~3 0.02~0.32 Nicolas et al., 2009 

Al2O3, Fe2O3, SiO2  5~18   Michel et al., 2002 

China loess  2.7   Michel et al., 2002 

Saharan sand  6   Michel et al., 2002 

Al2O3 and others  0.27~20  0.6~2.2 Michel et al., 2003 

Saharan dust 0.55 ~35  0.22~4.8  
Hanisch and Crowley, 

2003 

Al2O3  0.1~ 1   Sullivan et al., 2004 

Saharan dust  0.02~0.6   Chang et al., 2005 

Mineral dust    0.00044~ 0.01 Mogili et al., 2006 

Summary 0.02~35 0.00044~ 4.8  

NO2 
(×10-7) 

Al2O3    0.013~0.26 Börensen et al., 2000 

Al2O3 and others  0.2~220   Underwood et al., 2001b 

Saharan dust  6.2   Ullerstam et al., 2003 

Illuminated TiO2   9400, 1200  Gustafsson et al., 2006 

CaCO3 0.656 0.025~ 0.043   Li et al., 2010 

Kaolinite, pyrophylite    0.07~0.81, 2.3 Angelini et al., 2007 
TiO2/SiO2, Saharan 

sand and others    0.01 Ndour et al., 2008 

Illuminated TiO2/SiO2    1.2~19 Ndour et al., 2008 

Saharan sand    0.089, 1 Ndour et al., 2009 

Arizona test dust    0.06~0.24 Dupart et al., 2014 

Kaolin  0.31~1.44  0.0256~0.0456 Liu et al., 2015 

Hematite  0.186~1.58  0.0123~0.0150 Liu et al., 2015 

Summary 0.025~220 0.01~ 2.3  

SO2 
(×10-5) 

CaCO3, O3 77 0.014 8.1 0.0015 Li et al., 2006 

Saharan dust, O3   390 0.05 Ullerstam et al., 2002 

Saharan dust  1.6   Ullerstam et al., 2003 
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Al2O3, MgO  9.5, 26   Goodman et al., 2001 

Al2O3 and others  7.0 ~ 51   Usher et al., 2002 

Chinese loess  3   Usher et al., 2002 

Saharan dust, O3  6.6   Adams et al., 2005 

Al2O3 Fe2O3, MgO  40, 55, 100   Judeikis et al, 1978 

CaCO3 powder  0.1   Santschi and Rossi, 2006 

CaCO3, O3 43.5~65.6 0.026~0.039 0.54~22.1 0.32~13.2 Zhang et al., 2018 

Asian mineral dust   10.1~21.4  Huang et al., 2015 

Tengger desert dust   22.9~39.0  Huang et al., 2015 

Arizona test dust   3.5~9.2  Huang et al., 2015 
Asian mineral dust, 

H2O2 
  39.1~54.5  Huang et al., 2015 

Tengger desert dust, 
H2O2 

  37.2~63.1  Huang et al., 2015 

Arizona test dust, H2O2   4.6~13.1  Huang et al., 2015 

Summary 0.014~77 0.0015~63.1  

N2O5 

(×10-2) 

Saharan sand 30  20  Karagulian et al., 2006 

Arizona test dust 20  11  Karagulian et al., 2006 

CaCO3 12  2.1  Karagulian et al., 2006 

Kaolinite 16~23  2.2~2.4  Karagulian et al., 2006 

Saharan sand 8  1.3  Seisel et al., 2005 

Arizona dust 0.5~1.3    Wagner et al., 2008 

Saharan sand 3.7  3.7  Wagner et al., 2008 

Arizona dust 2.2  2.2  Wagner et al., 2008 

CaCO3 5.0    Wagner et al., 2008 

CaCO3   0.48~0.53  Wagner et al., 2009 

CaCO3   1.13~1.94  Wagner et al., 2009 

Arizona dust   0.73~0.98  Wagner et al., 2009 

Quarz   0.86~0.45  Wagner et al., 2009 

Saharan sand    2 Tang et al., 2012 

Arizona dust   0.63  Tang et al., 2014 

Illite   9.1, 3.9  Tang et al., 2014 

Summary 2~30 0.48~20  
HNO3 Mineral dust   1.7~5.4  Umann et al., 2005 
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(×10-2) 
Arizona dust, CaCO3 

and SiO2 
2~11.3    Vlasenko et al., 2006 

CaCO3   0.3~21  Liu et al., 2008 

CaCO3 6.0~15    Fenter et al., 1995 

CaCO3  0.025   Goodman et al., 2000 
Saharan dust, Arizona 

dust, CaCO3 
11, 6, 10~18    Hanisch and Crowley, 

2001a 

Saharan dust 13.6    Hanisch and Crowley, 
2001b 

Chinese dust 17.1    Hanisch and Crowley, 
2001b 

Al2O3 and others  0.002~0.0097   Underwood et al., 2001a 

Al2O3 and others  0.002~0.61   Underwood et al., 2001b 

Fe2O3  0.0015   Frinak et al., 2004 

Al2O3, Saharan dust 13, 11 13, 11   Seisel et al., 2004 

CaCO3  0.2   Johnson et al, 2005 

CaCO3 powder  0.7~30  0.07~0.2 Santschi and Rossi, 2006 

Summary 0.025~18 0.1 ~ 21  

H2O2 

(×10-4) 

Saharan sand   6.20~9.42  Pradhan et al., 2010b 

Gobi sand   3.33~6.03  Pradhan et al., 2010b 

TiO2   15, 5  Pradhan et al., 2010a 

Arizona test dust  1.47~2.71  0.557~ 0.995 Zhou et al., 2016 a 

Inner Mongolia desert 
dust  2.19~3.56  0.25~1.31 Zhou et al., 2016 a 

Xinjiang dust  0.446~0.734  0.377~0.431 Zhou et al., 2016 a 

Arizona test dust  3.2  0.095~0.185 El Zein et al., 2014 b 

TiO2, dark  2.5~40   Romanias et al., 2012 

TiO2, UV    35 Romanias et al., 2012 

Al2O3  9.0   Romanias et al., 2013 

Fe2O3  8.6   Romanias et al., 2013 

SiO2    0.000155� 
0.000061 Zhao et al., 2011 

Al2O3    0.00121� 
0.00076 Zhao et al., 2011 

Ambient urban aerosol    0.81 ~ 4.63 Wu et al., 2015 

Summary 0.5~40 0.1~9.42  

 
a T=253-313K 
b T= 268 - 320K 



48 
 
 

 

 

Table A.2. Aerosol uptake coefficients (γeff) for reactive gases on soot observed in laboratory experiments (T=298±2K if not 
specified otherwise). 

Gases 
 (Unit) Aerosol type Initial γeff, 

geometric surface Initial γeff, BET Steady-state γeff, 
geometric surface 

Steady-state γeff, 
BET References 

O3 

(×10-5) 

BC 100    Rogaski et al., 1997 

Hydrocarbon soot   16 0.5 Longfellow et al., 2000 

Candle soot  13.9  0.628 Il'in, 1991 

Degussa carbon black  ~100  ~0.001 Disselkamp et al., 2000 

Spark generated  22~330   Fendel et al., 1995 

Spark generated  0.12  0.01 Kamm et al., 1999 

Kerosene, toluene soot  18 ~ 38   Lelièvre et al., 2004b 

Charcoal  22 ~ 413  2.7~11.3 Stephens et al., 1986 

Spark-generated  soot 
coated with 

benzo[a]pyrene 
  0.6~2  Pöschl et al., 2001 

Summary 13.9~100 0.01~16  

NO2 

(×10-5) 

Hydrocarbon soot  2.9~5.0  <0.001 Lelièvre et al., 2004a 

Spark generated  0.15~170  0.0016~0.61 Kirchner et al., 2000 

Hexane soot 150~1840 2.5 ~ 4.72  0.48~1.17 Al-Abadleh and 
Grassian, 2000 

Spark generated    <= 0.004 Saathoff et al., 2001 

Hexane soot, BC    0.0015~0.0024 Prince et al., 2002 

Spark-generated,   
commercial soot 3~40    Kalberer et al., 1996 

Ambient soot 1100  33  Ammann et al. 1998 

Commercial soot  0.1  <0.001 Kleffmann et al., 1999 

Spark-generated  0.5~1.0   Arens et al., 2001 

Summary 0.1~40 <0.005  

SO2 

(×10-6) 

BC 3000    Rogaski et al., 1997 

Fresh BC, aged BC    0.00398, 0.32 Xu et al., 2015 

BC, O3    2.17 Xu et al., 2015 

Summary 3000 0.004 ~ 2.17  

N2O5 

(×10-3) 

Decane soot 44  5  
Karagulian and Rossi, 

2007 
Spark generated    0.04~0.2 Saathoff et al., 2001 
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Hydrocarbon soot 16  6.3  Longfellow et al., 2000 

Summary 16~44 0.04~6.3  

HNO3(
×10-4) 

Decane soot 200  4.6~5.2  
Salgado-Muñoz and 

Rossi, 2002 
Spark generated    0.003 Saathoff et al., 2001 

Hydrocarbon soot   15 0.5 Longfellow et al., 2000 

Spark generated  0.052~7.7  0.00098~0.019 Kirchner et al., 2000 

Summary 7.7~200 0.003~15  
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Table A.3. Aerosol uptake coefficients (γeff) for reactive gases on organic aerosols observed in laboratory experiments (T=298±2K 
if not specified otherwise). 

Gases 
(Unit) Aerosol type Initial γeff, geometric 

surface 
Initial γeff, 

BET 
Steady-state γeff, 

geometric surface 
Steady-state γeff, 

BET References 

O3 

(×10-5) 
 

Semi-solid protein aerosol 1.0  < 1.0  Shiraiwa et al., 2011 

Shikimic acid film   0.2~1.0  
Berkemeier et al., 

2016 

Solid 1-hexadecene   0.64~2.5  Moise and Rudich, 
2000a 

Monolayer organic film   17~27  Moise and Rudich, 
2000b 

Solid-liquid oleic acid   2~17  Knopf et al., 2005 
Solid-liquid oleic acid (meet-

cooking aerosols)   1.6~6.9  Knopf et al., 2005 

Liquid oleic acid particle 150  5  Mendez et al., 2014 

Liquid organic compounds   1.0~100  de Gouw et al., 1998 

Aqueous α-pinene  aerosol   300~750  King et al., 2008 c 

Aqueous fumarate aerosol   1.1  King et al., 2008 c 

Aqueous benzoate aerosol   1.5  King et al., 2008 c 

Liquid oleic acid aerosol 160    Morris et al., 2002 

Oleic acid aerosol 55~90  20~100  Sage et al., 2009 

Liquid 1-tridecene   52~55  
Moise and Rudich, 

2000d 

Liquid 1-hexadecene   32~38  
Moise and Rudich, 

2000e 

Liquid 1-hexadecane   2.0  
Moise and Rudich, 

2000 
Liquid oleic acid   88  Hearn et al., 2005 

Liquid oleic acid   40~72  Knopf et al., 2005 

Liquid oleic acid   730  Smith et al., 2002 

Summary ~1.0 for solid, 55~160 for liquid 0.2~6.9 for solid, 1.1~300 for liquid  

NO2 

(×10-6) 

Soild benzophenone, catechol, 
anthracene, anthrarobin 

0.07~1.26 (dark), 
0.65~2.40 (light)    George et al., 2005f 

Soild benzophenone, catechol, 
anthracene, anthrarobin 

0.24 ~ 3.6 (dark), 
1.3~5.1 (light)    George et al., 2005 f 

Solid 1,2,10-
trihydroxyanthracene 0.7 ~ 2    Arens et al., 2002 

Solid 1,2,10-
trihydroxyanthracene   < 0.5  Arens et al., 2002 

Nitroguaiacol, mixture of 
organics 52, 22    Knopf et al., 2011 

Solid levoglucosan, abietic acid < 1.0    Knopf et al., 2011 

Solid pyrene, dark, near-UV    < 0.1, 3.5  Brigante et al., 2008 

Solid pyrene <= 1.0    Gross et al., 2008g 
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SOA, pinene/O3   < 0.5  Bröske et al., 2003 
SOA, limonene/O3, catechol/O3, 

limonene/OH, toluene/OH   <1.5  Bröske et al., 2003 

Humic acid, light 20    Stemmler et al., 2006 

Humic acid, dark   < 0.1  Stemmler et al., 2007 

Humic acid, illuminated   2.6, 3.7  Stemmler et al., 2007 
Catechol (surface-absorbed) + 

NaCl/NaBr/NaF    3 ~ 7 Woodill and Hinrichs, 
2010 

Gentisic acid, tannic acid, UV/Vis 
light    0.22 ~0.88 Sosedova et al., 2011 

Solution of guaiacol, syringol, 
catechol   <0.1 for pH <7 , 10 

for pH > 10  Ammann et al., 2005 

Summary 0.1~5.1 for solid, 20 for liquid <0.5 for solid, 0.22~7 for liquid  

SO2(×
10-6) 

Liquid oleic acid 0.92 ~ 6.44    Shang et al., 2016c 

Liquid SOA by limonene and O3 10 ~50    Ye et al., 2018 

Summary 0.92~10 for liquid Not available  

N2O5 
(×10-3) 

Solid malonic acid  <1.0   Thornton et al., 2003 

Solid azelaic acid  0.5   Thornton et al., 2003 

Solid oxalic acid  <0.01   Griffiths et al., 2009 

Solid oxalic acid  3.1   Griffiths et al., 2009 

Solid succinic acid  <0.6, <0.3   Griffiths et al., 2009 

Aqueous malonic acid  2.0, 30   Thornton et al., 2003 
Aqueous aerosols coated with 

pinene ozonolysis products  0.45~3.4   Folkers et al., 2003 

Aqueous sulfate particles coated 
with monoterpene ozonolysis 

products 
 11~45   Anttila et al., 2006 

Humic acid  0.1, 0.3, 1.0   Badger et al., 2006 

Malonic acid  8 ~ 16   Griffiths et al., 2009 

Succinic acid  5.2 ~ 9   Griffiths et al., 2009 

Glutaric acid  0.6 ~ 8   Griffiths et al., 2009 

Liquid oleic acid  0.054   Gross et al., 2009 

Liquid diethyl sebacate  0.051   Gross et al., 2009 

Liquid glycerol  0.645~0.814   Gross et al., 2009 

Liquid conjugated linoleic acid  0.046   Gross et al., 2009 

Liquid linoleic acid  0.168   Gross et al., 2009 

Summary 0.01~3.1 for solid, 0.05 ~ 45 for 
liquid Not available  

HNO3 
(×10-5) 

Solid pyrene ≤ 6.6    Gross et al., 2008g 

Summary ≤ 6.6 for solid Not available  
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a T=272K 
b T=219-298K 
c T=293K 
d T=272-298K 5 
e T=283-298K 
f T=278-308K 
g T=293-297K 
 

  10 
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Table A.4. Aerosol uptake coefficients (γeff) for reactive gases on sea salt aerosols observed in laboratory experiments (T=298±2K if 
not specified otherwise). 

Gases 
(Unit) Aerosol type Initial γeff, 

geometric surface Initial γeff, BET Steady-state γeff, 
geometric surface 

Steady-state γeff, 
BET References 

O3 

(×10-3) 

Synthetic sea salt 1.0~10    Mochida et al., 2000 

Natural sea salt 0.97    Mochida et al., 2000 

NaCl    0.0013 Il'in et al., 1991a 

Deliquesced NaCl   <0.1  Abbatt and 
Waschewsky, 1998 

NaCl/Fe2O3  1.3, 33~36   Sadanaga et al., 2001 

Summary 1.0~ 36 0.0013~0.1  

NO2 

(×10-4) 

Deliquesced NaCl <1.0    
Abbatt and 

Waschewsky, 1998 

Deliquesced NaCl   2.8~3.7  
Harrison and Collins, 

1998 b 
Aqueous NaCl 1.0    Yabushita et al.,2009 

Chinese seasalt    0.00551 Ye et al., 2010 

Chinese seasalt    0.0126 Ye et al., 2010 

NaCl    0.6 Vogt et al., 1994 

Summary 1.0 0.006~3.0  
SO2 

(×10-3) 
Synthetic sea salt 6.0~90  3.2~17  Gebel et al., 2000 

Summary 6.0~90 3.2~17  

N2O5 

(×10-2) 

NaCl    3.2 Behnke et al., 1997 

NaCl    0.64 Stewart et al., 2004 

NaCl    0.9 Stewart et al., 2004 

NaCl    1.04 Stewart et al., 2004 

NaCl    0.078 Stewart et al., 2004 

Sea salt    1.6 Stewart et al., 2004 

Sea salt    2.8 Stewart et al., 2004 

Sea salt    1.3 Stewart et al., 2004 

Sea salt    3.1 Stewart et al., 2004 

Synthetic sea salt    2.2 Thornton and Abbatt, 
2005 

Synthetic sea salt    3.0 Thornton and Abbatt, 
2005 

Synthetic sea salt    2.4 Thornton and Abbatt, 
2005 

NaCl    1.8 Schweitzer et al., 1998 c 

NaCl    1.4~3.9 George et al., 1994 

Synthetic sea salt   0.29  Hoffman et al., 2003 

Summary Not available 0.64~3.9  

HNO3 

(×10-2) 

Deliquesced sea salt 50    Guimbaud et al., 2002 

Synthetic sea salt 6.6~75  3.0~25  
De Haan and Finlayson-

Pitts, 1997 
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deliquesced NaCl, 100nm 
size 0.49    Tolocka et al., 2004 

Deliquesced NaCl 15    Saul et al., 2006 

Deliquesced NaCl 21~11    Liu et al., 2007 

NaCl/MgCl2 25~12    Liu et al., 2007 

Sea salt 27~12    Liu et al., 2007 

Deliquesced NaCl 20    
Abbatt and 

Waschewsky, 1998 
Seliquesced NaCl 50    Stemmler et al., 2008 

Synthetic sea salt   0.04~0.065  Hoffman et al., 2003 

Summary 6.6~75 0.05-25  
 

a T=235-299K 
b T = 279K 
c T=262-278K 
 5 
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Pandis (2006). 

Figure S2. Schematic model for canopy resistance, derived from Wesely (1989). 
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1. Calculation of dry deposition velocities above the ground surface for gases 

 

Figure S1. Resistance model for dry deposition, derived from the Figure 19.1 in Seinfeld 
and Pandis (2006). 

 

Following Wesely (1989) and Zhang et al. (2003), we calculated Ra (aerodynamic resistance), 
Rb (quasi-laminar layer resistance) and Rc (canopy resistance) as below.   

 

1.1 calculation of Ra 

Under neutral atmospheric condition: 

 

where κ is the von Karman constant (about 0.41); u* means the friction velocity (in unit of m s-

1); Z0 is the roughness length (in unit of m); Z is the PBL mixing height (in unit of m), we use 
a typical value of Z as 300 m. 

For different land use type, we assign different u* following the parameterization scheme of 
Zhang et al. (2003), and Z0 based on Seinfeld and Pandis (2006): 

 

 

Vd =
1

Ra + Rb + Rc

Ra =
1

κu*z
dz

Z0

Z

∫ = 1
κu*

ln( Z
Z0
)
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Table S1. Friction velocity and canopy roughness length by land use type. 

land use index land use type u*_day (m s-1) u*_night (m s-1) Z0 (m) 

1 urban land 0.6 0.3 1 
2 agricultural land 0.4 0.2 0.1 
3 range land 0.4 0.2 0.1 
4 deciduous forest 0.6 0.3 1 
5 coniferous forest 0.6 0.3 0.9 
6 mixed forest including 

wetland 
0.6 0.3 0.9 

7 water 0.3 0.25 0.1 
8 barren land, desert 0.25 0.15 0.04 
9 non-forested wetland 0.25 0.2 0.1 
10 mixed agricultural and 

range land 
0.4 0.2 0.1 

11 rocky open areas with low-
growing shrubs 

0.4 0.2 0.1 

12 amazon forest 0.6 0.3 1 
 

1.2 calculation of Rb 

  

where Sc is the Schmidt number (unitless), v means the kinematic viscosity of air, D is the 
molecular diffusivity for gases. We use D=10-5 m2 s-1, and a temperature-dependent v in the 
calculation. 

1.3 calculation of Rc 

 
Figure S2. Schematic model for canopy resistance, derived from Wesely (1989). 

Rb =
5Sc2/3

u*
Sc = v

D
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As illustrated by Seinfeld and Pandis (2006), Rst represents the resistance of the leaf stomatal, 
Rm for mesophyll resistance, Rlu is the surface resistance in the upper canopy, Rdc means the 
resistance by buoyant convection, Rcl is the uptake resistance by leaves, twigs and etc., Rac 
means the transfer resistance for processes at the ground, and Rgs is the uptake resistance by 
soil, leaf litter and others on the ground surface. 

The equations to calculate each item of Rc are illustrated in Wesely (1989). The important input 
parameters for Rc calculation include: the input resistance by land use and season, the physical 
and chemical reactivity scales by gas species, and the meteorological parameters. We adopted 
the the parameterization scheme of Wesely (1989) for the former two items of input, and a set 
of typical hourly temperature and radiation values for each season derived from the standard 
meteorological database for construction in China (Zhang, 2004).  

The calculated dry deposition velocities by gas and land use type for each season are presented 
in Table S2. Furthermore, we show the seasonal equivalent uptake coefficients (γeq) at typical 
conditions based on the dry deposition velocities in Table S3. 

Table S2. Seasonal mean dry deposition velocities by gas species, unit: cm s-1. 

Rc = (
1

Rst + Rm
+ 1
Rlu

+ 1
Rdc + Rcl

+ 1
Rac + Rgs

)−1

Gases Winter Spring Summer 
Autumn with unharvested 

cropland 
Late autumn after 

frost 
Urban 

O3 0.15 0.24 0.24 0.24 0.24 
NO2 0.02 0.04 0.04 0.04 0.04 
SO2 0.41 0.17 0.20 0.20 0.20 

N2O5 2.10 2.26 2.31 2.14 2.14 
HNO3 2.10 2.26 2.31 2.14 2.14 
H2O2 0.44 0.32 0.34 0.33 0.33 

Agricultural land 
O3 0.07 0.45 0.44 0.29 0.41 

NO2 0.02 0.20 0.29 0.07 0.07 
SO2 0.49 0.43 0.42 0.24 0.40 

N2O5 1.10 1.18 1.21 1.12 1.12 
HNO3 1.10 1.18 1.21 1.12 1.12 
H2O2 0.51 0.57 0.51 0.34 0.57 

Amazon forest 
O3 0.15 0.27 0.37 0.14 0.14 

NO2 0.04 0.17 0.28 0.04 0.04 
SO2 0.14 0.25 0.34 0.14 0.14 

N2O5 2.10 2.26 2.31 2.14 2.14 
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HNO3 2.10 2.26 2.31 2.14 2.14 
H2O2 0.23 0.37 0.48 0.23 0.23 

Water 
O3 0.07 0.07 0.07 0.06 0.06 

NO2 0.01 0.01 0.01 0.01 0.01 
SO2 0.03 0.03 0.03 0.03 0.03 

N2O5 1.05 1.06 1.07 1.05 1.05 
HNO3 1.05 1.06 1.07 1.05 1.05 
H2O2 0.08 0.08 0.08 0.08 0.08 
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Table S3. Seasonal γeqv by gas species at typical condition (typical aerosol area density of 
A as described in the main text, and mixing height of 300m), ×10-4. 

 
 

Gases Winter Spring Summer 
Autumn with 

unharvested cropland 
Late autumn after 

frost 
Urban 

O3 0.64  1.01  1.01  1.00  1.00  
NO2 0.10  0.15  0.15  0.15  0.15  
SO2 1.73  0.72  0.84  0.83  0.83  

N2O5 8.91  9.59  9.78  9.07  9.07  
HNO3 8.91  9.59  9.78  9.07  9.07  
H2O2 1.87  1.37  1.44  1.41  1.41  

Agricultural land 
O3 1.31  8.76  8.55  5.63  7.93  

NO2 0.30  3.88  5.57  1.38  1.36  
SO2 9.45  8.39  8.12  4.55  7.69  

N2O5 21.21  22.88  23.37  21.65  21.65  
HNO3 21.21  22.88  23.37  21.65  21.65  
H2O2 9.80  10.97  9.94  6.61  11.06  

Amazon forest 
O3 14.01  25.72  35.56  13.78  13.78  

NO2 3.88  16.54  27.18  3.56  3.56  
SO2 13.96  24.22  33.03  13.76  13.76  

N2O5 203.33  218.79  223.13  207.08  207.08  
HNO3 203.33  218.79  223.13  207.08  207.08  
H2O2 22.43  35.42  45.95  22.25  22.25  

Water 
O3 3.92  3.81  3.82  3.76  3.76  

NO2 0.70  0.53  0.53  0.49  0.49  
SO2 1.76  1.66  1.67  1.61  1.61  

N2O5 61.37  62.24  62.36  61.33  61.33  
HNO3 61.37  62.24  62.36  61.33  61.33  
H2O2 4.68  4.61  4.63  4.51  4.51  
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Table S4. Examples of aerosol uptake coefficients used in atmospheric modelsa. 

Gases Aerosol type γeff (Liao and Seinfeld, 
2005) 

References γeff (Zhu et 
al., 2010) 

References γeff (Wang et al., 
2012) 

References 

O3 Mineral dust 1.0×10-5 Michel et al., 2002, 

2003 
2.7×10-5 IUPACe 5.0×10-5 ~ 

1.0×10-4 

Dentener et al., 1996b; 

Zhang and 

Carmichael, 1999b 

NO2 Mineral dust   2.1×10-6 IUPAC 4.4×10-5 ~ 

2.0×10-4 

Underwood et al., 

2001 
Wet aerosol 1.0×10-4 Jacob, 2000     

SO2 Mineral dust 3.0×10-4(RH<50%), 

0.1(RH≥50%) 

Dentener et al., 

1996 
3.0×10-5 IUPAC 1.0×10-4 ~ 

2.6×10-4 

Zhang and 

Carmichael, 1999b 

Sea salt aerosol 5.0×10-3(RH<50%), 

5.0×10-2 (RH≥50%) 

Song and 

Carmichael, 2001b 

    

N2O5 Mineral dust See footnotec Bauer et al., 2004b 3.0×10-2 Seisel et al., 2005; 

Wagner et al., 2008; 

Karagulian et al., 2006 

1.0×10-3 ~ 0.1 Dentener et al., 1996; 

DeMore et al., 1997 

Organic carbon 5.2×10-4× 
RH(RH<50%), 

0.03(RH≥50%) 

Thornton et al., 

2003 

    

Sea salt aerosol 5 ×10-3 (RH<50%), 

0.03 (RH≥50%) 

Atkinson et al., 

2004 
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Sulfate/nitrate/ammonium See footnote d Kane et al., 2001, 

Hallquist et al., 

2003 

    

HNO3 Mineral dust 0.1 Hanisch and 

Crowley, 2001 

0.17 IUPAC 1.1×10-3 ~ 0.2 Dentener et al., 1996; 

DeMore et al., 1997; 

Underwood et�al., 

2001 

H2O2 Mineral dust   2.0×10-3 De Reus et al., 2005 1.0×10-4 ~ 
2.0×10-3 

Dentener et al., 1996 

a Here we present two parameterization schemes as examples: the full scheme of Liao and Seinfeld (2005), the scheme for mineral dust of Zhu et al. (2010) and Wang et al. (2012). The original 

references of the measurements regarding the uptake coefficients are listed. It should be addressed that these schemes are only examples of modelling studies. 
b Model parameterization. The specific references to laboratory measurements for uptake coefficients are not found.  
c γ = 4.25×10-4× RH-9.75×10-3 

d ! = 10% & × () + (+×,- + (.×,-+ + (/×,-.  

0 1 = −4×104+× 1 − 294 , 1 ≥ 282:  

 0 1 = 0.48, 1 < 282: 

C1=2.79×10-4; C2=1.30×10-4; C3=-3.43×10-6; C4=7.52×10-8 

e IUPAC: International Union of Pure and Applied Chemistry, available at http://iupac.pole-ether.fr/ 
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