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 Abstract: The use of satellite Aerosol Optical Thickness (AOT) from imaging spectrometers has been 

successful in quantifying and mapping high PM2.5 (particulate matter mass < 2.5 µm diameter) episodes for pollution 10	
abatement and health studies. However, some regions have high PM2.5 but poor estimation success. The challenges 

in using Aerosol Optical Thickness (AOT) from imaging spectrometers to characterize PM2.5 worldwide was 

especially evident in the wintertime San Joaquin Valley (SJV). The SJV’s attendant difficulties of high-albedo surfaces 

and very shallow, variable vertical mixing also occur in other significantly polluted regions around the world. We 

report on more accurate PM2.5 maps (where cloudiness permits) for the whole-winter period in the SJV, Nov 19, 15	
2012–Feb 18, 2013. Intensive measurements by including NASA aircraft were made for several weeks in that winter, 

the DISCOVER-AQ California mission.  

We found success with a relatively simple method based on calibration and checking with surface monitors and 

a characterization of vertical mixing, and incorporating specific understandings of the region’s climatology.We 

estimate PM2.5 to within ~7 µg m–3 root-mean-square (rms) error and with R values of ~ 0.9, based on remotely 20	
sensed MAIAC (Multi-Angle Implementation of Atmospheric Correction) observations, and that certain further work 

will improve that accuracy. Mapping is at 1 km resolution. This allows a time sequence of mapped aerosols at 1 km 

for cloud-free days. We describe our technique as a “static estimation.” Estimation procedures like this one, not 

dependent on well-mapped source strengths or on transport error, should help full source-driven simulations by 

deconstructing processes. They also provide a rapid method to create a long-term climatology.  25	

Essential features of the technique are (a) daily calibration of the AOT to PM2.5 using available surface monitors, 

and (b) characterization of mixed-layer dilution using column water vapor (CWV, otherwise “precipitable water”). 

We noted that on multi-day timescales both water vapor and particles share near-surface sources and both fall to very 

low values with altitude; indeed, both are largely removed by precipitation. The existence of layers of H2O or aerosol 

not within the mixed layer adds complexity, but mixed-effects statistical regression captures essential proportionality 30	
of PM2.5 and the ratio variable (AOT/CWV). Accuracy is much higher than previous statistical models, and can be 

extended to the whole Aqua-satellite data record. The maps and time-series we show suggest a repeated pattern for 

large valleys like the SJV — progressive stabilization of the mixing height after frontal passages: PM2.5 is somewhat 

more determined by day-by-day changes in mixing than it is by the progressive accumulation of pollutants (revealed 

as increasing AOT).  35	
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1. Introduction   

The San Joaquin Valley (SJV) is an important agricultural area, characterized by poor air quality (Figure 1). 

The SJV gives an example of a region with frequent air pollution episodes, challenged by difficulties as varied 

particle characteristics with hard-to-quantify sources from domestic burning and spatially distinct ammonia and 

nitrate precursors. The 60,840 km2 area (with approx. 4 million residents) is located southeast of San Francisco, 40	
between the Coastal Mountain Range to the west and the Sierra Nevada Range to the east (Sorek-Hamer et al., 

2013). Figure 1 describes the particularly high particulate pollution characterizingthe San Joaquin Valley. Previous 

studies in this region reported a range of correlations between satellite-borne AOT and daily/ hourly collocated 

ground PM2.5 measurements in this region. Using linear tools resulted in little or no correlation (Engel-Cox et al., 

2004; Ballard et al., 2008; Justice et al., 2009), while applying non-linear methods improved the correlation to 45	
R=0.71 (Sorek-Hamer et al., 2013).  

More broadly, atmospheric particulate matter (PM) pollution in the respirable range, PM2.5, is recognized as a 

major threat to human health for some time (Brunekreef and Holgate, 2002, Dominici et al., 2006; Franklin, 2007 

Kloog et al., 2013; Schwartz, et al., 1996; Zanobetti et al., 2009). Epidemiological studies have been hampered by 

the availability of relatively few PM2.5 measurement stations relative to the broad dispersal of populations affected. 50	
A variety of methods have been employed to estimate exposure, e.g., proximity-based using GIS, interpolation 

between sparse monitoring sites, land-use regression models, line- or area-dispersion plume models, 3-d 

atmospheric source-and-transport models, and models using information from imaging satellites, often including 

also land-use regression and proximity (Sorek Hamer et al., 2016). Sparse PM2.5 monitoring spatial networks may 

limit our ability to accurately assess human exposures to PM2.5, since concentrations measured at an outdoor site 55	
may be less representative of the subjects’ exposures as the distance from the monitor increases (Bell et al., 2007; 

Lee et al., 2011).  

	 	
Figure 1. (a) Annual average PM2.5 (24-hr average) by county as observed for 2014: Source: EPA: “What is particle 
pollution and what types of particles are a health concern?” https://www.epa.gov/pmcourse/what-particle-pollution. 
Original description reads “U.S counties with high annual mean particle pollution concentrations in 2015. This map 
depicts fine particle pollution concentrations by U.S. county for 2015 based on long-term (annual) average 
concentrations.  The map’s color key is based on categories of the Air Quality Index (AQI) (see Patient Exposure and 
the Air Quality Index).  All orange and red areas exceeded the annual ambient air quality standards for fine particle 
pollution during 2015 (b) 98th percentile concentrations by count for 2014 from the same source: Original description 
reads: “All orange and red areas exceeded the 24-hour ambient air quality standards for fine particle pollution during 
2015.  The map illustrates how likely it may be for a particular area to experience air quality advisories for particle 
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pollution based on short-term averaging.”  The San Joaquin Valley comprises the area in red and the adjoining 
counties to the northeast and southwest; details are shown in later maps. 

 

For this reason, there has been extensive development of techniques to make best use of satellite-borne optical 

extinction as seen from moderate-resolution atmospheric imagers. Aerosol Optical Thickness (AOT) is typically 60	
reported as a vertical column integral of extinction above the ground footprint observed. Methods using AOT to 

assess exposure to PM showed early successes, but certain regions remained very poorly characterized (Engel-Cox 

et al., 2004, Liu et al., 2009, Gupta et al., 2006; Koelemeijer et al., 2006, Hoff and Christopher, 2009). Engel-Cox 

(2004) found correlations of AOT with PM2.5 for valleys along the US Pacific Coast ranged from –0.2 to +0.3, i.e., 

very little variance explained. MISR technology aided greatly (Liu et al., 2007), but yields mostly monthly averages 65	
over years (van Donkelaar et al., 2010), limiting event and epidemiological analysis. 

AOT may be strongly affected by particles encountered well above the planetary boundary layer and different 

particulate composition. In addition, cloud cover severely limits the actual spatial coverage of AOT (Ford and 

Heald, 2016). Yet, in spite of these limitations (Jin et al, 2019), AOT has been employed extensively for assessing 

PM concentrations (e.g. Liu et al., 2018, Franklin et al., 2017; Van Donkelaar et al., 2015, 2016; Kloog et al., 2015, 70	
2014; Hu et al., 2014; Sorek-Hamer et al., 2013; Hoff and Christopher 2009). 

In regard to the SJV, considerable work has been published, since it was the site of two major intensive studies, 

CRPAQS (California Regional PM10/PM2.5 Air Quality Study, Chow et al,2006) and DISCOVER-AQ California 

(Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air 

Quality, https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html, more references below and at web 75	
site). There was a very useful analysis of particle composition for a well-instrumented Fresno surface site for this 

period (Young et al., 2016). This study added detail to the Watson and Chow (2002) analysis of an earlier intensive 

study of the area; in particular, the striking dominance of nitrate and organic aerosols in a regular diel pattern. 

Watson and Chow reference several publications describing that intensive. Johnson et al, (2014) made a three-

dimensional modelling study of methane emissions that also helps describe the mixed-layer of the specific 80	
DISCOVER-AQ period). Lidar gives a very helpful view of complexities of submicron particle abundance and 

properties within the mixed layer and the uniformity of the mixed layer top (Sawamura et al., 2017).  

Application of modelling with satellite AOT columns from different satellite platforms for the DISCOVER-

AQ (included within our study period) was able to achieve R2~0.8). These results were achieved for just the 

DISCOVER-AQ period of ~6 weeks and with separate sub-regions of the Central SJV. They highlight the 85	
complexity of composition and source-driven simulation (Friberg et al, 2018). The Friberg publication is highly 

recommended as a comparison to this effort, and has extensive references regarding the SJV and the details required 

for source-driven modelling.  

There are several related goals in producing PM2.5 maps and assessing their accuracy. The Friberg et al., work 

primarily aimed to constrain CMAQ downwind of the surface air quality stations, and in particular, to constrain 90	
particle type as much as possible, along with concentration, using MISR constraints (Ralph Kahn, personal 

communication 2019). Our goal was to produce a large set of maps characterizing one winter in a particular setting, 
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inland Mediterranean valleys, with the aim of allowing air pollution professionals to understand particulate episodes 

and to improve sources and simulation details (e.g., transport error) for source-driven models. Goals of the 

Dalhousie group are to improve annual average exposure: they see that as the principal driver for health effect (Van 95	
Dankelaar et al., 2010, 2015, 2016). A main goal of NASA’s MAIA (Multi-Angle Imager for Aerosols) mission is 

similarly deliver new data for a each-day mapping of PM2.5 exposure sufficient for full studies of health effects 

(Diner et al., 2018, https://maia.jpl.nasa.gov/). In pursuit of that goal for the MODIS Aqua dataset, we will indicate 

some preliminary, meteorology-based ideas for estimating high aerosol concentration when clouds prevent the use 

of remote sensing data.  100	

Due to the complex meteorology of the San Joaquin flows and uncertainties surrounding the sources of 

ammonia, nitrogen oxides, and residential-burning smoke, we attempt to separate out some certain aspects of 

complex 3-d source-driven modeling (Bey et al., 2001, Nolte, 2015, Appel et al., 2017, Friberg et al. 2018) with a 

“static model” which does not attempt to simulate transport, but rather uses observational records related to vertical 

mixing and AOT. The spatial maps produced can give a more detailed check on the 3-d process modeling. They also 105	
allow the whole MODIS record of winters to be analyzed efficiently so as to reveal patterns and trends. We 

emphasize this and further extension the interpretation of satellite radiances, attempting to remain close to physical 

interpretations by using both MAIAC AOT and CWV retrievals. MAIAC Column Water Vapor (CWV) (Lyapustin 

et al., 2018) retrievals have been quite acceptability validated with the AERONET CWV measurements in higher 

CWV environments (Martins et al., 2017, 2018). It has not been previously recognized as a tool for improving 110	
ground PM estimation and in particular, in the SJV.  

 

 

1.1 Data 

MAIAC AOT and CWV 115	

The Multi-Angle Implementation of Atmospheric Correction (MAIAC) is an operational algorithm developed 

for MODIS Collection 6 (C6) data (Lyapustin et al., 2011a,b). This algorithm applies a dynamical time series 

technique to derive the MODIS surface bidirectional reflectance factor and atmospheric retrievals at a 1 km 

resolution, such as AOT, and CWV (Lyapustin et al., 2008; 2011b). MAIAC AOT retrievals present an expected 

error within 15% and relatively good correlation coefficient (R) with AERONET measurements in the study area 120	
(Lyapustin et al., 2018). 

MAIAC data has been used from both Terra and Aqua satellite with a daily overpass at ~10:30 and ~13:30 local 

sun time (+  ca.1.5 hours), respectively. Data has been obtained for the period of Winter 2012-2013 (November 2012-

April 2013). We surveyed this entire period and included, for estimation, all wintertime high-PM2.5 episodes for this 

specific winter, selecting November 19–February 18, as described in several later figures (discussed in context: 125	
Figures 3, 4, and 7). 

 

AERONET AOT and CWV 
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AERONET (AErosol RObotic NETwork) is a global network of automatic sun-and-sky radiometers for aerosol 

monitoring (Holben et al., 1998). Direct sun measurements are used to compute the AOT values at seven 130	
wavelengths (340, 380, 440, 500, 675, 870, 1020 nm), while CWV retrievals are derived from the channel 940 nm 

(Schmid et al., 2006). The AERONET data were obtained for the study period with cloud screened and quality-

assured at V3 Level 2 products. The AERONET AOT values were interpolated to a 550 nm using quadratic fits on a 

log–log scale. Details on instruments and monitoring sites of the DISCOVER-AQ campaign are available at: 

http://www.nasa.gov/mission_pages/discover-aq/instruments/index.html. Archived DISCOVER-AQ data are 135	
available at the NASA LaRC Science Data for Atmospheric Composition website: http://www-air.larc.nasa.gov/ 

index.html. 

 

 

Ground PM2.5 Concentrations 140	

Hourly ground PM2.5 concentrations were obtained from the USA Environmental Protection Agency (EPA) at 

+-60 minutes from the satellite overpass. Data were obtained from stations that reported non-negative PM values over 

the whole study period. (https://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw) 

 

PBL 145	

Momentum-based PBL depth, 10-m wind, and some CWV quantities for the model were taken from the 

archive of the NOAA Rapid Refresh (RAP) model available for this period. (Choice of MAIAC or RAP estimates is 

discussed later. The model archive had a nominal 13 km resolution resolved at a one-hour time interval, so that 

model quantities could be matched closely to the satellite overpass times.  Unreported examination of the 

AERONET data for the period suggested that the temporal resolution of the MAIAC AOT was quite accurate. The 150	
HSRL2 aerosol data as described by Sawamura et al., (2017) suggested that depths of afternoon mixing tops were 

adequately described by a 13 km resolution model, as did adjacent spirals of the NASA P3-B aircraft as described 

by Michael Shook (Shook et al., 2013, See also Supplementary Material.). AOT could however vary on relatively 

short distance scales, e.g. within 0-2 km of roadways when winds were parallel to the road.  We shall see the 

consequential variations in estimated PM2.5 later in the processed results. 155	
 

2. Motivating Meteorological Perspective 

Koelenmeijer et al, 2006 give a succinct description of the relationship between AOT and dry particle mass. 

We adopt their simplification describe the relationship of AOT to PM2.5 using a simple equation where all particles 

are idealized as evenly mixed throughout a layer mixing to sensors near the ground, and the thickness of the mixed 160	
layer is ∆𝑧#$ 

 

PM2.5 = 𝑓(AOT) =
AOT

∆𝑧#$ ∙ 𝑀(𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑅𝐻)
	 Eq. 1 
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The factor in the denominator, M (for "magnification") describes the relationship of the optical extinction to 

"dry particle mass smaller than 2.5 µm aerodynamic diameter" which is the motivated definition of PM2.5. (PM2.5 165	
also has a definition by a United States “Federal Reference Method” which is formulated to approximate the 

physical definition as closely as possible.) The factor M then is a function of particle composition and the extinction 

coefficients bExt associated with the components, one of which may be largely absorbed water. Particle composition 

and ambient relative humidity, RH, then interact with each other to determine the water content. It is significant that 

RH is a function of temperature and therefore altitude, with highest RH at the top of a well-mixed layer.  170	

This work emphasizes and attempts to exploit features of regional aerosol haze palls that parallel features of 

aerosol mass and a different measure of water vapor.  

 

(a)  

(b)  

Figure 2.  (a) Conceptual figure describing the fair-weather PBL top for successive days in a clear-weather PM2.5 

episode motivating this study. See text. (b) Simulation in the RAP model of planetary boundary layer height for 

momentum at three SJV PM2.5 stations (red: Tranquility, gray: Hanford, green: Bakersfield) Periods from 11 AM to 

3:30 PM approximate the mixed layer for that period and time following, although advection may change the 

concentrations mixing to that height. Maximum PBL-top altitude may not be accurate for the station, but shape of diel 

profile is appropriate.  
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Figure 2 illustrates a conceptual idea of the fair-weather simulation we focus on. Both regional particulate 175	
pollution and water vapor originate from the Earth's surface. Each tends to create relatively well mixed layers over 

several days, transported most significantly by a repeated daily cycle of mixing. The mixing of momentum is most 

active from just before noon through the mid-afternoon, creating an afternoon mixed layer, and water vapor and 

aerosol most typically mixes well up to this layer. Turbulent mixing depths vary from day to day, and these can 

create lofted layers of pollution cut off from the surface on the day of AOT and CWV observation.  Flows in the San 180	
Joaquin can be greatly influenced by the nearby mountains, with flows day and night promoting some upslope 

transport of material which can recirculate, detached from mixing on following days. Consideration of subsidence of 

air into the San Joaquin mixed layer suggests a flow-through time for aerosol and water of 2–3 days for some 

situations (Caputi et al., 2018). Mixing of entrained and mixed layer air allows for continued accumulation of 

pollutant aerosol in the valley as Figure 2 shows. 185	

 

Particles and water vapor are emitted and accumulate in the same region, and they are mixed similarly each 

midday and afternoon by convective stirring. The height of mixing can be determined by variations in the buoyancy 

flux from the surface and varying vertical subsidence velocities, responding to larger scale weather patterns, during 

successive days. Figure 2 does not show the effect of particle transport or water vapor transport for a specific 190	
location, but the PBL top, which is strongly controlled by local heat and water vapor fluxes at the surface. 

If the mixing height is lower on succeeding days, then any water vapor and any particles at the top of the 

mixed layer are trapped in an “elevated layer” which does not mix to the surface. Other common ways in which 

elevated layers can be formed are mixing along the side of the valley (small -scale anabatic and katabatic winds) and 

by differential transport, i.e., wind shear. Fires, power plant plumes, and long-distance synoptic transport can form 195	
layers that are quite separated at higher altitudes in the troposphere. Eventually there is removal of both species. Wet 

removal of particles is particularly effective, and the specific humidity of the air is very effectively removed by the 

condensation accompanying cooling and rising, according to the Clausius Clapeyron equation. Similar processes 

then limit the vertical spread of particles and specific humidity.  

3. Expected Variability of the AOT-PM2.5 relationship 200	

Water vapor molecules also accumulate in the atmosphere over a period of several days (typically a somewhat 

longer period), and both aerosols and water vapor are cleared from a particular place by cloud removal processes 

(venting, rainfall) and by airmass replacement. In the case of high pressure systems in which air pollution episodes 

occur, such replacement is a common feature. If the other variables are available by measurement, e.g., airplane 

measurement such as in DISCOVER-AQ (https://discover-aq.larc.nasa.gov/data.html), Equation 1 can be solved for 205	
∆𝑧#$, defining an equivalent mixing height for particles. Similarly, we can write equivalent mixing depth of water 

vapor, ∆𝑧?	@AB : 

∆𝑧?	@AB 	=
∫ 𝜌@AB(𝑧)	𝑑𝑧
FGH
I

𝜌̅@AB(𝑀𝐿, 𝑅𝑇𝑃)
N 	= 	CWV	/	𝜌@AB(𝑀𝐿, 𝑆𝑇𝑃) 

 

Eq. 2 
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where CWV is in g / cm2 , 𝜌@AB(𝑧) and 𝜌̅@AB(𝑀𝐿, 𝑅𝑇𝑃) correspond to the vertically distributed water vapor and 

appropriately average water density of the mixed lay. CWV is available from the MAIAC analyses yielding AOT. 

Making the assumption that the heights are the nearly equivalent for water vapor and aerosol, we may write 210	

  

PM2.5 = 𝑓(𝐴𝑂𝑇) =
AOT
CWV			

𝜌̅@AB(𝑀𝐿, 𝑅𝑇𝑃)
𝑀(𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑅𝐻)	. 

 

Eq. 3 

PM2.5 is calculated at EPA reference temperature (25 C) and pressure (1 atm), water vapor quantities in g cm–

3 and ∆𝑧?	@AB is in cm.   

Work reported by Shook et al., 2018, described the vertical distribution of trace species with a vertical 

coordinate normalized to his estimated afternoon mixed layer top, This suggested to us that water vapor had vertical 215	
distributions that were usefully similar.  The decline of water vapor was not as sharp, often showing a rapid 

decrease; the drop in scattering was dramatically rapid, 

We found in ensuing work that approximating 𝜌̅@AB(𝑀𝐿, 𝑅𝑇𝑃) by 𝜌@AB(𝑧 = 0, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) added 

only a small amount to the variance explained by the regression given other limitations of the approximation. 

(Possibly relative humidity effects or the correlation of water density with temperature could be complicating 220	
correlated factors.)  

We calibrate the relationship 𝑓(AOT) using data at official PM2.5 stations, and make the calibration daily. It is 

our observation that 𝑓 varies only over a small range when there are several MODIS observations on the same day, 

and that it varies in a limited way between neighbouring stations in a local region. The definition of "region" is 

based on that similarity, and it suggests similarity of∆𝑧#$ and M, i.e., similar aerosol characteristics and boundary 225	
layer behavior. This similarity does not apply when the wind shifts greatly between times or between stations, e.g. 

when a front passes. Fortunately for our understanding of pollution episodes, frontal passage days tend not to have 

high PM2.5 .  

We distil these understandings when we formulate a regression equation  

PM2.5[	\ = (𝑎 + 𝛽[) (AOT[\ CWV[\⁄ ) + 𝛼[ + 𝜀[\	 Eq. 4 

where the subscripts i describe “instance” or calendar date, and the subscripts s describe “station,” so that AOT and 230	
PM2.5 form a two-dimensional table.  

Given the independent nature of i and s, the regression must be solved by “mixed effects” methods described 

below. The subscript s need only be independent of i, so later we will use it to denote “situation” or the hour of the 

day when there are many observations made at one station on one day i. It is not assumed that the consecutive order 

of the day observations necessarily describe any continuity in i. Observations show that there is often continuity, but 235	
that the continuity is quickly broken when frontal passages or rain affect the region. 

Writing Equation 3 in the form used for mixed-effects models, we separate a general term from the terms that 

depend on i or calendar date. 

PM2.5c	d = 𝑎 ∙ AOT[\ CWV[\⁄ + 𝑐 + (𝛼[ + 𝛽[ ∙ AOT[\ CWV[\⁄ ) + 𝜀[\	 Eq. 5 

A commonly used shorthand is the Wilkinson and Rogers (1973) form, accepted by many software packages,  

PM2.5	~	AOT CWV +	⁄ (AOT CWV + 1	|	DOY	)⁄  Eq. 6 
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where DOY describes the calendar date subscript i.  This formalism also describes the columns of the regression 240	
matrix to be solved. 

It is tempting to generalize this relationship to recognize that there is often correlated behavior between stations, but 

with some constant offset 

PM2.5[	\ = 𝑎 ∙ AOT[\ CWV[\⁄ + 𝑐 + (𝛼[ + 𝛽[ ∙ AOT[\ CWV[\⁄ ) +	𝛾\	 + 𝜀[\	 Eq. 7 

However, if one allows such variations at monitoring stations, it can be difficult to decide what values of 𝛾\ to 

use between stations.  This is an attempt to describe “sub-regionality,” that is, similar behaviour within a region 245	
modified by slight and geographically coherent variations which allow spatial interpolation. 

For those not familiar with mixed-effects models, we mention that the procedure is similar to the use of 

dummy variables, where coefficients 𝑢[ multiply a set of discriminating variables, equal to 1 when i takes on the 

value of a particular instance/day, and 0 for all other instances. The mixed-effects techniques similarly solves a 

much larger regression equation, but has better theoretical development. Note that the number of observations is 𝑁[ 250	
times 𝑁\, while the number of parameters is linear in 𝑁[and 𝑁\, where the N’s signify the number of each. When 𝑁[ 

and 𝑁\> 5, the problem becomes increasingly over-determined.  

This basic understanding does not fully explain the success of the mixed effects model that we observed for the 

San Joaquin Valley. Furthermore, analyses of the Baltimore-Washington area not described here suggest that it 

works more broadly. Both aerosol and especially water vapor often exhibit layers not in continual contact with 255	
surface monitors. These we will call “elevated layers.” In-situ measurements on aircraft and also lidar measurements 

from ground lidars looking downward from aircraft (Sawamura et al., 2017), and satellite lidar (CALIPSO) reveal 

aerosol layers with significant optical thickness above the mixing layer. Similarly, airborne measurements in the 

DISCOVER-AQ intensive measurements of 2013 suggest a fraction of water vapor lies above the mixed layer for 

water. Allow these portions of total  AOT and CWV layers to be quantified as AOTe and CWVe (‘e’ stands for 260	
elevated).  There can be several individual layers.  AOTe and CWVe refer to the total amounts of extinction and 

water vapor mass. Thus, there is an approximate equation upon which to base regression estimation: 

 

PM2.5 =
(AOT − AOTe)
(CWV − CWVe)		 	

𝜌̅@AB(𝑀𝐿, 𝑅𝑇𝑃)
𝑀(𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑅𝐻) 

 

Eq. 8 

While elevated layers of water and aerosol are common, we will see that it appears that this regression equation 

allows rather good fits. This can happen when AOTe << AOT and CWVe << CWV to a sufficient degree, or else 265	
when there are approximate linear (slope + intercept) relationships obtaining between the numerator and 

denominator of Equation 8. Essentially the terms are absorbed into constant parameters for the day, 𝛼[ and 𝛽[, along 

with other parameters like M. AOTe and CWVe are considered to be essentially constant over the region. In fact, 

this degree of constancy can be taken to define the “region” of application. We may these terms into constants 𝛼[ 

and 𝛽[ works under an implicit assumption of uniformity in AOTe and CWVe throughout the region, or at least a 270	
uniform linear dependence with AOT and CWV. 
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a  

b  
 

 

Figure 3. (a) Locations of stations in the SJV used; color coding allows nearby stations to be identified.  (b) Matrix 

plot of PM2.5 at the sites for the period November 19, 2012 through February 18, 2013. (b) Another view that 

summarizes the variability of observed PM2.5 is shown in Figure 4(a). 
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4. Observations and an Overview of Pollution Episode Trends 

In this section, we will show how components of a mixed effects model that utilize CWV contribute to its 275	
explanatory power. We examine the relationships and predictive ability for PM2.5 observed at SJV measurement 

stations for the winter season encompassing high-pollution periods, Nov 19, 2012 to February 17, 2013. Stations 

from Bakersfield in the South to Stockton in the North were included. Figure 3(b) shows several episodes affecting 

most of the Valley; one period with more stations reporting includes the DISCOVER-AQ period. This period has 

additional P3-B aircraft data which motivated this work, but are too lengthy to describe in this publication. 280	

Figure 3(a) shows the locations of all stations used in this work; the stations include much of the Valley from 

Stockton to Bakersfield. Some of the stations labelled DAQ were in operation only during the DISCOVER-AQ 

California period. A color wheel was used to assign colors to the stations on the graph; this allows identification of 

stations’ latitude, longitude, and proximity in later graphs comparing observations and our fitted values. Figure 3(b) 

describes the rise and fall of PM2.5 pollution using the station reports. The rows represent stations and are arranged 285	
north to south. Several major episodes are immediately seen, as well as differences in their intensity and timing of 

development. The DISCOVER-AQ observations were limited to the period shown, January 8th through February 

10th, 2-13. Differences between the PM2.5 values observed at nearby stations, one DISCOVER-AQ, one California 

Air Resources Board (labelled “EPA” for the dataset origin) give an impression of local variability; differences 

between observations at Clovis are quite apparent.  290	

  a  

b  
 

 

Figure 4.  (a) PM2.5 as observed at all stations for the winter period extending from November 2012 to March 

2013. The graph has vertical bars drawn with partial transparency, so that careful inspection of a single day 

describes all the observations in the Valley for the day. The observations contributing for each day may be seen inf 

Figure 3(b).   (b) PM2.5 as fitted by the regression with slopes and intercepts, described further below. 
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Table 1. Comparison of results using different terms in the mixed effects model 

Wilkinson Shorthand Terms R Remaining 

RMS Error 

Panel 

Fig. 5 

~ AOT PM2.5[	\
= 𝑎 ∙ AOT[\ + 𝑐 + 𝜀[\ 

0.40 14. (a) 

~ AOT/CWV PM2.5[	\
= 𝑎 ∙ AOT[\ CWV[\⁄ + 𝑐

+ 𝜀[\ 

0.48 13. (b) 

~ (1 | DOY) PM2.5[	\
= 𝛼[ +	𝛾\	 + 𝑐 + 𝜀[\ 

0.78 10. (c) 

~ AOT/CWV + 

(AOT/CWV – 1 | DOY) 

PM2.5[	\
= 𝑎 ∙ AOT[\ CWV[\⁄ + 𝑐

+ 𝛽[ ∙ AOT[\ CWV[\⁄ + 𝜀[\ 

0.88    7.44  

~ AOT/CWV + (1 | DOY) PM2.5[	\
= 𝑎 ∙ AOT[\ CWV[\⁄ + 𝑐

+ 𝛼[ +	𝛾\	 + 𝜀[\ 

0.85     8.03 (d) 

~ AOT/CWV + 

(AOT/CWV +1 | DOY)  

PM2.5[	\
= 𝑎 ∙ AOT[\ CWV[\⁄ + 𝑐

+ (𝛼[ + 𝛽[ ∙ AOT[\ CWV[\⁄ ) 

0.90     6.72 (e) 

~ AOT/CWV + 

(AOT/CWV +1 | DOY) + 

longitude 

PM2.5[	\
= 𝑎 ∙ AOT[\ CWV[\⁄ + 𝑐

+ (𝛼[ + 𝛽[ ∙ AOT[\ CWV[\⁄ )

+	𝛾\	 + 𝜀[\ 

0.91     6.44 (f) 

Notes: (a) variables are described in the context of Equations 4–8 in the text.   
(b) In all regressions with random effects (all but the first two regressions), the 
inclusion of the 𝒂 and 𝒄 variables suggests an over-fitting. Mixed effects convention 
emphasizes these “main effects” separately and therefore specifies there must be a 
single linear constraint on the terms such as 𝒂 and 𝜶𝒊	; also, 𝒄 and 𝜷𝒊. Importantly, in 
Section 6 and certain figures below, we describe the (more intuitive) combination of 
main and random effects, e.g. we graph 𝜶𝒊 ← 𝜶𝒊 + 𝒂 and 𝜷𝒊 ← 𝜷𝒊 + 𝒄 . 
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5. Which Information Contributes to PM2.5 Maps 

Using the MAIAC 1x1 km estimates for each day for the location of each aerosol monitoring station 295	

and the PM2.5 measured at overpass time for that day, we may solve the estimation equation, Eq. 6.   

The complete simulation of PM2.5 measurement at all stations where MAIAC data allowed is shown in 

Figure 4(b). The technique can be used for all years and the whole area of the SJV where MODIS data is 

available. We used the complete model as described in Equation 6, “slopes and “intercepts”, but without 

any time-independent spatial variation allowed (𝛾\).  Three features deserve immediate comment. First, 300	

there are patterns of gradual increase of PM2.5 up to 45–80 µg m–3 followed by relatively sudden 

decrease to levels near 5 µg m–3. Second, the regression technique using AOT / CWV, as estimated 

individually for each day, captures the variation rather well, for all days where estimates can be made.  

Individual, exotic high values are not captured. Third, there is a pattern where the end of an air pollution 

episode, showing very high values, is not captured by the technique. These are simply days where 305	

MODIS observations were not available, almost always due to cloud cover. We expect that these are 

readily explained in terms of weather phenomena especially typical of the American West during 

wintertime. Pollution episodes are ended with the approach of warm fronts with high clouds, followed in 

a few days by the cleansing effects of rain, air mass replacement, and higher wind. We will return to this 

topic later. 310	

To understand what information is used by the technique and how important is that information, based on the 

series of regression estimates we present; we argue that there is a cumulative aspect to explanation. For example, 

when we include one statistical variable, e.g. αc, describing variation by day but constant for all stations of the day, 

then the regression with AOT/CWV becomes much more informative. A general relation describing the slope of 

PM2.5 with AOT/CWV becomes more useful when an appropriate intercept (offset) is provided. 315	

Consider both Table 1 and Figure 5 as they describe cumulative effects of adding information. First, we note 

that AOT alone is not very informative about PM2.5. This would seem to follow naturally from Equation 1, since 

variations in mixing depth and composition are not considered. Figure 5a show many station observations with high 

PM2.5 but low AOT, and vice versa. Slight but significant improvement is made when column water vapor, CWV, 

is introduced to provide some information on mixing depth and dilution.  R improves to 0.48 but the remaining error 320	
is nearly as high. Still, some linear relationship begins to show for perhaps 60% of the data.   

A side comment regarding significance: R and remaining RMS error (in µg m–3) are shown in Table 1. We 

also performed two other tests not tabulated. An analysis of the Kuhlbach-Liebler divergence (Hastie et al., 2009), 

where possible, suggested each successive test in the table clearly adds information regarding PM2.5. The number of 

observations justified the number of additional parameters. While the numerical values are difficult to compare to 325	
other examples of regression, they show similar trends as R and RMS error, i.e. accuracy becomes increasingly hard 

to improve as R increases. Another test was leave-out-one cross validation (Hastie et al., 2009). Each individual 

station was omitted, and the regression based on the remaining stations was tested against observations at that 

station. The cross-validated mean squared error was about 7.8 µg m–3 at most for the most informative regressions 

shown. 330	
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Now consider a popular alternative to the use of satellite data. The third regression shown estimates of satellite 

data to particulate estimation, this has been shown to surpass, or at least approximate the only αc, i.e, assign a single 

PM2.5 estimate for each station based only on the individual day. Color-coded maps of PM2.5 drawn for a region 

have a single color which varies from day to day. In many applications of satellite data to particulate estimation, this 

has been shown to surpass, or at least approximate the results of use of AOT (Sorek-Hamer et al., 2017). R ~ 0.78, 335	
RMS error ~ 10 µg m–3. Its success emphasizes the regional similarity of conditions defining PM2.5 concentrations, 

and their extensive spatial correlation. An explanation is that respirable PM2.5 is defined by daily weather and 

orientation to major sources.ß 

 

  
 

a b c 

   

d e f 

Figure 5. Progressive improvement of PM2.5 simulation showing the roles of daily calibration and AOT/CWV descriptions of 

aerosol vertical dispersion. Station observations (µg m–3) are shown on the y axis, estimators on the horizontal. Note the 

progressive refinement of R and remaining rms error. See text. (a) Use of AOT only, an early methodology. (b) Some 

improvement using AOT/CWV but no daily calibration. (c) More improvement with daily calibration (mixed effects using 

intercepts 𝛼[) (d) Clearly improved linearity when combing intercepts with AOT/CWV (e) Estimating daily “random” 

intercepts and slopes improves RMS error and R. (f) A simple description of variation within the region (longitude) aids the 

estimation slightly (RMS error ~ 6.48 µg m–3, R ~ 0.91) 

Once the regional similarity of pollutant conditions is recognized, it becomes appealing to combine 340	
information. The fourth estimate, Figure 5(d), does just this and shows a notable increase in R, 0.88, and decrease in 
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PM2.5 ~ AOT/CWV + lon + 119.9 + ( AOT/CWV − 1 | DOY)

Rval 0.481 RMSerr 13.1
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RMS error, 8.03. This is an approximately 50% decrease in error variance. In our situation, satellite data looks to be 

useful. The scatterplot of Figure 5(d) suggests distinctly more linear behavior. 

An appealing alternative is to estimate only slope variations,  βc. This is nearly as useful as estimating just αc, R 

~ 0.85 RMS error ~ 10 µg m–3. Each is useful. Do the two parameter estimations give distinct information? 345	

Estimation of varying offsets βc	and sensitivities αc does indeed help, reducing the variance by another 10%. 

Combining the use of AOT, CWV, and individual daily intercepts and slopes yields R ~ 0.90 and RMS error ~ 6.72 

µg m–3. Nevertheless, Figure 5(e) shows that certain stations have persistent deviations from the general swarm of 

points, Tranquility (pale green) is predicted high and Porterville and neighbors (red), are predicted low.  

 

Figure 6. Estimated surface PM2.5 at 1 km indicated overpass times for the first wintertime episode in the 
San Joaquin Valley. Winds at 360 m agl are also shown. Estimated RMS error is 7 µg m–3 with a similar 
limit of detection. Filled circles show station PM2.5 . In this episode, the E-W correction based on the full 
dataset appears inappropriate, lowering mapped estimates in the east Valley. Error should decrease with 
improved understanding of geographic variability. Time stamp at top of image describes date and time in 
UTC format. 

This analysis of residuals suggests that there may be spatial variations that can be specified for our stations, γd	, but 350	
are general enough that they can be extended to maps. For this publication, we attempted a very simple variation, an 

east-west variation (longitude).  This did improve the scatterplot for most stations, especially when considering 

values above ~10 µg m–3. RMS error decreased slightly to 6.48, and the R estimate also rose slightly, to 0.911. 
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These changes are close to the range of sample variability. The maps shown in Figure 6 also show more convincing 

(subjective) agreement in magnitude and pattern.  Nevertheless, many of the highest observations are 355	
underestimated by about 20%. 

We used CWV rather than the RAP planetary boundary layer height for momentum, 11 to 15:30 local time. 

This was available in the 2012-2013 winter at times within a half hour of overpass time, However, this PBL height 

is not always recorded in the high-resolution RAP archive. We compared a regression very similar to the most 

detailed regression of Table 1, but using this PBL height. The formula used was 360	

PM2.5[	\ = 𝑎 ∙ AOT[\ PBL[\⁄ + 𝑐 + (𝛼[ + 𝛽[ ∙ AOT[\ PBL[\⁄ ) +	𝛾\	 + 𝜀[\ Eq. 8 

With this, the R value was 0.917 and the RMS error was 6.25 µg m–3; these are only insignificantly better 

than the CWV-based estimate R of 0.912;  the RMS error was 6.43 µg m–3. Mid-afternoon PBL depth is 

consequently useful. However, the CWV-based estimate may be used with all years of the MODIS data, 

while the best-available meteorology for PBL depth varies considerably, as high-resolution NOAA 

models advanced through the years. 365	

6. Results: Maps of Estimated PM2.5 

The major purpose of this work, viz. to combine AOT, CWV, and daily calibration in order to allow maps of 

estimated PM2.5 for all regions where MODIS can provide optical thickness data. Results using the full model with 

αc, βc, and  γd	 are shown (Figure 5f). Out of the 42 days in the calibration set, we consider 6 days of single major air 

pollution episode during middle of January, 2013, a period that was largely sampled by the DISCOVER-AQ ground 370	
and airplane samples. Detailed comparisons of the DISCOVER-AQ data would expand this work beyond a 

manageable size; such analysis is desirable. Winds are shown with streamlines and are obtained by interpolation 

from the RAP wind analyses.  

We created 39 maps, six of which are shown in Figure 6. Accuracy is good. Residual Mean Squared Error,  

RMSE, ~7 µg m–3.  This dictated the 5 µg m–3 contour colors used: similar colors or neighboring colors show 375	
expectable agreement. Winds at 360 m for the hour of sampling have been superimposed on the maps. 

There follows the description of just of one episode: On January 14, 2103, the Valley is clean (see also Figures 

3 and 4). By January 16, 2013, light regional haze is accumulating, and the winds and mapped levels suggest some 

accumulation towards the south. On January 18, 2013, winds have veered: in the central Valley, pollution 

accumulates towards the east; in the south, transport is towards Bakersfield. On January 20, 2013, winds press the 380	
accumulating PM2.5 back towards the more populated east Valley. Several days following have increasing clouds 

(no maps). The first day, with advancing clouds overhead but no low clouds, no front, nor rain, retains high PM2.5 

at the monitors. This pattern is seen for several wintertime pollution episodes in this region. When the clouds clear, 

the Valley is as clean as 14 Jan.  In the maps for January 18, 19, and 20, the maps underestimate the highest values 

of PM2.5 by about 20%, as noted above. 385	
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Figure 7. Time evolution of PM2.5 and related variables for ~8 intensifying particlate episodes during the winter of 

2012–2013. Dots  and vertical bars indicate variable values at individual stations when available.  Blank regions reflect 

periods of cloud cover.  (a) PM2.5, µg m–3, as observed at stations (all dates) and (b) fitted PM2.5 on days and locations 

when MAIAC was available. (c) MAIAC AOT, 11:30 to 15:30 sun times. Note that increase is less pronounced than 

PM2.5, and varies between episodes. (d) CWV in g cm–2 or, colloquially, “cm of precipitable (liquid) water.” (e) PBL 
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7. Intensification of PM2.5 Episodes: Pollutant Accumulation vs Confinement 

The well performing mixed effects models (equations 5 and 6) led us to examine the repeated development of 

air pollution episodes to a maximum, striking patterns seen in Figures 3, 4, and 6. How did the independent values 390	
for various models in Table 1	vary within episodes and between episodes? Our description of the development leads 

to some answers in Figure 7.  

Figure 7a and 7b describe the development of the episodes.  The time series of observed PM2.5 and fitted 

PM2.5 are repeated from Figure 4. The times with no data are essentially cloudy times. After periods of cloudiness, 

particulate values typically rise until the next period of clouds. There are 7–8 such periods of rising, or weather 395	
episodes.  (“Episodes” can also refer to periods of highest particulate matter.) High values typically remain for 1–4 

days after cloud obscuration. Figures 7c and 7b show the values fitted by our mixed effects regression and the values 

that are available for fitting. The time sequence as well as the magnitudes are in expectable agreement., but the 

variability between stations is smaller on some occasions (e.g., 1/17 and 02/15).  Figures 7d shows that the time 

series of the ratio AOT/CWV develops from day to day as PM2.5 does, but suggests that these are modulated by 400	
differences in amplitude between weather episodes and sometime over  several days within the weather episodes, 

e.g., 01/13 to 01/17 and  02/04 to 02/08.  These explain the low overall correlation. In contrast, AOT shows little 

resemblance in the time series. Column water vapor, CWV, shows some tendency to decline during weather 

episodes (Figure 7e) notably the values at differing stations are more similar than those for AOT. Regionwide 

similarity in CWV within and above the afternoon mixed layer is an appealing explanation. Note the limited 405	
variability of the ratio CWV/PBL over 3–5 days and between stations. The afternoon PBL height itself is shown in 

Figure 7g.  Note that it is often very low at the end of a cloudy period and then rises to high values ~1 km at the end 

of the cloudy period. We suggest that this reflects overcast skies and very limited convective mixing followed by 

rain and the introduction of new air masses with deeper mixing of water vapor in a less stable atmosphere. 

Figure 7 describes differing causes of repeated PM2.5 buildup during cloud-free weather episodes. Progressive 410	
restriction of vertical mixing during clear-weather episodes acts to concentrate the effects of accumulated and recent 

pollution sources. The less stable air following a frontal passage feels increasing effects of strong subsidence, 

diminishing the mixing height. The threefold reduction in PBL height during major episodes, Figure 7d, nearly 

matches the 4-fold increases in PM2.5 during these periods (Figure 7a). MAIAC AOT shows variability between 

stations, and is reflected in local PM2.5. Winds redistribute particles and AOT. Figure 7 does not make clear the fate 415	
of aerosol, but it likely escapes with mountainside winds along the Valley. The entire set of maps suggests a flow to 

the south and stronger outflow near the Tejon pass east of Bakersfield. These mountainside winds likely may 

facilitate water vapor and aerosols escape the prevalent mixed layer.   

This suggests a typical behavior for the San Joaquin and similar regions in winter. A cloudy disturbance (new 

air mass, rain, wind) stirs the lower troposphere. This initiates a high PBL mixing on the first clear days. Typical 420	
fair-weather subsidence begins. The surface buoyancy flux is too weak to maintain these relatively high mixed layer 

height for the noon-afternoon observations in this dataset. Morning PBL heights are much lower. (f) Ratio of CWV to 

PBL height (cm(H2O l) / km) , showing relative constancy over several days  CWV time series resemble PBL height 

graphs. 
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tops; Afternoon PBL depths and mixed layer depths decrease day by day until a depth of 300-400 m is reached. 

(Figure 7d). Escape from the Valley may slow, allowing accumulation of pollution from within the region or from 

upwind. This further increases the surface PM2.5. Relatively local sources add to both AOT and PM2.5, and can 

transport them 50–100 km downwind, occasionally from east-valley sources to west-valley pollution hotspots (the 425	
map of Figure 6d). Both subsidence and surface buoyancy flux are broad-scale weather phenomena (~300 km) , and 

so AOT-to-PM2.5 relationships are similar on a given day with a given history of weather. Finally, warm-frontal 

rain approaches the region.  

An examination of HSRL2 data for the DISCOVER-AQ period (Sawamura et al., 2017) suggests that there can 

be considerable vertical variability of aerosol extinction; the fact that AOT tends to average the whole afternoon 430	
mixed layer allows our generalized description to hold nevertheless. 

Finally, we venture some ideas for filling in afternoon PM2.5 on days when MAIAC did not allow mapping 

due to cloud cover. Young et al. (2016) provided a thorough microphysical and chemical analysis for just the time 

period January 13 to February 11, 2013 — essentially the DISCOVER-AQ period — and just the fully instrumented 

UC Davis site deployed at Fresno. Their Figure 2, panels a, b, and e show time series of temperature (panel a), wind 435	
speed and direction (panel b), and particle mass for the period (panel e). Their measurements include periods of 

cloud cover and clearly show air mass transitions during rain and frontal passage (seen as wind shifts, commonly N  

to W to S)  These time series suggest a meteorological plausible method to interpolate PM2.5 maps into cloud-

covered days.  These do compare to the panels a, b, and c in our Figure 7, describing observed and statistically 

estimated particulate mass at all stations including Fresno. PM2.5 drops to values below 10–15 µg m–3 whenever 440	
wind speeds rise to above ~2 m s–1 and the wind direction is from a quadrant (90 degree sector) centered on the 

north-northwest direction.  Their Figure 2a also describes rainfall at the Fresno site. Particulate matter does drop by 

~50% from the highest observed/estimated values at the end of the clear-sky period, and further when the winds rise 

to 2 m s–1 or higher. This behavior is most clearly observed in their graphs for the period January 23–January 27. 

Similar behavior is observed in the period February 6–February 11, although the episode has more complex increase 445	
than in the earlier, most intense episodes. The short spike up to 80 µg m–3 on the night of February 10 is not 

explained, and not reflected in the afternoon-only data of our Figure 7. Nevertheless, the averages shown by Young 

in Figure 2e do repeat the general observation that daily average PM2.5 and afternoon PM2.5 do tend to correlate 

well.  For best-estimate maps of PM2.5, we suggest that the end-of-retrieval values of PM2.5 reduce gradually over 

a day or two. Maps of precipitation (e.g. from radar or other analyses) allow more detail. Estimates for a region 450	
should then fall to ~7 µg m–3 whenever sustained winds rise to > 2 m s–1 from the NNW or > 3 m s–1 from any 

direction. Such wind speeds are held to mark air mass replacement (e.g, frontal passage). These ideas remain 

suggestions since our analysis for a single winter may not provide enough instances. The whole Aqua MAIAC 

period is available, but currently beyond NASA’s resources. 

 455	

8. Variation of Random-effects Model Parameters 

The preceding section gives some background so that we may understand the parameters for the random effect 

model. We will discuss the full Equation 4; results with mild spatial dependence (Equation 5) are very similar. The 
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intercept 𝛼[ and the slope for 𝛽[ ∙ AOT[\ CWV[\⁄  are the same for each day and determine the fitted PM2.5 for the 

regression Equation 4. We exploit this to produce a “stork plot” like Figure 8. High 𝛼[ is shown by tall blue lines; 460	
high 𝛽[ is shown as a high slope. Variation in AOT/CWV contributes ~30–70% to the estimate on almost all days.  

 

 

 

 465	

a 

 

b 

 

c 470	

Figure 8. Roles of slopes and intercepts in a regression fit. (a) A “stork plot” for the clear-sky air-pollution episode 

mapped in Figure 6. Vertical blue lines indicate the contribution of the random intercept 𝛼[ to the total PM2.5 fitted in 

the model. These are the same for all geographical locations including the observation stations for any given day. The 

slope parameter 𝛽[is the same for all geographical locations. (See note to Table 1.) Values of PM2.5 evaluated at the 

stations are shown by red dots along a line. Large values of AOT/CWV have wide vertical extent, and the corresponding 475	
high values of PM2.5 are shown as red dots at the upper right of each day’s plot. Highly sloped lines indicate high 𝛽[. (b) 

A stork plot for the whole wintertime interval evaluates, showing several clear-day episodes.  (c) the values of 𝛽[ vary 

considerably. These slopes are shown as a time series.  

The stork plot of Figure 8a illustrates a puzzling progression of parameter estimates day by day. For the 

first days, Jan 10–14, the slope parameter accounts for the largest contribution to PM2.5. For the second part of the 480	
period, Jan 15–19, the intercept term becomes progressively more important compared to the AOT/CWV 

dependence. The regression equation fit (Figure 7c) has difficulty in matching the observed PM2.5 (Figure 7b) 

variability between stations on these days although AOT (Figure 7e) shows moderate variability around low values, 

0.03–0.05. (A side note: MAIAC AOT estimates should be particularly challenged at these low values.) Then, from 

the Jan 20–22, the intercept contribution diminishes and the AOT/CWV dependence becomes rather larger than 485	
typical. Referring back to Figure 7e, f, and g,, these variations seem explainable: the mixed layer decreases rapidly 

during the first period, then reaches a minimum at ~300 m. In the last three days, the AOT increases rapidly, though 
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the mixing depth changes little. The following weather episode is notable for high and quite variable AOT (Figure 

7e), and the fitting procedure does well. 

9. Value of Improved CWV Data 490	

At this point, concerns about the quality of the CWV estimate should be addressed.  In our analysis of the 

difficult San Joaquin Valley, MAIAC CWV can be frequently low compared to AERONET CWV, some error can 

arise from the presence of clouds in neighboring footprints. In the figures and results shown CWV was based on the 

MAIAC data interpolated and extrapolated where cloud-contamination made the retrieval of lower accuracy 

(Lyapustin et al., 2018). Figure 6 shows some small-scale variability .RAP analyses of CWV could also be used at 495	
their 13-km model-imposed width with similar results, since CWV does not vary as rapidly spatially as AOT. A 

better direct use of the MAIAC CWV could uses spatial averaging with a width of 3 to 6 km. Random errors in the 

MAIAC CWV due to the low radiances used would be reduced; considerations of source patterns suggests that 

CWV might not truly vary at such small scales. Improved PM2.5 values could result. We are implementing this 

averaging. 500	

As understanding of MAIAC CWV improves, its role in determining daily AOT-to-PM2.5 relationships should 

improve; calibration of MAIAC using sun-photometer measurements can be useful in the meantime (Just et al., 2019). 

Note also that assimilated CWV from the National Weather Service models is constrained empirically, and so not as 

reliant transport descriptions as is aerosol. Here are some constraints surface-station humidity measurements 

constraing CWV below 0.4–1 km, thermal-radiation sounders on the GOES (Geostationary Operational 505	
Environmental Satellite) satellites describe water vapor partial above that; radiosonde and GPS humidity sensors give 

further constraint. This allows GOES AOT estimates to be used with assimilated CWV, even though GOES lacks a 

reflective water vapor channel (S. Kondragupta, personal communication, 2018).  

 

10.  Conclusions	510	
	
Goals: We sought broadly applicables methods to estimate PM2.5 maps from satellite AOT for very polluted 

regions poorly described by satellite data. Ths study focusrd on the whole polluted winter season of the San Joaquin 

Valley (SJQ), November 19, 2012 to February 18, 2013. We sought to fulfill the overarching goal of the whole 

DISCOVER-AQ mission— to find general relationships between extended satellite data observations and surface air 515	
pollutant concentrations and to evaluate their success. We found success with a simple methodology that follows the 

meteorology of regions like the SJQ. This success recommends an approach to the remote-sensing to PM2.5 

analysis, investingating important pollution regions in terms of their meteorology and sources, but carrying over 

methods from similar regions. For example, the Po Valley of Itally and the Northern Gangetic Plane of India may 

respond similary to analyses based on detailed mixing height data and related distribution indicators.  520	

Direct results: We found that a combination of information utilizing (1) optical depth, (2) measures of vertical 

dispersion, e.g. CWV, and (3) daily calibration of PM2.5 to predictors produced significantly better quantification of 

PM2.5 than a competitive no-satellite-use method which we named “regional correlation” since it produces un-

featured maps of PM2.5 which vary only from day to day. Our maps of estimated PM2.5 extend for all cloud-free 
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periods November 19 2012 to February 18, 2013, essentially the whole pollution season for this winter. For that 525	
whole period, this first published attempt found good predictive value of R ~ 0.9 and rms error of 6.5 µg m-3. Cross-

validation suggested rms error of 	≲	7 µg m-3.  Analysis of residuals suggested that better rms errors could be 

achieved if further workallowed for sub-regioality (use of smaller regions or a geographic characterization 

incorporating some spatial variation). Local variations in PM2.5 on the order of 1–3 km were noted using our 

method, but only when particulate accumulation could occur along-wind. Still, in order to estimate PM2.5 at ≲	1-km 530	
scales, we expect that  it will be necessary to use refined geographic information system methods (Kloog et al. 

2014).  

 DISCOVER-AQ comparisons advisable: Our analyzed winter 2012–2103 period did include the more 

limited DISCOVER-AQ / California-2013 airborne-intensive study period, primarily focused on the area around 

Fresno. Analysis of that intensive suggested ideas (Shook et al., 2013) that motivated this work.The shorter 535	
DISCOVER-AQ period does deserve more detailed comparison to our results.  Aircraft in-situ profiles of gas and 

particle composition, lidar profiles, very detailed surface measurements of particulate composition, and source-and-

transport modeling all deserve comparison. The distribution of atmospheric particles and precursor gases is more 

complex than this work might suggest. Somehow averaging appears to allow our  general methods.  The 

development of concepts and the length of this workdo not allow for such comparison. We hope that research will 540	
be encouraged. 

Usefulness of Column Water Vapor: A major finding was that the usefulness of CWV does not become 

apparent unless there is daily calibration of the AOT/CWV relationship to PM2.5. We attribute this primarily (a) 

details of CWV: e.g., CWV’s dependence on mixed layer temperature on the timescale of days, (b) to CWV above 

the mixed layer for aerosols, presumably responding to other H2O sources upwind, and (c) variations in 545	
composition: the relation of PM2.5 to light extinction. We believe that allowing for a full linear relationship each 

day for AOT/CWV to PM2.5, both slope and intercept effects, in a daily calibration allows regressioin to exploit 

portions of the PM2.5 vs. f(AOT/CWV) scatterplots that reveal proportionality. High-spatial-resolution estimates of 

the 11 AM–3:30 PM PBL heights for momentum may as helpful as CWV when available and when the PBL 

estimation has been examined for accuracy; this could be explored. Such PBL  data is not available for the whole 550	
MODIS-Aqua period.(2004–present), while CWV is. 

Accompanying insights on pollution episodes. We found that this approach allowed a broad description of 

the buildup of six air pollution episodes and the balance of the roles of accumulation of pollutants versus limited 

vertical mixing. Episodes were as in earlier descriptions (Watson and Chow, 2002). Each appears important in 

different phases of reptitive PM2.5-increase cycles. PM2.5 to AOT relationships suggest a few days residence time 555	
for particles (actually prticulate extinction) in the Valley. The first 1–3 days after MODIS described full cloud cover 

could still show high, slowly decreasing PM2.5. Unpublished analysis (see Young et al. 2018) suggests that this 

high PM2.5 dropped preciptously when surface winds rose to > 4 m s–1 from a quadrant centered on the NNW. 

Best-estimate extensions to cloudy periods of the remote-sensing-based record can be made using the typical 

meteorology of the San Joaquin or presumably other areas, and verified by extensive checks. Widely available data 560	
mapping surface winds and precipitation suffice, and do not require that detailed meteorological modeling be 

available.  
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Role of “Static” models: Our estimation approach aimed to avoid the use of modeling driven by source 

estimation and transport simulatoin. Principally we wished to provide dataseta that allowed independetn comparison 

to such three-d atmospheric chemistry models (e.g., Friberg, et al., 2018). When we used RAP-model CWV rather 565	
than spatially averaged or calibratee (Just et al., 2019, manuscript in progress) MAIAC CWV, that goal was not 

fully reached, although RAP CWV is strongly constrained by surface, satellite, snd other observations. An 

aspirational goal is to provide an economical, accurate, and calibrated estimation of  PM2.5 for the whole MODIS 

Aqua period to date, and then beyond. The opportunities to use MISR,VIIRS, MAIA, and even geostationary 

imaging are appealing! 570	
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Supplementary Material 585	
 
Included below are three portions of a poster presented by Michael Shook at the 
American Geophysical Union (Shook et al., 2013) soon after the DISCOVER-AQ 
measurements in California. That work gave a syncretic overview of many trace 
species measurement besides water vapor which motivated our investigation, as 590	
described in Section 1.1. . First, there is an acknowledgement of the many authors 
contributing measurements. Second, there is an explanation of methods of 
estimating a characteristic mixed layer height as observed of airplane 
measurements. Third, there are graphs of vertical profiles normalized by average 
tracer concentration and also by the depth of the mixed layer.  The commonalities 595	
and some differences of the first tracer shown (water vapor) and the last 
(particulate scattering). 
 

 
Acknowledgement to M.Kleb, G Chen, B.E. Anderson, J. Barrick, G. Disking, A 600	
Fried, E. Buzzay, D. Van Gilst, A. Weinheimer, M. Yang, D.H. Lenschow. 

 

Site Co-located 
Missed Approach Sites 

Profiles 
Performed 

Missed Approaches 
Performed 

Bakersfield 2 28 38 

Porterville 1 29 23 

Hanford 1 28 20 

Huron 0 28 0 

Tranquility 0 29 0 

Fresno 1 28 29 

Total 5 170 110 

For some profiles, the BLHT could not be identified. 
These cases usually had one of three problems: 

• Suspected BLHT was near or below the bottom of 

the profile 

• Suspected BLHT was between the bottom of a spiral 

and the top of a missed approach 

• Aircraft was not able to complete a spiral due to 

visibility issues 

These issues happened most frequently on the first 

circuit of the day (in the morning when BLHTs are very 

low) and on the last two days of the mission (when fog 

or low cloud decks were present). Profiles where the 

BLHT was not identified were removed from further 

analysis. In total, 119 of the 170 profiles had clear 

BLHTs. 

A43A-0228: Daily Evolution of Boundary Layer Properties based on NASA 
DISCOVER-AQ Airborne Profiles over the California San Joaquin Valley 

 

Michael Shook1 (michael.shook@nasa.gov), M. Kleb2, G. Chen2, B.E. Anderson2, J. Barrick2, G. Diskin2, 
 A. Fried3, E. Buzay4, D. Van Gilst4, A. Weinheimer5, M. Yang2, D. H. Lenschow6 

1Science Systems and Applications Inc; 2NASA Langley Research Center; 3U. of Colorado-Boulder; 4U. of North Dakota; 5U. of Innsbruck, Austria; 6National Center for Atmospheric Research 

The DISCOVER-AQ (Deriving Information on Surface Conditions 
from Column and Vertically Resolved Observations Relevant to 
Air Quality) mission conducted its second field deployment in the 
California San Joaquin Valley region during January and 
February 2013.  The mission’s overarching goal is to better 
understand how remotely-sensed column measurements can be 
used to diagnose near-surface air quality.  To achieve this 
objective, the DISCOVER-AQ sampling strategy requires 
extensive probing of the vertical structure of the lower 
troposphere as it relates to both trace gases and aerosols.  This 
strategy was implemented by using the NASA P-3B aircraft to 
perform three circuits of spirals from 0.3 to ~3 km over 6 air 
quality monitoring ground sites at three different times of the day 
(mid-morning, midday, and mid-afternoon local time).  In addition, 
missed approach maneuvers were performed at 7 airports along 
the flight path (5 of which were located near profile sites), which 
provided profile data from as low as 25 m up through the 0.3 km 
bottom limit of the spirals.  A total of 170 spirals and 157 missed 
approaches were flown, which generated detailed vertical 
distributions for a large variety of trace gases, aerosol properties, 
and meteorological variables. 
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Goals of this poster: 
• Identify evolution of the height of the boundary layer (BLHT) 

from day to day across the campaign 
• Evaluate variability and trends in boundary layer 

concentrations and vertical gradients of trace gas 
concentrations and aerosol parameters 

Breakdown of profiles and missed approaches by site location. The 170 profiles performed 
were split evenly among the 6 sites. Of the 157 missed approaches performed along the 
nominal flight path, 110 were at airports in the vicinity of a profile spiral. 

• BLHT assessment was based on the 

P-3B aircraft observations, primarily of 

meteorological parameters 

• Primary criteria for BLHT identification 

include a sharp change from constant 

to increasing potential temperature (i.e. 

theta) with increasing height and a 

distinct trend change in temperature 

and relative humidity vertical profiles. 

• If necessary, BLHTs were refined using 

vertical profiles of trace gas 

concentrations and aerosol properties 

A vertical profile with a clear BLHT, indicated by the horizontal dashed black line. The profiles of 
temperature, theta, and relative humidity all have sharp changes at  0.675 km. Profiles of other 
parameters, such as scattering and NO2, also had clear transitions at this altitude. 

To more clearly identify trends in BLHT from day to day across the campaign, profiles were separated by starting time into three groups: 0800-1030, 1030-1300, and 1300-1600 PST. 

These times loosely correspond to the start and end times of the three circuits. The distributions of the BLHTs in these time intervals were then analyzed. The distributions and time 

series of the BLHTs for each interval is shown below, along with an example profile from that interval. Constituent vertical profiles are colored by bearing from center of spiral. 

Morning Profiles (0800-1030 LT) 
• Morning BLHTs were consistently low (about 0.35 km or less)  
• Aircraft was often unable to get low enough to see a clear 

transition into the boundary layer; only 20 of 61 morning 
profiles had clear BLHTs 

• Not enough sample points to know if high outliers were part of 
a second mode 

Midday Profiles (1030-1300 LT) 
• Midday BLHTs were consistently between 0.2 and 0.6 km 
• 47 of 53 midday profiles had clear BLHTs 

Afternoon Profiles (1300-1600 LT) 
• Afternoon profile BLHTs seem to be bimodal 

� First half of the campaign: BLHTs from 0.3 to 0.6 km 
� Second half of the campaign: BLHTs from 0.5 to 0.7 km 

• 52 of 56 afternoon profiles had clear BLHTs 
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Composite profiles of different constituents scaled by the profile BLHT and the average concentration of the constituent within the boundary layer.  The 
dotted, colored lines represent individual profiles, and the solid black lines represent the median profile for that constituent and time period. 
Z = pressure altitude, Zi = profile BLHT, C = constituent concentration, and Ci = average constituent concentration in the boundary layer 

Example daily flight track showing the path of 
the P-3B and the repeated spirals at each of 
the six profile sites. The aircraft flew from 
Bakersfield to Porterville and continued around 
the circuit clockwise back to Bakersfield.  Each 
flight day usually included three such circuits. 

To visualize BL variability and vertical gradients, composite profiles for eight different constituents were created. Constituents 

were chosen to represent a variety of lifetimes and production/removal processes. 

Conclusions: 
• In addition to boundary layer heights increasing throughout the day, afternoon boundary layer heights were 

also higher in the second half of the campaign than they were in the first half. 

• For many constituents, profile fluctuations (i.e. BL standard deviation-to-average ratio) decreased throughout 

the day, probably due to increased mixing and decreased stability in the BL. 

• Only H2O and aerosol scattering appeared to have a consistent non-zero vertical gradient. CO2 consistently 

had zero vertical gradient, and the other constituents had too much variability to define a consistent gradient.  

However, for all other parameters besides O3, median trends were usually negative, and by the afternoon 

almost 75% of trends were negative.  These results suggest that the BL was not always well-mixed. 

 

Future Investigations: 
• Incorporate balloon-borne measurements from Huron and Porterville to refine current BLHTs and potentially to 

help identify additional BLHTs at those sites 

• Find the cause of the higher afternoon boundary layer heights later in the campaign, possibly through back-

trajectory analysis, and analyze its effects on BL concentrations 

• Evaluate any trends in boundary layer height or vertical gradients among the six profile sites 

The vertical trend of constituents in the BL 

was calculated by performing linear 

regression on profiles with at least 100 

seconds of sampling within the BL and 

normalizing the subsequent slopes by the 

constituent BL average. 

• Longer-lived constituents generally had 

shallower and less variable vertical trends 

• Slope variability decreased in almost 

every case from the midday to the 

afternoon profiles 

• Note that only one morning profile had the 

required BL sampling time, so separate 

morning profiles are not shown 

To assess BL variability, the ratio of the BL 

standard deviation to the BL average of each 

profile and constituent was calculated. Shown are 

the normalized distributions for all constituents 

and profiles (above) and for select constituents 

separated into time intervals (left). 

•  H2O, CO2, benzene, and scattering show little 

decrease in variability throughout the day 

• O3 variability decreases throughout the day 

• Methanol and CH2O see most of their 

decrease in variability by midday, while NO2 

variability decreases between midday and 

afternoon 

n = 20 
n = 47 

n = 52 

Site Co-located 
Missed Approach Sites 

Profiles 
Performed 

Missed Approaches 
Performed 

Bakersfield 2 28 38 

Porterville 1 29 23 

Hanford 1 28 20 

Huron 0 28 0 

Tranquility 0 29 0 

Fresno 1 28 29 

Total 5 170 110 

For some profiles, the BLHT could not be identified. 
These cases usually had one of three problems: 

• Suspected BLHT was near or below the bottom of 

the profile 

• Suspected BLHT was between the bottom of a spiral 

and the top of a missed approach 

• Aircraft was not able to complete a spiral due to 

visibility issues 

These issues happened most frequently on the first 

circuit of the day (in the morning when BLHTs are very 

low) and on the last two days of the mission (when fog 

or low cloud decks were present). Profiles where the 

BLHT was not identified were removed from further 

analysis. In total, 119 of the 170 profiles had clear 

BLHTs. 

A43A-0228: Daily Evolution of Boundary Layer Properties based on NASA 
DISCOVER-AQ Airborne Profiles over the California San Joaquin Valley 
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The DISCOVER-AQ (Deriving Information on Surface Conditions 
from Column and Vertically Resolved Observations Relevant to 
Air Quality) mission conducted its second field deployment in the 
California San Joaquin Valley region during January and 
February 2013.  The mission’s overarching goal is to better 
understand how remotely-sensed column measurements can be 
used to diagnose near-surface air quality.  To achieve this 
objective, the DISCOVER-AQ sampling strategy requires 
extensive probing of the vertical structure of the lower 
troposphere as it relates to both trace gases and aerosols.  This 
strategy was implemented by using the NASA P-3B aircraft to 
perform three circuits of spirals from 0.3 to ~3 km over 6 air 
quality monitoring ground sites at three different times of the day 
(mid-morning, midday, and mid-afternoon local time).  In addition, 
missed approach maneuvers were performed at 7 airports along 
the flight path (5 of which were located near profile sites), which 
provided profile data from as low as 25 m up through the 0.3 km 
bottom limit of the spirals.  A total of 170 spirals and 157 missed 
approaches were flown, which generated detailed vertical 
distributions for a large variety of trace gases, aerosol properties, 
and meteorological variables. 
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Goals of this poster: 
• Identify evolution of the height of the boundary layer (BLHT) 

from day to day across the campaign 
• Evaluate variability and trends in boundary layer 

concentrations and vertical gradients of trace gas 
concentrations and aerosol parameters 

Breakdown of profiles and missed approaches by site location. The 170 profiles performed 
were split evenly among the 6 sites. Of the 157 missed approaches performed along the 
nominal flight path, 110 were at airports in the vicinity of a profile spiral. 

• BLHT assessment was based on the 

P-3B aircraft observations, primarily of 

meteorological parameters 

• Primary criteria for BLHT identification 

include a sharp change from constant 

to increasing potential temperature (i.e. 

theta) with increasing height and a 

distinct trend change in temperature 

and relative humidity vertical profiles. 

• If necessary, BLHTs were refined using 

vertical profiles of trace gas 

concentrations and aerosol properties 

A vertical profile with a clear BLHT, indicated by the horizontal dashed black line. The profiles of 
temperature, theta, and relative humidity all have sharp changes at  0.675 km. Profiles of other 
parameters, such as scattering and NO2, also had clear transitions at this altitude. 

To more clearly identify trends in BLHT from day to day across the campaign, profiles were separated by starting time into three groups: 0800-1030, 1030-1300, and 1300-1600 PST. 

These times loosely correspond to the start and end times of the three circuits. The distributions of the BLHTs in these time intervals were then analyzed. The distributions and time 

series of the BLHTs for each interval is shown below, along with an example profile from that interval. Constituent vertical profiles are colored by bearing from center of spiral. 

Morning Profiles (0800-1030 LT) 
• Morning BLHTs were consistently low (about 0.35 km or less)  
• Aircraft was often unable to get low enough to see a clear 

transition into the boundary layer; only 20 of 61 morning 
profiles had clear BLHTs 

• Not enough sample points to know if high outliers were part of 
a second mode 

Midday Profiles (1030-1300 LT) 
• Midday BLHTs were consistently between 0.2 and 0.6 km 
• 47 of 53 midday profiles had clear BLHTs 

Afternoon Profiles (1300-1600 LT) 
• Afternoon profile BLHTs seem to be bimodal 

� First half of the campaign: BLHTs from 0.3 to 0.6 km 
� Second half of the campaign: BLHTs from 0.5 to 0.7 km 

• 52 of 56 afternoon profiles had clear BLHTs 
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Composite profiles of different constituents scaled by the profile BLHT and the average concentration of the constituent within the boundary layer.  The 
dotted, colored lines represent individual profiles, and the solid black lines represent the median profile for that constituent and time period. 
Z = pressure altitude, Zi = profile BLHT, C = constituent concentration, and Ci = average constituent concentration in the boundary layer 

Example daily flight track showing the path of 
the P-3B and the repeated spirals at each of 
the six profile sites. The aircraft flew from 
Bakersfield to Porterville and continued around 
the circuit clockwise back to Bakersfield.  Each 
flight day usually included three such circuits. 

To visualize BL variability and vertical gradients, composite profiles for eight different constituents were created. Constituents 

were chosen to represent a variety of lifetimes and production/removal processes. 

Conclusions: 
• In addition to boundary layer heights increasing throughout the day, afternoon boundary layer heights were 

also higher in the second half of the campaign than they were in the first half. 

• For many constituents, profile fluctuations (i.e. BL standard deviation-to-average ratio) decreased throughout 

the day, probably due to increased mixing and decreased stability in the BL. 

• Only H2O and aerosol scattering appeared to have a consistent non-zero vertical gradient. CO2 consistently 

had zero vertical gradient, and the other constituents had too much variability to define a consistent gradient.  

However, for all other parameters besides O3, median trends were usually negative, and by the afternoon 

almost 75% of trends were negative.  These results suggest that the BL was not always well-mixed. 

 

Future Investigations: 
• Incorporate balloon-borne measurements from Huron and Porterville to refine current BLHTs and potentially to 

help identify additional BLHTs at those sites 

• Find the cause of the higher afternoon boundary layer heights later in the campaign, possibly through back-

trajectory analysis, and analyze its effects on BL concentrations 

• Evaluate any trends in boundary layer height or vertical gradients among the six profile sites 

The vertical trend of constituents in the BL 

was calculated by performing linear 

regression on profiles with at least 100 

seconds of sampling within the BL and 

normalizing the subsequent slopes by the 

constituent BL average. 

• Longer-lived constituents generally had 

shallower and less variable vertical trends 

• Slope variability decreased in almost 

every case from the midday to the 

afternoon profiles 

• Note that only one morning profile had the 

required BL sampling time, so separate 

morning profiles are not shown 

To assess BL variability, the ratio of the BL 

standard deviation to the BL average of each 

profile and constituent was calculated. Shown are 

the normalized distributions for all constituents 

and profiles (above) and for select constituents 

separated into time intervals (left). 

•  H2O, CO2, benzene, and scattering show little 

decrease in variability throughout the day 

• O3 variability decreases throughout the day 

• Methanol and CH2O see most of their 

decrease in variability by midday, while NO2 

variability decreases between midday and 

afternoon 

n = 20 
n = 47 

n = 52 
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Site Co-located 
Missed Approach Sites 

Profiles 
Performed 

Missed Approaches 
Performed 

Bakersfield 2 28 38 

Porterville 1 29 23 

Hanford 1 28 20 

Huron 0 28 0 

Tranquility 0 29 0 

Fresno 1 28 29 

Total 5 170 110 

For some profiles, the BLHT could not be identified. 
These cases usually had one of three problems: 

• Suspected BLHT was near or below the bottom of 

the profile 

• Suspected BLHT was between the bottom of a spiral 

and the top of a missed approach 

• Aircraft was not able to complete a spiral due to 

visibility issues 

These issues happened most frequently on the first 

circuit of the day (in the morning when BLHTs are very 

low) and on the last two days of the mission (when fog 

or low cloud decks were present). Profiles where the 

BLHT was not identified were removed from further 

analysis. In total, 119 of the 170 profiles had clear 

BLHTs. 
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The DISCOVER-AQ (Deriving Information on Surface Conditions 
from Column and Vertically Resolved Observations Relevant to 
Air Quality) mission conducted its second field deployment in the 
California San Joaquin Valley region during January and 
February 2013.  The mission’s overarching goal is to better 
understand how remotely-sensed column measurements can be 
used to diagnose near-surface air quality.  To achieve this 
objective, the DISCOVER-AQ sampling strategy requires 
extensive probing of the vertical structure of the lower 
troposphere as it relates to both trace gases and aerosols.  This 
strategy was implemented by using the NASA P-3B aircraft to 
perform three circuits of spirals from 0.3 to ~3 km over 6 air 
quality monitoring ground sites at three different times of the day 
(mid-morning, midday, and mid-afternoon local time).  In addition, 
missed approach maneuvers were performed at 7 airports along 
the flight path (5 of which were located near profile sites), which 
provided profile data from as low as 25 m up through the 0.3 km 
bottom limit of the spirals.  A total of 170 spirals and 157 missed 
approaches were flown, which generated detailed vertical 
distributions for a large variety of trace gases, aerosol properties, 
and meteorological variables. 
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Goals of this poster: 
• Identify evolution of the height of the boundary layer (BLHT) 

from day to day across the campaign 
• Evaluate variability and trends in boundary layer 

concentrations and vertical gradients of trace gas 
concentrations and aerosol parameters 

Breakdown of profiles and missed approaches by site location. The 170 profiles performed 
were split evenly among the 6 sites. Of the 157 missed approaches performed along the 
nominal flight path, 110 were at airports in the vicinity of a profile spiral. 

• BLHT assessment was based on the 

P-3B aircraft observations, primarily of 

meteorological parameters 

• Primary criteria for BLHT identification 

include a sharp change from constant 

to increasing potential temperature (i.e. 

theta) with increasing height and a 

distinct trend change in temperature 

and relative humidity vertical profiles. 

• If necessary, BLHTs were refined using 

vertical profiles of trace gas 

concentrations and aerosol properties 

A vertical profile with a clear BLHT, indicated by the horizontal dashed black line. The profiles of 
temperature, theta, and relative humidity all have sharp changes at  0.675 km. Profiles of other 
parameters, such as scattering and NO2, also had clear transitions at this altitude. 

To more clearly identify trends in BLHT from day to day across the campaign, profiles were separated by starting time into three groups: 0800-1030, 1030-1300, and 1300-1600 PST. 

These times loosely correspond to the start and end times of the three circuits. The distributions of the BLHTs in these time intervals were then analyzed. The distributions and time 

series of the BLHTs for each interval is shown below, along with an example profile from that interval. Constituent vertical profiles are colored by bearing from center of spiral. 

Morning Profiles (0800-1030 LT) 
• Morning BLHTs were consistently low (about 0.35 km or less)  
• Aircraft was often unable to get low enough to see a clear 

transition into the boundary layer; only 20 of 61 morning 
profiles had clear BLHTs 

• Not enough sample points to know if high outliers were part of 
a second mode 

Midday Profiles (1030-1300 LT) 
• Midday BLHTs were consistently between 0.2 and 0.6 km 
• 47 of 53 midday profiles had clear BLHTs 

Afternoon Profiles (1300-1600 LT) 
• Afternoon profile BLHTs seem to be bimodal 

� First half of the campaign: BLHTs from 0.3 to 0.6 km 
� Second half of the campaign: BLHTs from 0.5 to 0.7 km 

• 52 of 56 afternoon profiles had clear BLHTs 
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Composite profiles of different constituents scaled by the profile BLHT and the average concentration of the constituent within the boundary layer.  The 
dotted, colored lines represent individual profiles, and the solid black lines represent the median profile for that constituent and time period. 
Z = pressure altitude, Zi = profile BLHT, C = constituent concentration, and Ci = average constituent concentration in the boundary layer 

Example daily flight track showing the path of 
the P-3B and the repeated spirals at each of 
the six profile sites. The aircraft flew from 
Bakersfield to Porterville and continued around 
the circuit clockwise back to Bakersfield.  Each 
flight day usually included three such circuits. 

To visualize BL variability and vertical gradients, composite profiles for eight different constituents were created. Constituents 

were chosen to represent a variety of lifetimes and production/removal processes. 

Conclusions: 
• In addition to boundary layer heights increasing throughout the day, afternoon boundary layer heights were 

also higher in the second half of the campaign than they were in the first half. 

• For many constituents, profile fluctuations (i.e. BL standard deviation-to-average ratio) decreased throughout 

the day, probably due to increased mixing and decreased stability in the BL. 

• Only H2O and aerosol scattering appeared to have a consistent non-zero vertical gradient. CO2 consistently 

had zero vertical gradient, and the other constituents had too much variability to define a consistent gradient.  

However, for all other parameters besides O3, median trends were usually negative, and by the afternoon 

almost 75% of trends were negative.  These results suggest that the BL was not always well-mixed. 

 

Future Investigations: 
• Incorporate balloon-borne measurements from Huron and Porterville to refine current BLHTs and potentially to 

help identify additional BLHTs at those sites 

• Find the cause of the higher afternoon boundary layer heights later in the campaign, possibly through back-

trajectory analysis, and analyze its effects on BL concentrations 

• Evaluate any trends in boundary layer height or vertical gradients among the six profile sites 

The vertical trend of constituents in the BL 

was calculated by performing linear 

regression on profiles with at least 100 

seconds of sampling within the BL and 

normalizing the subsequent slopes by the 

constituent BL average. 

• Longer-lived constituents generally had 

shallower and less variable vertical trends 

• Slope variability decreased in almost 

every case from the midday to the 

afternoon profiles 

• Note that only one morning profile had the 

required BL sampling time, so separate 

morning profiles are not shown 

To assess BL variability, the ratio of the BL 

standard deviation to the BL average of each 

profile and constituent was calculated. Shown are 

the normalized distributions for all constituents 

and profiles (above) and for select constituents 

separated into time intervals (left). 

•  H2O, CO2, benzene, and scattering show little 

decrease in variability throughout the day 

• O3 variability decreases throughout the day 

• Methanol and CH2O see most of their 

decrease in variability by midday, while NO2 

variability decreases between midday and 

afternoon 

n = 20 
n = 47 

n = 52 


