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Abstract. Continuous atmospheric CO, monitoring data indicate an increase in seasonal-cycle amplitude (SCA) of CO, ex-
change in northern high latitudes. The major drivers of enhanced SCA remain unclear and intensely debated with land-use
change, CO, fertilization and warming identified as likely contributors. We integrated CO,-flux data from two atmospheric
inversions (consistent with atmospheric records) and from 11 state-of-the-art land-surface models (LSMs) to evaluate the rela-
tive importance of individual contributors to trends and drivers of the SCA of CO,-fluxes for 1980-2015. The LSMs generally

reproduce the latitudinal increase in SCA trends within the inversions range. Inversions and LSMs attribute SCA increase to
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boreal Asia and Europe due to enhanced vegetation productivity (in LSMs) and point to contrasting effects of CO, fertilisation
(positive) and warming (negative) on SCA. Our results do not support land-use change as a key contributor to the increase
in SCA. The sensitivity of simulated microbial respiration to temperature in LSMs explained biases in SCA trends, which

suggests SCA could help to constrain model turnover times.

1 Introduction

The increase in the amplitude of seasonal atmospheric CO, concentrations at northern high latitudes is one of the most intrigu-
ing patterns of change in the global carbon (C) cycle. The seasonal-cycle amplitude (SCA) of atmospheric CO; in the lower
troposphere at the high-latitude monitoring site of Point Barrow, Alaska, has increased by about 50% since the 1960s (Keeling
et al., 1996; Dargaville et al., 2002). Increasing SCA has also been registered at other high-latitude sites, mostly above 50°N
(Piao et al., 2017) and appears to be driven primarily by changes in seasonal growth dynamics of terrestrial ecosystems (i.e., net
biome productivity, NBP), but uncertainty remains about the relative contributions from different continents, and mechanisms.

Some studies proposed that the trend in SCA is primarily driven by increased natural vegetation growth and forest expansion
at high-latitudes due to CO, fertilization and climate change (Graven et al., 2013; Forkel et al., 2016; Piao et al., 2017). Others
(Gray et al., 2014; Zeng et al., 2014) suggested that agricultural expansion and intensification resulted in increased productivity
and thus enhanced the seasonal exchange in cultivated areas at mid-latitudes. However, evidence suggests that crop productivity
stagnated after the 1980s in many regions in the Northern Hemisphere (Grassini et al., 2013), which is not reflected in SCA
trends in recent decades (Yin et al., 2018).

Studies using land-surface models (LSMs) to attribute trends to the suggested processes usually convert simulated fluxes to
CO; concentrations using atmospheric transport models (ATM) and compare the results to in-situ measurements (Dargaville
et al., 2002; Forkel et al., 2016; Piao et al., 2017) or over latitudinal transects (Graven et al., 2013; Thomas et al., 2016). These
studies have shown that LSMs systematically underestimated SCA trends, but it is not clear whether these biases are due to
LSM uncertainties or due to trends or errors in the ATM (Dargaville et al., 2002). Piao et al. (2017) addressed these problems
by designing systematic model experiments to compare observed CO, concentrations at multiple sites with ATM simulations
forced by an ensemble of NBP from different LSMs and an ocean biogeochemistry model. Point Barrow was the only site
where nearly all models accurately described the trend in SCA, while in other sites, LSMs generally captured the sign of the
trend in SCA but either under- or over-estimated its magnitude. Piao et al. (2017) further reported that CO, fertilisation and
climate change drove the increase in SCA for sites >50°N, but that at mid-latitude sites land use, oceanic fluxes, fossil-fuel
emissions, as well as trends in atmospheric transport may have contributed to the SCA trends.

Attributing changes in the seasonal amplitude of atmospheric CO, to specific processes requires analysing net surface
fluxes as a function of changes in gross fluxes (photosynthesis, respiration, disturbance), which LSMs can provide. However,
quantifying bias in CO, concentration at a given site from a bias in land-surface model (LSM) simulated fluxes is difficult,
since the biases can be affected by many other factors such as transport model characteristics, forcing data used, among others.

Atmospheric inversions provide a consistent framework for assimilating in-situ CO, concentration observations to estimate
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net CO, surface fluxes while accounting for errors in the prior fluxes and for some errors in the ATM (Peylin et al., 2013). At
large spatial scales, the trends in SCA can be related with trends in the seasonal amplitude of CO, fluxes (i.e. SCA of NBP,
SC An pp). Such an approach has been used to analyse trends in net CO, uptake in boreal regions (Welp et al., 2016).

The spatiotemporal distribution of terrestrial and oceanic surface fluxes estimated by inversions provides thus direct insight
about the regional patterns of SC Anpp that is fully consistent with the amplitude of CO, concentrations in all stations of
the observational network used and constitute a direct benchmark for SC A 5 pp simulated by LSMs. Here, we use top-down
(inversions (Chevallier et al., 2010; Rédenbeck, 2005)) and bottom-up (TRENDYv6 LSMs (Le Quéré et al., 2018)) estimates of
terrestrial CO, fluxes at northern extra-tropical latitudes between 1980-2015 to: (i) assess the ability of those LSMs to simulate
inversion-based trends in SC Ay g p; (ii) attribute the trends in SC' Ay pp to specific regions in the Northern Hemisphere; (iii)
attribute the relative importance of drivers using the ensemble model framework.

Trends in SC Ay gp from the inversions are based on multiple in-situ measurements and therefore provide a reference (and
respective uncertainty) for evaluating the regional attribution by LSMs. Regarding process attribution, LSMs allow separating
the contribution of different drivers through factorial simulations. However, the attribution by LSMs cannot be easily validated,
which is especially problematic given that LSMs underestimate the trends in SCA at latitudinal scale (Thomas et al., 2016).
Thus, we compare: (i) the process attribution by LSMs (as e.g. in Thomas et al. (2016); Piao et al. (2017))), (ii) the statistical
attribution based on inversion fluxes, (iii) the statistical attribution based on LSMs fluxes, directly comparable to the inversion
results and (iv) the statistical attribution based on the differences between factorial simulations (cross-evaluation of (i) and
(iii)).

Our approach allows thus to constrain SC' Ay g p trends at hemispheric and regional scales from both top-down (inversions)

and bottom-up (LSMs) methods and to evaluate the process attribution by LSMs using top-down estimates of SC Angp.

2 Data
2.1 Atmospheric inversions

The inversion of a transport model to infer surface fluxes from concentration measurements is an ill-posed problem due to the
dispersive nature of transport in the atmosphere and to the finite number of available measurements. This ill-posedness can be
compensated by using some prior information about the fluxes to be inferred. This prior information also drives the separation
between natural and fossil fuel emissions in the estimation. In order to illustrate the diversity of the inversion results, we
take the example of two inversions systems that provide results for the study period between 1980 and 2015. We analysed
monthly surface CO, fluxes estimated by the inversion systems from the Copernicus Atmosphere Monitoring Service (CAMS)
(Chevallier et al., 2005, 2010) and from Jena CarboScope (Rodenbeck et al., 2003; Rodenbeck, 2005). The two inversions used
here solve for fluxes on their ATM grid, thus minimising aggregation errors for large regions (Kaminski and Heimann, 2001).

The CAMS version r16v1 (http://atmosphere.copernicus.eu/) provides estimates of ocean and terrestrial fluxes at 1.9° lati-
tude x3.75° longitude resolution. The CAMS inversion system assimilates observations from a variable number of atmospheric

CO; monitoring sites (119 in total providing at least 5 years of measurements) and uses the transport model from the LMDz
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General Circulation Model (LMDz5A) nudged to ECMWF-analysed winds. More details can be found in (Chevallier et al.,
2010).

The CarboScope v4.1 (available at http://www.bgc-jena.mpg.de/CarboScope/?ID=s) provides several versions that assimi-
late a temporally consistent set of observations. We used these versions for the study period (1980-2015) to test the influence of
the number of assimilated sites on the results. The s76, s85, and s93 versions have assimilated observations from 10, 23, and 38
sites since 1976, 1985, and 1993, respectively. Surface fluxes (ocean and land) are provided at the latitude/longitude resolution
of 4°x5° of the TM3 atmospheric transport model is used (Rddenbeck, 2005). In this version, the atmospheric model is forced
by the National Centers for Environmental Prediction (NCEP) meteorological fields.

CarboScope further provides a sensitivity analysis of the s85 version fluxes to different parameters of the inversion. The
sensitivity tests performed are: “oc" — fixing the ocean prior; “eral" - forcing the inversion with fields from ERA-Interim re-
analysis instead of NCEP; “loose” and “tight” - scaling the a-priori sigma for the non-seasonal land and ocean flux components
by 4 (dampening) and 0.25 (amplification), respectively; “fast” - reducing the length of a-priori temporal correlations; “short”
- reducing the length of a-priori spatial correlations. The resulting latitudinally-integrated SC'A 5 g p and respective trends are
shown in Figure S2.

Since CAMS includes a larger, but time-varying, number of multi-year air-sampling sites as they are available, it constrains
better spatial patterns, while CarboScope keeps a fixed set of sites covering a given period, using less sites, but avoiding

artefacts in the time series related to the appearance or disappearance of measurement sites.
2.2 Land-surface Models

Land-surface models (LSMs) provide a bottom-up approach to evaluate terrestrial CO, fluxes (i.e. net biome productivity,
NBP), and allow deeper insight into the mechanisms driving changes in C-stocks and fluxes. The TRENDY intercomparison
project compiles simulations from state-of-the-art LSMs to evaluate terrestrial energy, water and CO, exchanges since the pre-
industrial period (Sitch et al., 2015; Le Quéré et al., 2018). We use LSMs from the TRENDY v6 simulations for 1860-2015. To
identify the contributions of CO, fertilisation, climate, and LULCC and management to the observed changes in SCAxpp,
we use outputs from three factorial simulations.

The models in simulation S3 were forced by (i) atmospheric CO, concentrations from ice core data and observations, (ii)
historical climate reanalysis from the CRU-NCEP v8 (Viovy, 2016; Harris et al., 2014) and (ii) human-induced land-cover
changes and management from a recent update of the Land-Use Harmonization (Hurtt et al., 2011) prepared for the next set
of historical CMIP6 simulations, LUH2v2h (described below). Most models still do not represent many of the management
processes included in LUH2v2h, though. As summarized in Table Al in Le Quéré et al. (2018), four models do not simulate
wood-harvest, and three do not simulate cropland harvest. Two models simulate crop fertilization, tillage and grazing.

The models in simulation S2 were forced by (i) and (ii) with fixed land-cover map from 1860. Simulation S2 estimates
“natural” fluxes, and the difference between S2 and S3 outputs corresponds to anthropogenic CO, fluxes from LULCC. The
models in simulation S1 were forced by changing atmospheric CO, and no climate change (recycling 1901-1920 values to

simulate interannual variability) or LULCC. S1 thus provided changes in the terrestrial sink due to CO, fertilisation, and the
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difference between S1 and S2 indicates the influence of climate change only. However, management practices (e.g. wood-
harvest), when simulated, are already included in S1 and S2 for some models. A baseline simulation with none of these effects
(SO) was also performed to check for residual variability and trends. We selected only models providing spatially-explicit
outputs for the four simulations (S0, S1, S2 and S3) at monthly intervals (to evaluate seasonality, Supplementary Table 1).

We used NBP outputs selected for the period common to the inversion data, i.e. 1980-2015. NBP corresponds to the simulated
net atmosphere-land flux (positive sign for a CO; sink), i.e. gross primary productivity (GPP) minus total ecosystem respiration
(TER), fire emissions and fluxes from LULCC and management (e.g. deforestation, agricultural and wood harvest, and shifting

cultivation). All model outputs were resampled to a common regular latitude/longitude grid of 1x1°.
2.3 Land cover and management
2.3.1 LUH2v2h

The LUH2v2h (Hurtt et al., 2011) (available at http://luh.umd.edu/) provides historical states and transitions of land use and
management in a regular latitude/longitude grid of 0.25x0.25°, covering 850-2015 at annual time intervals. Land-use states
distinguish between primary and secondary natural vegetation (and forest and non-forest sub-types), managed pastures and
rangelands, and multiple crop functional types. The updated data set includes several new layers of agricultural management,
such as irrigation, nitrogen fertilisation, and biofuel management, and spatially explicit information about wood harvest con-
strained by LANDSAT data. Each LSM, however, may not simulate all the processes introduced in LUH2v2h, so the S3 results

from each simulation might not be directly comparable.
2.3.2 ESA-CCI Land-Cover

Land-cover information in LUH2v2h is combined with partial information on land use (e.g. rangeland in LUH2v2h can be
either grassland or shrubland with low grazing disturbance). We therefore compared this information to annual land-cover
maps at a latitude/longitude resolution of 0.5x0.5° based on the 300-m satellite-based land-cover data sets from ESA-CCI
LC (https://www.esa-landcover-cci.org/?q=node/175) for 1992-2015. Data are provided for different vegetation types, but here
were aggregated for four main land-cover classes: forest, shrubland, grassland, and cropland. The average distribution of these
classes (forest and shrubland aggregated for readability) is shown in Figure 2a. LUH2v2h was used for the statistical analysis
of inversion and the LSM drivers (because it was the data set used to force the models), and ESA-CCI data were used for the

analysis of satellite-based vegetation data sets, and results were additionally compared with LUH2v2h.
2.4 Satellite-based vegetation datasets

We further evaluated trends in the activity and growth of vegetation for the different land-cover classes using three satellite-
based data sets: leaf-area index (LAI), net primary production (NPP), and aboveground biomass (AGB) stocks. The LAI data
set was calculated from satellite imagery from Global Inventory Modeling and Mapping Studies (GIMMS LAI3g) described
by (Zhu et al., 2015) for 1982-2015. LAI data were provided in two time-steps per month on a regular latitude/longitude
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grid of 1/12° (subsequently aggregated to 0.5°). Smith et al. (2016) used the MODIS NPP algorithm and data for LAI
and the fraction of photosynthetically active radiation from GIMMS to produce a 30-year global NPP data set, provided at
monthly timescales for 1982-2011 at a latitude/longitude resolution of 1x1°. The data are available at the NTSG data portal
(https://wkolby.org/data-code/). AGB stocks can be derived from estimates of vegetation optical depth derived from passive-
microwave satellite measurements. (Liu et al., 2015) produced a 20-year data set of AGB stocks for 1993-2012 based on mea-
surements from a series of passive-microwave sensors. The data set is provided at a latitude/longitude resolution of 0.25x0.25°
in annual time intervals and is available at http://www.wenfo.org/wald/global-biomass/ (last access 13/02/2018). We tracked
changes in LAI, NPP, and AGB stocks for different land-cover types over time by selecting periods of at least 20 years com-
mon to ESA-CCI LC and the vegetation data sets (1992-2012 for LAI, 1992-2011 for NPP, and 1993-2012 for AGB stocks).

Vegetation variables were then aggregated for the four land-cover types at each time interval to account for land-cover changes.

3 Methods
3.1 Trends in seasonal-cycle amplitude (SCA)

The seasonal amplitude of CO, concentration is modulated by higher ecosystem CO, uptake during the growing season and
increased emissions during the release period (TER) and thus controlled by the seasonal amplitude of NBP. We calculated
SCApnpp as the difference between peak uptake and trough for each year, at pixel scale shown in Figure 1a. However, since
inversion fluxes have large uncertainty at pixel-level we focused our analysis on SCA trends estimated from aggregated NBP
over latitudinal bands or Transcom3 regions (Baker et al., 2006). Because we do not impose the timing of peak and trough,
changes in SC'A g p can be affected by the relative phase changes of GPP versus TER.

The trend in SC Ay pp was calculated by a least-squares linear fit of annual values for 1980-2015, and confidence intervals
were calculated based on the Student’s t-distribution. We tested the robustness of estimated trends of inversions and LSMs for
shorter periods by removing the first and last 1-10 years and trends of interannual variability by randomly removing 5 and 10
years of data 104 times. The significance of these trends was calculated using a Mann-Kendall test. We also compared different
versions of CarboScope to evaluate the influence of the assimilated network size on the SC Ay pp trends (Figure S1). We

further calculated the trends for each of the sensitivity tests from CarboScope s85.
3.2 Process attribution

The three TRENDY experiments allow evaluating separately the effects of CO, fertilisation, climate change, and LULCC in
the models. The differences between S1 and S2 and between S2 and S3, however, could not isolate specific processes that may
have contributed to the trend (e.g. cropland expansion versus afforestation, or precipitation versus temperature). Furthermore,
the LSMs may miss or simulate poorly certain processes that could influence SC A pp. Therefore, the attribution of drivers
by the models is uncertain and should be cross-evaluated. Because inversions do not allow such partitioning between processes,

a possible solution is to compare statistical attribution to drivers in inversions and LSMs.
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We therefore compared the sensitivity of SC Ay pp estimated by the inversions and the LSMs by fitting a general linear
model (GLM) using the iteratively reweighted least squares method to eliminate the influence of outliers (Gill, 2000; Green,
1984). We tested the following variables (after unity-based normalisation) as predictors: fertilization, irrigation, wood harvest,
growing-season precipitation, growing-season temperature, atmospheric CO, concentration, change in extent of cropland and
forest. These variables were taken from the corresponding datasets used to force TRENDYv6 models. All possible combina-
tions of n predictors (n = 1,2,...,7) were tested, and for each value of n, the “best” model (according to Akaike’s information
criterion) was chosen separately for each dataset. Above n =4 no model showed improved fit compared to the models with
less predictors. The coefficients from the GLM fit for each dataset are shown in Figure S5.

We further tested the robustness of the statistical relationships by fitting the GLM to the differences between each TRENDYv6
experiment. The significant predictors in the GLM fit to the LSMs in S3 should be detected in the corresponding factorial sim-
ulations, e.g. predictors associated with climate should be consistent for the fluxes estimated by the difference between S2
and S1 (effects of climate). The GLM fit to the partial fluxes for the effects of LULCC (S3-S2), climate (S2-S1), and CO,

fertilisation (S1-S0) are shown in Figure S6.

4 Results
4.1 Large scale patterns
4.1.1 Top-down estimates

Both inversions estimate increasingly positive trends in SC' Ay pp with increasing latitude, even though CAMS shows het-
erogeneous patterns in North America with strong decreasing trends for mid-latitudes (Figure 1a, S1). Both inversions agree
on significant positive SC Ay pp trends north of 40°N (defined here as band L~ 49n) and non-significant trends for 25-40°N
(band Los_49n, Figures 1b). In the L~ 49 band, CAMS and CarboScope s76 v4.1 estimate an SC' Ay g p increase of 17.3+4.5
TgC.yr? and 13.34:3.3 TgC.yr2, respectively. The uncertainties given for SC' A pp trends represent here the uncertainty of
the linear fit due to the year-to-year SC Ay pp variability (Methods). The difference between the CAMS and CarboScope in-
versions reflects part of the uncertainty in inversions due to their different choices in the ATM (including different atmospheric
forcing and spatial resolution), the set of assimilated CO, data, the prior fluxes, and the a-priori spatial and temporal correlation
scales, and is comparable to the uncertainty of the linear fit due to inter-annual variability.

This finding is corroborated by two further analyses of inversion uncertainties:

(1) While both inversions assimilate atmospheric CO, measurements from Point Barrow, CAMS increasingly assimilates
many other sites in the NH as they become available, helping to better constrain the CO, fluxes in mid- to high-latitudes with
time. Assimilating a non-stationary network of stations, however, possibly leads to spurious additional trends in SCAnpp.
To test this, we use different runs provided by CarboScope using more sites (but still fixed in number for each run, Figure S2)
for more recent periods. The results from CarboScope version s85 v4.1 (1985-2015) are generally consistent with CAMS, but
version $93 v4.1 (1993-2015) estimates much stronger SC A ypp trends (Table S1). A higher SC Ay pp trend in the period
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1993-2015 is reported by both CAMS and CarboScope, which estimate very similar trends in L+ 4o (19.5 TgC.yr? and 19.2
TgC.yr? respectively).

(2) CarboScope provides a set of sensitivity runs for s85 v4.1, varying some of the inversion’s parameters (Figure S3).
Changes in the meteorological fields driving the transport model and the prior ocean fluxes have the largest effect on the
SCAnpp trends, giving L4y trends of 8.6+4.9 TgC.yr? (ERA-Interim instead of NCEP) and 13.9+5.6 TgC.yr? (fixed
ocean), respectively, both well within the uncertainty range (interannual variability affecting linear fit to SC Ay pp trend)
estimated by the standard CarboScope s85 v4.1 (11.745.0TgC.yr?).

In summary, the ability of inversions to quantify the SC A x g p trend is mostly limited by the intrinsic year-to-year SC Ay pp

variability, less so by the amount of information available through the atmospheric data or by inversion settings.
4.1.2 Bottom-up estimates

The large-scale patterns of SCAxpp trends from the LSM Multi-Model Ensemble Mean (MMEM) of simulation S3 (all
forcings) are consistent with CarboScope inversion (Figure 1a). The MMEM estimates are within the range of the inversions for
most latitudes (Figure S1), but always at the lower end of SC' A pp trends reported by inversions. Consistent with inversions,
LSMs report a significant trend in L~ 4on and a very weak (non-significant) trend in SCAyxpp in Los_4on (Figure 1b).
The overall MMEM trend in L~ 4oy is significantly lower than in inversions (9.5+3.4 TgC.yr?, i.e. 55-71% of inversions’
estimates. The agreement between LSMs and inversions also varies depending on the period and set of inversions considered
(LSMs capture 65-91% of inversion trends in 1985-2015 and 74-75% in 1993-2015, Table 1). The MMEM estimate for 1985-
2015 (10.644.5 TgC.yr?) is in fact, even higher than the CarboScope inversion with different meteorological fields (8.6+4.9
TgC.yr’z). These results indicate that, despite a general underestimation of SCAyxpp trend in Ls4on during 1980-2015 as
compared to top-down estimates, the LSMs simulate the main spatiotemporal patterns in SCAypp trends consistent with
inversions estimates, especially when accounting for the uncertainty in the latter.

To understand if recent improvements to the set of LSMs and their forcing in TRENDYv6 may have improved their
performance in reproducing the SC Ay pp trend, we compared SC A pp trends from the previous intercomparison round
(TRENDYv4). The MMEM from v6 estimates an SC Ay pp trend in L+ 40n 43% higher than in than v4 (MMEM shown in
Table S1, but evaluated for individual models). The specific reasons for improvement are hard to identify because of multiple
model-dependent changes in the forcing, process simulation and parameterizations from v4 to v6 (Table 4 in (Le Quéré et al.,
2018)).

In summary, we showed that the TRENDYv6 ensemble mean SCAyxpp trend captures the positive trends in the high
latitudes and the lack of trend in the mid-latitudes given by inversions, and under-estimates the magnitude of the high latitudes

SC' AN pp trends by 9-45%, depending on the inversion considered and period analysed.
4.2 Regional attribution

The comparison of SC' Ay pp trends in large latitudinal bands may be useful in diagnosing general patterns, but is less useful

to diagnose drivers of trends (e.g. climate, agriculture), since ecosystem composition, land management and climate effects are
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not necessarily separated along a latitudinal gradient. However, the comparison of inversions and models at pixel scale is also
not advisable, because the sparse atmospheric network does not allow constraining the fluxes at this scale. We thus compared
inversions and LSMs for the SC' A 5 g p trends over five sub-continental scale regions: boreal and temperate Eurasia and North
America regions, and Europe (“TransCom3” regions, Figure 2). We then use LSMs for attributing SC' Ay g p trends to different
drivers using their factorial simulations (Methods).

Inversions and LSMs consistently attribute the increase in SC' Ay g p mainly to boreal Eurasia, both in area specific (Figure
la) and integrated values (Figure 2b, 5.3-7.1 TgC.yr™ for inversions and 4.6 TgC.yr> for MMEM, respectively) and to Europe
(1.9-3.7 TgC.yr? and 2.3 TgC.yr?). The LSMs ascribed the trends in boreal Eurasia approximately equally to climate change
and CO; fertilisation (S1 and S2), with LULCC having a slight negative (i.e. decreasing) effect (compare S2 and S3), consistent
with the results by (Piao et al., 2017). In Europe, LSMs indicate negative contributions from both climate and LULCC. The
negative effect of climate may be linked to increasingly drier conditions in this region (Greve et al., 2014) and to strong
heatwaves in Europe in the early 21y, century (Seneviratne et al., 2012). The negative contribution of LULCC indicated by
LSMs in Europe does not support the idea that agricultural intensification or expansion drove an increase in SC Ay pp and
is discussed further on. In temperate Eurasia, inversions disagree on the sign of SC Ay pp trends and LSMs indicate weak
positive trends dominated by the CO, fertilisation effect. In boreal North America, LSMs estimate SC Aypp trends very
close to CarboScope estimates, mainly attributed to CO, followed by climate, whereas CAMS points to a trend close to zero
because of cancelling regional trends with opposing sign (Figure 1a). CAMS and CarboScope point to increasing SCAxpp
in temperate North America (1.4-1.6 TgC.yr2), but the LSMs do not indicate any significant change (simulation S3). CAMS
(which uses prior information with smaller a-priori uncertainties than CarboScope, together with a denser network) shows
sharper regional differences than CarboScope, which illustrates that there are still substantial differences in the inversion at the
scale of continental regions regarding SC' Ay gp trends.

Aggregated over the two latitudinal bands (Figure 2c), the MMEM indicates a dominant positive effect (increasing SC Ay gp)
of CO, fertilization both in Los_49n5 and Ls4on. In Los_ 40, the CO, effect is offset by other factors: S1 differs significantly
from S2 and S3, which have lower trends of SCAnpp. In Ls 49N, the MMEM points to a positive effect of climate change in
SC AN pp trends, thus additive to the CO, effect. The MMEM suggest a negligible contribution of LULCC to the SCAnpp
trend in both latitudinal bands. The relative contributions of LULCC, climate and CO, however, differ between LSMs (Figure
S4). Most models nevertheless agree on non-significant SC Ay pp trends in Los_49n as well as on the predominant role of
CO, fertilisation and a non-significant contribution of LULCC to the trends in SCAnpp in Ls4on. Interestingly, models
including carbon-nitrogen interactions had the weakest SC'A y g p trends (CABLE, ISAM and LPX-Bern), excepting CLM4.5

but we cannot draw conclusions from a small sent of carbon-nitrogen models.
4.3 Driving processes

Figure 3 shows the relative contributions of the predictors (weighted by their trends) found to SC A pp trends in both latitu-

dinal bands. The coefficients of the GLM fit are shown in Figure S5.
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The GLMs provide a better fit the trend of SCAxpp in Lsyon (explaining 57-74% of the variance, Table S2) than for
Los_40n (8-49% only). The GLM fit to inversions and to the MMEM identified CO, fertilisation as the most important factor
explaining (statistically) the SC A g p trends in both latitudinal bands, consistent with S1 (Figures 1, S4, S5 and S6), although
the CO, fertilization effect was weaker for the GLM fit to LSMs than for inversions in region L 4. The statistical models
for inversions and LSMs agreed on a significant negative contribution of warming in both latitudinal bands, but stronger in
Los_40n. GLM models fitted to LSMs and CarboScope also point to changes in forest area contributing to increase SC Ay gp,
and changes in crop area have a negative effect in SC Ay gp from LSMs. In Los_ 40, the GLM fit to LSMs further points to a
small negative contribution of wood-harvest to SC' Ay pgp trends, and for CAMS negative effects of irrigation and fertilization
are also significant. The statistical attribution of SC A y g p trends in LSMs is generally consistent with the factorial simulations,
but is mostly clear for the CO, fertilization effect than for the other drivers. In the difference between factorial simulations
(Figure S6), some drivers appear to have strong interactive effects, e.g. the effect of CO; is significantly negative for S3-
S2 (LULCC). This could be explained by higher emissions from LULCC under higher CO, concentrations from the loss of
additional sink capacity (Pongratz et al., 2014). The key role of CO, fertilisation in the observed changes is in line with Piao
et al. (2017), but our results challenge some of the previously proposed hypotheses to account for the increase in seasonal CO,

exchange, as addressed below.

5 Discussion
5.1 Confronting Hypoteses
5.1.1 Contribution of LULCC

Agricultural intensification and expansion occurred mainly in latitudes below 45°N (Gray et al., 2014), and inversions and
LSMs reported instead a peak in the amplitude of land surface CO, exchange for latitudes above 45°N (Figure 1 and S1). Fur-
thermore, our regional attribution identifies Eurasia as the region contributing most to increasing SCA; this region is dominated
by natural ecosystems (Figure S3) and has experienced very little land use change (Verburg et al., 2015) over the past decades.
Additionally, factorial LSM simulations indicate a negligible contribution of LULCC and management to SC' Ay pp trends at
latitudinal-band scale but also regionally (Figures 1c and 2).

This, though, could not in itself falsify the hypothesis that agricultural intensification is a key driver of SC Ay pp trends,
because most LSMs still do not include processes that could intensify cropland net primary productivity (NPP) over time
such as better cultivars, fertilization, irrigation. Still, management practices are not a significant predictor for GLM fitted to
LSMs, but also not for inversions, excepting CAMS. CarboScope further identifies a negative effect of cropland expansion to
SCANpp in L 4on rather than a positive one, which partly challenges the contribution of cropland expansion (Gray et al.,
2014) to SC Ay gp. Our results are consistent with those by Smith et al. (2014) that show that net primary productivity (NPP)
generally decreased following conversion from natural ecosystems to cropland, except in areas of highly intensive agriculture

such as midwestern USA. Increasing crop productivity (intensification) could partly explain increasing SC' Ay pp. However,
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satellite-based data for LAI (Zhu et al., 2016), NPP (Smith et al., 2016) and aboveground biomass (AGB) carbon stocks (Liu
et al., 2015) for different land-cover classes from ESA-CCI LC (Figure S7) indicate that the increase in crop productivity
accounted for only a small fraction of the hemispheric trends in ecosystem productivity, consistent with crop productivity
stagnation in Europe and Asia identified by Grassini et al. (2013). We also compared the trends in remote-sensing variables for
land-cover classes from LUH2v2h, with similar results.

Previous studies suggesting a large role of the green revolution in SC'A g p trends have focused on a longer period, starting
in the 1960s. The acceleration of SC Axpp reported by inversions and LSMs (Table 1) concurrent with crop productivity
stagnation indicates that since the 1980s agriculture intensification is not likely to be the main driver of the increase in SCA.
Even in the intensive agricultural areas in the US Midwest, CAMS estimates contrasting negative/positive trends (Figure 1a,
S8). Eddy-covariance flux measurements (only for 7-13 years) in the areas of intensive agriculture in the USA show a weak

relationship between trends in NBP and trends in SC A 5 g p, showing mostly non-significant trends in SC A gp (Figure S8).
5.1.2 Contribution of warming

We found that warming during the growing season had a negative effect on SC'A 5 g p trends in both latitudinal bands, although
this effect is uncertain for LSMs in L~ 49n. Annual temperature used in the statistical models was also negatively correlated
with SC AN pp, but the correlation was only significant for CAMS.

The negative relationship with growing-season temperature (T) at the mid-latitudes may be explained by warmer temperature
increasing atmospheric demand for water (Novick et al., 2016) and inducing soil-moisture deficits in water-limited regions in
summer (Seneviratne et al., 2010), or increased fire risk (Pefiuelas et al., 2017) that reduce the summer minimum of SCAnpgp.
This negative effect of temperature can explain the negative contribution of climate to the simulated SC Aypp trends in
Los_40n given by the factorial simulations (Figure 2c¢).

The negative statistical relationship found between the trend of SCAnpp and T in Ls49n challenges the assumption that
warming-related increase in plant productivity in high-latitudes necessarily increases the seasonal CO, exchange (Keeling et al.,
1996; Graven et al., 2013; Forkel et al., 2016). Although the MMEM shows a small positive contribution of climate in L~ 4on,
LSMs diverge on the contribution of climate in this latitudinal band (Figure S4). Moreover, the factorial simulations in Figure
2c allow evaluating the impact of changes in all climate variables (e.g. also rainfall and radiation), in addition to temperature. A
negative relationship between T and SCA has, though, also been reported by (Schneising et al., 2014) for interannual changes
in the SCAngp of total column CO, for 2004-2010. Yin et al. (2018) have further shown that, at latitudes between 60°N
and 80°N, the relationship between SCA NBP and T has transitioned from positive in the early 1980s, to negative in recent
decades, reconciling the results by Keeling et al. (1996) and Schneising et al. (2014).

In Figure S9 we present a conceptual scheme of the impacts of warming in SC A 5 g p through its component fluxes. Gener-
ally, warming in high-latitudes has been associated with longer growing-season and increased GPP (Piao et al., 2008), which
would contribute to increase SC'A g p through increased productivity during the “uptake period" and increased decomposi-
tion (due to more litter) during the “release period". However, a weakening of this relationship has been reported (Piao et al.,

2014; Penuelas et al., 2017). Other processes can, though, contribute to the negative relationship between SCAyxpp and T
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reported here and in other studies. The empirical negative relationship between trends in SC Ay pp and warming at the higher
latitudes may be due to either (i) a stronger effect of T on total ecosystem respiration (TER) than on GPP during the “uptake
period”; (ii) a negative response of ecosystem productivity to warming during the “uptake period”; (iii) indirect negative effects
of T on decomposition during the “release period”.

Evidence nevertheless supports negative effects of warming on SCA trends. Temperature increase in recent decades has been
associated with widespread reduction in extent and depth of snow cover (Kunkel et al., 2016) and in the number of days with
snow cover (Callaghan et al., 2011). Snow has an insulating effect, so snow-covered soil during winter can be kept at relatively
constant temperatures, several degrees above the air temperature (>10°C) which promotes respiration of soil C (Nobrega and
Grogan, 2007). Soils become subject to more fluctuations in temperature, and become colder, as the snow cover recedes or
becomes thinner. Yu et al. (2016) reported that respiration suppression due to a reduction in snow cover in winter may account
for as much as 25% of the increase in the annual CO; sink of northern forests. A decrease in respiration in response to warming
during the release period could thus decrease SC A 5 g p, but the effect of growing-season temperature was stronger in our study.
The expansion of vegetation in Arctic tundra, particularly shrubland, has been linked to warming trends, but also depends on
soil-moisture and permafrost conditions (Elmendorf et al., 2012). Many regions of dry tundra and low arctic shrubland (Walker
et al., 2005) experience summer drought or soil-moisture limitations, even though northern regions are usually considered to be
energy-limited (Greve et al., 2014). Indeed, Myers-Smith et al. (2015) found a strong soil-moisture limitation of the (positive)
sensitivity of shrub growth to temperature in summer, possibly associated with the limitation of growth due to drought and/or
with reduced growth and dieback due to standing water during thawing. CAMS indicates a decrease in SC A pp in eastern
regions in boreal North America (Figure 1a), where Myers-Smith et al. (2015) reported negative sensitivity of shrub-growth
to temperature. The coarse network and large correlation lengths used by CarboScope do not allow such regional contrasts to
be resolved. Most process-based models lack a detailed representation of processes described above — e.g. a realistic effect
of snow insulation on soil temperatures, soil freezing and thawing (Koven et al., 2009; Peng et al., 2016; Guimberteau et al.,
2017) — potentially overestimating the net sink response to temperature changes (Myers-Smith et al., 2015). Moreover, soil-
moisture limitation due to temperature increase could also contribute to decrease TER by limiting microbial activity, which is
currently not simulated in most LSMs. This may in turn explain why LSMs underestimate the negative effect of temperature

in SC Ay gp in the high-latitudes compared to CAMS (Figure 3 and S4).
5.2 Evaluating model biases

Wenzel et al. (2016) proposed that the observed sensitivity of SC Axpp to CO, was an emergent constraint on future terrestrial
photosynthesis, but their study focused on simulations by an earth-system model that excluded the effects of climate change
(i.e. the radiative feedback of CO, to climate was not considered). Our results are consistent with a strong increase in the peak
uptake due to the effect of CO, fertilisation driven by gross primary production (GPP) as proposed by Wenzel et al. (2016). The
negative effect of temperature in our study (Figure 3), although weaker than the positive effect of absolute CO, concentration,
suggested that warming partly cancelled out the increase in SC App expected from the effect of fertilisation alone. We

propose that other processes partly control SC Ay pp trends linked to reduced decomposition under lower snow-cover (Yu
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et al., 2016) or to emerging limitations to growth in response to water-limitation (Elmendorf et al., 2012; Myers-Smith et al.,
2015). Additionally, while the sensitivity of productivity to the CO, fertilisation effect is expected to decrease, whereas the
control of respiration by temperature should increase nonlinearly (Piao et al., 2014, 2017; Pefiuelas et al., 2017), suggesting a
progressively dominant (negative) influence of warming on SC' Ay pp. The degree of such an offset would likely depend on
the thresholds of soil temperature and water limitation that are complex and thus difficult to assess and require process-based
modelling. Our results imply that future constraints of productivity based only on the CO, effect (as in Wenzel et al. (2016))
may overestimate future GPP.

We evaluated whether the differences between the observed SC' Ay pp trends (significant only in L~ 49x) and those simu-
lated by the LSMs could be associated with the modelled sensitivities to atmospheric CO, concentration (CO,) and growing-
season temperature (T) in L~ 4oy (Figure 4). In Figure 4, only models with a too small sensitivity of SCAxpp to T produce
a realistic trend of SC Ay gp. In contrast, the models indicating sensitivities to T and CO, more similar to those estimated by
the inversions tend to underestimate the trend in SCA.

Why are the LSM sensitivities of SCA to T positively correlated with their long-term SC Anpp trend (Figure 4), even
though CO, is a stronger driver of the simulated SCAyxpp trend (Figure 3)? We found a clear relationship between the
model bias in the trend of SCAxpp and the sensitivity to CO, fertilisation in S3 (in line with Wenzel et al. (2016)), but
we also found a compensatory effect, where models that overestimate the sensitivity of SCA to T tend to underestimate the
sensitivity to CO, and vice-versa. LSMs tend to overestimate (underestimate) sensitivity of SCAnpp to T (CO;), compared
to the observation-based constraints from inversions. LSMs often compensate too strong (or too weak) simulated water-stress
or temperature sensitivity by adjusting photosynthesis parameters (that control CO, fertilization) during model optimization to
match the observed net terrestrial sink. This compensatory effect has previously been reported by Huntzinger et al. (2012) for
the mean terrestrial sink; we find that it could also affect the trends in seasonal CO, exchange.

We argue that the trend of SC' Ay gp can differ between models due to: a) differences in their NPP response to T and COy;
b) differences in turnover times of short-lived C pools by which increased NPP is coupled to increased winter decomposition;
(c) phase shifts between GPP and ecosystem respiration. The latter may be associated with errors in the phase and amplitude
of simulated ecosystem respiration, arising from factors such as: (i) representing soil carbon stocks as pools with discrete turn-
over times and associated effective soil depths Koven et al. (2009) (ii) neglect of seasonal acclimation effects on autotrophic
and heterotrophic respiration. The sensitivities of NPP to CO, and T between models are strongly and consistently correlated
with the compensatory effect of the model parameterisations (Figure S10), but we find no clear relationship between the biases
of the modelled SC' A pp trend and the sensitivity of NPP to T (Figure S11), suggesting a key role of respiration. Indeed, the
models with SCAxpp trends closer to observations tend to be associated with a lower sensitivity of ecosystem respiration
to growing-season temperature (Figure S4c). Too large turnover of short-lived pools in a model should produce too small
increase of the SC'Axpp amplitude (i.e. increased respiration during the “uptake period" followed by too little during the
“release period") for a given sensitivity of NPP to CO, or climate. A recent study by Jeong et al. (2018) has reported that

ecosystem carbon-cycle models (not used in this study) underestimated changes in carbon residence times in northern Alaska.
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The evaluation of the effect of model turnover times in SC' Ay g p requires a deeper analysis of transfers between litter and soil

organic carbon pools and can be verifiable in future simulations.

6 Conclusions

Based on our assessment of atmospheric observations and most advanced land-surface model simulations the most likely ex-
planation of the seasonal cycle of atmospheric CO, at high latitudes is the CO, fertilization of photosynthesis in unmanaged
high latitude ecosystems, especially in the Eurasian Boreal forests. Our study further points to key processes that need to be
developed to better simulate NBP responses to changing climate, especially to Arctic warming, in particular productivity limi-
tations and the decomposition terms. Our results indicated that the signal of the SC' A y g p trend contains valuable information

for the turnover times of short-term pools, which await further investigation.
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Figure 1. Variability of seasonal-cycle amplitude and trends from the inversions and LSMs. (a) Geographical distribution of SC A n g p trends
from the inversions (CAMS and CarboScope) and the multi-model ensemble (MME) mean from TRENDY V6 simulation S3 (all forcings).
Both inversions estimated predominantly positive trends in SC Ay pp >40°N (Figure S1), so we defined two latitudinal bands, L~4on and
Las_4on, for flux aggregation. (b, ¢) Aggregated SC Anpp time-series estimated by the inversions (CAMS in black and CarboScope s76
in grey) and S3 MME mean (red) for L~ 4on and Las_40n respectively. The dashed lines indicate the linear fits used to calculate the slopes

of the trends (corresponding colours), and the slopes and confidence intervals (95%) are provided.
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Figure 2. Regional distribution of the dominant land-cover types and SC Ay g p trends. (a) Land-cover map averaged over the study period
for the three main land-cover classes (forest/shrubland, grassland, and cropland) based on ESA-CCI annual land-cover data (1992-2015
average); (b) The continental regions correspond to the regions defined by Baker et al. [2006] and are delimited by bold lines: boreal and
temperate North America (BorNA and TempNA), Europe (Eur), and boreal and temperate Eurasia (BorEA and TempEA); (c) Comparison of
the SC An pp trends from the inversions to the trends estimated by the LSM experiments: S3, S2 (no LULCC), and S1 (no LULCC and no
climate change). The bars for the inversions and LSMs indicate the average trend over each latitudinal band. The error bars for the inversions
indicate the 95% confidence levels for the trend values, and the vertical lines for the LSMs indicate inter-quartile ranges of the MME. The

95% confidence interval for the MME mean was also calculated (see Methods).
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Figure 3. Statistical attribution of drivers of SC' A pp estimated by the inversions and LSMs. The main drivers of SC Ay gp are presented

for (a) L>40n and (b) Los_40n and are calculated as the product of the coefficients of a general linear model fit on SC'A y g p using a number

of predictors (normalised) and their corresponding trends. Fertilization, irrigation, wood harvest, growing-season precipitation, growing-

season temperature, atmospheric CO, concentration were tested as predictors, and the best fit was chosen for each dataset: CAMS (dark

grey), CarboScope 876 (light grey), and the MMEM (red). The bars indicate the contribution of each predictor to the trend in SCAnBP,

error bars indicate the corresponding 95% confidence intervals, and the symbols indicate significant MRLM fits (two, one asterisks and

crosses, p<0.01, p<0.05 and p<0.1 respectively).
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Figure 4. Emerging relationships between LSM sensitivities to climate and CO; and their SCA trends. The SCAnpp trend for Lsaon
estimated by each inversion (grey intervals) and corresponding responses of SCAnpp to (a) T and (b) CO; (as calculated in Figure 3
but considering the scores of the regression only, shown in Figure S4) are compared to the results from individual models (simulation S3,
coloured markers). The shaded areas indicate the inversion ranges, and the distribution of the grey lines shows uncertainty in the relationship

between each pair of variables.
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