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Dear Editor of ACP, 
 
Please find below a point-by-point reply to the two reviewers, as well as a version of the 
manuscript with track-changes from latexdiff. We further note that the Supplement has now 
an additional Figure, corresponding to Figure R2 in this document. We believe that our new 
version of the manuscript addresses the reviewers’ concerns.  
 
On behalf of the authors, 
Ana Bastos 

 
Reviewer #1 

 
RC1: This paper investigated the relative importance of individual contributors to trends and 
drivers of the seasonal-cycle amplitude (SCA) in northern high latitudes using two atmospheric 
inversions and land-surface models. They found the most likely explanation of the trend of 
SCA at high latitudes is the CO2 fertilization of photosynthesis, rather than LULCC. Although I 
see the value of publishing, I am concerned about the definition of SCA and reliability of 
results. The SCA of atmospheric CO2 should be the difference between the peak and trough 
values of the cumulative CO2 in a year. But the definition of SCA in this manuscript is the 
difference between peak uptake and trough of NBP. The sum of NBP during the growing 
season is related to the SCA of atmospheric CO2 while the difference between peak uptake 
and trough of NBP may be not.  
AR: Most previous studies indeed have analyzed trends in SCA of atmospheric CO2 
concentrations (Graven et al., 2013; Forkel et al., 2016; Thomas et al., 2016; Zhu et al., 2016; 
Piao et al., 2017; Yin et al., 2018). However, to attribute changes in the seasonal amplitude of 
atmospheric CO2 to specific processes it is necessary to look at net surface fluxes as a function 
of changes in primary productivity and respiration. Moreover, quantifying bias in CO2 
concentration at a given site from a bias in land-surface model (LSM) simulated fluxes is 
difficult, since the biases can be affected by many other factors such as transport model 
characteristics, forcing data used, etc. As discussed in the Introduction (P2 L 29 to P3 L2), 
atmospheric inversions might partly tackle this issue by limiting the space of surface fluxes 
that are consistent with the atmospheric CO2 concentration measured at several sites. 
Moreover, when aggregated at large spatial scales, the annual amplitude of NBP is related 
with the amplitude of the concentration (although this relationship is complicated by 
atmospheric transport, to the first order, the SCA of concentration should roughly be the 
integral of the flux). Such an approach has for example been used by Welp et al. (2016) for 
boreal ecosystems. Finally, here we compare results from two inversion systems and results 
from sensitivity runs from CarboScope forced with different inputs and using different 
parameters. This allows further insight about the range of SCANBP values that can still be 
compatible with in-situ atmospheric CO2 measurements. By doing this, we believe we can 
provide a fair evaluation of the ability of LSMs to capture changes in the seasonal amplitude 
of NBP (and CO2) in the Northern Hemisphere.   
 
Welp, L. R., Patra, P. K., Rödenbeck, C., Nemani, R., Bi, J., Piper, S. C., and Keeling, R. F.: 
Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric 



inversions and comparisons to remote-sensing NDVI, Atmos. Chem. Phys., 16, 9047-9066, 
https://doi.org/10.5194/acp-16-9047-2016, 2016.    
 
RC2: It will be clearer if the Result and discussion can be separated into two part alone. The 
key finding is CO2 fertilization drive the SCA trend, but more discussion and speculation 
focused on warming.  
AR: The results and discussion sections will be separated in the revised version. We believe 
that our finding that warming has a negative effect on SCANBP is also a key finding of this study, 
and the one deserving more explanation. The effect of CO2 fertilization in increasing CO2 
uptake is well understood from a physiological point of view, while the effects of temperature 
on SCANBP are complex and, in this case, counter-intuitive. In fact, earlier studies pointed for a 
positive effect of warming on SCA because of earlier onset of the growing-season or increase 
growth at higher latitudes (Keeling et al., 1996; Forkel et al. 2016). The negative effect of 
warming we find seems though to be supported by studies covering a more recent period 
(Schneising et al., 2014; Peñuelas et al., 2017; Yin et al., 2018), although the mechanisms 
behind were not discussed. Here we try to understand this by analyzing the link between T 
and GPP and TER simulated by models. The fact that models show biases in their simulated 
sensitivity of SCA and TER to T indicates that certain processes might be missing. We point to 
some processes that might explain these biases, based on published research, rather than 
speculation. To evaluate whether these processes can or cannot explain the biases, these 
would need to be included in model simulations, which is beyond the goals of our study.   
 
RC3: Page 2 Line 8, how many are the relative effects of CO2 fertilization and warming in SCA, 
respectively?  
AR: This is discussed in the following paragraphs of the introduction.  
 
RC4: Page 5 line 8 and line 28 typos  
AR: Corrected. 
 
RC5: Page 5, why did you use ESA-CCI Land-Cover data set for the analysis of satellite-based 
vegetation data sets? What are the problems if LUH2 was used for the analysis of satellite-
based vegetation data sets? 
AR: We used ESA-CCI Land-Cover because it is a purely remote-sensing based land-cover 
dataset, while LUH2v2h is partly based on HYDE3.1, which in turn uses FAO data for cropland 
extent. However, since LUH2v2h is used to force the LSMs, it is true that a comparison with 
this dataset should also be made. We have now compared the results in Fig. S6 using LUH2v2h. 
We compare trends in LAI, NPP and AGB for the LUH2v2h classes cropland, forest and non-
forest natural vegetation (which should include shrublands and natural grasslands), for the 
period 1982-2015, for latitudes north of 40oN. As in our results with ESA-CCI Land-Cover, 
forests contribute the most to LAI, NPP and AGB increase.  
 



 
In the revised version of the manuscript we can add these results as a second panel in Figure 
S6.  
 
RC6: Page7 line4, figure S was missed  
AR: It should read S5, it has been accordingly corrected.  
 
RC7: The size of Fig1.a is too small to see them clearly. Also for figure 4.  
AR: The figures will be improved.  
 
RC8: Page 7 line 15, how did you know the breakpoint in the north of40◦N?  
AR: It is the point north of which the two inversions agree on a significant sign of SCANBP trends. 
This will be clarified in the text in a revision of the manuscript.  
 
RC9: Page 8, The patterns of SCA NBP trends from the LSM were not consistent with that of 
CAMS at the pixel scale.  
AR: Inversion fluxes are highly uncertain at pixel-scale (discussed in P6 L12, P8 L30-31) and 
should not be directly compared with pixel-scale LSM fluxes, especially in regions where there 
are sparse atmospheric CO2 measurements. The large-scale spatial distribution of SCANBP is 
shown in Fig. 1 to illustrate the distinct results from the two observation-based datasets 
(which underlines the problems of relying on single atmospheric-transport models to forward-
transport fluxes). The sentence will be reformulated in a future revision of the MS. 
 
RC10: The attribution analysis based on LSMs is not very convincing.  
AR: We do not necessarily agree with the reviewer, especially because the reviewer has not 
identified specific weaknesses in our analysis or conclusions. Attribution of changes in SCA (or 
NBP) to CO2, climate and LUC can be made using statistical methods or performing modelling 
experiments. For observation-based data, statistical attribution is the only option, and we try 
to disentangle the effect of each term from the others by fitting statistical models with 
different numbers and combinations of predictors. Process-based models, on the other hand, 
allow us to evaluate individual processes that may be contributing to the observed patterns 
by running simulations in which the LSMs are forced with only one, two or more factors. The 
effect of CO2, climate and LUC can then be diagnosed by the differences in resulting SCA 
between experiments. We would like to note that model-based attribution is actually the 
approach followed by most studies analyzing trends in NBP or in SCA (Graven et al., 2013; 
Forkel et al., 2016; Thomas et al., 2016; Zhu et al., 2016; Piao et al., 2017). The difficulty with 



the attribution by models is that it cannot easily be validated, as discussed in the manuscript. 
Therefore, we compare: (i) the process attribution from factorial simulations, (ii) the regional 
statistical attribution based on inversion fluxes, (iii) the statistical attribution based on LSMs 
fluxes from S3 and (iv) the statistical attribution based on the differences between factorial 
simulations. This allows testing the statistical attribution, and allows comparing the results 
from observation-based data with simulated data. To the best of our knowledge this is the 
most robust way to perform such attribution, and it has not been done in other studies (which 
have relied mainly on factorial simulations and did not compare with observation-based data).  
While each attribution approach may have their respective limitations, the fact that our 
regional attribution identifies the Eurasian Boreal forest as a major contributor to SCA, and 
our process attribution identifies CO2 fertilization of Eurasian Forests as the mechanism, 
provides more support for the natural vegetation hypothesis than the agricultural 
intensification hypothesis. 
 
RC11: Page 9 line 29-34, these sentences should be moved into Method 
AR: The sentences were redundant as this was already discussed in the Methods, so they were 
removed.  
 
 

Reviewer #2 
 
RC1: The increase of the seasonal-cycle amplitude (SCA) of CO2 has been long researched. 
This study utilized the inversions and LSM simulations to research the main drivers of the 
enhanced SCA, and pointed out that the effects of CO2 fertilization and warming on SCA  have  
the  contrasting  effects.   However, I  have  a  big  concern  that  whether the GLM can give us 
the reliable result.   It can be a good prediction model but not for causal  analysis,  especially  
the  predictors  here  you  used  (eg.   Temperature and CO2) have the high correlations. So (a) 
I think you should show a figure that makes a direct comparison between the statistical 
decomposition (CO2, Tgs,  ..) and factorial simulations (S1,S2-S2, S3-S2) upon TRENDY S3 NBP, 
not in the form of your Figure S6 (slope).  
AR1: We agree with the reviewer that attribution simply based on the statistical GLM fit would 
be insufficient for causal analysis. The rationale for combining the attribution by LSMs with 
that of the GLM is the following: 
Trends in SCA can be quantified from observation-based datasets (here the inversions) or from 
simulations of net land-atmosphere fluxes by LSMs. As they are based on multiple in-situ 
measurements, the former should provide a reference (and respective uncertainty) for 
evaluating the LSMs results. The only option to identify drivers of SCA from inversions is 
statistical attribution. LSMs, on the other hand, allow separating the contribution of each term 
through the different factorial simulations. However, the attribution by LSMs cannot be easily 
validated, which is especially problematic given that LSMs underestimate the trends in SCA at 
latitudinal scale, and show regional mis-matches with inversions.  Thus, we compare: (i) the 
process attribution by LSMs (S1, S2 and S3), (ii) the statistical attribution based on inversion 
fluxes, (iii) the statistical attribution based on LSMs fluxes from S3 (directly comparable to the 
inversion results) and (iv) the statistical attribution based on the differences between factorial 
simulations (cross-evaluation of (i) and (iii)). We believe this is a robust way to evaluate 
attribution from both inversions and LSMs, and it has not been done in other studies (which 
have relied mainly on factorial simulations and did not compare with observation-based data).   



We agree with the referee that it is more meaningful to show the direct decomposition, rather 
than the sensitivities. We have therefore updated Figure S6, as shown in Figure R1. The 
discussion around Fig. S6 has accordingly been changed.  
 
RC2: (b) In your Figure S6b, we can focus on the green bar which represents the climate effect 
only. But after your MLRM fit, we can find that the WH and CO2 also have the significant 
effect.  
AR2: In the revised version of Fig. S6, the climate effect is only significant for Tgs and HW, but 
very small for the latter.  On the other hand, the positive CO2 fertilization effect is clearly 
dominant and found in S1. We acknowledge that the discussion of Fig. S6 should be improved, 
and have addressed this issue in the answer to the previous comment.  
 
RC3: (c) We can see the climate effect is positive in model experiments in Figure 2c, but 
temperature effect is negative in statistical analysis in Figure 3a.  So what’s the matter? These 
phenomena show that the explanations should be cautious.  
AR3: The climate effect in Figure 2c encompasses changes in all the relevant variables for 
ecosystem productivity (temperature, radiation, precipitation, wind) throughout the year, 
while Figure 3a shows only the effect of growing-season temperature (i.e. Tgs). Therefore, it 
is possible for the effect of the combined climate changes to be positive, but for the effect of 
Tgs to be negative. This is the reason why we compare the statistical attribution from 
inversions to that of LSMs. 
 
RC4: Details: (1) Abstract Line 4: ‘from and 11 state-of-the-art’ remove the and  
AR4: Corrected. 
 
RC5: (2) In introduction, the last two paragraphs can be place into Section Data  
AR5: The information in these two paragraphs was redundant. We merged the key points with 
the Methods sections and removed the parts that were repeated elsewhere.  
 
RC6: (3) Page 7 line 4 ‘The coefficients from the GLM fit for each datasets are shown in Figure 
S’ maybe Figure S5;The last sentence in next paragraph should be ‘Figure S6’  
AR6: Both references to the figures have been corrected. 
 
RC7: (4) Page 7, line 14. ‘strong decreasing trends for mid-latitudes’-only CAMS shows  
AR7: We have reformulated the sentence: 
 “[…] even though CAMS shows heterogeneous patterns in North America with strong 
decreasing trends for mid-latitudes (Figure 1a, S1).” 
 
RC8: (5) Page 9, line 12-13 ‘In boreal North America, LSMs estimate SCAnbp trends very close 
to CarboScope estimates, mainly attributed to climate’ not only to climate, CO2 effect even 
stronger.  
AR8: Thank you for noting the error. We have corrected the sentence to: 
 “[…] mainly attributed to CO2 followed by climate […]” 
 
RC9: (6) Page 11, line 23 ‘(i) indirect negative effects of T on decomposition during the “release 
period”’ why negative effects?   It seems a positive effect, because warmer temperature can 
result in more release of C by respiration, which can enlarge the SCA. 



 AR9: Indeed, higher temperatures are expected to increase respiration both during the “net 
uptake period” and the “net release period”. However, the effects of temperature are 
seasonally-dependent as exemplified below. In the left panel of figure R2, increasing T might 
increase GPP during the uptake period (having a positive effect on SCA), but at the same time 
increase maintenance respiration and decomposition in the uptake period, and leading to an 
increase in C available for decomposition during the release period. The latter effect would 
decrease SCA during the growing season, and increase SCA in the release period. On the other 
hand (middle panel), T might increase water-stress and contribute to decrease growing-
season GPP (decreasing SCA). Consequently, maintenance respiration could be decreased in 
the growing-season (offsetting part of the GPP decrease effect), but also in the release-period 
(contributing to decrease SCA). Finally, in snow-covered regions, warming might contribute to 
reduce the snow-cover, which in turn might imply more TER during the growing-season but 
also increased GPP (left panel), but also have delayed effects during the release period, by 
reducing the insulation cover and inhibiting TER during the release period, which would 
contribute to a decrease in SCA (right panel). This figure and corresponding discussion have 
been added to the Supplementary Material.  
 
 
 
 
 

 
Figure R1 (new Figure S6): Factorial verification of the drivers in TRENDY S3 for (a) >40°N and (b) 25-40°N. The 
MLRM fit to the partial fluxes for the effects of LULCC (S3-S2, red), climate (S2-S1, green), and CO2 fertilisation 
(S1, cyan). Results should be compared to those in Figure 3. The significant predictors in the GLM fit to the LSMs 
in S3 should be detected in the corresponding factorial simulations. It should however be noted that 
management and fertilization are already included in S1 and S2 for some models. The difference between S3 and 
S2 (LULCC effects) mainly suggest LULCC processes and does not identify the effect of CO2, except if there are 
interactions between the CO2 fertilization effect and LULCC emissions (e.g. higher emissions from deforestation 
because of higher C-stocks). The effect of CO2 is identified mainly by the difference in S1-S0 and S2-S1, possibly 
due to synergies between CO2 fertilisation and climate change. The effect of temperature should be evident in 
the difference between S2 and S1 (effects of climate), consistently found in L25-40N. 
 



  
Figure R2: Conceptual scheme of the impacts of warming in SCA. 
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Abstract. Continuous atmospheric CO2 monitoring data indicate an increase in seasonal-cycle amplitude (SCA) of CO2 ex-

change in northern high latitudes. The major drivers of enhanced SCA remain unclear and intensely debated with land-use

change, CO2 fertilization and warming identified as likely contributors. We integrated CO2-flux data from two atmospheric

inversions (consistent with atmospheric records) and from and 11 state-of-the-art land-surface models (LSMs) to evaluate the

relative importance of individual contributors to trends and drivers of the SCA of CO2-fluxes for 1980-2015
:::::::::
1980–2015. The5

LSMs generally reproduce the latitudinal increase in SCA trends within the inversions range. Inversions and LSMs attribute

1



SCA increase to boreal Asia and Europe due to enhanced vegetation productivity (in LSMs) and point to contrasting effects of

CO2 fertilisation (positive) and warming (negative) on SCA. Our results do not support land-use change as a key contributor

to the increase in SCA. The sensitivity of simulated microbial respiration to temperature in LSMs explained biases in SCA

trends, which suggests SCA could help to constrain model turnover times.

1 Introduction5

The increase in the amplitude of seasonal atmospheric CO2 concentrations at northern high latitudes is one of the most intrigu-

ing patterns of change in the global carbon (C) cycle. The seasonal-cycle amplitude (SCA) of atmospheric CO2 in the lower

troposphere at the high-latitude monitoring site of Point Barrow, Alaska, has increased by about 50% since the 1960s (Keeling

et al., 1996; Dargaville et al., 2002). Increasing SCA has also been registered at other high-latitude sites, mostly above 50°N

(Piao et al., 2017) and appears to be driven primarily by changes in seasonal growth dynamics of terrestrial ecosystems (i.e., net10

biome productivity, NBP), but uncertainty remains about the relative contributions from different continents, and mechanisms.

Some studies proposed that the trend in SCA is primarily driven by increased natural vegetation growth and forest expansion

at high-latitudes due to CO2 fertilization and climate change (Graven et al., 2013; Forkel et al., 2016; Piao et al., 2017). Others

(Gray et al., 2014; Zeng et al., 2014) suggested that agricultural expansion and intensification resulted in increased productivity

and thus enhanced the seasonal exchange in cultivated areas at mid-latitudes. However, evidence suggests that crop productivity15

stagnated after the 1980s in many regions in the Northern Hemisphere (Grassini et al., 2013), which is not reflected in SCA

trends in recent decades (Yin et al., 2018).

Studies using land-surface models (LSMs) to attribute trends to the suggested processes usually convert simulated fluxes to

CO2 concentrations using atmospheric transport models (ATM) and compare the results to in-situ measurements (Dargaville

et al., 2002; Forkel et al., 2016; Piao et al., 2017) or over latitudinal transects (Graven et al., 2013; Thomas et al., 2016). These20

studies have shown that LSMs systematically underestimated SCA trends, but it is not clear whether these biases are due to

LSM uncertainties or due to trends or errors in the ATM (Dargaville et al., 2002). Piao et al. (2017) addressed these problems

by designing systematic model experiments to compare observed CO2 concentrations at multiple sites with ATM simulations

forced by an ensemble of NBP from different LSMs and an ocean biogeochemistry model. Point Barrow was the only site

where nearly all models accurately described the trend in SCA, while in other sites, LSMs generally captured the sign of the25

trend in SCA but either under- or over-estimated its magnitude. Piao et al. (2017) further reported that CO2 fertilisation and

climate change drove the increase in SCA for sites >50°N, but that at mid-latitude sites land use, oceanic fluxes, fossil-fuel

emissions, as well as trends in atmospheric transport may have contributed to the SCA trends.

Atmospheric inversions provide a consistent framework for assimilating in-situ CO2 concentration observations to estimate

net CO2 surface fluxes while accounting for errors in the prior fluxes and for some errors in the ATM (Peylin et al., 2013). SCA30

trends have a strong latitudinal gradient that is interpreted as spatio-temporal trends of surface flux seasonality by atmospheric

inversions. The spatiotemporal distribution of terrestrial and oceanic surface fluxes estimated by inversions provides thus

direct insight about the regional patterns of trends in the seasonal amplitude of CO2 fluxes (i.e. SCA of NBP, SCANBP ) that

2



is fully consistent with the amplitude of CO2 concentrations in all stations of the observational network used and constitute a

direct benchmark for SCANBP simulated by LSMs. Here, we use top-down (inversions (Chevallier et al., 2010; Rödenbeck,

2005)) and bottom-up (TRENDYv6 LSMs (Le Quéré et al., 2018)) estimates of terrestrial CO2 fluxes at northern extra-tropical

latitudes between 1980-2015 to:

(i) assess the ability of those LSMs to simulate inversion-based trends in SCANBP ;5

(ii) attribute the trends in SCANBP to specific regions in the Northern Hemisphere;

(iii) attribute the relative importance of drivers using the ensemble model framework.

The two inversions used here – the Copernicus Atmosphere Monitoring Service (CAMS) inversion system (Chevallier et al., 2005) and

the Jena CarboScope inversion (Rödenbeck, 2005) – solve for fluxes on their ATM grid, thus minimising aggregation errors

for large regions (Kaminski and Heimann, 2001). The two inversions differ in a number of characteristics (see Methods),

particularly the ATM, the prior information and the observations assimilated: CAMS includes a time-varying number of

multi-year air-sampling sites as they are available (constraining better spatial patterns), and CarboScope keeps a fixed set of50

sites covering a given period (avoiding artefacts in the time series related to the appearance or disappearance of measurement

sites).

We use NBP simulated by a set of 11 LSMs from the recent TRENDYv6 inter-comparison (Le Quéré et al., 2018) in three

distinct experiments where models are forced with: changing CO2 only (S1); CO2 and changing climate (S2); changing climate,

CO2, and LULCC (S3). Some of the TRENDYv6 models used here simulate some key management processes (4 models55

include wood harvest, 1 model irrigation, and 2 fertilization) and more models now include nitrogen cycling, and improved

soil processes, which were missing in previous intercomparisons (Arneth et al., 2017) (see Sec. 2.2).

2 Data20

2.1 Atmospheric inversions

The inversion of a transport model to infer surface fluxes from concentration measurements is an ill-posed problem due to the
::
60

::

dispersive nature of transport in the atmosphere and to the finite number of available measurements. This ill-posedness can be
::

compensated by using some prior information about the fluxes to be inferred. This prior information also drives the separation
::

between natural and fossil fuel emissions in the estimation. In order to illustrate the diversity of the inversion results, we
::

take the example of two inversions systems that provide results for the study period between 1980 and 2015. We analysed
::

monthly surface CO2 fluxes estimated by the inversion systems from the Copernicus Atmosphere Monitoring Service (CAMS)
::
65

::

(Chevallier et al., 2005, 2010) and from Jena CarboScope (Rödenbeck et al., 2003; Rödenbeck, 2005).
:::
The

:::
two

:::::::::
inversions

::::
used

::

:::
here

:::::
solve

:::
for

:::::
fluxes

:::
on

::::
their

::::
ATM

:::::
grid,

:::
thus

::::::::::
minimising

::::::::::
aggregation

:::::
errors

:::
for

::::
large

::::::
regions

:::::::::::::::::::::::::::
(Kaminski and Heimann, 2001).

::

Here we use
:::
The CAMS version r16v1 (http://atmosphere.copernicus.eu/) selected for the period between 1980-2015, that30

provides estimates of ocean and terrestrial fluxes at 1.9° latitude ×3.75° longitude resolution. The CAMS inversion system

assimilates observations from a variable number of atmospheric CO2 monitoring sites (119 in total providing at least 5 years
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of measurements) and uses the transport model from the LMDz General Circulation Model (LMDz5A) nudged to ECMWF-

analysed winds. More details can be found in (Chevallier et al., 2010).

The CarboScope v4.1 (available at http://www.bgc-jena.mpg.de/CarboScope/?ID=s) provides several versions that assimi-

late a temporally consistent set of observations. We used these versions for the study period (1980-2015) to test the influence of

the number of assimilated sites on the results. The s76, s85, and s93 versions have assimilated observations from 10, 23, and 385

sites since 1976, 1985, and 1993, respectively. Surface fluxes (ocean and land) are provided at the latitude/longitude resolution

of 4°×5° of the TM3 atmospheric transport model is used (Rödenbeck, 2005). In this version, the atmospheric model is forced

by the National Centers for Environmental Prediction (NCEP) meteorological fields.

CarboScope further provides a sensitivity analysis of the s85 version fluxes to different parameters of the inversion. The

sensitivity tests performed are: “oc" – fixing the ocean prior; “eraI" - forcing the inversion with fields from ERA-Interim re-10

analysis instead of NCEP; “loose” and “tight” - scaling the a-priori sigma for the non-seasonal land and ocean flux components

by 4 (dampening) and 0.25 (amplification), respectively; “fast” - reducing the length of a-priori temporal correlations; “short”

- reducing the length of a-priori spatial correlations. The resulting latitudinally-integrated SCANBP and respective trends are

shown in Figure S2.

::::
Since

:::::::
CAMS

:::::::
includes

:
a
::::::
larger,

:::
but

:::::::::::
time-varying,

:::::::
number

::
of

:::::::::
multi-year

::::::::::
air-sampling

::::
sites

::
as
::::
they

:::
are

::::::::
available,

::
it
:::::::::
constrains

::
85

::

:::::
better

::::::
spatial

:::::::
patterns,

:::::
while

:::::::::::
CarboScope

:::::
keeps

::
a
:::::
fixed

:::
set

::
of

::::
sites

::::::::
covering

::
a

:::::
given

::::::
period,

:::::
using

::::
less

:::::
sites,

:::
but

::::::::
avoiding

::

:::::::
artefacts

::
in

:::
the

::::
time

:::::
series

::::::
related

::
to

:::
the

:::::::::
appearance

::
or

::::::::::::
disappearance

::
of

::::::::::::
measurement

::::
sites.

:::

2.2 Land-surface Models

Land-surface models (LSMs) provide a bottom-up approach to evaluate terrestrial CO2 fluxes (i.e. net biome productivity,

NBP), and allow deeper insight into the mechanisms driving changes in C-stocks and fluxes. The TRENDY intercomparison20

project compiles simulations from state-of-the-art LSMs to evaluate terrestrial energy, water and CO2 exchanges since the pre-

industrial period (Sitch et al., 2015; Le Quéré et al., 2018). We use LSMs from the TRENDY v6 simulations for 1860-2015. To

identify the contributions of CO2 fertilisation, climate, and LULCC and management to the observed changes in SCANBP ,

we use outputs from three factorial simulations.

The models in simulation S3 were forced by (i) atmospheric CO2 concentrations from ice core data and observations, (ii)25

historical climate reanalysis from the CRU-NCEP v8 (Viovy, 2016; Harris et al., 2014) and (ii) human-induced land-cover

changes and management from a recent update of the Land-Use Harmonization (Hurtt et al., 2011) prepared for the next set

of historical CMIP6 simulations, LUH2v2h (described below). Most models still do not represent many of the management

processes included in LUH2v2h, though. As summarized in Table A1 in (Le Quéré et al., 2018), four models do not simulate

wood-harvest, and three do not simulate cropland harvest. Two models simulate crop fertilization, tillage and grazing.30

The models in simulation S2 were forced by (i) and (ii) with fixed land-cover map from 1860. Simulation S2 estimates

“natural” fluxes, and the difference between S2 and S3 outputs corresponds to anthropogenic CO2 fluxes from LULCC. The

models in simulation S1 were forced by changing atmospheric CO2 and no climate change (recycling 1901-1920 values to

simulate interannual variability) or LULCC. S1 thus provided changes in the terrestrial sink due to CO2 fertilisation, and the

4
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difference between S1 and S2 indicates the influence of climate change only. However, management practices (e.g. wood-

harvest), when simulated, are already included in S1 and S2 for some models. A baseline simulation with none of these effects

(S0) was also performed to check for residual variability and trends. We selected only models providing spatially-explicit

outputs for the four simulations (S0, S1, S2 and S3) at monthly intervals (to evaluate seasonality, Supplementary Table 1).

We used NBP outputs selected for the period common to the inversion data, i.e. 1980-2015. NBP corresponds to the simulated5

net atmosphere-land flux (positive sign for a CO2 sink), i.e. gross primary productivity (GPP) minus total ecosystem respiration

(TER), fire emissions and fluxes from LULCC and management (e.g. deforestation, agricultural and wood harvest, and shifting

cultivation). All model outputs were resampled to a common regular latitude/longitude grid of 1×1°.

2.3 Land cover and management

2.3.1 LUH2v2h10

The LUH2v2h (Hurtt et al., 2011) (available at http://luh.umd.edu/) provides historical states and transitions of land use and

management in a regular latitude/longitude grid of 0.25×0.25°, covering 850-2015 at annual time intervals. Land-use states

distinguish between primary and secondary natural vegetation (and forest and non-forest sub-types), managed pastures and

rangelands, and multiple crop functional types. The updated data set includes several new layers of agricultural management,

such as irrigation, nitrogen fertilisation, and biofuel management, and spatially explicit information about wood harvest con-15

strained by LANDSAT data. Each LSM, however, may not simulate all the processes introduced in LUH2v2h, so the S3 results

from each simulation might not be directly comparable.

2.3.2 ESA-CCI Land-Cover

Land-cover information in LUH2v2h is combined with partial information on land use (e.g. rangeland in LUH2v2h can be

either grassland or shrubland with low grazing disturbance). We therefore compared this information to annual land-cover20

maps at a latitude/longitude resolution of 0.5×0.5° based on the 300-m satellite-based land-cover data sets from ESA-CCI

LC (https://www.esa-landcover-cci.org/?q=node/175) for 1992-2015. Data are provided for different vegetation types, but here

were aggregated for four main land-cover classes: forest, shrubland, grassland, and cropland. The average distribution of these

classes (forest and shrubland aggregated for readability) is shown in Figure 2a. LUH2 was used for the statistical analysis of

inversion and the LSM drivers (because it was the data set used to force the models), and ESA-CCI data were used for the25

analysis of satellite-based vegetation data sets.

2.4 Satellite-based vegetation datasets

We further evaluated trends in the activity and growth of vegetation for the different land-cover classes using three satellite-

based data sets: leaf-area index (LAI), net primary production (NPP), and aboveground biomass (AGB) stocks. The LAI data

set was calculated from satellite imagery from Global Inventory Modeling and Mapping Studies (GIMMS LAI3g) described30

by (Zhu et al., 2015) for 1982-2015. LAI data were provided in two time-steps per month on a regular latitude/longitude

5
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grid of 1/12° (subsequently aggregated to 0.5°). (Smith et al., 2016)
::::::::::::::::
Smith et al. (2016) used the MODIS NPP algorithm and

data for LAI and the fraction of photosynthetically active radiation from GIMMS to produce a 30-year global NPP data set,

provided at monthly timescales for 1982-2011 at a latitude/longitude resolution of 1×1°. The data are available at the NTSG

data portal (https://wkolby.org/data-code/). AGB stocks can be derived from estimates of vegetation optical depth derived from

passive-microwave satellite measurements. (Liu et al., 2015) produced a 20-year data set of AGB stocks for 1993-2012 based5

on measurements from a series of passive-microwave sensors. The data set is provided at a latitude/longitude resolution of

0.25×0.25° in annual time intervals and is available at http://www.wenfo.org/wald/global-biomass/ (last access 13/02/2018).

We tracked changes in LAI, NPP, and AGB stocks for different land-cover types over time by selecting periods of at least 20

years common to ESA-CCI LC and the vegetation data sets (1992-2012 for LAI, 1992-2011 for NPP, and 1993-2012 for AGB

stocks). Vegetation variables were then aggregated for the four land-cover types at each time interval to account for land-cover10

changes.

3 Methods

3.1 Trends in seasonal-cycle amplitude (SCA)

The seasonal amplitude of CO2 concentration is modulated by higher ecosystem CO2 uptake during the growing season and

increased emissions during the release period (TER) and thus controlled by the seasonal amplitude of NBP. We calculated15

SCANBP as the difference between peak uptake and trough for each year, at pixel scale shown in Figure 1a. However, since

inversion fluxes have large uncertainty at pixel-level we focused our analysis on SCA trends estimated from aggregated NBP

over latitudinal bands or Transcom3 regions (Baker et al., 2006). Because we do not impose the timing of peak and trough,

changes in SCANBP can be affected by the relative phase changes of GPP versus TER.

The trend in SCANBP was calculated by a least-squares linear fit of annual values for 1980-2015, and confidence intervals20

were calculated based on the Student’s t-distribution. We tested the robustness of estimated trends of inversions and LSMs for

shorter periods by removing the first and last 1-10 years and trends of interannual variability by randomly removing 5 and 10

years of data 104 times. The significance of these trends was calculated using a Mann-Kendall test. We also compared different

versions of CarboScope to evaluate the influence of the assimilated network size on the SCANBP trends (Figure S1). We

further calculated the trends for each of the sensitivity tests from CarboScope s85.25

3.2 Process attribution

The three TRENDY experiments allow evaluating separately the effects of CO2 fertilisation, climate change, and LULCC in

the models. The differences between S1 and S2 and between S2 and S3, however, could not isolate specific processes that may

have contributed to the trend (e.g. cropland expansion versus afforestation, or precipitation versus temperature). Furthermore,

the LSMs may miss or simulate poorly certain processes that could influence SCANBP . Therefore, the attribution of drivers30
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by the models is uncertain and should be cross-evaluated. Because inversions do not allow such partitioning between processes,

a possible solution is to compare statistical attribution to drivers in inversions and LSMs.

We therefore compared the sensitivity of SCANBP estimated by the inversions and the LSMs by fitting a general linear

model (GLM) using the iteratively reweighted least squares method to eliminate the influence of outliers (Gill, 2000; Green,

1984). We tested the following variables (after unity-based normalisation) as predictors: fertilization, irrigation, wood harvest,5

growing-season precipitation, growing-season temperature, atmospheric CO2 concentration, change in extent of cropland and

forest. These variables were taken from the corresponding datasets used to force TRENDYv6 models. All possible combina-

tions of n predictors (n=1,2, . . . , 7
:
n

::::::::
predictors

:::::::::::::
(n= 1,2, . . . ,7) were tested, and for each value of n, the “best” model (according

to Akaike’s information criterion) was chosen separately for each dataset. Above n=4
::::
n= 4

:
no model showed improved fit

compared to the models with less predictors. The coefficients from the GLM fit for each dataset are shown in Figure S
:::
S5.10

We further tested the robustness of the statistical relationships by fitting the GLM to the differences between each TRENDYv6

experiment. The significant predictors in the GLM fit to the LSMs in S3 should be detected in the corresponding factorial sim-

ulations, e.g. predictors associated with climate should be consistent for the fluxes estimated by the difference between S2

and S1 (effects of climate). The GLM fit to the partial fluxes for the effects of LULCC (S3-S2), climate (S2-S1), and CO2

fertilisation (S1-S0) are shown in Figure S5
::
S6.15

4 Results and discussion

4.1 Large scale patterns

4.1.1 Top-down estimates

Both inversions estimate increasingly positive trends in SCANBP with increasing latitude, even though CAMS shows het-

erogeneous patterns in North America
::::
with

::::::
strong

:::::::::
decreasing

:::::
trends

:::
for

:::::::::::
mid-latitudes

:
(Figure 1a, S1), and strong decreasing20

trends for mid-latitudes. Both inversions agree on significant positive SCANBP trends north of 40°N (defined here as band

L>40N ) and non-significant trends for 25-40°N (band L25−40N , Figures 1b). In the L>40N band, CAMS and CarboScope s76

v4.1 estimate an SCANBP increase of 17.3±4.5 TgC.yr-2 and 13.3±3.3 TgC.yr-2, respectively. The uncertainties given for

SCANBP trends represent here the uncertainty of the linear fit due to the year-to-year SCANBP variability (Methods). The

difference between the CAMS and CarboScope inversions reflects part of the uncertainty in inversions due to their different25

choices in the ATM (including different atmospheric forcing and spatial resolution), the set of assimilated CO2 data, the prior

fluxes, and the a-priori spatial and temporal correlation scales, and is comparable to the uncertainty of the linear fit due to

inter-annual variability.

This finding is corroborated by two further analyses of inversion uncertainties:

(1) While both inversions assimilate atmospheric CO2 measurements from Point Barrow, CAMS increasingly assimilates30

many other sites in the NH as they become available, helping to better constrain the CO2 fluxes in mid- to high-latitudes with

time. Assimilating a non-stationary network of stations, however, possibly leads to spurious additional trends in SCANBP .
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To test this, we use different runs provided by CarboScope using more sites (but still fixed in number for each run, Figure S2)

for more recent periods. The results from CarboScope version s85 v4.1 (1985-2015) are generally consistent with CAMS, but

version s93 v4.1 (1993-2015) estimates much stronger SCANBP trends (Table S1). A higher SCANBP trend in the period

1993-2015 is reported by both CAMS and CarboScope, which estimate very similar trends in L>40N (19.5 TgC.yr-2 and 19.2

TgC.yr-2 respectively).5

(2) CarboScope provides a set of sensitivity runs for s85 v4.1, varying some of the inversion’s parameters (Figure S3).

Changes in the meteorological fields driving the transport model and the prior ocean fluxes have the largest effect on the

SCANBP trends, giving L>40N trends of 8.6±4.9 TgC.yr-2 (ERA-Interim instead of NCEP) and 13.9±5.6 TgC.yr-2 (fixed

ocean), respectively, both well within the uncertainty range (interannual variability affecting linear fit to SCANBP trend)

estimated by the standard CarboScope s85 v4.1 (11.7±5.0TgC.yr-2).10

In summary, the ability of inversions to quantify the SCANBP trend is mostly limited by the intrinsic year-to-year SCANBP

variability, less so by the amount of information available through the atmospheric data or by inversion settings.

4.1.2 Bottom-up estimates

The large-scale patterns of SCANBP trends from the LSM Multi-Model Ensemble Mean (MMEM) of simulation S3 (all

forcings) are consistent with inversions, especially with CarboScope
::::::::::
CarboScope

:::::::
inversion

:
(Figure 1a). The MMEM estimates15

are within the range of the inversions for most latitudes (Figure S1), but always at the lower end of SCANBP trends reported

by inversions. Consistent with inversions, LSMs report a significant trend in L>40N and a very weak (non-significant) trend

in SCANBP in L25−40N (Figure 1b). The overall MMEM trend in L>40N is significantly lower than in inversions (9.5±3.4

TgC.yr-2, i.e. 55-71% of inversions’ estimates. The agreement between LSMs and inversions also varies depending on the

period and set of inversions considered (LSMs capture 65-91% of inversion trends in 1985-2015 and 74-75% in 1993-2015,20

Table 1). The MMEM estimate for 1985-2015 (10.6±4.5 TgC.yr-2) is in fact, even higher than the CarboScope inversion with

different meteorological fields (8.6±4.9 TgC.yr-2). These results indicate that, despite a general underestimation of SCANBP

trend in L>40N during 1980-2015 as compared to top-down estimates, the LSMs simulate the main spatiotemporal patterns in

SCANBP trends consistent with inversions estimates, especially when accounting for the uncertainty in the latter.

To understand if recent improvements to the set of LSMs and their forcing in TRENDYv6 may have improved their25

performance in reproducing the SCANBP trend, we compared SCANBP trends from the previous intercomparison round

(TRENDYv4). The MMEM from v6 estimates an SCANBP trend in L>40N 43% higher than in than v4 (MMEM shown in

Table S1, but evaluated for individual models). The specific reasons for improvement are hard to identify because of multiple

model-dependent changes in the forcing, process simulation and parameterizations from v4 to v6 (Table 4 in (Le Quéré et al.,

2018)).30

In summary, we showed that the TRENDYv6 ensemble mean SCANBP trend captures the positive trends in the high

latitudes and the lack of trend in the mid-latitudes given by inversions, and under-estimates the magnitude of the high latitudes

SCANBP trends by 9-45%, depending on the inversion considered and period analysed.
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4.2 Regional attribution

The comparison of SCANBP trends in large latitudinal bands may be useful in diagnosing general patterns, but is less useful

to diagnose drivers of trends (e.g. climate, agriculture), since ecosystem composition, land management and climate effects are

not necessarily separated along a latitudinal gradient. However, the comparison of inversions and models at pixel scale is also

not advisable, because the sparse atmospheric network does not allow constraining the fluxes at this scale. We thus compared5

inversions and LSMs for the SCANBP trends over five sub-continental scale regions: boreal and temperate Eurasia and North

America regions, and Europe (“TransCom3” regions, Figure 2). We then use LSMs for attributing SCANBP trends to different

drivers using their factorial simulations (Methods).

Inversions and LSMs consistently attribute the increase in SCANBP mainly to boreal Eurasia, both in area specific (Figure

1a) and integrated values (Figure 2b, 5.3-7.1 TgC.yr-2 for inversions and 4.6 TgC.yr-2 for MMEM, respectively) and to Europe10

(1.9-3.7 TgC.yr-2 and 2.3 TgC.yr-2). The LSMs ascribed the trends in boreal Eurasia approximately equally to climate change

and CO2 fertilisation (S1 and S2), with LULCC having a slight negative (i.e. decreasing) effect (compare S2 and S3), consistent

with the results by (Piao et al., 2017). In Europe, LSMs indicate negative contributions from both climate and LULCC. The

negative effect of climate may be linked to increasingly drier conditions in this region (Greve et al., 2014) and to strong

heatwaves in Europe in the early 21th century (Seneviratne et al., 2012). The negative contribution of LULCC indicated by15

LSMs in Europe does not support the idea that agricultural intensification or expansion drove an increase in SCANBP and

is discussed further on. In temperate Eurasia, inversions disagree on the sign of SCANBP trends and LSMs indicate weak

positive trends dominated by the CO2 fertilisation effect. In boreal North America, LSMs estimate SCANBP trends very

close to CarboScope estimates, mainly attributed to
::::
CO2 :::::::

followed
:::
by climate, whereas CAMS points to a trend close to zero

because of cancelling regional trends with opposing sign (Figure 1a). CAMS and CarboScope point to increasing SCANBP20

in temperate North America (1.4-1.6 TgC.yr-2), but the LSMs do not indicate any significant change (simulation S3). CAMS

(which uses prior information with smaller a-priori uncertainties than CarboScope, together with a denser network) shows

sharper regional differences than CarboScope, which illustrates that there are still substantial differences in the inversion at the

scale of continental regions regarding SCANBP trends.

Aggregated over the two latitudinal bands (Figure 2c), the MMEM indicates a dominant positive effect (increasing SCANBP )25

of CO2 fertilization both in L25−40N and L>40N . In L25−40N , the CO2 effect is offset by other factors: S1 differs significantly

from S2 and S3, which have lower trends of SCANBP . In L>40N , the MMEM points to a positive effect of climate change in

SCANBP trends, thus additive to the CO2 effect. The MMEM suggest a negligible contribution of LULCC to the SCANBP

trend in both latitudinal bands. The relative contributions of LULCC, climate and CO2 however, differ between LSMs (Figure

S4). Most models nevertheless agree on non-significant SCANBP trends in L25−40N as well as on the predominant role of30

CO2 fertilisation and a non-significant contribution of LULCC to the trends in SCANBP in L>40N . Interestingly, models

including carbon-nitrogen interactions had the weakest SCANBP trends (CABLE, ISAM and LPX-Bern), excepting CLM4.5

but we cannot draw conclusions from a small sent of carbon-nitrogen models.
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4.3 Driving processes

Validating the attribution of SCANBP trends to CO2, climate, and LULCC by the LSMs at large scale is challenging.

However, insights into the consistency of SCANBP drivers can be obtained by statistical analysis. We fitted multiple general

linear regression models (GLM) to the SCANBP from the inversions and the S3 MMEM over each latitudinal band using

multiple predictors from the TRENDYv6 forcing datasets (CO2 concentration, climate variables and changes in land-cover5

and management practices). For each dataset, we identified the statistical model that could best explain SCANBP trends with

least number of predictors (Table S2). We then tested the results from this statistical attribution for the MMEM against the

corresponding factorial estimates (see Methods). Figure 3 shows the relative contributions of the predictors (weighted by their

trends) found to SCANBP trends in both latitudinal bands. The coefficients of the GLM fit are shown in Figure S5.

The GLMs provide a better fit the trend of SCANBP in L>40N (57-74
::::::::
explaining

::::::
57–74% of the variance, Table S2) than for10

L25−40N (8-49
::::
8–49% only). The GLM fit to inversions and to the MMEM identified CO2 fertilisation as the most important

factor explaining (statistically) the SCANBP trends in both latitudinal bands, consistent with S1 (Figures 1, S4, S5 and S6),

even though
:::::::
although

:
the CO2 fertilization effect was weaker for the GLM fit to LSMs than for inversions in region L>40N .

The statistical models for inversions and LSMs agreed on a significant negative contribution of warming in both latitudinal

bands, but stronger in L25−40N . In L>40N , GLM models fitted to LSMs and CarboScope also point to changes in forest area15

contributing to increase SCANBP , and changes in crop area have a negative effect in SCANBP from LSMs. In L25−40N , the

GLM fit to LSMs further points to a
::::
small

:
negative contribution of wood-harvest to SCANBP trends, and the fit to CAMS a

weak
::
for

::::::
CAMS negative effects of irrigation and fertilization

:::
are

:::
also

:::::::::
significant. The statistical attribution of SCANBP trends

in LSMs is
:::::::
generally

:
consistent with the factorial simulations, although the negative effect of temperature is only significant

in L25−40N .
::
but

::
is

::::::
mostly

:::::
clear

:::
for

:::
the

::::
CO2 ::::::::::

fertilization
:::::
effect

::::
than

:::
for

:::
the

:::::
other

::::::
drivers.

::
In
::::

the
::::::::
difference

:::::::
between

::::::::
factorial20

:::::::::
simulations

:::::::
(Figure

:::
S6),

:::::
some

::::::
drivers

::::::
appear

::
to

:::::
have

:::::
strong

:::::::::
interactive

::::::
effects,

::::
e.g.

:::
the

:::::
effect

::
of

::::
CO2::

is
:::::::::::
significantly

:::::::
negative

::
for

::::::
S3-S2

:::::::::
(LULCC).

::::
This

:::::
could

:::
be

::::::::
explained

:::
by

:::::
higher

:::::::::
emissions

::::
from

::::::::
LULCC

:::::
under

::::::
higher

::::
CO2 ::::::::::::

concentrations
:::::
from

:::
the

:::
loss

::
of

:::::::::
additional

::::
sink

:::::::
capacity

::::::::::::::::::
(Pongratz et al., 2014).

:
The key role of CO2 fertilisation in the observed changes is in line with

Piao et al. (2017), but our results challenge some
::
of

:::
the previously proposed hypotheses to account for the increase in seasonal

CO2 exchange, as addressed below.25

4.4 Confronting Hypoteses

4.4.1 Contribution of LULCC

Agricultural intensification and expansion occurred mainly in latitudes below 45°N (Gray et al., 2014), and inversions and

LSMs reported instead a peak in the amplitude of land surface CO2 exchange for latitudes above 45°N (Figure 1 and S1). Fur-

thermore, our regional attribution identifies Eurasia as the region contributing most to increasing SCA; this region is dominated30

by natural ecosystems (Figure S3) and has experienced very little land use change (Verburg et al., 2015) over the past decades.

Additionally, factorial LSM simulations indicate a negligible contribution of LULCC and management to SCANBP trends at

latitudinal-band scale but also regionally (Figures 1c and 2).
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This, though, could not in itself falsify the hypothesis that agricultural intensification is a key driver of SCANBP trends,

because most LSMs still do not include processes that could intensify cropland net primary productivity (NPP) over time

such as better cultivars, fertilization, irrigation. Still, management practices are not a significant predictor for GLM fitted to

LSMs, but also not for inversions, excepting CAMS. CarboScope further identifies a negative effect of cropland expansion to

SCANBP in L>40N rather than a positive one, which partly challenges the contribution of cropland expansion (Gray et al.,5

2014) to SCANBP . Our results are consistent with those by Smith et al. (2014) that show that net primary productivity (NPP)

generally decreased following conversion from natural ecosystems to cropland, except in areas of highly intensive agriculture

such as midwestern USA. Increasing crop productivity (intensification) could partly explain increasing SCANBP . However,

satellite-based data for LAI (Zhu et al., 2016), NPP (Smith et al., 2016) and aboveground biomass (AGB) carbon stocks (Liu

et al., 2015) (Figure S7) indicate that the increase in crop productivity accounted for only a small fraction of the hemispheric10

trends in ecosystem productivity, consistent with crop productivity stagnation in Europe and Asia identified by Grassini et al.

(2013).

Previous studies suggesting a large role of the green revolution in SCANBP trends have focused on a longer period, starting

in the 1960s. The acceleration of SCANBP reported by inversions and LSMs (Table 1) concurrent with crop productivity

stagnation indicates that since the 1980s agriculture intensification is not likely to be the main driver of the increase in SCA.15

Even in the intensive agricultural areas in the US Midwest, CAMS estimates contrasting negative/positive trends (Figure 1a,

S8). Eddy-covariance flux measurements (only for 7-13 years) in the areas of intensive agriculture in the USA show a weak

relationship between trends in NBP and trends in SCANBP , showing mostly non-significant trends in SCANBP (Figure S8).

4.4.2 Contribution of warming

We found that warming during the growing season had a negative effect on SCANBP trends in both latitudinal bands, although20

this effect is uncertain for LSMs in L>40N . Annual temperature used in the statistical models was also negatively correlated

with SCANBP , but the correlation was only significant for CAMS. The negative relationship with growing-season temperature

(T) at the mid-latitudes may be explained by warmer temperature increasing atmospheric demand for water (Novick et al.,

2016) and inducing soil-moisture deficits in water-limited regions in summer (Seneviratne et al., 2010), or increased fire risk

(Peñuelas et al., 2017) that reduce the summer minimum of SCANBP . The negative statistical relationship found between25

the trend of SCANBP and T in L>40N challenges the assumption that warming-related increase in plant productivity in high-

latitudes necessarily increases the seasonal CO2 exchange (Keeling et al., 1996; Graven et al., 2013; Forkel et al., 2016). Such a

negative relationship, however, has also been reported by (Schneising et al., 2014) for interannual changes in the SCANBP of

total column CO2 for 2004-2010. Yin et al. (2018) have further shown that, at latitudes between 60°N and 80°N, the relationship

between SCA NBP and T has transitioned from positive in the early 1980s, to negative in recent decades, reconciling the results30

by Keeling et al. (1996) and Schneising et al. (2014).

The empirical negative relationship between trends in SCANBP and warming at the higher latitudes may be due to either

(i) indirect negative effects
:
a
:::::::
stronger

::::::
effect of T on decomposition

::::
total

:::::::::
ecosystem

:::::::::
respiration

::::::
(TER)

::::
than

:::
on

:::::
GPP dur-

ing the “release
::::::
uptake period”; (ii) a negative response of ecosystem productivity to warming during the “uptake period”;
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(iii) a stronger effect
::::::
indirect

:::::::
negative

::::::
effects

:
of T on total ecosystem respiration (TER) than on GPP during the growing

season
::::::::::::
decomposition

::::::
during

:::
the

:::::::
“release

::::::
period”

:::::::
(Figure

:::
S9). Some of these effects are counter-intuitive, because warming in

high-latitudes is usually associated with longer growing-season and increased GPP (Piao et al., 2008), although a weakening

of this relationship has been reported (Piao et al., 2014; Peñuelas et al., 2017).

Evidence nevertheless supports negative effects of warming on SCA trends. Temperature increase in recent decades has been5

associated with widespread reduction in extent and depth of snow cover (Kunkel et al., 2016) and in the number of days with

snow cover (Callaghan et al., 2011). Snow has an insulating effect, so snow-covered soil during winter can be kept at relatively

constant temperatures, several degrees above the air temperature (>10°C) which promotes respiration of soil C (Nobrega and

Grogan, 2007). Soils become subject to more fluctuations in temperature, and become colder, as the snow cover recedes or

becomes thinner. Yu et al. (2016) reported that respiration suppression due to a reduction in snow cover in winter may account10

for as much as 25% of the increase in the annual CO2 sink of northern forests. A decrease in respiration in response to warming

during the release period could thus decrease SCANBP , but the effect of growing-season temperature was stronger in our study.

The expansion of vegetation in Arctic tundra, particularly shrubland, has been linked to warming trends, but also depends on

soil-moisture and permafrost conditions (Elmendorf et al., 2012). Many regions of dry tundra and low arctic shrubland (Walker

et al., 2005) experience summer drought or soil-moisture limitations, even though northern regions are usually considered to be15

energy-limited (Greve et al., 2014). Indeed, Myers-Smith et al. (2015) found a strong soil-moisture limitation of the (positive)

sensitivity of shrub growth to temperature in summer, possibly associated with the limitation of growth due to drought and/or

with reduced growth and dieback due to standing water during thawing. CAMS indicates a decrease in SCANBP in eastern

regions in boreal North America (Figure 1a), where Myers-Smith et al. (2015) reported negative sensitivity of shrub-growth

to temperature. The coarse network and large correlation lengths used by CarboScope do not allow such regional contrasts to20

be resolved. Most process-based models lack a detailed representation of processes described above – e.g. a realistic effect

of snow insulation on soil temperatures, soil freezing and thawing (Koven et al., 2009; Peng et al., 2016; Guimberteau et al.,

2017) – potentially overestimating the net sink response to temperature changes (Myers-Smith et al., 2015). Moreover, soil-

moisture limitation due to temperature increase could also contribute to decrease TER by limiting microbial activity, which is

currently not simulated in most LSMs. This may in turn explain why LSMs underestimate the negative effect of temperature25

in SCANBP in the high-latitudes compared to CAMS (Figure 3 and S4).

4.4.3 Evaluating model biases

Wenzel et al. (2016) proposed that the observed sensitivity of SCANBP to CO2 was an emergent constraint on future terrestrial

photosynthesis, but their study focused on simulations by an earth-system model that excluded the effects of climate change

(i.e. the radiative feedback of CO2 to climate was not considered). Our results are consistent with a strong increase in the peak30

uptake due to the effect of CO2 fertilisation driven by gross primary production (GPP) as proposed by Wenzel et al. (2016). The

negative effect of temperature in our study (Figure 3), although weaker than the positive effect of absolute CO2 concentration,

suggested that warming partly cancelled out the increase in SCANBP expected from the effect of fertilisation alone. We

propose that other processes partly control SCANBP trends linked to reduced decomposition under lower snow-cover (Yu
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et al., 2016) or to emerging limitations to growth in response to water-limitation (Elmendorf et al., 2012; Myers-Smith et al.,

2015). Additionally, while the sensitivity of productivity to the CO2 fertilisation effect is expected to decrease, whereas the

control of respiration by temperature should increase nonlinearly (Piao et al., 2014, 2017; Peñuelas et al., 2017), suggesting a

progressively dominant (negative) influence of warming on SCANBP . The degree of such an offset would likely depend on

the thresholds of soil temperature and water limitation that are complex and thus difficult to assess and require process-based5

modelling. Our results imply that future constraints of productivity based only on the CO2 effect (as in Wenzel et al. (2016))

may overestimate future GPP.

We evaluated whether the differences between the observed SCANBP trends (significant only in L>40N ) and those simu-

lated by the LSMs could be associated with the modelled sensitivities to atmospheric CO2 concentration (CO2) and growing-

season temperature (T) in L>40N (Figure 4). In Figure 4, only models with a too small sensitivity of SCANBP to T produce10

a realistic trend of SCANBP . In contrast, the models indicating sensitivities to T and CO2 more similar to those estimated by

the inversions tend to underestimate the trend in SCA.

Why are the LSM sensitivities of SCA to T positively correlated with their long-term SCANBP trend (Figure 4), even

though CO2 is a stronger driver of the simulated SCANBP trend (Figure 3)? We found a clear relationship between the

model bias in the trend of SCANBP and the sensitivity to CO2 fertilisation in S3 (in line with Wenzel et al. (2016)), but15

we also found a compensatory effect, where models that overestimate the sensitivity of SCA to T tend to underestimate the

sensitivity to CO2 and vice-versa. LSMs tend to overestimate (underestimate) sensitivity of SCANBP to T (CO2), compared

to the observation-based constraints from inversions. LSMs often compensate too strong (or too weak) simulated water-stress

or temperature sensitivity by adjusting photosynthesis parameters (that control CO2 fertilization) during model optimization to

match the observed net terrestrial sink. This compensatory effect has previously been reported by Huntzinger et al. (2012) for20

the mean terrestrial sink; we find that it could also affect the trends in seasonal CO2 exchange.

We argue that the trend of SCANBP can differ between models due to: a) differences in their NPP response to T and CO2;

b) differences in turnover times of short-lived C pools by which increased NPP is coupled to increased winter decomposition;

(c) phase shifts between GPP and ecosystem respiration. The latter may be associated with errors in the phase and amplitude

of simulated ecosystem respiration, arising from factors such as: (i) representing soil carbon stocks as pools with discrete turn-25

over times and associated effective soil depths Koven et al. (2009) (ii) neglect of seasonal acclimation effects on autotrophic

and heterotrophic respiration. The sensitivities of NPP to CO2 and T between models are strongly and consistently correlated

with the compensatory effect of the model parameterisations (Figure S9
:::
S10), but we find no clear relationship between the

biases of the modelled SCANBP trend and the sensitivity of NPP to T (Figure S10
:::
S11), suggesting a key role of respiration.

Indeed, the models with SCANBP trends closer to observations tend to be associated with a lower sensitivity of ecosystem30

respiration to growing-season temperature (Figure S4c). Too large turnover of short-lived pools in a model should produce too

small increase of the SCANBP amplitude (i.e. increased respiration during the “uptake period" followed by too little during

the “release period") for a given sensitivity of NPP to CO2 or climate. A recent study by Jeong et al. (2018) has reported that

ecosystem carbon-cycle models (not used in this study) underestimated changes in carbon residence times in northern Alaska.
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The evaluation of the effect of model turnover times in SCANBP requires a deeper analysis of transfers between litter and soil

organic carbon pools and can be verifiable in future simulations.

5 Conclusions

Based on our assessment of atmospheric observations and most advanced land-surface model simulations the most likely ex-

planation of the seasonal cycle of atmospheric CO2 at high latitudes is the CO2 fertilization of photosynthesis in unmanaged5

high latitude ecosystems, especially in the Eurasian Boreal forests. Our study further points to key processes that need to be

developed to better simulate NBP responses to changing climate, especially to Arctic warming, in particular productivity limi-

tations and the decomposition terms. Our results indicated that the signal of the SCANBP trend contains valuable information

for the turnover times of short-term pools, which await further investigation.
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Figure 1. Variability of seasonal-cycle amplitude and trends from the inversions and LSMs. (a) Geographical distribution of SCANBP trends

from the inversions (CAMS and CarboScope) and the multi-model ensemble (MME) mean from TRENDYv6 simulation S3 (all forcings).

Both inversions estimated predominantly positive trends in SCANBP >40°N (Figure S1), so we defined two latitudinal bands, L>40N and

L25−40N , for flux aggregation. (b,
:
c) Aggregated SCANBP time-series estimated by the inversions (CAMS in black and CarboScope s76

in grey) and S3 MME mean (red)
::

for
:::::
L>40N:::

and
::::::::
L25−40N :::::::::

respectively. The dashed lines indicate the linear fits used to calculate the slopes

of the trends (corresponding colours), and the slopes and confidence intervals (95%) are provided.
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Figure 2. Regional distribution of the dominant land-cover types and SCANBP trends. (a) Land-cover map averaged over the study period

for the three main land-cover classes (forest/shrubland, grassland, and cropland) based on ESA-CCI annual land-cover data (1992-2015

average); (b) The continental regions correspond to the regions defined by Baker et al. [2006] and are delimited by bold lines: boreal and

temperate North America (BorNA and TempNA), Europe (Eur), and boreal and temperate Eurasia (BorEA and TempEA); (c) Comparison of

the SCANBP trends from the inversions to the trends estimated by the LSM experiments: S3, S2 (no LULCC), and S1 (no LULCC and no

climate change). The bars for the inversions and LSMs indicate the average trend over each latitudinal band. The error bars for the inversions

indicate the 95% confidence levels for the trend values, and the vertical lines for the LSMs indicate inter-quartile ranges of the MME. The

95% confidence interval for the MME mean was also calculated (see Methods).
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Figure 3. Statistical attribution of drivers of SCANBP estimated by the inversions and LSMs. The main drivers of SCANBP are presented

for (a) L>40N and (b) L25−40N and are calculated as the product of the coefficients of a general linear model fit on SCANBP using a number

of predictors (normalised) and their corresponding trends. Fertilization, irrigation, wood harvest, growing-season precipitation, growing-

season temperature, atmospheric CO2 concentration were tested as predictors, and the best fit was chosen for each dataset: CAMS (dark

grey), CarboScope s76 (light grey), and the MMEM (red). The bars indicate the contribution of each predictor to the trend in SCANBP ,

error bars indicate the corresponding 95% confidence intervals, and the symbols indicate significant MRLM fits (two, one asterisks and

crosses, p<0.01, p<0.05 and p<0.1 respectively).
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Figure 4. Emerging relationships between LSM sensitivities to climate and CO2 and their SCA trends. The SCANBP trend for L>40N

estimated by each inversion (grey intervals) and corresponding responses of SCANBP to (a) T and (b) CO2 (as calculated in Figure 3

but considering the scores of the regression only, shown in Figure S4) are compared to the results from individual models (simulation S3,

coloured markers). The shaded areas indicate the inversion ranges, and the distribution of the grey lines shows uncertainty in the relationship

between each pair of variables.
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Abstract. Continuous atmospheric CO2 monitoring data indicate an increase in seasonal-cycle amplitude (SCA) of CO2 ex-

change in northern high latitudes. The major drivers of enhanced SCA remain unclear and intensely debated with land-use

change, CO2 fertilization and warming identified as likely contributors. We integrated CO2-flux data from two atmospheric

inversions (consistent with atmospheric records) and from and 11 state-of-the-art land-surface models (LSMs) to evaluate the

relative importance of individual contributors to trends and drivers of the SCA of CO2-fluxes for 1980-2015
:::::::::
1980–2015. The5

LSMs generally reproduce the latitudinal increase in SCA trends within the inversions range. Inversions and LSMs attribute
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SCA increase to boreal Asia and Europe due to enhanced vegetation productivity (in LSMs) and point to contrasting effects of

CO2 fertilisation (positive) and warming (negative) on SCA. Our results do not support land-use change as a key contributor

to the increase in SCA. The sensitivity of simulated microbial respiration to temperature in LSMs explained biases in SCA

trends, which suggests SCA could help to constrain model turnover times.

1 Introduction5

The increase in the amplitude of seasonal atmospheric CO2 concentrations at northern high latitudes is one of the most intrigu-

ing patterns of change in the global carbon (C) cycle. The seasonal-cycle amplitude (SCA) of atmospheric CO2 in the lower

troposphere at the high-latitude monitoring site of Point Barrow, Alaska, has increased by about 50% since the 1960s (Keeling

et al., 1996; Dargaville et al., 2002). Increasing SCA has also been registered at other high-latitude sites, mostly above 50°N

(Piao et al., 2017) and appears to be driven primarily by changes in seasonal growth dynamics of terrestrial ecosystems (i.e., net10

biome productivity, NBP), but uncertainty remains about the relative contributions from different continents, and mechanisms.

Some studies proposed that the trend in SCA is primarily driven by increased natural vegetation growth and forest expansion

at high-latitudes due to CO2 fertilization and climate change (Graven et al., 2013; Forkel et al., 2016; Piao et al., 2017). Others

(Gray et al., 2014; Zeng et al., 2014) suggested that agricultural expansion and intensification resulted in increased productivity

and thus enhanced the seasonal exchange in cultivated areas at mid-latitudes. However, evidence suggests that crop productivity15

stagnated after the 1980s in many regions in the Northern Hemisphere (Grassini et al., 2013), which is not reflected in SCA

trends in recent decades (Yin et al., 2018).

Studies using land-surface models (LSMs) to attribute trends to the suggested processes usually convert simulated fluxes to

CO2 concentrations using atmospheric transport models (ATM) and compare the results to in-situ measurements (Dargaville

et al., 2002; Forkel et al., 2016; Piao et al., 2017) or over latitudinal transects (Graven et al., 2013; Thomas et al., 2016). These20

studies have shown that LSMs systematically underestimated SCA trends, but it is not clear whether these biases are due to

LSM uncertainties or due to trends or errors in the ATM (Dargaville et al., 2002). Piao et al. (2017) addressed these problems

by designing systematic model experiments to compare observed CO2 concentrations at multiple sites with ATM simulations

forced by an ensemble of NBP from different LSMs and an ocean biogeochemistry model. Point Barrow was the only site

where nearly all models accurately described the trend in SCA, while in other sites, LSMs generally captured the sign of the25

trend in SCA but either under- or over-estimated its magnitude. Piao et al. (2017) further reported that CO2 fertilisation and

climate change drove the increase in SCA for sites >50°N, but that at mid-latitude sites land use, oceanic fluxes, fossil-fuel

emissions, as well as trends in atmospheric transport may have contributed to the SCA trends.

Atmospheric inversions provide a consistent framework for assimilating in-situ CO2 concentration observations to estimate

net CO2 surface fluxes while accounting for errors in the prior fluxes and for some errors in the ATM (Peylin et al., 2013). SCA30

trends have a strong latitudinal gradient that is interpreted as spatio-temporal trends of surface flux seasonality by atmospheric

inversions. The spatiotemporal distribution of terrestrial and oceanic surface fluxes estimated by inversions provides thus

direct insight about the regional patterns of trends in the seasonal amplitude of CO2 fluxes (i.e. SCA of NBP, SCANBP ) that
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is fully consistent with the amplitude of CO2 concentrations in all stations of the observational network used and constitute a

direct benchmark for SCANBP simulated by LSMs. Here, we use top-down (inversions (Chevallier et al., 2010; Rödenbeck,

2005)) and bottom-up (TRENDYv6 LSMs (Le Quéré et al., 2018)) estimates of terrestrial CO2 fluxes at northern extra-tropical

latitudes between 1980-2015 to:

(i) assess the ability of those LSMs to simulate inversion-based trends in SCANBP ;5

(ii) attribute the trends in SCANBP to specific regions in the Northern Hemisphere;

(iii) attribute the relative importance of drivers using the ensemble model framework.

The two inversions used here – the Copernicus Atmosphere Monitoring Service (CAMS) inversion system (Chevallier et al., 2005) and

the Jena CarboScope inversion (Rödenbeck, 2005) – solve for fluxes on their ATM grid, thus minimising aggregation errors

for large regions (Kaminski and Heimann, 2001). The two inversions differ in a number of characteristics (see Methods),

particularly the ATM, the prior information and the observations assimilated: CAMS includes a time-varying number of

multi-year air-sampling sites as they are available (constraining better spatial patterns), and CarboScope keeps a fixed set of50

sites covering a given period (avoiding artefacts in the time series related to the appearance or disappearance of measurement

sites).

We use NBP simulated by a set of 11 LSMs from the recent TRENDYv6 inter-comparison (Le Quéré et al., 2018) in three

distinct experiments where models are forced with: changing CO2 only (S1); CO2 and changing climate (S2); changing climate,

CO2, and LULCC (S3). Some of the TRENDYv6 models used here simulate some key management processes (4 models55

include wood harvest, 1 model irrigation, and 2 fertilization) and more models now include nitrogen cycling, and improved

soil processes, which were missing in previous intercomparisons (Arneth et al., 2017) (see Sec. 2.2).

2 Data20

2.1 Atmospheric inversions

The inversion of a transport model to infer surface fluxes from concentration measurements is an ill-posed problem due to the
::
60

::

dispersive nature of transport in the atmosphere and to the finite number of available measurements. This ill-posedness can be
::

compensated by using some prior information about the fluxes to be inferred. This prior information also drives the separation
::

between natural and fossil fuel emissions in the estimation. In order to illustrate the diversity of the inversion results, we
::

take the example of two inversions systems that provide results for the study period between 1980 and 2015. We analysed
::

monthly surface CO2 fluxes estimated by the inversion systems from the Copernicus Atmosphere Monitoring Service (CAMS)
::
65

::

(Chevallier et al., 2005, 2010) and from Jena CarboScope (Rödenbeck et al., 2003; Rödenbeck, 2005).
:::
The

:::
two

:::::::::
inversions

::::
used

::

:::
here

:::::
solve

:::
for

:::::
fluxes

:::
on

::::
their

::::
ATM

:::::
grid,

:::
thus

::::::::::
minimising

::::::::::
aggregation

:::::
errors

:::
for

::::
large

::::::
regions

:::::::::::::::::::::::::::
(Kaminski and Heimann, 2001).

::

Here we use
:::
The CAMS version r16v1 (http://atmosphere.copernicus.eu/) selected for the period between 1980-2015, that30

provides estimates of ocean and terrestrial fluxes at 1.9° latitude ×3.75° longitude resolution. The CAMS inversion system

assimilates observations from a variable number of atmospheric CO2 monitoring sites (119 in total providing at least 5 years
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of measurements) and uses the transport model from the LMDz General Circulation Model (LMDz5A) nudged to ECMWF-

analysed winds. More details can be found in (Chevallier et al., 2010).

The CarboScope v4.1 (available at http://www.bgc-jena.mpg.de/CarboScope/?ID=s) provides several versions that assimi-

late a temporally consistent set of observations. We used these versions for the study period (1980-2015) to test the influence of

the number of assimilated sites on the results. The s76, s85, and s93 versions have assimilated observations from 10, 23, and 385

sites since 1976, 1985, and 1993, respectively. Surface fluxes (ocean and land) are provided at the latitude/longitude resolution

of 4°×5° of the TM3 atmospheric transport model is used (Rödenbeck, 2005). In this version, the atmospheric model is forced

by the National Centers for Environmental Prediction (NCEP) meteorological fields.

CarboScope further provides a sensitivity analysis of the s85 version fluxes to different parameters of the inversion. The

sensitivity tests performed are: “oc" – fixing the ocean prior; “eraI" - forcing the inversion with fields from ERA-Interim re-10

analysis instead of NCEP; “loose” and “tight” - scaling the a-priori sigma for the non-seasonal land and ocean flux components

by 4 (dampening) and 0.25 (amplification), respectively; “fast” - reducing the length of a-priori temporal correlations; “short”

- reducing the length of a-priori spatial correlations. The resulting latitudinally-integrated SCANBP and respective trends are

shown in Figure S2.

::::
Since

:::::::
CAMS

:::::::
includes

:
a
::::::
larger,

:::
but

:::::::::::
time-varying,

:::::::
number

::
of

:::::::::
multi-year

::::::::::
air-sampling

::::
sites

::
as
::::
they

:::
are

::::::::
available,

::
it
:::::::::
constrains

::
85

::

:::::
better

::::::
spatial

:::::::
patterns,

:::::
while

:::::::::::
CarboScope

:::::
keeps

::
a
:::::
fixed

:::
set

::
of

::::
sites

::::::::
covering

::
a

:::::
given

::::::
period,

:::::
using

::::
less

:::::
sites,

:::
but

::::::::
avoiding

::

:::::::
artefacts

::
in

:::
the

::::
time

:::::
series

::::::
related

::
to

:::
the

:::::::::
appearance

::
or

::::::::::::
disappearance

::
of

::::::::::::
measurement

::::
sites.

:::

2.2 Land-surface Models

Land-surface models (LSMs) provide a bottom-up approach to evaluate terrestrial CO2 fluxes (i.e. net biome productivity,

NBP), and allow deeper insight into the mechanisms driving changes in C-stocks and fluxes. The TRENDY intercomparison20

project compiles simulations from state-of-the-art LSMs to evaluate terrestrial energy, water and CO2 exchanges since the pre-

industrial period (Sitch et al., 2015; Le Quéré et al., 2018). We use LSMs from the TRENDY v6 simulations for 1860-2015. To

identify the contributions of CO2 fertilisation, climate, and LULCC and management to the observed changes in SCANBP ,

we use outputs from three factorial simulations.

The models in simulation S3 were forced by (i) atmospheric CO2 concentrations from ice core data and observations, (ii)25

historical climate reanalysis from the CRU-NCEP v8 (Viovy, 2016; Harris et al., 2014) and (ii) human-induced land-cover

changes and management from a recent update of the Land-Use Harmonization (Hurtt et al., 2011) prepared for the next set

of historical CMIP6 simulations, LUH2v2h (described below). Most models still do not represent many of the management

processes included in LUH2v2h, though. As summarized in Table A1 in (Le Quéré et al., 2018)
::::::::::::::::::
Le Quéré et al. (2018), four

models do not simulate wood-harvest, and three do not simulate cropland harvest. Two models simulate crop fertilization,30

tillage and grazing.

The models in simulation S2 were forced by (i) and (ii) with fixed land-cover map from 1860. Simulation S2 estimates

“natural” fluxes, and the difference between S2 and S3 outputs corresponds to anthropogenic CO2 fluxes from LULCC. The

models in simulation S1 were forced by changing atmospheric CO2 and no climate change (recycling 1901-1920 values to

4
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simulate interannual variability) or LULCC. S1 thus provided changes in the terrestrial sink due to CO2 fertilisation, and the

difference between S1 and S2 indicates the influence of climate change only. However, management practices (e.g. wood-

harvest), when simulated, are already included in S1 and S2 for some models. A baseline simulation with none of these effects

(S0) was also performed to check for residual variability and trends. We selected only models providing spatially-explicit

outputs for the four simulations (S0, S1, S2 and S3) at monthly intervals (to evaluate seasonality, Supplementary Table 1).5

We used NBP outputs selected for the period common to the inversion data, i.e. 1980-2015. NBP corresponds to the simulated

net atmosphere-land flux (positive sign for a CO2 sink), i.e. gross primary productivity (GPP) minus total ecosystem respiration

(TER), fire emissions and fluxes from LULCC and management (e.g. deforestation, agricultural and wood harvest, and shifting

cultivation). All model outputs were resampled to a common regular latitude/longitude grid of 1×1°.

2.3 Land cover and management10

2.3.1 LUH2v2h

The LUH2v2h (Hurtt et al., 2011) (available at http://luh.umd.edu/) provides historical states and transitions of land use and

management in a regular latitude/longitude grid of 0.25×0.25°, covering 850-2015 at annual time intervals. Land-use states

distinguish between primary and secondary natural vegetation (and forest and non-forest sub-types), managed pastures and

rangelands, and multiple crop functional types. The updated data set includes several new layers of agricultural management,15

such as irrigation, nitrogen fertilisation, and biofuel management, and spatially explicit information about wood harvest con-

strained by LANDSAT data. Each LSM, however, may not simulate all the processes introduced in LUH2v2h, so the S3 results

from each simulation might not be directly comparable.

2.3.2 ESA-CCI Land-Cover

Land-cover information in LUH2v2h is combined with partial information on land use (e.g. rangeland in LUH2v2h can be20

either grassland or shrubland with low grazing disturbance). We therefore compared this information to annual land-cover

maps at a latitude/longitude resolution of 0.5×0.5° based on the 300-m satellite-based land-cover data sets from ESA-CCI

LC (https://www.esa-landcover-cci.org/?q=node/175) for 1992-2015. Data are provided for different vegetation types, but here

were aggregated for four main land-cover classes: forest, shrubland, grassland, and cropland. The average distribution of these

classes (forest and shrubland aggregated for readability) is shown in Figure 2a. LUH2 was used for the statistical analysis of25

inversion and the LSM drivers (because it was the data set used to force the models), and ESA-CCI data were used for the

analysis of satellite-based vegetation data sets.

2.4 Satellite-based vegetation datasets

We further evaluated trends in the activity and growth of vegetation for the different land-cover classes using three satellite-

based data sets: leaf-area index (LAI), net primary production (NPP), and aboveground biomass (AGB) stocks. The LAI data30

set was calculated from satellite imagery from Global Inventory Modeling and Mapping Studies (GIMMS LAI3g) described

5
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by (Zhu et al., 2015) for 1982-2015. LAI data were provided in two time-steps per month on a regular latitude/longitude

grid of 1/12° (subsequently aggregated to 0.5°). (Smith et al., 2016)
::::::::::::::::
Smith et al. (2016) used the MODIS NPP algorithm and

data for LAI and the fraction of photosynthetically active radiation from GIMMS to produce a 30-year global NPP data set,

provided at monthly timescales for 1982-2011 at a latitude/longitude resolution of 1×1°. The data are available at the NTSG

data portal (https://wkolby.org/data-code/). AGB stocks can be derived from estimates of vegetation optical depth derived from5

passive-microwave satellite measurements. (Liu et al., 2015) produced a 20-year data set of AGB stocks for 1993-2012 based

on measurements from a series of passive-microwave sensors. The data set is provided at a latitude/longitude resolution of

0.25×0.25° in annual time intervals and is available at http://www.wenfo.org/wald/global-biomass/ (last access 13/02/2018).

We tracked changes in LAI, NPP, and AGB stocks for different land-cover types over time by selecting periods of at least 20

years common to ESA-CCI LC and the vegetation data sets (1992-2012 for LAI, 1992-2011 for NPP, and 1993-2012 for AGB10

stocks). Vegetation variables were then aggregated for the four land-cover types at each time interval to account for land-cover

changes.

3 Methods

3.1 Trends in seasonal-cycle amplitude (SCA)

The seasonal amplitude of CO2 concentration is modulated by higher ecosystem CO2 uptake during the growing season and15

increased emissions during the release period (TER) and thus controlled by the seasonal amplitude of NBP. We calculated

SCANBP as the difference between peak uptake and trough for each year, at pixel scale shown in Figure 1a. However, since

inversion fluxes have large uncertainty at pixel-level we focused our analysis on SCA trends estimated from aggregated NBP

over latitudinal bands or Transcom3 regions (Baker et al., 2006). Because we do not impose the timing of peak and trough,

changes in SCANBP can be affected by the relative phase changes of GPP versus TER.20

The trend in SCANBP was calculated by a least-squares linear fit of annual values for 1980-2015, and confidence intervals

were calculated based on the Student’s t-distribution. We tested the robustness of estimated trends of inversions and LSMs for

shorter periods by removing the first and last 1-10 years and trends of interannual variability by randomly removing 5 and 10

years of data 104 times. The significance of these trends was calculated using a Mann-Kendall test. We also compared different

versions of CarboScope to evaluate the influence of the assimilated network size on the SCANBP trends (Figure S1). We25

further calculated the trends for each of the sensitivity tests from CarboScope s85.

3.2 Process attribution

The three TRENDY experiments allow evaluating separately the effects of CO2 fertilisation, climate change, and LULCC in

the models. The differences between S1 and S2 and between S2 and S3, however, could not isolate specific processes that may

have contributed to the trend (e.g. cropland expansion versus afforestation, or precipitation versus temperature). Furthermore,30

the LSMs may miss or simulate poorly certain processes that could influence SCANBP . Therefore, the attribution of drivers
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by the models is uncertain and should be cross-evaluated. Because inversions do not allow such partitioning between processes,

a possible solution is to compare statistical attribution to drivers in inversions and LSMs.

We therefore compared the sensitivity of SCANBP estimated by the inversions and the LSMs by fitting a general linear

model (GLM) using the iteratively reweighted least squares method to eliminate the influence of outliers (Gill, 2000; Green,5

1984). We tested the following variables (after unity-based normalisation) as predictors: fertilization, irrigation, wood harvest,

growing-season precipitation, growing-season temperature, atmospheric CO2 concentration, change in extent of cropland and

forest. These variables were taken from the corresponding datasets used to force TRENDYv6 models. All possible combina-

tions of n predictors (n=1,2, . . . , 7
:
n

::::::::
predictors

:::::::::::::
(n= 1,2, . . . ,7) were tested, and for each value of n, the “best” model (according

to Akaike’s information criterion) was chosen separately for each dataset. Above n=4
::::
n= 4

:
no model showed improved fit10

compared to the models with less predictors. The coefficients from the GLM fit for each dataset are shown in Figure S
:::
S5.

We further tested the robustness of the statistical relationships by fitting the GLM to the differences between each TRENDYv6

experiment. The significant predictors in the GLM fit to the LSMs in S3 should be detected in the corresponding factorial sim-

ulations, e.g. predictors associated with climate should be consistent for the fluxes estimated by the difference between S2

and S1 (effects of climate). The GLM fit to the partial fluxes for the effects of LULCC (S3-S2), climate (S2-S1), and CO215

fertilisation (S1-S0) are shown in Figure S5
::
S6.

4 Resultsand discussion

4.1 Large scale patterns

4.1.1 Top-down estimates

Both inversions estimate increasingly positive trends in SCANBP with increasing latitude, even though CAMS shows het-20

erogeneous patterns in North America
::::
with

::::::
strong

:::::::::
decreasing

:::::
trends

:::
for

:::::::::::
mid-latitudes

:
(Figure 1a, S1), and strong decreasing

trends for mid-latitudes. Both inversions agree on significant positive SCANBP trends north of 40°N (defined here as band

L>40N ) and non-significant trends for 25-40°N (band L25−40N , Figures 1b). In the L>40N band, CAMS and CarboScope s76

v4.1 estimate an SCANBP increase of 17.3±4.5 TgC.yr-2 and 13.3±3.3 TgC.yr-2, respectively. The uncertainties given for

SCANBP trends represent here the uncertainty of the linear fit due to the year-to-year SCANBP variability (Methods). The25

difference between the CAMS and CarboScope inversions reflects part of the uncertainty in inversions due to their different

choices in the ATM (including different atmospheric forcing and spatial resolution), the set of assimilated CO2 data, the prior

fluxes, and the a-priori spatial and temporal correlation scales, and is comparable to the uncertainty of the linear fit due to

inter-annual variability.

This finding is corroborated by two further analyses of inversion uncertainties:30

(1) While both inversions assimilate atmospheric CO2 measurements from Point Barrow, CAMS increasingly assimilates

many other sites in the NH as they become available, helping to better constrain the CO2 fluxes in mid- to high-latitudes with

time. Assimilating a non-stationary network of stations, however, possibly leads to spurious additional trends in SCANBP .
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To test this, we use different runs provided by CarboScope using more sites (but still fixed in number for each run, Figure S2)

for more recent periods. The results from CarboScope version s85 v4.1 (1985-2015) are generally consistent with CAMS, but

version s93 v4.1 (1993-2015) estimates much stronger SCANBP trends (Table S1). A higher SCANBP trend in the period

1993-2015 is reported by both CAMS and CarboScope, which estimate very similar trends in L>40N (19.5 TgC.yr-2 and 19.25

TgC.yr-2 respectively).

(2) CarboScope provides a set of sensitivity runs for s85 v4.1, varying some of the inversion’s parameters (Figure S3).

Changes in the meteorological fields driving the transport model and the prior ocean fluxes have the largest effect on the

SCANBP trends, giving L>40N trends of 8.6±4.9 TgC.yr-2 (ERA-Interim instead of NCEP) and 13.9±5.6 TgC.yr-2 (fixed

ocean), respectively, both well within the uncertainty range (interannual variability affecting linear fit to SCANBP trend)10

estimated by the standard CarboScope s85 v4.1 (11.7±5.0TgC.yr-2).

In summary, the ability of inversions to quantify the SCANBP trend is mostly limited by the intrinsic year-to-year SCANBP

variability, less so by the amount of information available through the atmospheric data or by inversion settings.

4.1.2 Bottom-up estimates

The large-scale patterns of SCANBP trends from the LSM Multi-Model Ensemble Mean (MMEM) of simulation S3 (all15

forcings) are consistent with inversions, especially with CarboScope
::::::::::
CarboScope

:::::::
inversion

:
(Figure 1a). The MMEM estimates

are within the range of the inversions for most latitudes (Figure S1), but always at the lower end of SCANBP trends reported

by inversions. Consistent with inversions, LSMs report a significant trend in L>40N and a very weak (non-significant) trend

in SCANBP in L25−40N (Figure 1b). The overall MMEM trend in L>40N is significantly lower than in inversions (9.5±3.4

TgC.yr-2, i.e. 55-71% of inversions’ estimates. The agreement between LSMs and inversions also varies depending on the20

period and set of inversions considered (LSMs capture 65-91% of inversion trends in 1985-2015 and 74-75% in 1993-2015,

Table 1). The MMEM estimate for 1985-2015 (10.6±4.5 TgC.yr-2) is in fact, even higher than the CarboScope inversion with

different meteorological fields (8.6±4.9 TgC.yr-2). These results indicate that, despite a general underestimation of SCANBP

trend in L>40N during 1980-2015 as compared to top-down estimates, the LSMs simulate the main spatiotemporal patterns in

SCANBP trends consistent with inversions estimates, especially when accounting for the uncertainty in the latter.25

To understand if recent improvements to the set of LSMs and their forcing in TRENDYv6 may have improved their

performance in reproducing the SCANBP trend, we compared SCANBP trends from the previous intercomparison round

(TRENDYv4). The MMEM from v6 estimates an SCANBP trend in L>40N 43% higher than in than v4 (MMEM shown in

Table S1, but evaluated for individual models). The specific reasons for improvement are hard to identify because of multiple

model-dependent changes in the forcing, process simulation and parameterizations from v4 to v6 (Table 4 in (Le Quéré et al.,30

2018)).

In summary, we showed that the TRENDYv6 ensemble mean SCANBP trend captures the positive trends in the high

latitudes and the lack of trend in the mid-latitudes given by inversions, and under-estimates the magnitude of the high latitudes

SCANBP trends by 9-45%, depending on the inversion considered and period analysed.
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4.2 Regional attribution

The comparison of SCANBP trends in large latitudinal bands may be useful in diagnosing general patterns, but is less useful

to diagnose drivers of trends (e.g. climate, agriculture), since ecosystem composition, land management and climate effects are

not necessarily separated along a latitudinal gradient. However, the comparison of inversions and models at pixel scale is also5

not advisable, because the sparse atmospheric network does not allow constraining the fluxes at this scale. We thus compared

inversions and LSMs for the SCANBP trends over five sub-continental scale regions: boreal and temperate Eurasia and North

America regions, and Europe (“TransCom3” regions, Figure 2). We then use LSMs for attributing SCANBP trends to different

drivers using their factorial simulations (Methods).

Inversions and LSMs consistently attribute the increase in SCANBP mainly to boreal Eurasia, both in area specific (Figure10

1a) and integrated values (Figure 2b, 5.3-7.1 TgC.yr-2 for inversions and 4.6 TgC.yr-2 for MMEM, respectively) and to Europe

(1.9-3.7 TgC.yr-2 and 2.3 TgC.yr-2). The LSMs ascribed the trends in boreal Eurasia approximately equally to climate change

and CO2 fertilisation (S1 and S2), with LULCC having a slight negative (i.e. decreasing) effect (compare S2 and S3), consistent

with the results by (Piao et al., 2017). In Europe, LSMs indicate negative contributions from both climate and LULCC. The

negative effect of climate may be linked to increasingly drier conditions in this region (Greve et al., 2014) and to strong15

heatwaves in Europe in the early 21th century (Seneviratne et al., 2012). The negative contribution of LULCC indicated by

LSMs in Europe does not support the idea that agricultural intensification or expansion drove an increase in SCANBP and

is discussed further on. In temperate Eurasia, inversions disagree on the sign of SCANBP trends and LSMs indicate weak

positive trends dominated by the CO2 fertilisation effect. In boreal North America, LSMs estimate SCANBP trends very

close to CarboScope estimates, mainly attributed to
::::
CO2 :::::::

followed
:::
by climate, whereas CAMS points to a trend close to zero20

because of cancelling regional trends with opposing sign (Figure 1a). CAMS and CarboScope point to increasing SCANBP

in temperate North America (1.4-1.6 TgC.yr-2), but the LSMs do not indicate any significant change (simulation S3). CAMS

(which uses prior information with smaller a-priori uncertainties than CarboScope, together with a denser network) shows

sharper regional differences than CarboScope, which illustrates that there are still substantial differences in the inversion at the

scale of continental regions regarding SCANBP trends.25

Aggregated over the two latitudinal bands (Figure 2c), the MMEM indicates a dominant positive effect (increasing SCANBP )

of CO2 fertilization both in L25−40N and L>40N . In L25−40N , the CO2 effect is offset by other factors: S1 differs significantly

from S2 and S3, which have lower trends of SCANBP . In L>40N , the MMEM points to a positive effect of climate change in

SCANBP trends, thus additive to the CO2 effect. The MMEM suggest a negligible contribution of LULCC to the SCANBP

trend in both latitudinal bands. The relative contributions of LULCC, climate and CO2 however, differ between LSMs (Figure30

S4). Most models nevertheless agree on non-significant SCANBP trends in L25−40N as well as on the predominant role of

CO2 fertilisation and a non-significant contribution of LULCC to the trends in SCANBP in L>40N . Interestingly, models

including carbon-nitrogen interactions had the weakest SCANBP trends (CABLE, ISAM and LPX-Bern), excepting CLM4.5

but we cannot draw conclusions from a small sent of carbon-nitrogen models.
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4.3 Driving processes

Validating the attribution of SCANBP trends to CO2, climate, and LULCC by the LSMs at large scale is challenging.

However, insights into the consistency of SCANBP drivers can be obtained by statistical analysis. We fitted multiple general

linear regression models (GLM) to the SCANBP from the inversions and the S3 MMEM over each latitudinal band using5

multiple predictors from the TRENDYv6 forcing datasets (CO2 concentration, climate variables and changes in land-cover

and management practices). For each dataset, we identified the statistical model that could best explain SCANBP trends with

least number of predictors (Table S2). We then tested the results from this statistical attribution for the MMEM against the

corresponding factorial estimates (see Methods). Figure 3 shows the relative contributions of the predictors (weighted by their

trends) found to SCANBP trends in both latitudinal bands. The coefficients of the GLM fit are shown in Figure S5.10

The GLMs provide a better fit the trend of SCANBP in L>40N (57-74
::::::::
explaining

::::::
57–74% of the variance, Table S2) than for

L25−40N (8-49
::::
8–49% only). The GLM fit to inversions and to the MMEM identified CO2 fertilisation as the most important

factor explaining (statistically) the SCANBP trends in both latitudinal bands, consistent with S1 (Figures 1, S4, S5 and S6),

even though
:::::::
although

:
the CO2 fertilization effect was weaker for the GLM fit to LSMs than for inversions in region L>40N .

The statistical models for inversions and LSMs agreed on a significant negative contribution of warming in both latitudinal15

bands, but stronger in L25−40N . In L>40N , GLM models fitted to LSMs and CarboScope also point to changes in forest area

contributing to increase SCANBP , and changes in crop area have a negative effect in SCANBP from LSMs. In L25−40N , the

GLM fit to LSMs further points to a
::::
small

:
negative contribution of wood-harvest to SCANBP trends, and the fit to CAMS a

weak
::
for

::::::
CAMS negative effects of irrigation and fertilization

:::
are

:::
also

:::::::::
significant. The statistical attribution of SCANBP trends

in LSMs is
:::::::
generally

:
consistent with the factorial simulations, although the negative effect of temperature is only significant20

in L25−40N .
::
but

::
is

::::::
mostly

:::::
clear

:::
for

:::
the

::::
CO2 ::::::::::

fertilization
:::::
effect

::::
than

:::
for

:::
the

:::::
other

::::::
drivers.

::
In
::::

the
::::::::
difference

:::::::
between

::::::::
factorial

:::::::::
simulations

:::::::
(Figure

:::
S6),

:::::
some

::::::
drivers

::::::
appear

::
to

:::::
have

:::::
strong

:::::::::
interactive

::::::
effects,

::::
e.g.

:::
the

:::::
effect

::
of

::::
CO2::

is
:::::::::::
significantly

:::::::
negative

::
for

::::::
S3-S2

:::::::::
(LULCC).

::::
This

:::::
could

:::
be

::::::::
explained

:::
by

:::::
higher

:::::::::
emissions

::::
from

::::::::
LULCC

:::::
under

::::::
higher

::::
CO2 ::::::::::::

concentrations
:::::
from

:::
the

:::
loss

::
of

:::::::::
additional

::::
sink

:::::::
capacity

::::::::::::::::::
(Pongratz et al., 2014).

:
The key role of CO2 fertilisation in the observed changes is in line with

Piao et al. (2017), but our results challenge some
::
of

:::
the previously proposed hypotheses to account for the increase in seasonal25

CO2 exchange, as addressed below.

5
:::::::::
Discussion

5.1 Confronting Hypoteses

5.1.1 Contribution of LULCC

Agricultural intensification and expansion occurred mainly in latitudes below 45°N (Gray et al., 2014), and inversions and30

LSMs reported instead a peak in the amplitude of land surface CO2 exchange for latitudes above 45°N (Figure 1 and S1). Fur-

thermore, our regional attribution identifies Eurasia as the region contributing most to increasing SCA; this region is dominated
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by natural ecosystems (Figure S3) and has experienced very little land use change (Verburg et al., 2015) over the past decades.

Additionally, factorial LSM simulations indicate a negligible contribution of LULCC and management to SCANBP trends at

latitudinal-band scale but also regionally (Figures 1c and 2).

This, though, could not in itself falsify the hypothesis that agricultural intensification is a key driver of SCANBP trends,5

because most LSMs still do not include processes that could intensify cropland net primary productivity (NPP) over time

such as better cultivars, fertilization, irrigation. Still, management practices are not a significant predictor for GLM fitted to

LSMs, but also not for inversions, excepting CAMS. CarboScope further identifies a negative effect of cropland expansion to

SCANBP in L>40N rather than a positive one, which partly challenges the contribution of cropland expansion (Gray et al.,

2014) to SCANBP . Our results are consistent with those by Smith et al. (2014) that show that net primary productivity (NPP)10

generally decreased following conversion from natural ecosystems to cropland, except in areas of highly intensive agriculture

such as midwestern USA. Increasing crop productivity (intensification) could partly explain increasing SCANBP . However,

satellite-based data for LAI (Zhu et al., 2016), NPP (Smith et al., 2016) and aboveground biomass (AGB) carbon stocks (Liu

et al., 2015) (Figure S7) indicate that the increase in crop productivity accounted for only a small fraction of the hemispheric

trends in ecosystem productivity, consistent with crop productivity stagnation in Europe and Asia identified by Grassini et al.15

(2013).

Previous studies suggesting a large role of the green revolution in SCANBP trends have focused on a longer period, starting

in the 1960s. The acceleration of SCANBP reported by inversions and LSMs (Table 1) concurrent with crop productivity

stagnation indicates that since the 1980s agriculture intensification is not likely to be the main driver of the increase in SCA.

Even in the intensive agricultural areas in the US Midwest, CAMS estimates contrasting negative/positive trends (Figure 1a,20

S8). Eddy-covariance flux measurements (only for 7-13 years) in the areas of intensive agriculture in the USA show a weak

relationship between trends in NBP and trends in SCANBP , showing mostly non-significant trends in SCANBP (Figure S8).

5.1.2 Contribution of warming

We found that warming during the growing season had a negative effect on SCANBP trends in both latitudinal bands, although

this effect is uncertain for LSMs in L>40N . Annual temperature used in the statistical models was also negatively correlated25

with SCANBP , but the correlation was only significant for CAMS. The negative relationship with growing-season temperature

(T) at the mid-latitudes may be explained by warmer temperature increasing atmospheric demand for water (Novick et al.,

2016) and inducing soil-moisture deficits in water-limited regions in summer (Seneviratne et al., 2010), or increased fire risk

(Peñuelas et al., 2017) that reduce the summer minimum of SCANBP . The negative statistical relationship found between

the trend of SCANBP and T in L>40N challenges the assumption that warming-related increase in plant productivity in high-30

latitudes necessarily increases the seasonal CO2 exchange (Keeling et al., 1996; Graven et al., 2013; Forkel et al., 2016). Such a

negative relationship, however, has also been reported by (Schneising et al., 2014) for interannual changes in the SCANBP of

total column CO2 for 2004-2010. Yin et al. (2018) have further shown that, at latitudes between 60°N and 80°N, the relationship

between SCA NBP and T has transitioned from positive in the early 1980s, to negative in recent decades, reconciling the results

by Keeling et al. (1996) and Schneising et al. (2014).
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The empirical negative relationship between trends in SCANBP and warming at the higher latitudes may be due to either

(i) indirect negative effects
:
a
:::::::
stronger

::::::
effect of T on decomposition

::::
total

:::::::::
ecosystem

:::::::::
respiration

::::::
(TER)

::::
than

:::
on

:::::
GPP dur-

ing the “release
::::::
uptake period”; (ii) a negative response of ecosystem productivity to warming during the “uptake period”;

(iii) a stronger effect
::::::
indirect

:::::::
negative

::::::
effects

:
of T on total ecosystem respiration (TER) than on GPP during the growing5

season
::::::::::::
decomposition

::::::
during

:::
the

:::::::
“release

::::::
period”

:::::::
(Figure

:::
S9). Some of these effects are counter-intuitive, because warming in

high-latitudes is usually associated with longer growing-season and increased GPP (Piao et al., 2008), although a weakening

of this relationship has been reported (Piao et al., 2014; Peñuelas et al., 2017).

Evidence nevertheless supports negative effects of warming on SCA trends. Temperature increase in recent decades has been

associated with widespread reduction in extent and depth of snow cover (Kunkel et al., 2016) and in the number of days with10

snow cover (Callaghan et al., 2011). Snow has an insulating effect, so snow-covered soil during winter can be kept at relatively

constant temperatures, several degrees above the air temperature (>10°C) which promotes respiration of soil C (Nobrega and

Grogan, 2007). Soils become subject to more fluctuations in temperature, and become colder, as the snow cover recedes or

becomes thinner. Yu et al. (2016) reported that respiration suppression due to a reduction in snow cover in winter may account

for as much as 25% of the increase in the annual CO2 sink of northern forests. A decrease in respiration in response to warming15

during the release period could thus decrease SCANBP , but the effect of growing-season temperature was stronger in our study.

The expansion of vegetation in Arctic tundra, particularly shrubland, has been linked to warming trends, but also depends on

soil-moisture and permafrost conditions (Elmendorf et al., 2012). Many regions of dry tundra and low arctic shrubland (Walker

et al., 2005) experience summer drought or soil-moisture limitations, even though northern regions are usually considered to be

energy-limited (Greve et al., 2014). Indeed, Myers-Smith et al. (2015) found a strong soil-moisture limitation of the (positive)20

sensitivity of shrub growth to temperature in summer, possibly associated with the limitation of growth due to drought and/or

with reduced growth and dieback due to standing water during thawing. CAMS indicates a decrease in SCANBP in eastern

regions in boreal North America (Figure 1a), where Myers-Smith et al. (2015) reported negative sensitivity of shrub-growth

to temperature. The coarse network and large correlation lengths used by CarboScope do not allow such regional contrasts to

be resolved. Most process-based models lack a detailed representation of processes described above – e.g. a realistic effect25

of snow insulation on soil temperatures, soil freezing and thawing (Koven et al., 2009; Peng et al., 2016; Guimberteau et al.,

2017) – potentially overestimating the net sink response to temperature changes (Myers-Smith et al., 2015). Moreover, soil-

moisture limitation due to temperature increase could also contribute to decrease TER by limiting microbial activity, which is

currently not simulated in most LSMs. This may in turn explain why LSMs underestimate the negative effect of temperature

in SCANBP in the high-latitudes compared to CAMS (Figure 3 and S4).30

5.1.3 Evaluating model biases

5.2
:::::::::

Evaluating
::::::
model

:::::
biases

Wenzel et al. (2016) proposed that the observed sensitivity of SCANBP to CO2 was an emergent constraint on future terrestrial

photosynthesis, but their study focused on simulations by an earth-system model that excluded the effects of climate change
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(i.e. the radiative feedback of CO2 to climate was not considered). Our results are consistent with a strong increase in the peak

uptake due to the effect of CO2 fertilisation driven by gross primary production (GPP) as proposed by Wenzel et al. (2016). The

negative effect of temperature in our study (Figure 3), although weaker than the positive effect of absolute CO2 concentration,

suggested that warming partly cancelled out the increase in SCANBP expected from the effect of fertilisation alone. We5

propose that other processes partly control SCANBP trends linked to reduced decomposition under lower snow-cover (Yu

et al., 2016) or to emerging limitations to growth in response to water-limitation (Elmendorf et al., 2012; Myers-Smith et al.,

2015). Additionally, while the sensitivity of productivity to the CO2 fertilisation effect is expected to decrease, whereas the

control of respiration by temperature should increase nonlinearly (Piao et al., 2014, 2017; Peñuelas et al., 2017), suggesting a

progressively dominant (negative) influence of warming on SCANBP . The degree of such an offset would likely depend on10

the thresholds of soil temperature and water limitation that are complex and thus difficult to assess and require process-based

modelling. Our results imply that future constraints of productivity based only on the CO2 effect (as in Wenzel et al. (2016))

may overestimate future GPP.

We evaluated whether the differences between the observed SCANBP trends (significant only in L>40N ) and those simu-

lated by the LSMs could be associated with the modelled sensitivities to atmospheric CO2 concentration (CO2) and growing-15

season temperature (T) in L>40N (Figure 4). In Figure 4, only models with a too small sensitivity of SCANBP to T produce

a realistic trend of SCANBP . In contrast, the models indicating sensitivities to T and CO2 more similar to those estimated by

the inversions tend to underestimate the trend in SCA.

Why are the LSM sensitivities of SCA to T positively correlated with their long-term SCANBP trend (Figure 4), even

though CO2 is a stronger driver of the simulated SCANBP trend (Figure 3)? We found a clear relationship between the20

model bias in the trend of SCANBP and the sensitivity to CO2 fertilisation in S3 (in line with Wenzel et al. (2016)), but

we also found a compensatory effect, where models that overestimate the sensitivity of SCA to T tend to underestimate the

sensitivity to CO2 and vice-versa. LSMs tend to overestimate (underestimate) sensitivity of SCANBP to T (CO2), compared

to the observation-based constraints from inversions. LSMs often compensate too strong (or too weak) simulated water-stress

or temperature sensitivity by adjusting photosynthesis parameters (that control CO2 fertilization) during model optimization to25

match the observed net terrestrial sink. This compensatory effect has previously been reported by Huntzinger et al. (2012) for

the mean terrestrial sink; we find that it could also affect the trends in seasonal CO2 exchange.

We argue that the trend of SCANBP can differ between models due to: a) differences in their NPP response to T and CO2;

b) differences in turnover times of short-lived C pools by which increased NPP is coupled to increased winter decomposition;

(c) phase shifts between GPP and ecosystem respiration. The latter may be associated with errors in the phase and amplitude30

of simulated ecosystem respiration, arising from factors such as: (i) representing soil carbon stocks as pools with discrete turn-

over times and associated effective soil depths Koven et al. (2009) (ii) neglect of seasonal acclimation effects on autotrophic

and heterotrophic respiration. The sensitivities of NPP to CO2 and T between models are strongly and consistently correlated

with the compensatory effect of the model parameterisations (Figure S9
:::
S10), but we find no clear relationship between the

biases of the modelled SCANBP trend and the sensitivity of NPP to T (Figure S10
:::
S11), suggesting a key role of respiration.35

Indeed, the models with SCANBP trends closer to observations tend to be associated with a lower sensitivity of ecosystem
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respiration to growing-season temperature (Figure S4c). Too large turnover of short-lived pools in a model should produce too

small increase of the SCANBP amplitude (i.e. increased respiration during the “uptake period" followed by too little during

the “release period") for a given sensitivity of NPP to CO2 or climate. A recent study by Jeong et al. (2018) has reported that

ecosystem carbon-cycle models (not used in this study) underestimated changes in carbon residence times in northern Alaska.5

The evaluation of the effect of model turnover times in SCANBP requires a deeper analysis of transfers between litter and soil

organic carbon pools and can be verifiable in future simulations.

6 Conclusions

Based on our assessment of atmospheric observations and most advanced land-surface model simulations the most likely ex-

planation of the seasonal cycle of atmospheric CO2 at high latitudes is the CO2 fertilization of photosynthesis in unmanaged10

high latitude ecosystems, especially in the Eurasian Boreal forests. Our study further points to key processes that need to be

developed to better simulate NBP responses to changing climate, especially to Arctic warming, in particular productivity limi-

tations and the decomposition terms. Our results indicated that the signal of the SCANBP trend contains valuable information

for the turnover times of short-term pools, which await further investigation.
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Figure 1. Variability of seasonal-cycle amplitude and trends from the inversions and LSMs. (a) Geographical distribution of SCANBP trends

from the inversions (CAMS and CarboScope) and the multi-model ensemble (MME) mean from TRENDYv6 simulation S3 (all forcings).

Both inversions estimated predominantly positive trends in SCANBP >40°N (Figure S1), so we defined two latitudinal bands, L>40N and

L25−40N , for flux aggregation. (b,
:
c) Aggregated SCANBP time-series estimated by the inversions (CAMS in black and CarboScope s76

in grey) and S3 MME mean (red)
::

for
:::::
L>40N:::

and
::::::::
L25−40N :::::::::

respectively. The dashed lines indicate the linear fits used to calculate the slopes

of the trends (corresponding colours), and the slopes and confidence intervals (95%) are provided.
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Figure 2. Regional distribution of the dominant land-cover types and SCANBP trends. (a) Land-cover map averaged over the study period

for the three main land-cover classes (forest/shrubland, grassland, and cropland) based on ESA-CCI annual land-cover data (1992-2015

average); (b) The continental regions correspond to the regions defined by Baker et al. [2006] and are delimited by bold lines: boreal and

temperate North America (BorNA and TempNA), Europe (Eur), and boreal and temperate Eurasia (BorEA and TempEA); (c) Comparison of

the SCANBP trends from the inversions to the trends estimated by the LSM experiments: S3, S2 (no LULCC), and S1 (no LULCC and no

climate change). The bars for the inversions and LSMs indicate the average trend over each latitudinal band. The error bars for the inversions

indicate the 95% confidence levels for the trend values, and the vertical lines for the LSMs indicate inter-quartile ranges of the MME. The

95% confidence interval for the MME mean was also calculated (see Methods).
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Figure 3. Statistical attribution of drivers of SCANBP estimated by the inversions and LSMs. The main drivers of SCANBP are presented

for (a) L>40N and (b) L25−40N and are calculated as the product of the coefficients of a general linear model fit on SCANBP using a number

of predictors (normalised) and their corresponding trends. Fertilization, irrigation, wood harvest, growing-season precipitation, growing-

season temperature, atmospheric CO2 concentration were tested as predictors, and the best fit was chosen for each dataset: CAMS (dark

grey), CarboScope s76 (light grey), and the MMEM (red). The bars indicate the contribution of each predictor to the trend in SCANBP ,

error bars indicate the corresponding 95% confidence intervals, and the symbols indicate significant MRLM fits (two, one asterisks and

crosses, p<0.01, p<0.05 and p<0.1 respectively).
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Figure 4. Emerging relationships between LSM sensitivities to climate and CO2 and their SCA trends. The SCANBP trend for L>40N

estimated by each inversion (grey intervals) and corresponding responses of SCANBP to (a) T and (b) CO2 (as calculated in Figure 3

but considering the scores of the regression only, shown in Figure S4) are compared to the results from individual models (simulation S3,

coloured markers). The shaded areas indicate the inversion ranges, and the distribution of the grey lines shows uncertainty in the relationship

between each pair of variables.
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