
 

1 

 

Estimating ground-level CO concentrations across China 

based on national monitoring network and MOPITT: 

Potentially overlooked CO hotspots in the Tibetan Plateau 

Dongren Liu a, Baofeng Di a,b, Yuzhou Luo c, Xunfei Deng d, Hanyue Zhang a, Fumo Yang a,e, 

Michael L. Grieneisen c, Yu Zhan a,e,f,g * 5 
a Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China 

b Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China 

c Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, United States 

d Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China 

e National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, China 10 
f Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China 

g Medical Big Data Center, Sichuan University, Chengdu 610041, China 

*Corresponding to: Yu Zhan (yzhan@scu.edu.cn)  



 

2 

 

Abstract. Given its relatively long lifetime in the troposphere, carbon monoxide (CO) is commonly employed as 

a tracer for characterizing airborne pollutant distributions. The present study aims to estimate the spatiotemporal 

distributions of ground-level CO concentrations across China during 2013-2016. We refined the random-forest-

spatiotemporal-kriging (RF-STK) model to simulate the daily CO concentrations on a 0.1° grid based on the 

extensive CO monitoring data and the Measurements of Pollution in the Troposphere CO retrievals (MOPITT-5 

CO). The RF-STK model alleviated the negative effects of sampling bias and variance heterogeneity on the model 

training, with cross-validation R2 of 0.51 and 0.71 for predicting the daily and multiyear average CO 

concentrations, respectively. The national population-weighted average CO concentrations were predicted to be 

0.99 ± 0.30 mg m-3 (µ ± σ) and showed decreasing trends over all regions of China at a rate of -0.021 ± 0.004 mg 

m-3 per year. The CO pollution was more severe in North China (1.19 ± 0.30 mg m-3), and the predicted patterns 10 

were generally consistent with MOPITT-CO. The hotspots in the Central Tibetan Plateau where the CO 

concentrations were underestimated by MOPITT-CO were apparent in the RF-STK predictions. This 

comprehensive dataset of ground-level CO concentrations is valuable for air quality management in China. 

1 Introduction 

Ground-level carbon monoxide (CO) is a worldwide atmospheric pollutant posing risks to human health and the 15 

environment (White et al., 1990; Reeves et al., 2002). While CO is formed naturally from the oxidation of methane 

and non-methane volatile organic compounds, anthropogenic emissions from incomplete combustion of fossil 

fuels and biofuels contribute approximately 42% of the total atmospheric CO (Holloway et al., 2000; Pommier et 

al., 2013). In spite of the slow decrease in CO concentrations in recent years based on satellite retrievals (Xia et 

al., 2016; Zheng et al., 2018), China is still one of the countries with the most severe CO pollution in the world, 20 

and the combustion of fossil fuels is the dominant source of anthropogenic CO emissions (Wang et al., 2004; 

Duncan et al., 2007a). Due to its relatively long lifetime in the troposphere (i.e., one to two months), CO is 

commonly employed as a tracer for characterizing pollutant transport in the atmosphere (Goldan et al., 2000; 

Pommier et al., 2010). It is therefore essential to obtain the spatiotemporal distribution of CO for air quality 

management. The national air pollution monitoring network in mainland China has been regularly observing 25 

ground-level CO concentrations since 2013 (MEPC, 2017) by the non-dispersive infrared absorption method and 

the gas filter correlation infrared absorption method (CNEMC, 2013), but these site-based measurements are 

inadequate to represent the spatially continuous distributions of CO (Xu et al., 2014). 

Chemical Transport Models (CTMs) have been employed to estimate ground-level CO concentrations (Arellano 

and Hess, 2006; Hu et al., 2016). On the basis of meteorological conditions generated by climate models, CTMs 30 

simulate reactions, transport, and deposition of chemicals in the atmosphere, which generally require high 

computational cost and a large amount of data inputs such as emission inventories. The predictive performance 

of CTMs tends to be affected by uncertainties in the simulation algorithms and the emission inventories (Li et al., 

2010; Hu et al., 2017a). A CTM comparison study found that the difference in transport simulation resulted in 

considerable discrepancies between inter-model CO predictions (Arellano and Hess, 2006; Duncan et al., 2007b). 35 

It has been reported that a certain CTM underpredicted the monthly average CO concentrations in China by more 

than 60% (Hu et al., 2016). Although the emission inventories for China have been refined in recent years, high 

uncertainties still exist (Li et al., 2017). For instance, biomass combustion, residential biofuel consumption, and 
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transient fire events tend to be underreported, consequently leading to underestimation of CO emissions in the 

emission inventories (Wang et al., 2002; Streets et al., 2003). Despite underestimation by CTMs, the general 

patterns of CO concentrations are captured, and they can be used as the a priori for deriving posterior estimates 

based on satellite retrievals (Deeter et al., 2014). 

Multiple satellite instruments have been operating to measure atmospheric CO for more than a decade, including 5 

the Measurements of Pollution in the Troposphere (MOPITT) (Deeter et al., 2003; Worden et al., 2013a; Jiang et 

al., 2015; Deeter et al., 2017), the Atmospheric Infrared Sounder (McMillan, 2005; Wang et al., 2018), the 

Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (Kopacz et al., 2010; Ul-Haq et al., 

2016), and the Infrared Atmospheric Sounding Interferometer (Fortems-Cheiney et al., 2009; Barret et al., 2016). 

Strong absorption lines of CO occur in the thermal infrared (4.7 µm) and solar infrared (2.3 µm) spectral regions. 10 

Among the abovementioned satellite instruments, MOPITT is one of few sensors that are capable of measuring 

ground-level CO based on the instantaneous multispectral retrievals (Streets et al., 2013; Deeter et al., 2014; 

Deeter et al., 2017). The a priori used in MOPITT is simulated by the Community Atmosphere Model with 

Chemistry (CAM-Chem), which is a CTM. The MOPITT product plays an important role in analyzing 

spatiotemporal patterns of ground-level CO at large scales (Drummond et al., 2010; Worden et al., 2013b; Strode 15 

et al., 2016). Compared with site-based in-situ monitoring, MOPITT provides repeated measures with more 

extensive spatial coverages. Nevertheless, the sensitivity of MOPITT signals to ground-level CO is affected by 

the thermal contrast between the ground and atmosphere (Warner et al., 2007; Clerbaux et al., 2009). High 

uncertainties in CO estimations retrieved from MOPITT have been reported, and more efforts are required to 

improve the data quality (Zhao et al., 2006; Li and Liu, 2011).  20 

Machine learning models have been applied to predict spatiotemporal distributions of atmospheric pollutants, 

such as fine particulate matter (PM2.5) and nitrogen dioxide (NO2), based on satellite retrievals and ground 

measurements (Reid et al., 2015; Zhan et al., 2018). Complex structures are built to capture nonlinear and high-

order interactions between the response and predictor variables. Machine learning models generally show superior 

predictive performance in the presence of abundant training data (Hastie et al., 2009). In the comparisons of 25 

models predicting PM2.5 concentrations, random forests and gradient boosting machine, which incorporated 

satellite retrieved aerosol optical depth (AOD), presented conspicuously good predictive performance (Reid et al., 

2015). In addition, the random forest and spatiotemporal kriging (RF-STK) model was proposed to predict the 

daily ground-level nitrogen dioxide (NO2) concentrations across China based on satellite retrieved NO2 densities 

(Zhan et al., 2018). To the authors’ knowledge, machine learning models have never been employed to estimate 30 

nationwide ground-level CO concentrations across China based on satellite retrievals. 

The present study aims to estimate the spatiotemporal distributions of ground-level CO concentrations across 

China during 2013-2016. We refined the RF-STK model to simulate the daily gridded CO concentrations (0.1° 

grid with 98341 cells) based on the publicly available datasets, including the ground-level CO monitoring data, 

the MOPITT retrieved surface CO (MOPITT-CO), and the extensive geographic factors. The strategy of inversely 35 

weighting the training data by the local population densities was proposed to mitigate the effect of sampling bias 

towards populous areas for the monitoring network. The spatial resolution of 0.1° has been commonly used for 

estimating the nationwide distributions of air pollutants in China (Guo et al., 2016; Zhan et al., 2017; Hu et al., 
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2017b). A machine learning model (i.e., the RF-STK model), for the first time, assimilated the MOPITT-CO with 

the extensive site-based in-situ CO observations in order to provide more solid information for air quality 

management. This data assimilation approach compensated the shortcomings of the satellite retrievals (i.e., high 

uncertainty) and the in-situ measurements (i.e., low spatial coverage) with each other’s strengths (i.e., large spatial 

coverage and high accuracy, respectively), which is more effective and flexible than CTMs in utilizing these 5 

measurements. The results of this study are expected to be valuable for air quality management in China. 

2 Materials and methods 

2.1 Ground-level CO observations 

Figure 1 shows the locations of the 1656 monitoring sites spread out over all of China, which monitored the 

ground-level CO concentrations (MEPC, 2017; EPAROC, 2017; EPDHK, 2017). Most of the sites were in the 10 

cities of the eastern China, leading to nonnegligible sampling biases. Hourly average CO concentrations (mg m-3) 

were collected and cleaned by employing the “three sigma rule” that the values falling outside of μ ± 3σ were 

considered outliers (Kazmier, 2003). Less than 0.01% of the hourly data (values higher than 20.2 mg m-3) were 

excluded. The days with more than 12-hour observations were included as representative days, and approximately 

1.67 million records of daily average CO concentrations were obtained for the subsequent analyses. 15 

2.2 MOPITT-CO retrievals 

The MOPITT operational gas correlation spectroscopy CO product (MOP02J.007), containing retrievals of 

surface CO mixing ratios, was obtained from the Atmospheric Science Data Center (ASDC, 2017). The MOPITT 

onboard the Terra satellite provides tropospheric CO density with global coverage every three days (Edwards et 

al., 2004). The CO surface mixing ratios from the Level-2 data product have a spatial resolution of 22 km at nadir. 20 

The Level-2 product has daytime and nighttime data fields, which are highly correlated (r = 0.99). This study 

chose the daytime data over the nighttime data, as the former exhibit higher correlations with the ground-level 

CO observations than the latter (Table 1). The overall bias of Version 7 is a few percent lower than Version 6 for 

the thermal infrared (TIR)-only, near infrared (NIR)-only, and TIR/NIR products at all levels (Deeter et al., 2014; 

Deeter et al., 2017). The TIR/NIR product, which features the maximum sensitivity to near-surface CO, was used 25 

throughout this study and hereafter referred to as MOPITT-CO. Through the temporal and spatial convolution 

with Gaussian kernels (Goodfellow et al., 2016), the MOPITT noise was filtered and the data gaps were filled, 

which were then resampled to the 0.1° grid. Briefly, the MOPITT-CO data for each grid cell were first processed 

with the temporal convolution, which were then processed with the spatial convolution day by day. Please refer 

to Section S.1 in the Supplementary Data for the mathematical equations. 30 

According to the ideal gas law, we converted the unit of MOPITT-CO data from ppb (the unit presented in the 

MOPITT product) to mg m-3 in order to be comparable with the CO observations from the monitoring network: 

𝐶 = 𝐵 · 𝑃 · 𝑀 (𝑅 · 𝑇)⁄                                                     (1) 

where C is the CO concentration in the unit of mg m-3, B is the CO concentration in the unit of ppb, P is the 

atmospheric pressure (atm), M is the molecular weight of CO (mg mol-1), R is the gas constant (0.082 L atm mol-35 
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1 K-1), and T is the atmospheric temperature (K). Note that the data of atmospheric pressure and temperature for 

the unit conversion are available in the MOPITT product. 

In order to evaluate the dependence of the MOPITT surface retrievals on the a priori information, we also extracted 

the averaging kernels and the a priori information from the MOPITT product. For each averaging kernel (a matrix), 

the sum of the elements in the row associated with the surface layer of the CO profile (hereafter referred to as the 5 

row-sum value) measures the overall dependence of the MOPITT surface CO retrievals on the a priori information 

(Deeter, 2017). A small row-sum value indicates strong dependence of the MOPITT retrieval on the a priori 

information, i.e., low sensitivity of the actual MOPITT retrieval. Please refer to Section S.2 in the Supplementary 

Data for the explanation of the averaging kernels. 

2.3 RF-STK model 10 

The RF-STK model, consisting of a random forest (RF) submodel and a spatiotemporal Kriging (STK), was 

refined to predict the daily ground-level CO concentrations across China. The RF-STK model utilizes the strengths 

of both RF and STK, which showed the capability of predicting NO2 concentrations (Zhan et al., 2018). The RF-

STK prediction is the sum of the RF prediction and the STK interpolation: 

𝑍(𝑠, 𝑡) = 𝑅(𝑠, 𝑡) + 𝐾(𝑠, 𝑡)                                                      (2) 15 

where 𝑍(𝑠, 𝑡) denotes the predicted CO concentration at location s and time t, 𝑅(𝑠, 𝑡) is the spatiotemporal 

trend estimated by the RF submodel, and the prediction residual of the RF submodel, i.e., 𝐾(𝑠, 𝑡), is then 

interpolated with the STK submodel. 

The RF submodel is an ensemble of regression trees. The average predictions of all the trees are output as the RF 

prediction. In the process of growing each tree, a random training dataset is prepared through bootstrap resampling 20 

from the original training dataset, while a random subset of the predictors is chosen in order to reduce the inter-

correlation among the trees. The best split is determined at each tree node, which contributes the largest decrease 

in the squared error. Please refer to Section S.3 in the Supplementary Data for the detailed description of the RF 

algorithm. 

 25 

As the CO concentrations approximated a lognormal distribution, they were log transformed for variance 

stabilization (De'Ath and Fabricius, 2000). Leveraging variable selection was conducted based on the pre-

experiments. The out-of-bag (OOB) errors (representing the RF prediction residuals) of the back-transformed RF 

predictions were filtered with the “three-sigma-rule” and subsequently interpolated with the STK submodel. 

Finally, the CO concentrations were predicted as the sums of the STK interpolations and back-transformed RF 30 

predictions. It is worth mentioning that the RF submodel was refined in the present study by inversely weighting 

each training sample with the surrounding population density to alleviate the effects of sampling bias towards 

populous areas for the monitoring network. The loss function (L) of the RF submodel is as follows: 

𝐿(𝑦, 𝑓(𝑥)) = ∑ 𝑤𝑛[𝑦𝑛 − 𝑓(𝑥𝑛)]
2/∑ 𝑤𝑛

𝑁
𝑛=1

𝑁
𝑛=1                                      (3) 

where 𝑤𝑛 is the weight of observation 𝑦𝑛 (N observations in total), and 𝑓(𝑥𝑛) is the model prediction. 35 

2.4 Model input data 
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The predictors of environmental conditions for the RF-STK model covered the meteorological conditions, land 

uses, emission inventories, elevation, population densities, normalized difference vegetation index (NDVI), and 

road densities. The meteorological conditions included the atmospheric pressure, air temperature, precipitation, 

evaporation, relative humidity, insolation duration, wind speed, and planetary boundary layer height (PBLH). 

Land uses mainly recorded the areas of forests, grasslands, wetlands, artificial surfaces, and waterbodies. The 5 

emission inventories comprised emission distributions of ten major atmospheric chemical constituents, such as 

CO, organic carbon, and black carbon. The meteorological conditions, except for PBLH, were interpolated to the 

0.1° grid by using co-kriging with elevation. The elevation, land uses, population densities, NDVI, PBLH, and 

emission inventories were resampled to the 0.1° grid by calculating area-weighted means, for which additional 

predictors were generated by applying spatial convolution with Gaussian kernels. The spatial convolution 10 

smoothed spatial transition and took into account neighboring effects (Goodfellow et al., 2016). Please refer to 

Section S.4 and Table S1 in the Supplementary Data for the detailed descriptions and data sources of the 

environmental conditions. 

2.5 Model evaluation 

The predictive performance and the predictor effects of the RF-STK model were investigated. We compared the 15 

predictive performance of the RF-STK models with/without the MOPITT data (either the a priori information or 

the MOPITT retrievals) by using two cross-validation strategies, including the site- and region-based cross-

validation. With the 10-fold site-based cross-validation, all the monitoring sites were approximately evenly 

divided into ten groups. In each iteration, nine groups were used to develop a model, and the remaining group was 

used for validation. The training and prediction steps were repeated 10 times so that every ground-level CO 20 

observation had a paired prediction. While the site-based cross-validation is a commonly used strategy, it tends to 

overestimate the predictive performance given the fact that the monitoring sites tend to be clustered. Therefore, 

we also employed the region-based cross-validation strategy by following the concept of cluster-based cross-

validation that was proposed to resolve the issue of clustered sites (Young et al., 2016). Different from the site-

based cross-validation, the region-based cross-validation divided the training data by the geographic regions (e.g., 25 

North China and East China; Fig. 1) for the cross-validation. Various statistical metrics, such as the coefficient of 

determination (R2), root mean square error (RMSE), and mean normalized error (MNE), were used to reflect the 

predictive performance. In addition, the measures of variable importance and partial dependence plots were 

employed to evaluate the predictor effects. The improvement in the split-criterion attributed to a predictor variable 

measured its relative importance in the model. A partial dependence plot illustrated the effect of a predictor on 30 

the CO concentrations after accounting for the average effects of all the other predictors (Friedman, 2001; Hastie 

et al., 2009).  

2.6 Spatiotemporal analyses 

Detailed spatiotemporal analyses were performed to investigate the correlation strength between the MOPITT 

data (including the a priori information and the MOPITT retrievals) and ground-level CO observations, as well as 35 

the distributions of the ground-level CO predictions. The whole nation was divided into seven conventional 

regions, including Central, East, North, Northeast, Northwest, South, and Southwest China (Fig. 1). For each 

region, the effectiveness of the MOPITT-CO was evaluated by estimating its correlation with the ground-level 



 

7 

 

CO observations at daily, seasonal, and annual scales. In addition, the seasonal/annual average concentrations 

maps were delineated based on the full-coverage CO predictions. The population-weighted averages of MOPITT-

CO (MPW) and ground-level CO predictions (CPW) were summarized for the whole nation and by regions. The 

temporal trends of the national and regional MPW and CPW were evaluated by conducting linear regression on the 

time series of monthly averages that were deseasonalized by the loess smoothers (Cleveland, 1990). More detailed 5 

analyses were conducted for the North China Plain (NCP) and the Central Tibetan Plateau (CTP). While the air 

pollution in NCP has been well recognized, the air quality in CTP is usually considered to be pristine. Nevertheless, 

CTP was identified as a potentially overlooked CO hotspot in the present study. 

2.7 Computing environment 

The data processing and modeling were mainly performed using python and R (R Core Team, 2018). The scikit-10 

learn python package was used to develop random forests (Pedregosa et al., 2012). The spatial operations, such 

as spatiotemporal kriging were conducted by using the R packages of gstat (Gräler et al., 2016), rgdal (Bivand et 

al., 2017), and sp (Pebesma and Bivand, 2005).  

3 Results and discussion 

3.1 Descriptive statistics of CO measurements from monitoring network and MOPITT 15 

The ground-level CO observations from the monitoring network show that the average CO concentrations for 

China was 1.07 ± 0.74 mg m-3 (μ ± σ) during 2013-2016. The ground-level CO observations approximated a 

lognormal distribution, with a median of 0.90 mg m-3 and an interquartile range (IQR) of 0.69 mg m-3. The hourly 

CO concentrations were the highest at 9am and the lowest at 4pm based on the average diurnal cycle (Fig. S1). 

High CO concentrations (daily average > 4.0 mg m-3) were observed in 704 monitoring sites, with 7.6 ± 0.8 days 20 

per year (CREAS and CNEMC, 2012). The CO concentrations show a strong seasonality, ranging from 0.81 ± 

0.17 mg m-3 in summer to 1.39 ± 0.38 mg m-3 in winter (Fig. S2). The national annual average of CO 

concentrations decreased by 6.9% from year 2013 to 2016 (Fig. 2). Note that the scale of monitoring network was 

not constant, and the number of monitoring sites grew from 743 to 1603 during these four years (MEPC, 2017; 

EPAROC, 2017; EPDHK, 2017). However, the monitoring stations were still sparse in the western China 25 

throughout the monitoring period, and most of the stations were located in the major cities of the eastern China 

(Fig. 1). The spatially imbalanced monitoring (i.e., sampling bias) therefore tends to introduce bias to the 

spatiotemporal statistics of CO concentrations (Boria et al., 2014). For instance, the national average 

concentrations would be overestimated if they were simply determined as the averages of all the monitoring data, 

as the CO concentrations were generally lower in remote areas. 30 

The MOPITT-CO data, with an overall coverage rate of 3.5 ± 0.5%, show that the surface CO level for China was 

0.23 ± 0.18 mg m-3 during 2013-2016 (Fig. S2). The MOPITT-CO values also approximated a lognormal 

distribution, with a median of 0.18 mg m-3 and an IQR of 0.19 mg m-3. The MOPITT-CO had the highest coverage 

in fall (4.2 ± 1.9%) and lowest in summer (2.9 ± 1.5%) (Table S2). Southwest China, especially the Sichuan Basin, 

had the lowest coverage rate (< 1%) in China (Fig. S3). In addition to the reflectance condition and the satellite 35 

orbit, the narrower swath width of MOPITT (640 km) compared to the Moderate Resolution Imaging 
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Spectroradiometer (MODIS) with a swath width of 2330 km was one of the main factors causing the sparse 

coverage. While MOPITT and MODIS are both onboard the Terra satellite, the measurement repeat cycle of 

MOPITT is approximately 3 days compared to 1-2 days of MODIS (Edwards et al., 2004). The sparse coverages 

of MOPITT-CO limit its utility for representing time-series of daily CO concentrations across China. 

3.2 MOPITT-CO evaluation against ground-level CO observations 5 

The spatiotemporal pattern of the MOPITT-CO was generally consistent with that of the ground-level CO 

observations in China, with r = 0.43 for the multiyear averages and r = 0.37 for the daily values during 2013-2016 

(Table 1). The correlation between the a priori and the ground-level observations was weaker, with r = 0.34 for 

the multiyear averages and r = 0.30 for the daily values, suggesting that the MOPITT retrievals provided more 

information on the ground-level CO distributions than the a priori. The spatiotemporal distributions of the row-10 

sum values of the averaging kernels demonstrate that the dependence of the MOPITT retrievals on the a priori 

varied widely (Fig. S4). Among the seven geographic regions of China, the average row-sum values during 2013-

2016 were the highest in East China and the lowest in Northeast China. Seasonally, the national average row-sum 

values were the highest in fall and the lowest in summer/winter. The row-sum values were lower in CTP than 

NCP, suggesting a stronger dependence of the MOPITT retrievals on the a priori in CTP than NCP. The variations 15 

in the sensitivity of the MOPITT retrievals could result from various sources, such as the CO amounts and the 

diurnal temperature differences (Deeter et al., 2003; Deeter, 2007; Worden et al., 2013b). 

The MOPITT-CO satisfactorily reflected the west-east spatial gradient and the seasonality (i.e., low in warm 

seasons and high in cold seasons) of ground-level CO concentrations (Figs. 3 and S5). Severe CO pollution in the 

eastern China resulted from the intensive anthropogenic emissions (Fig. S6). At both national and regional scales, 20 

the correlation coefficients between ground-level CO observations and MOPITT-CO were generally higher in 

winter than the other three seasons. The stronger correlation in winter was mainly attributed to the higher signal-

to-noise ratios accompanied with the higher CO concentrations, reflecting that the MOPITT-CO was more 

sensitive in measuring high CO concentrations. In addition, the correlation strength of daily values exhibited 

considerable spatial heterogeneity, with r ranging from 0.58 for South China to 0.17 for Southwest China (Table 25 

S3). As expected, it was difficult to capture the CO variations under highly complex geographic conditions in 

Southwest China, and the high uncertainty in the emission inventories undermined the representativeness of 

MOPITT-CO for that region. Especially for CTP, we found that the MOPITT-CO was almost completely 

insensitive to the variations of ground-level CO, with r = -0.03 in contrast to r = 0.35 for NCP (Table 1). The CO 

hotspots observed in the main cities of CTP (e.g., Naqu and Qamdo) were not recognized by MOPITT-CO, which 30 

even falsely showed the opposite seasonality of ground-level CO (Figs. 4 and S2).  

The discrepancies between the MOPITT-CO and the ground-level CO observations could be mainly attributed to 

the low sensitivity of the satellite instrument to the ground-level CO variations and the high uncertainty associated 

with the a priori for deriving the MOPITT retrievals. The low sensitivity caused high uncertainties in the measured 

radiances (associated with the instrumental noises) and hence led to large measurement errors (ASDC, 2017). In 35 

addition, the accuracy of the a priori information was influenced by the data quality of the emission inventory and 

the sophistication of the CTM (i.e., the CAM-Chem model), which subsequently affected the accuracy of the 

posterior estimation (Dekker et al., 2017). The CO emission amounts for China were reported to be largely 
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underestimated (Streets et al., 2003; Wang et al., 2004), which might explain the fact that the MOPITT-CO was 

approximately half of the ground-level CO observations. Especially for CTP, the inadequate information about 

the CO emissions could be the main reason why MOPITT-CO largely underestimated the ground-level CO 

concentrations, whereas some relatively densely populated cities (such as Naqu and Qamdo; Fig. 1) had high CO 

concentrations (Chen et al., 2019). The population in Naqu and Qamdo are over one million, reflecting intensive 5 

anthropogenic activities (NBS, 2010). Biomass (e.g., yak dung) combustion, which is of low utilization efficiency, 

is widely used in CTP for energy, resulting in considerable CO emissions (Cai and Zhang, 2006; Wen and Tu, 

2011; Xiao et al., 2015). Naqu is sandwiched between the Tanggula and the Nyainqen Tanglha Mountains (Fig. 

1), which is unfavorable for CO dispersion and causes CO accumulation. 

3.3 Predictive performance of the RF-STK model 10 

On the basis of the site-based cross-validation results, the RF-STK model showed reasonable performance in 

predicting the daily ground-level CO concentrations, with R2=0.51, RMSE=0.54 mg m-3, and slope=0.64 (Fig. 5). 

Through the variable selection, a concise structure of the RF submodel was achieved, and the spurious prediction 

details (e.g., the sharp boundaries) were mitigated (Fig. S7). For instance, the RF submodel with all the predictors 

generated sharp boundaries circling the desert areas in Northwest China, which became blurred in the predictions 15 

made by the reduced RF submodel with the selected predictors (Fig. S8). Note that the coordinate variables (i.e., 

latitude and longitude) were not considered as candidate variables for the RF submodel, as artificial strips emerged 

in the prediction maps after including them as was illustrated in a previous study (Zhan et al., 2017). For the STK 

submodel, the predictions were further fine-tuned based on the spatiotemporal patterns of the RF submodel 

prediction residuals. As a result, the cross-validation slope increased from 0.55 to 0.64 (Table S4), suggesting an 20 

improvement in capturing the high and low concentrations. 

Compared to the original RF-STK model proposed in the previous study (Zhan et al., 2018), this refined RF-STK 

model had two major modifications, including sample weighting and logarithm transformation of the response 

variable (i.e., ground-level CO observations in the present study). Inversely weighting the training samples by 

their surrounding population densities alleviated the effects of sampling bias towards populous areas for the 25 

monitoring network. As a result, the CO monitoring data from the sparsely populated areas (e.g., the Tibetan 

Plateau) gained higher weights in the model training process for compensating the scarcity of the training samples, 

leading to more realistic predictions for those areas. In addition, observations with higher variations would 

naturally gain higher weights during model training given the loss function of squared errors, for which it was 

suggested to transform the response variable to achieve homogeneity of variance (De'Ath and Fabricius, 2000). 30 

The ground-level CO observations were heavy-tailed distributed, and hence logarithm transformation was 

conducted prior to training the RF submodel. Compared with the original RF submodel, the refined RF submodel 

showed similar performance in the cross-validation but predicted more realistic spatial distributions of ground-

level CO across China (Table S4 and Fig. S8). The spatial distributions predicted by the original RF submodel 

showed the prevalence of higher concentrations than those predicted by the refined RF submodel, resulting from 35 

overweighting of the training data from the areas with more serve CO pollution, e.g., NCP. 

It is noteworthy that the RF-STK model with MOPITT-CO was superior to the model without MOPITT-CO 

(R2=0.49, RMSE=0.58 mg m-3, and slope=0.60) and the model with the a priori information (R2=0.49, 
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RMSE=0.57 mg m-3, and slope=0.60) based on the site-based cross-validation results (Tables 2 and S4). The 

performance difference became more apparent in the region-based cross-validation, where the model with 

MOPITT-CO (R2=0.45, RMSE=0.61 mg m-3, and slope=0.52) clearly outperformed the model without MOPITT 

(R2=0.32, RMSE=0.69 mg m-3, and slope=0.46). We therefore reasoned that the MOPITT-CO data were essential 

for the RF-STK model to achieve better predictive performance, especially for the areas without monitoring sites 5 

nearby. 

As a machine learning approach, the RF-STK model exhibited stable performance across regions and seasons 

(Fig. S9), which was comparable or superior to the previous CTMs or statistical methods simulating ground-level 

CO concentrations (Table S5). As the simulation areas and episodes were considerably different among these 

studies, their predictive performance was not strictly comparable. A hybrid statistical model (partial least square 10 

and support vector machine) exhibited decent goodness-of-fit in simulating daily CO concentrations in Tehran, 

Iran, with fitting R2=0.65 (Yeganeh et al., 2012). For the CTM study in Bahia, Brazil, the accuracy of the posterior 

estimation improved largely after incorporating the surface observations into the priori state (Hooghiemstra et al., 

2012). In the absence of nationwide statistical modeling work, only CTM studies were found for modeling CO at 

large scale in China. A previous CTM work for China underestimated the ground-level CO concentrations by 15 

67.2% on average (Hu et al., 2016), which might be due to the underestimation of CO emissions. 

3.4 Important predictors 

On the basis of the variable importance evaluation, MOPITT-CO was the most important predictor in the RF-STK 

model with relative importance of 9.4%, and the emission-related predictors together accounted for 30.0% of the 

total importance (Fig. 6). The partial dependence plots delineated the complicated relationships between the 20 

predictors and the ground-level CO concentrations, which could be difficult to be specified in parametric models 

(Fig. S10). While MOPITT-CO contained essential information for the RF-STK model to make accurate 

predictions, the high uncertainties pertaining to the MOPITT retrievals prevented the MOPITT-CO from playing 

a dominant role in the model, and the other predictors were also indispensable. Among the emission-related 

predictors, the spatial-convolution-processed emission of organic carbon was the most important predictor 25 

(importance: 8.5%), which reflected the spatiotemporal patterns of anthropogenic emissions from industrial and 

residential sectors (Fig. S11). Given the high intercorrelations among the predictors associated with anthropogenic 

emissions, only the most informative predictors were retained in the model after the variable selection (Figs. S6 

and S12). 

As the most important group of predictors, the meteorological conditions together accounted for 35.6% of the 30 

total importance (Fig. 6). The relative importance of temperature, evaporation, wind speed, atmospheric pressure, 

PBLH, relative humidity, and insolation duration ranged from 2.8 to 8.6%. In general, stagnant weather conditions 

occurred more frequently in winter, which was characterized by shallow mixed layers, less precipitation, and slow 

wind speed. These weather conditions caused accumulation of atmospheric pollutants discharged by local 

emissions or transported from outside, which aggravated local air pollution (Wang et al., 2014). Similar to other 35 

atmospheric pollutants, the CO concentrations were also sensitive to meteorological conditions (Xu et al., 2011). 

For instance, the apparently negative associations of the CO concentrations with the PBLH and the wind speed 

were delineated by the corresponding partial dependence plots (Fig. S10). Nevertheless, it should be noted that 
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the partial dependence plot illustrated the overall relationship and could be distorted by spatial and/or temporal 

confounders. For instance, the partial dependence plot for temperature, with a peak around 20°C, was contrary to 

the fact that the CO concentrations were the highest in winter. This “false” relationship was due to the phenomenon 

that most of the CO-polluted areas distributed in the warm zones of China, i.e., the spatial factor confounded the 

relationship between temperature and CO concentrations. 5 

3.5 Spatiotemporal distributions of ground-level CO predicted by the RF-STK model 

The RF-STK predictions showed similarly spatiotemporal patterns to MOPITT-CO while presented more fine-

scale details (Figs. 3 and 7). The predictions of the RF-STK adequately assimilated the information of ground-

level CO observations, with r = 0.95 for the daily concentrations (Table 1). The nationwide multiyear (i.e., 2013-

2016) CPW were predicted to be 0.99 ± 0.30 mg m-3, with the highest seasonal averages (1.32 ± 0.49 mg m-3) for 10 

winter and the lowest (0.77 ± 0.22 mg m-3) for summer (Fig. 2). The regional CPW were predicted to be the highest 

in North China and the lowest in South China, with the concentrations of 1.19 ± 0.30 and 0.77 ± 0.18 mg m-3, 

respectively. It is worth noting that the RF-STK predictions showed the CO hotspots in CTP, where the ground-

level CO concentrations were underestimated by MOPITT-CO (Fig. 8). The “abnormal” CO seasonality (i.e., low 

in winter and high in summer) for CTP characterized by the MOPITT-CO was corrected in the RF-STK 15 

predictions even though the data quality of ground-level CO observations for 2013 were in doubt (Fig. 4). The 

high CO concentrations in CTP might result from the low combustion efficiency of residential stoves and the large 

amount of biomass combustion for energy (Chen et al., 2015). For example, combustion of yak dung accounted 

for more than 50% of the energy consumption in Nagqu (Yang and Zheng, 2015). 

During 2013-2016, the nationwide CPW decreased from 1.02 ± 0.34 to 0.95 ± 0.30 mg m-3 at a rate of -0.021 ± 20 

0.004 mg m-3 per year (P<0.01; Figs. 2 and 9). The relative decrease rate of 4.4% was similar to the 3.8% drop of 

coal consumption for China during 2013-2016, suggesting the potentially important contribution of decrease in 

coal consumption (partially due to improved energy conversion efficiency; Fig. S11) to the mitigation of CO 

pollution (CSY, 2018). Coal consumption accounted for approximately 70% of the total energy use in China. As 

the major energy consumers, the industrial and residential sectors contributed 41 and 39% of the total 25 

anthropogenic CO emissions, respectively (Fig. S13). More coal was consumed for residential heating in winter, 

causing higher CO emissions and more severe air pollution (Fig. S14). The relatively decreasing rate of CO was 

similar to that of NO2 but much slower than the decreasing trend of PM2.5 (Ma et al., 2016; Zhan et al., 2018). 

Spatially, the CPW significantly decreased for all regions (P<0.05) except for Southwest China (P=0.16). The 

decreasing trend was most prominent for North China where CO pollution was the most severe, with a decreasing 30 

rate of -0.028 ± 0.008 mg m-3 per year.  

In comparison to the RF-STK predictions (which were very similar to ground-level CO observations given the 

good model fitness), the MOPITT-CO tended to underestimate the decreasing trends of ground-level CO 

concentrations (Fig. 9). The absolute decreasing rate of MPW for the whole China during 2013-2016 was 

approximately 60% lower than that of the RF-STK predictions (i.e., CPW). The relative change rate of MPW was -35 

1.99% compared to -2.25% of CPW per year. Spatially, the MPW showed no significant trends for East, Northeast, 

Northwest, South, and Southwest China (P>0.05). The trend underestimation by MOPITT-CO might be largely 

due to the setting that the a priori information was the same across the years (Dekker et al., 2017). We found that 
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the trend underestimation tended to be more severe for the regions with weaker averaging kernels (Figs. 9 and 

S5), which was analogous to the phenomenon that the predictions made by the RF-STK model with the a priori 

information exhibited a slower decreasing rate (-2.06% per year) than the model with MOPITT-CO (Fig. S15). 

The issue of bias drift for the MOPITT retrievals, which could result from long-term instrumental degradation 

(Deeter et al., 2017), should also be considered in the trend analyses. The bias drift for MOPITT-CO was found 5 

to be approximately -0.69% per year based on the flask measurements performed by the National Oceanic and 

Atmospheric Administration (Deeter et al., 2017). It is noteworthy that the extents of bias drift were of 

considerable spatial variation (Buchholz et al., 2017). For the present study, if the MOPITT-CO data were 

“corrected” by the bias drift of -0.69%, the relative change rate of MPW would become lower (-1.31% per year), 

and the trend underestimation by the MOPITT would be more severe (Fig. S16). Accurate information on the 10 

temporal trends of CO is essential for air quality management, and more efforts are thus required to improve the 

data quality of CO measurements. 

In order to advance the knowledge of ground-level CO distributions, the study period would be extended, and the 

spatiotemporal resolution would be improved for future work. We chose the period of 2013-2016 for this study 

due to the data availability. While the air pollution in China was severer in earlier years (Krotkov et al., 2016), no 15 

large-scale monitoring data were available before 2013 for training the RF-STK model. Back-extrapolation such 

as a previous study (Gulliver et al., 2016) may be conducted based on MOPITT-CO since 2000, whereas the issue 

of bias drift is currently difficult to deal with. In addition, measurements or model predictions with high spatial 

(e.g., 1 km) and temporal resolutions (e.g., 1 hour) are important to studies focusing on small regions, such as 

CTP in this study. In spite of its relative coarse resolution (22 km at nadir), the MOPITT product provided the 20 

best publicly available satellite-based measurements of surface CO for China during 2013-2016. Since July of 

2018, the TROPOspheric Monitoring Instrument onboard the Sentinel-5P satellite has been providing the CO 

product at a higher resolution of 7 km × 3.5 km (Borsdorff et al., 2018), which may replace MOPITT-CO in the 

RF-STK model in order to make predictions at a higher resolution. 

4 Conclusions 25 

The spatiotemporal distributions of ground-level CO concentrations for China during 2013-2016 were derived by 

using the RF-STK model to assimilate the satellite and ground-based measurements. The RF-STK model showed 

feasible performance in predicting the daily CO concentrations on the 0.1° grid. As most of the monitoring sites 

were in urban areas, we refined the RF-STK model through inversely weighting the training samples with the 

surrounding population densities. Given the fact of monitoring sites clustered in cities, it is critical to take into 30 

account the effects of sampling bias on modeling the spatiotemporal distributions of atmospheric pollutants. While 

the general patterns were well depicted by the MOPITT retrievals, the fine-scale distributions were sharpened and 

corrected with the observations from the monitoring network. By using this data-fusion approach, we obtained 

the comprehensive dataset of ground-level CO concentrations for China.  

On the basis of the spatiotemporal predictions, the population-weighted average of ground-level CO 35 

concentrations was 0.99 ± 0.30 mg m-3 for China during 2013-2016, with a decreasing rate of -0.021 ± 0.004 mg 
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m-3 per year. The CO concentrations were predicted to be the highest in North China (1.19 ± 0.30 mg m-3) and the 

lowest in South China (0.77 ± 0.18 mg m-3). The seasonal averages of the whole China ranged from 0.77 ± 0.22 

in summer to 1.32 ± 0.49 mg m-3 in winter, attributing to the seasonality of weather conditions and emission 

intensities as indicated by the variable importance of the RF-STK model. The present study provides important 

information for improving the accuracy of MOPITT retrievals, such as refining the a priori assigned to the CO 5 

hotspots in CTP constrained by the RF-STK predictions. The predicted results of ground-level CO distributions 

are valuable for air quality management and human exposure assessment in China. 
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Table 1. Correlations among the ground observations, MOPITT-CO, and the RF-STK predictions (Pearson correlation 
coefficients). 

Region/Dataset Paira Daily Monthly Seasonal Annual Spatialb 

Nation O-M 0.37 0.40 0.45 0.44 0.43 

O-P 0.95 0.97 0.97 0.97 0.98 

P-M 0.09 0.1 0.1 0.09 0.13 

Central Tibetan 

Plateau (CTP)c 

O-M -0.03 -0.04 0.11 -0.12 -0.12 

O-P 0.91 0.92 0.93 0.96 1 

P-M -0.04 -0.04 -0.06 -0.09 -0.12 

North China  

Plain (NCP)c 

O-M 0.35 0.36 0.40 0.30 0.20 

O-P 0.95 0.97 0.98 0.97 0.98 

P-M 0.35 0.40 0.47 0.52 0.58 

X1_PRId O-M 0.30 0.32 0.38 0.34 0.34 

X1_TSd O-M 0.39 0.47 0.49 0.44 0.42 

X2d O-M 0.37 0.39 0.45 0.42 0.40 

a O: ground-level CO observations; M: MOPITT-CO; P: predictions made by the RF-STK model; the correlation coefficients 
higher than 0.90 are in bold. 
b Multiyear averages during 2013-2016. 5 
c Please refer to Fig. 1 for the locations of CTP and NCP. 

d X1_PRI: nationwide a priori for MOPITT-CO; X1_TS: nationwide MOPITT-CO processed with the temporal and spatial 
convolution; X2: nationwide nighttime MOPITT-CO, and all the other MOPITT-CO data refer to daytime retrievals.  
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Table 2. Performance comparisons of the RF-STK models with/without MOPITT data in predicting daily ground-level CO 
concentrations across China during 2013-2016. 

 
Metrica 

Site-based cross-validationb  Region-based cross-validationb 

With MOPITT Without MOPITT  With MOPITT Without MOPITT 

R2 0.51 0.49  0.45 0.32 

Slope 0.64 0.60  0.52 0.46 

RMSE 0.54 0.58  0.61 0.69 
RPE 50.4% 54.0%  56.7% 64.2% 

MFB -0.022 -0.025  -0.027 0.036 

MFE 0.35 0.35  0.39 0.43 

MNB 0.70 0.75  0.78 0.89 
MNE 0.98 1.02  1.08 1.19 

a R2: coefficient of determination; RMSE: root mean square error (mg m-3); RPE: relative prediction error; MFB: mean 
fractional bias; MFE: mean fractional error; MNB: mean normalized bias; MNE: mean normalized error. Bold: the best 

performance of each evaluation metric. Lower values are better for each metric except R2 and slope. 5 
b Site-based cross-validation: The training data are randomly divided into 10 groups stratified by the monitoring sites for the 

cross-validation. Region-based cross-validation: The training data are divided by the geographic regions (e.g., North China 

and East China; Fig. 1) for the cross-validation.
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Figure 1: Ground-level CO monitoring network for China in 2013-2016 with 1656 sites in total. The Central Tibetan 

Plateau (CTP) and the North China Plain (NCP) are labelled on the map. The red dashed line represents the Heihe-

Tengchong Line, which is an imagined “geo-demographic demarcation line” reflecting the disparity in the population 

distribution. Around 95% of the population live to the east of the line, where 82% of the monitoring sites are located.  5 
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Figure 2: (a) Seasonal and (b) annual means of the population-weighted average ground-level CO concentrations (mg 

m-3) during 2013-2016 for China predicted by the RF-STK model. The error bars (standard deviations) stand for the 

spatial variations.  
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Figure 3: Seasonal averages of the MOPITT retrieved surface CO concentrations (mg m-3) in (a) spring, (b) summer, 

(c) fall, and (d) winter during 2013-2016 across China.  
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Figure 4: Temporal variations of the average ground-level CO concentrations for (a) the whole nation, (b) the North 

China Plain (NCP), and (c) the Central Tibetan Plateau (CTP) during 2013-2016 based on the observations from the 

monitoring network (grey points), the RF-STK predictions (black and red solid lines), and the MOPITT retrievals 

(blue solid lines). The black lines show the RF-STK predictions for the grid cells with monitoring sites (prediction-1), 5 
and the red lines show the RF-STK predictions for all the grid cells (prediction-2). Weekly averages rather than daily 

concentrations are presented for clarity. Please refer to the right Y-axis for the MOPITT retrievals and the left Y-axis 

for all the other time series. 
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Figure 5: Performance of the RF-STK model in predicting (a) daily, (b) seasonal, (c) annual, and (d) spatial (i.e., 

multiyear average) ground-level CO concentrations across China during 2013-2016. The dashed lines represent the 1:1 

relationship.  
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Figure 6: Relative importance of the predictor variables in the RF-STK model. Please refer to Table S1 for the detailed 

descriptions of these variables.  
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Figure 7: Annual average ground-level CO concentrations predicted by the RF-STK model for (a) 2013, (b) 2014, (c) 

2015, and (d) 2016 across China.  
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Figure 8: Seasonal average ground-level CO concentrations (mg m-3) during 2013-2016 in the Central Tibetan Plateau 

based on (a-d) the RF-STK predictions (P) and (e-h) the MOPITT retrievals (M). Main cities within this area (e.g., 

Lhasa, Naqu, and Qamdo) are annotated with triangles. 

  5 
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Figure 9: Temporal trends of the population-weighted average ground-level CO concentrations (mg m-3) for (a) Central 

China, (b) East China, (c) North China, (d) Northeast China, (e) Northwest China, (f) South China, (g) Southwest China, 

(h) the whole nation, (i) the Central Tibetan Plateau (CTP), and (j) the North China Plain (NCP) during 2013-2016 

based on the RF-STK predictions (red solid lines) and the MOPITT retrievals (blue solid lines). The points in different 5 
colors represent the deseasonalized monthly averages for deriving the corresponding trend lines. The 95% confidence 

intervals of the trends are in parentheses (mg m-3 per year) followed by the P values. 


