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Abstract. Continuous efforts have been made to monitor atmospheric CO2 as it is one of the most 

influential greenhouse gases in Earth’s atmosphere. Inverse modeling, which is one of the methods to 10 

carry out such monitoring, derives estimated CO2 mole fractions in the air from calculated surface carbon 

fluxes using model and observed CO2 mole fraction data. Although observation data is crucial for 

successful modeling, comparatively fewer in-situ observation sites are located in Asia compared to 

Europe or North America. Based on the importance of the terrestrial ecosystem of Asia for global carbon 

exchanges, more observation stations and an effective observation network design are required. In this 15 

paper, several observation network experiments were conducted to optimize the surface carbon flux of 

Asia using CarbonTracker and observation system simulation experiments (OSSE). The impacts of the 

redistribution of and additions to the existing observation network of Asia were evaluated using 

hypothetical in-situ observation sites. In the case of the addition experiments, 10 observation stations, 

which is a practical number for real implementation, were added through three strategies: random addition, 20 

the influence matrix (i.e., self-sensitivity), and ecoregion information within the model. The simulated 

surface carbon flux in Asia in summer can be improved by redistributing the existing observation network. 

The addition experiments revealed that considering both the distribution of normalized self-sensitivity 

and ecoregion information can yield better simulated surface carbon fluxes compared to random addition, 

regardless of the season. This study provides a diagnosis of the existing observation network and useful 25 

information for future observation network design in Asia to estimate the surface carbon flux, and also 

suggests the use of an influence matrix for designing carbon observation networks. Unlike other previous 
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observation network studies with many numerical experiments for optimization, comparatively fewer 

experiments were required in this study. Thus, the methodology used in this study may be used for 

designing observation networks for monitoring greenhouse gases at both continental and global scales.  

1. Introduction 

CO2 is one of the most influential greenhouse gases in Earth’s atmosphere (Lacis et al., 2010). Thus, 5 

monitoring CO2 is very important to understand and constrain CO2 in the atmosphere. To monitor 

atmospheric CO2 precisely, continuous efforts are necessary. Inverse modeling, one of the methods to 

complete this mission, uses observation data and transport models to estimate the sources and sinks of 

surface carbon flux and associated atmospheric CO2 mole fractions (Enting, 2002; Gurney et al., 2002). 

Bayesian synthesis (Enting, 2002), four dimensional variational data assimilation methods (4DVar; 10 

Chevallier et al., 2009a, 2009b, 2010; Kou et al., 2017), and Ensemble Kalman Filter (EnKF; Peters et 

al., 2005, 2007, 2010; Feng et al., 2009, 2016; Kang et al., 2011, 2012; Peylin et al., 2013; Kim et al., 

2014a, 2014b, 2017, 2018a, 2018b) have been implemented and utilized to conduct inverse modeling. By 

comparing 13 inverse modeling systems, Peylin et al. (2013) showed that simulation results were similar 

to each other for regions with many observations, but dissimilar for regions with sparse observation 15 

coverage (e.g. the tropics and southern hemisphere). 

The terrestrial system in the northern hemisphere is crucial for global carbon exchanges, and Asia 

covers the largest area in the northern hemisphere (Hayes et al., 2011; Le Quéré et al., 2018). Asia also 

includes the Siberian region, which represents one of the significant areas for sources and sinks of 

atmospheric CO2 (Schulze et al., 1999; Houghton et al., 2007; Tamocai et al., 2009; Kurganova et al., 20 

2010; Schepaschenko et al., 2011, Siewert et al., 2015). Thus, the precise estimation of the surface carbon 

flux in Asia is highly necessary and required to fully understand global carbon exchanges. However, 

comparatively fewer in-situ observation sites are located in Asia compared to Europe and North America. 

Although the Center for Global Environmental Research (CGER) of the National Institute for 

Environmental Studies (NIES) in Japan, collaborating with the Russian Academy of Science (RAS), has 25 

built nine tower observation sites (Japan-Russia Siberian Tall Tower Inland Observation Network, JR-

STATION) in Asia, and several studies have been conducted using continuously observed atmospheric 
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CO2 and CH4 mole fractions since 2002 (Saeki et al., 2013; Sasakawa et al., 2010, 2013;  Kim et al., 

2017), the towers of the JR-STATION are mainly located in the Siberian region. In addition, eight stations 

of the JR-STATION are located in western Siberian. These JR-STATION sites, therefore, do not seem to 

be well-suited for optimizing the surface carbon flux for the entire Asia region, and in-situ observation 

sites in Asia are still fewer compared to those in Europe or North America, even when the JR STATION 5 

sites are considered.  

In the meantime, the satellite-retrieved dry-air column-average mole fraction of CO2 (XCO2) could 

be used to supplement observations in the sparse observation regions, including Asia (Chevallier et al., 

2009a, 2009b, 2010; Maksyutov et al., 2013; Reuter et al., 2014; Feng et al., 2016). However, by 

comparing CO2 mole fractions observed in four World Meteorological Organization (WMO) Global 10 

Atmosphere Watch (GAW) stations in China to satellite-retrieved products from the Greenhouse Gases 

Observing Satellite (GOSAT), Cheng et al. (2018) reported that satellite-retrieved CO2 mole fractions 

showed similar seasonal variations to those of in-situ observations but the magnitudes retrieved from the 

satellite were comparatively lower than those of in-situ observations. Assimilating XCO2 data is therefore 

generally less effective than assimilating in-situ observations (Chevallier et al., 2009a; Fischer et al., 15 

2017). In contrast, Maksyutov et al. (2013) noted that uncertainties in surface CO2 flux estimations in 

sparse in-situ observation regions could be reduced when in-situ observations and GOSAT observation 

data were used simultaneously. In particular, Fischer et al. (2017) showed that uncertainties in surface 

CO2 flux estimation could be further decreased, even for the regions with in-situ observation sites, when 

in-situ observations and satellite-retrieved observations are used together. Thus, in-situ observation 20 

networks need to be well established to better utilize non in-situ observations like XCO2.  

Observation system simulation experiments (OSSE), using simulated observation data, provide an 

opportunity to evaluate the impact of observation data from the current and potential observation sites on 

the performance of the modeling system (Yang et al., 2014; Byrne et al., 2017; Wang et al., 2018; Wu et 

al., 2018). Thus, OSSE can be used to evaluate the performance of current observation networks and to 25 

design future observation networks. Although several studies have been conducted to achieve this aim, 

most observation network design studies were restricted to comparatively smaller national scales such as 

Australia, California in the USA, and South Africa (Ziehn et al. 2014, 2016; Lucas et al., 2015; Nickless 
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et al., 2015). As potential observation sites are few in these studies due to the relatively small study area, 

these studies suggest an optimized network derived from a myriad of calculations using the incremental 

optimization (IO) and the genetic algorithm (GA). Due to time and computing restraints, the IO and GA 

methods seem ineffective or unfeasible for designing the observation network on continental scales like 

Asia.  5 

The influence matrix (i.e., analysis sensitivity or self-sensitivity) denotes the sensitivity of the analysis 

to the observations (Cardinali et al., 2004; Liu et al., 2009; Kim et al. 2014a; Kim et al. 2017). Similar to 

the numerical weather prediction (NWP), the relative impact of each CO2 observation for the optimized 

surface carbon flux can be calculated (Kim et al., 2014a, 2017) and used as a strategy for selecting 

potential sites of CO2 mole fraction observations. Although Wang et al. (2018) showed the potential 10 

impact of adding observation sites on the existing 14CO2 sites in Europe using OSSE, they considered a 

considerable number of observation sites, which does not seem to be feasible in the near future. Moreover, 

studies on diagnosing the current CO2 mole fraction observation network and evaluating the impact of 

adding and redistributing in-situ CO2 mole fraction observation sites in Asia are few up to this time. 

Considering the importance of the Asia region for global carbon exchange, studies on the observation 15 

network design in Asia to accurately estimate the surface carbon flux are highly necessary. Such 

observation network studies could also provide helpful information for researchers and administrators 

who design the future observation network under practical conditions.  

In this study, OSSE were conducted using CarbonTracker (CT) to identify a better in-situ observation 

network for the purpose of optimizing surface carbon flux estimation in Asia. Based on the hypothetical 20 

simulated observations, redistribution and addition experiments were performed to evaluate the 

performance of the existing observation network and the impact of additional observation sites, 

respectively. In the case of addition experiments, random addition and addition based on influence matrix 

(self-sensitivity) as well as ecoregion information of the model were considered as strategies. Section 2 

briefly introduces the CT, influence matrix, hypothetical observations, experimental framework, and 25 

verification methods. Section 3 presents the results of the observation network design experiments, and 

Sect. 4 provides a summary and the conclusions of this study. 
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2. Methodology 

2.1 CarbonTracker and data assimilation methods 

CT2013B, developed by the Earth System Research Laboratory (ESRL) at the National Oceanic and 

Atmospheric Administration (NOAA), was used for this study. CT2013B estimates the surface carbon 

flux using inverse modeling and has been widely used to calculate surface carbon fluxes in North America, 5 

Europe, and Asia (Peters et al., 2004, 2005, 2007, 2010; Kim et al., 2012, 2014a, 2014b, 2017; Cheng et 

al., 2013; Kim et al., 2016, 2018a, 2018b).  

CT2013B consists of a priori flux modules, a transport model (TM5), observation data, and EnKF 

data assimilation. The estimated surface CO2 fluxes are mainly calculated from flux modules composed 

of biosphere, ocean, fossil fuel, and fire fluxes. The optimized grid-point surface CO2 fluxes within TM5 10 

were derived as follows: 

 

𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = λ𝑟𝑟 ∙ 𝐹𝐹bio(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + λ𝑟𝑟 ∙ 𝐹𝐹ocean(𝑥𝑥,𝑦𝑦, 𝑡𝑡) + 𝐹𝐹ff(𝑥𝑥,𝑦𝑦, 𝑡𝑡) + 𝐹𝐹fire(𝑥𝑥,𝑦𝑦, 𝑡𝑡)                                             (1) 

 

where 𝐹𝐹bio(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) , 𝐹𝐹ocean(𝑥𝑥,𝑦𝑦, 𝑡𝑡) , 𝐹𝐹ff(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) , and 𝐹𝐹fire(𝑥𝑥,𝑦𝑦, 𝑡𝑡)  denote a priori emissions of the 15 

biosphere, ocean, fossil fuel, and fires, respectively; λ𝑟𝑟 is the scaling factor with a 1-week resolution for 

ecoregions; 𝑥𝑥, 𝑦𝑦, and 𝑡𝑡 denote the zonal direction, the meridional direction, and time, respectively.  λ𝑟𝑟 is 

used for optimization of the surface CO2 flux through interactions with a priori emissions of the biosphere 

and the ocean. Thus, EnKF data assimilation in CT2013B optimizes not surface CO2 fluxes but the scaling 

factor. This means that the optimization of the scaling factors that were assigned to the 240 ecoregions of 20 

the earth is crucial for the estimation of simulated surface CO2 fluxes. The ecoregions are defined as the 

mix of the modified 19 vegetation types from Olson et al. (1992) and 11 Transcom regions (Gurney et al., 

2002) on land, with 30 ocean regions. As all 19 vegetation types are not used for the 11 Transcom regions, 

the number of effective ecoregions is 156 (Peters et al., 2010). 

TM5 is an off-line transport model used to calculate the transport of CO2 (Krol et al., 2005), which 25 

utilizes the atmospheric fields of the ERA-interim reanalysis data of the European Centre for Medium-

Range Weather Forecasts (ECMWF). TM5 utilizes the estimated surface CO2 fluxes at each grid-point 

suggested in Eq. (1) to calculate the spatiotemporal distribution of the atmospheric CO2. In addition, it 
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also calculates the model counterparts corresponding to the same location and time of observation data, 

which are used for the data assimilation process. A two-way nested grid was used in this study to optimize 

surface CO2 fluxes in Asia (Fig. 1). Table 1 summarizes the priori flux emissions used for the flux module 

and describes the TM5 setup. 

An Ensemble Square Root Kalman Filter (EnSRF), one of the EnKF data assimilation methods 5 

(Evensen, 1994; Whitaker and Hamill, 2002), was employed in this study to optimize the scaling factor. 

EnSRF assimilates observation data one by one, and updates the analysis of ensemble mean and 

perturbations separately based on the following equations as: 

 

𝒙𝒙�𝑡𝑡a = 𝒙𝒙�𝑡𝑡b + 𝐊𝐊(𝒚𝒚o − 𝐇𝐇�𝒙𝒙�𝑡𝑡b�,                                                                                                                                                        (2) 10 

𝒙𝒙′𝑖𝑖
a = 𝒙𝒙′𝑖𝑖

b − 𝐤̃𝐤𝐇𝐇�𝒙𝒙′𝑖𝑖
b�,                                                                                                                                                            (3) 

 

where 𝒙𝒙a and 𝒙𝒙b describe the analysis and background value of the state vector (𝒙𝒙); 𝒙𝒙� and 𝒙𝒙′ are the 

ensemble mean and perturbation of the state vector; 𝒚𝒚o is the observation vector; and 𝐇𝐇 describes the 

observation operator that transforms the state vector from the model space to the observation space. TM5 15 

acts as the observation operator in CT2013B (Krol et al., 2005; Peters et al., 2005; Kim et al., 2016, 

2018a). 𝐊𝐊 and 𝐤̃𝐤 denote the Kalman gain matrix and the reduced Kalman gain calculated as: 

 

𝐊𝐊 = �𝐏𝐏tb𝐇𝐇T��𝐇𝐇𝐏𝐏b𝐇𝐇T + 𝐑𝐑�
−1

,                                                                                                                                                     (4) 

𝐤̃𝐤 = 𝐊𝐊 ⋅ 𝛼𝛼,                                                                                                                                                                                            (5) 20 

 

where 𝐏𝐏𝑡𝑡b is the background error covariance; 𝐑𝐑 is the observation error covariance for each observation; 

and 𝛼𝛼 is a scalar value that is multiplied to Kalman gain matrix at every calculation of the analysis, defined 

as: 

 25 

𝛼𝛼 = (1 + � 𝐑𝐑
𝐇𝐇𝐏𝐏𝑡𝑡b𝐇𝐇T+𝐑𝐑

)−1.                                                                                                                                                                    (6) 
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By calculating the ensemble mean and perturbation independently, the underestimation of the analysis 

error covariance could be prevented (Whitaker and Hamill, 2002; Kim et al., 2012). 𝐏𝐏tb𝐇𝐇T and 𝐇𝐇𝐏𝐏tb𝐇𝐇T 

can be calculated as: 

 5 

𝐏𝐏𝐇𝐇T ≈ 1
𝑚𝑚−1

(𝒙𝒙′1,𝒙𝒙′2,⋯ ,𝒙𝒙′𝑚𝑚) ⋅ (𝐇𝐇𝒙𝒙′1,𝐇𝐇𝒙𝒙′2,⋯ ,𝐇𝐇𝒙𝒙′𝑚𝑚)T,                                                                                              (7) 

𝐇𝐇𝐏𝐏b𝐇𝐇T ≈ 1
𝑚𝑚−1

(𝐇𝐇𝒙𝒙′1,𝐇𝐇𝒙𝒙′2,⋯ ,𝐇𝐇𝒙𝒙′𝑚𝑚) ⋅ (𝐇𝐇𝑥𝑥′1,𝐇𝐇𝒙𝒙′2,⋯ ,𝐇𝐇𝒙𝒙′𝑚𝑚)T,                                                                            (8) 

 

where 𝑚𝑚 is the number of ensemble members.  

Unlike the approach of NWP, the time for CO2 dispersing around the atmosphere needs to be 10 

considered for carbon data assimilation. Accordingly, a time lag is introduced in updating the scaling 

factor during the data assimilation process to consider the information for analysis time as well as for pre-

analysis time. A time lag of five weeks is employed in this study, consistent with previous studies (Peters 

et al., 2007, 2010, Kim et al., 2012, 2014a, 2014b, 2017). 

In the EnSRF, the covariance localization method is necessary to reduce the impact of the sampling 15 

error due to the limited size of the ensemble and to avoid filter divergence due to the underestimation of 

the background error covariance (Houtekamer and Mitchell, 2001). The statistical method is applied in 

this study because calculating the physical distance between scaling factors is not feasible. In this method, 

a Student’s 𝑡𝑡 test is applied on the correlations between the ensemble of the model CO2 concentrations 

and the ensemble of the scaling factors, and the Kalman gain matrix is then made to be zero for the cases 20 

where it has an insignificant statistical 𝑡𝑡 value (i.e. 95 % significance level), to exclude those insignificant 

impacts (Peters et al., 2007). 

The optimized mean scaling factor after one analysis cycle is used as one of the prior mean scaling 

factors for the next analysis step as: 

 25 

λ𝑡𝑡
b = �λ𝑡𝑡−2

a+λ𝑡𝑡−1
a+1

3
�,                                                                                                                                                                        (9) 
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where, λ𝑡𝑡
b  is a prior mean scaling factor for the current analysis step; and λ𝑡𝑡−2

a  and λ𝑡𝑡−1
a  denote 

posterior mean scaling factors of previous analysis cycles. The information of current analysis propagates 

to the next step using Eq. (9) (Peters et al., 2007). 

 

2.2 Influence matrix 5 

The influence matrix of the EnKF system can be calculated as described in Liu et al. (2009) and Kim 

et al. (2014a). The analysis of the state vector and the influence matrix (𝐒𝐒o) that shows the contribution 

of the observation vector (𝒚𝒚o) to the analysis at the observation space (𝒚𝒚a) can be defined as:  

 

𝐱𝐱a = 𝐊𝐊𝐲𝐲o + (𝐈𝐈𝑛𝑛 − 𝐊𝐊𝐊𝐊)𝒙𝒙b,                                                                                                                                                             (10) 10 

𝐒𝐒o = ∂𝒚𝒚a

∂𝒚𝒚o
= 𝐊𝐊T𝐇𝐇T = 𝐑𝐑−1𝐇𝐇𝐏𝐏a𝐇𝐇T,                                                                                                                                             (11) 

 

where, 𝐈𝐈𝑛𝑛  is the identity matrix corresponding to the size of observation. The influence matrix is 

proportional to the analysis error covariance and inversely proportional to the observation error 

covariance. Using Eq. (8), 𝐒𝐒o is expressed as: 15 

 

𝐒𝐒o = 𝐑𝐑−1𝐇𝐇𝐏𝐏a𝐇𝐇T = 1
𝑚𝑚−1

𝐑𝐑−1(𝐇𝐇𝐗𝐗a)(𝐇𝐇𝐗𝐗a)T,                                                                                                                       (12) 

 

where 𝐇𝐇𝐗𝐗a is the analysis of the ensemble perturbation at the observation space. The 𝑖𝑖th component of 

𝐇𝐇𝐗𝐗a  is defined as: 20 

 

𝐇𝐇𝐗𝐗𝑖𝑖a ≅ ℎ(𝒙𝒙𝑖𝑖a) − 1
𝑚𝑚
∑ ℎ(𝒙𝒙𝑖𝑖a)𝑚𝑚
𝑖𝑖=1 ,                                                                                                                                                (13) 

 

where 𝒙𝒙𝑖𝑖a is the 𝑖𝑖th member of the analysis ensemble; and ℎ(⋅) denotes the linearized or non-linearized 

observation operators. If there are no correlations between observation errors, the diagonal element of 25 

this influence matrix (i.e. self-sensitivity) is calculated as: 
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𝐒𝐒𝑗𝑗𝑗𝑗o = ∂𝒚𝒚𝑗𝑗a

∂𝒚𝒚𝑗𝑗o
= � 1

𝑚𝑚−1
� 1
σ𝑗𝑗2

∑ (𝐇𝐇𝐗𝐗𝑖𝑖a)𝑗𝑗𝑚𝑚
𝑖𝑖=1 ⋅ (𝐇𝐇𝐗𝐗𝑖𝑖a)𝑗𝑗 ,                                                                                                              (14) 

 

where 𝜎𝜎𝑗𝑗2 is the observation error variance for the 𝑗𝑗th observation.  

According to Liu et al. (2009), 𝐒𝐒o has a value between 0 and 1, which shows the contribution of an 5 

observation to the analysis. If  𝐒𝐒o is close to 0, the analysis is mainly derived from the background. In 

contrast, the influence of observation data to the analysis increases as  𝐒𝐒o goes to 1. The self-sensitivity 

was used as a criterion for selecting the observation locations in designing the observation network. 

 

2.3 Simulated hypothetical observation and experimental setup 10 

In this paper, simulated hypothetical observations were created and used to design the observation 

network. Simulated hypothetical observations with similar values and seasonal variations compared to 

real CO2 observations were generated by combining two model CO2 mole fractions from the experiment 

conducted with real NOAA observation data (EXTASI) and the experiment with a fixed scaling factor of 

1 (SF1).  15 

Figure 2 shows the station-averaged time series of CO2 mole fractions from real observations (OBS), 

EXTASI, SF1, and an average of EXTASI and SF1 (i.e., simulated hypothetical observations: TRUE, 

hereafter). The time series of EXTASI is the closest to that of OBS, whereas that of SF1 with a static 

scaling factor (i.e., 1) differs from OBS, particularly in summer. The time series of TRUE is located 

between that of EXTASI and SF1, which implies that the difference between TRUE and OBS is smaller 20 

compared with that between SF1 and OBS. TRUE is the simulated hypothetical observation that is similar 

to the EXTASI assimilating real NOAA observation data, but is not the same as the EXTASI. This setup 

prevents EXTASI from having an advantage in the observation network experiments. If TRUE is the 

same as EXTASI, then assimilating TRUE data at the observation locations used in EXTASI would render 

the observation network used in EXTASI the optimal network in terms of several verification measures 25 

used in this study.  
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Each hypothetical observation site has one CO2 observation per day and exists within the limited Asia 

domain shown in Fig. 1. On the basis of the nautical time zone, the simulated values around afternoon 

(13 LST) in the mid-latitudes in the northern hemisphere are averaged and utilized as TRUE data. The 

observation height of TRUE data at each site is set to 5 meters greater than the model elevation of the 

grid-point in order to use the observation operator for flask observation developed in NOAA. Moreover, 5 

each observation site is more than 1,000 km apart from other sites, located lower than 2,000 meters above 

sea level, and located on the land regions in the Transcom Region from Gurney et al. (2002). This 

configuration was made to consider real-world constraints to optimize the surface carbon fluxes in Asia. 

Model-data-mismatch (MDM) was set to 3, consistent with the previous setting of 3 for continuous 

observation site types (Peters et al., 2007; Kim et al., 2014b, 2017). 10 

All simulation results were produced under identical conditions except for the observation locations 

and data. 150 ensemble members were used for data assimilation, and experiments were carried out from 

27 September 2007 to 4 January 2009. The first three months of the experiments were considered as the 

spin-up period, thus the analysis was conducted from 27 December 2007 to 4 January 2009.  

As the experimental results depend on the distribution of observation sites, appropriate choices of the 15 

observation network are important. Experiments are therefore configured to investigate the impact of 

redistributing observation sites of CT2013B (hereafter, existing observation sites or network) and that of 

adding extra observation sites to the existing observation network based on random, self-sensitivity, and 

ecoregion information. Figure 3 shows the hypothetical observation networks used in this study. Figure 

3a presents the distribution of seven observation sites in Asia from the observation network of CT2013B, 20 

which are mostly located between 30 °N and 45 °N. The experiment and simulation results using this 

observation network were denoted as CNTL. Since the CNTL could have disadvantages due to the use of 

real observation information (i.e. the observation height of simulated sites are always above 5 meters from 

model topography, but this is not the case for CNTL), an additional experiment identical to CNTL, except 

that the observation heights were assigned above 5 meters from the model topography in the same way 25 

as for hypothetical observations, was also conducted and denoted as CNTL_MOD. Figures 3b, c, and d 

show the distribution of three observation networks, in which the seven observation sites in Asia are 
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randomly redistributed. The average of three random redistribution experiments was denoted as REDIST, 

to check the impact of the reallocation of the existing observation network. 

Figures 3e-m suggest the distributions of the observation networks to examine the impact of adding 

additional observation sites to the existing observation network. The 10 extra observation sites were added 

as this number seems realistically viable for the future, considering the cost of operating and maintaining 5 

CO2 observation sites. Specifically, Figures 3e-h show the distribution of three observation networks with 

additional 10 observation sites added randomly to the existing observation network. The average of these 

three experiments was denoted as ADD. The experiment adding 10 observation sites to the existing 

observation network based on self-sensitivity is denoted as the SS experiment (Fig. 3h). The experiment 

adding 10 observation sites to the existing observation network based on both self-sensitivity and 10 

ecoregion information is denoted as the ECOSS experiment (Fig. 3i). The ECOSS experiment was 

conducted as the scaling factor in CT2013B is updated based on ecoregion, thus only considering self-

sensitivity makes the added observation sites cluster in a specific ecoregion and causes disadvantages in 

optimizing the scaling factor. As the self-sensitivity is generally inversely proportional to the number of 

assimilated observations (Kim et al., 2014a; 2017), the self-sensitivity normalized by the number of 15 

assimilated observations is also considered and utilized. Figures 3j-l show the distributions of the 

observation network for three experiments that used the normalized self-sensitivity as the selection 

criterion for added observation sites. The NSS experiment (Fig. 3j) used only the normalized self-

sensitivity as the selection strategy. The observation sites of the NECOSS1 (Fig. 3k) and NECOSS2 (Fig. 

3l) experiments were added based on the normalized self-sensitivity and ecoregion information. The 20 

NECOSS1 experiment allocated one or two observation sites per ecoregion, whereas NECOSS2 allocated 

one observation site per ecoregion. In addition, the observation networks that have observation sites at 

every 2° intervals on the land (Fig. 3m, ALL experiment) are suggested as the reference to examine the 

maximum possible impact of additional observation sites.  

The normalized self-sensitivity is defined as: 25 

 

𝐍𝐍𝐒𝐒𝑗𝑗𝑗𝑗o = 𝑁𝑁𝑗𝑗
𝑁𝑁ALL

× 𝐒𝐒𝑗𝑗𝑗𝑗o,                                                                                                                                                                        (15) 
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where 𝑁𝑁ALL denotes the total count of observation sites of the ALL experiment; and 𝑁𝑁𝑗𝑗 is the number of 

observation sites that have the same ecoregion as the 𝑗𝑗th observation site in the ALL experiment. Thus, 

normalized self-sensitivities were calculated by multiplying self-sensitivities by the ratio of the number 

of observation sites in a specific ecoregion to that in the ALL experiment. 

The effect of the redistribution of the existing observation network and adding additional observation 5 

sites on the existing observation network can be diagnosed through the experiments detailed above. The 

method of adding observation sites in the experiments using self-sensitivity and ecoregion information is 

described in more detail in Sect. 3. Table 2 describes the list of observation network experiments and their 

relevant information. 

 10 

2.4. Verification method 

The nested model domain over Asia and the verification area (-9.5 °S – 66.5 °N, 60.5 °E – 149.5 °E) 

are shown in Fig. 1. The optimized surface CO2 flux in each experiment was verified against the 

hypothetical surface CO2 fluxes corresponding to TRUE. Weekly surface CO2 fluxes were analyzed to 

evaluate the performance of observation network experiments because the scaling factor has a weekly 15 

resolution. The Pearson product-moment correlation coefficient (Pattern Correlation; PC), the bias 

(BIAS), and the root mean square difference (RMSD) were compared and calculated as: 

 

PC = ∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖−𝐸𝐸𝐸𝐸𝐸𝐸������)(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇��������)𝑛𝑛
𝑖𝑖=1

[�∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖−𝐸𝐸𝐸𝐸𝐸𝐸������)𝑛𝑛
𝑖𝑖=1 �∑ (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇��������)𝑛𝑛

𝑖𝑖=1 ��]
 ,                                                                                                                       (16) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛
∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ,                                                                                                                                              (17) 20 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 ,                                                                                                                                     (18) 

 

where 𝐸𝐸𝑋𝑋𝑋𝑋𝑖𝑖  and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖  are the surface CO2 fluxes at the 𝑖𝑖th model grid-point of an experiment and 

TRUE, respectively. 
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To investigate the reduction of uncertainties for each experiment after data assimilation, uncertainty 

reduction (UR; Peters et al., 2005; Meirink et al., 2008; Chevallier et al., 2009b, Feng et al., 2009; Kim 

et al., 2014a, 2017, Kim et al., 2018b) was calculated as: 

 

UR = �1 − 𝜎𝜎EXP
𝜎𝜎CNTL

� × 100,                                                                                                                                                         (19) 5 

 

where 𝜎𝜎CNTL and 𝜎𝜎EXP denote 1σ standard deviations of the optimized scaling factor for the CNTL and 

an experiment. The UR was used to check the improvement of observation network experiments by 

comparing the posterior uncertainties of experiments with those of CNTL (i.e., the reference experiment). 

3. Results 10 

3.1. Effect of an observation network with observation sites redistributed randomly  

Figure 4 shows the time series of the three-week moving average of PC, BIAS, and RMSD for surface 

CO2 fluxes from the CNTL, CNTL_MOD, and REDIST experiments. Overall, REDIST is closer to TRUE 

compared to CNTL and CNTL_MOD. The PC of CNTL with the NOAA observation network decreases 

in mid-April and mid-July, as well as in late August compared to other months. In particular, the PC of 15 

CNTL fell to 0.919 in late August (Fig. 4a). This implies that, occasionally, the CNTL experiment may 

not be effective in optimizing surface CO2 fluxes in Asia. The PC of CNTL_MOD is quite similar to that 

of CNTL, except for the much lesser drop in late July compared to CNTL. In contrast, REDIST maintains 

a higher PC at almost every time compared to CNTL and CNTL_MOD. Particularly in late August, the 

PC of REDIST is comparatively higher (i.e., 0.955) than those of CNTL and CNTL_MOD (approximately 20 

0.93). This implies that surface CO2 fluxes in Asia could be optimized more effectively when using the 

observation sites of the REDIST experiment. 

Regarding the BIAS, the three experiments have common variations that increase and decrease around 

zero, and have high amplitudes in summer compared to other seasons (Fig. 4b). In particular, 

CNTL_MOD (CNTL) shows the maximum positive BIAS of 23.74 (16.43) in early June. In contrast, the 25 

BIAS of REDIST is approximately 10.28 at the same time and maintains its value closest to zero among 
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the three experiments. Considering the impact of BIAS on steady simulations of the model, the time series 

of BIAS also supports that the observation network of REDIST can perform more reliably in optimizing 

surface CO2 fluxes in Asia compared to that of CNTL. 

The RMSDs of all three experiments increase much in summer (Fig. 4c). The time series of RMSDs 

of CNTL and CNTL_MOD have similar variations except for a slight phase shift, whereas that of REDIST 5 

shows a comparatively smaller increase in the RMSD in the summer. Specifically, the maximum RMSD 

of CNTL is 200.61 in mid-July and that of CNTL_MOD is 192.19 early in July, but that of REDIST is 

127.32 at the beginning of June. Thus, REDIST is better than CNTL in simulating surface CO2 fluxes in 

Asia in summer. 

REDIST clearly outperforms CNTL and CNTL_MOD in summer, and an overall improvement is also 10 

observed from the comparison of the three experiments. The PC increases and the magnitudes of BIAS 

and RMSD decrease in REDIST compared to CNTL and CNTL_MOD. This implies that merely 

redistributing current observation sites in Asia could have more benefits in optimizing surface CO2 fluxes. 

This result seems to be somewhat attributable to the fact that most observation sites in Asia in the NOAA 

observation network of CT2013B are located in mid-latitudes (~35–45 ° N). 15 

Furthermore, CNTL and CNTL_MOD are not much different in simulating surface CO2 fluxes, which 

implies that the selection strategy of observation height in making hypothetical observations does not 

greatly affect the evaluation of the various observation networks. The real height information of the 

NOAA observation network in CNTL is therefore used for existing observation sites in Asia, and the 

observation height of additional hypothetical sites is set to 5 meters above the model topography in the 20 

experiments.  

 

3.2. Effect of an observation network with extra observation sites added randomly 

Figure 5 presents the time series of the three-week moving average of PC, BIAS, and RMSD for 

surface CO2 fluxes from the CNTL, ADD, and ALL experiments, which clearly show the effect of 25 

randomly added observation sites. The decreases in the PC in the middle of April and in late July and 

August in CNTL do not appear in ADD and ALL (Fig. 5a). In particular, ALL maintains PC close to 1 
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during the experimental period. Although keeping the observation network as ALL is difficult in reality, 

this result demonstrates the impact of holding many observation sites in Asia. The minimum of the PC of 

ADD is 0.962, which is higher than that of CNTL (0.919), implying that adding extra observation sites in 

Asia could increase the stability in simulating surface CO2 fluxes.  

Compared to the BIAS of CNTL with high variability, the BIAS of ADD decreased by approximately 5 

50% compared to that of CNTL and the absolute value of the maximum BIAS in ADD is 7.45 (Fig. 5b). 

Although ADD shows slightly higher BIAS than CNTL during the first two months, the time series of 

BIAS in ADD remains close to zero during the simulation period. The BIAS of ALL is the closest to 0 

compared to those of CNTL and ADD throughout the experimental period. 

In terms of the RMSD, the three experiments show increasing trends in the summer compared to other 10 

seasons (Fig. 5c), which is similar to the previous random redistribution experiments in Sect. 3.1. 

However, the RMSDs of ADD and ALL with more observation sites generally remain low during the 

simulation period. Specifically, compared to other seasons, the RMSD of CNTL in the summer increases 

by approximately three times and shows a four-fold increase in late July, rising to 200.61. Except in 

summer, the time series of RMSD of ADD is similar to or slightly lower than that of CNTL. In summer, 15 

the maximum RMSD of ADD is reduced to 109.18, maintaining lower values during the summer and not 

showing any sudden increase. ALL has the minimum RMSD among the three experiments throughout 

the simulation period, and reaches a maximum of only 34.37 in early July. Since this number does not 

exceed the minimums of CNTL and ADD, the ALL experiment can be regarded as the best observation 

network. This suggests that an accurate and stable optimization of surface CO2 fluxes in Asia is possible 20 

if CO2 observation sites are sufficient. 

The result of the observation network experiments with randomly added extra observation sites (i.e., 

ADD) also implies that the seven observation sites in Asia described in CT2013B do not seem to be 

sufficient to fully optimize the surface CO2 fluxes in the region. Although the ADD experiment with 10 

randomly added extra observation sites shows an improvement in optimization, more observation sites 25 

are necessary for optimizing surface CO2 fluxes in Asia, considering the result of the ALL experiment. 

Moreover, the simulation result of the ADD experiment does not much outperform that of the REDIST 

experiment, although more observations were used. This implies that further consideration is required 
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when adding observation sites to the existing observation network. Thus, rather than just adding 

observation sites randomly, selecting and adding more influential observation sites for Asia is crucial to 

construct an efficient surface CO2 observation network.  

 

3.3. Effect of an observation network with extra observation sites added using self-sensitivity and 5 
ecoregion information 

Considering the simulation results of Sect. 3.2, the addition of extra observation sites to the existing 

observation sites could improve the performance in simulating surface CO2 fluxes in Asia. In particular, 

the ALL experiment, which added many observation sites enabled in the CT2013B framework, shows a 

high level of reproducibility of TRUE. However, adding more than 900 observation sites in Asia does not 10 

seem to be possible in real situations. Moreover, the expected effect from the extra observation sites may 

not be effective if the additional observations are not influential. Thus, the efficient selection and 

supplementation of observation sites is inevitable considering these constraints under realistic conditions.  

In this study, self-sensitivity information obtained from the ALL experiment and ecoregion 

information used in CT2013B were used as additional strategies for the purpose of adding possible 15 

efficient observation sites in Asia. Since the self-sensitivity is the metric showing the impact of each 

observation site for the model simulation results, as stated in Sect. 2.2, it can be used as a strategy for 

selecting potential observation sites. In addition, the proportion of each ecoregion in the Asia domain can 

also be utilized as a strategy in choosing observation sites, as the calculation of surface carbon fluxes is 

based on the scaling factor for each ecoregion in CT2013B, and the scaling factor updated in the data 20 

assimilation process has the possibility to be more affected by the observation sites located in the same 

ecoregion (CarbonTracker Documentation CT2013B Release, 2015). 

Figure 6 shows the spatial distribution of self-sensitivity from the ALL experiment. Although the self-

sensitivity of each observation site varies from the others, four influential regions with high sensitivities 

are located in western Siberia, the southern part of the Tibetan Plateau, and southeastern and northeastern 25 

Asia. The highest (lowest) self-sensitivity of the hypothetical observation sites is 4.02% (0.04%). Thus, 

the likelihood of using observations located in the aforementioned four regions increases when 

considering the self-sensitivity as the selection strategy. In contrast, the observation sites located in 
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southwestern Asia and eastern Siberia are rarely chosen for the optimization due to the low value of self-

sensitivity. 

The self-sensitivity used for the SS and ECOSS experiments is the pure self-sensitivity without 

considering the number of assimilated observations. The 10 observation sites of the SS experiment were 

selected by employing self-sensitivity from the numerical order (highest first) and following the addition 5 

criteria (i.e., 1000 km distance between sites and observation height 5 meters above the model topography) 

used in Sect. 2.3. For the ECOSS experiment, the proportions of ecoregions in the Asia verification 

domain were calculated from the model grid-points. Following this, the observation sites were selected 

from the order of principal ecoregions with self-sensitivity information. Specifically, the land ecoregion 

information, omitting that of the oceans, was utilized for the selection criteria as the land in the northern 10 

hemisphere is crucial for the global carbon exchange. Table 3 displays the proportions of ecoregions in 

the Asia verification domain and the distribution of observation sites in SS and ECOSS. As the ecoregions 

with 115 and 137 indices constitute relatively large proportions of the ecoregions in Asia (Table 3), two 

observation sites were assigned for each of these two ecoregions. The other ecoregions have one 

observation site per ecoregion. When selecting the aforementioned two and one observation sites in the 15 

ecoregions, the observation sites with the highest self-sensitivities were selected. The observation sites of 

SS are mostly located in ecoregions that constitute lower proportions compared to those of ECOSS 

because the self-sensitivity is generally inversely proportional to the number of assimilated observations, 

as shown in Kim et al. (2014a, 2017). 

The time series of the three-week moving average of PC, BIAS, and RMSD of the simulated surface 20 

CO2 fluxes for the ADD, SS, and ECOSS experiments are shown in Fig. 7, which shows the impact of 

additional observation sites considering self-sensitivity information. The SS and ECOSS experiments 

show higher PC compared with ADD, except that the PC of SS is lower than that of ADD in late April 

and mid-August. In particular, the PC of ECOSS is superior to that of ADD throughout the experimental 

period and is more stable than that of SS. This result implies that the impact of extra observation sites 25 

added from self-sensitivity and ecoregion information is greater in optimizing surface CO2 fluxes in Asia 

than that of randomly added observation sites. 
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However, the BIAS of SS shows a sudden increase in early July, with a maximum positive BIAS of 

21.79 (Fig. 7b). Although the BIAS of ECOSS is generally closer to 0 than that of ADD, except in July, 

ECOSS shows the maximum negative BIAS of -15.78 in late July. These tendencies suggest that the DA 

method that optimizes parameters such as the scaling factor used in CT2013B may occasionally have 

trouble in optimizing surface CO2 fluxes when using limited observation sites for a larger area. 5 

Nevertheless, the ECOSS experiment that considered both self-sensitivity and ecoregion information 

maintains lower RMSD than the ADD experiment over the experimental period. Additionally, the RMSD 

of SS is lower than that of ADD, except in the period from April to late-August. This is in contrast to the 

ADD experiment, which is mainly better than CNTL in summer, as shown in Fig. 5. Thus, in contrast to 

ADD, the SS and ECOSS experiments demonstrate improvement in the other seasons except summer. 10 

The increased RMSD of SS during the spring-summer period compared to that of ADD seems to be 

related to the DA method used in CT2013B. As most observation sites added in SS are located in the 

ecoregions with relatively small proportions of the Asia domain (Table 3), they may have disadvantages 

in optimizing the scaling factor of major ecoregions. This is somewhat relevant to the distribution of 

observation sites in the ALL experiment, which has observation sites at 2° intervals, consequently leading 15 

to the uneven distribution of observation sites (i.e., major ecoregions with more observation sites and 

minor ecoregions with fewer observation sites) in Asia. As the self-sensitivity generally has an inverse 

relationship with the number of assimilated observations, the self-sensitivities of major ecoregions are 

typically lower than those of minor ecoregions, as shown in Table 4.  

The simulation results of SS and ECOSS confirm that influential observation sites for optimizing 20 

surface CO2 fluxes in Asia certainly exist, and the self-sensitivity information could be used for designing 

the observation network. The ECOSS experiment especially, which considers both ecoregion information 

and self-sensitivity, shows a better performance compared to the SS experiment, which suggests that 

considering characteristics of the specific model and data assimilation configurations can also contribute 

to the improvement in optimization. This further implies that an observation network based on the self-25 

sensitivity and ecoregion information could be better for optimizing surface CO2 fluxes in Asia than that 

based on randomly added observation sites, though the same number of observations are used. 
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3.4. Effect of an observation network with extra observation sites added using normalized self-
sensitivity and ecoregion information 

As stated in Sect. 3.3, using the pure self-sensitivities acquired from the ALL experiment for 

observation network studies could be inappropriate in certain occasions because they were derived from 

an uneven distribution of observation sites. Thus, self-sensitivity could be normalized (Eq. (15)) and used 5 

for the selection of observation sites. Table 5 shows the information for observation sites in the NSS, 

NECOSS1, and NECOSS2 experiments that used the normalized self-sensitivities as the selection 

strategy. The observation sites of the NSS experiment are located only in the 115 and 137 ecoregions. 

This is because they have higher normalized sensitivities than other regions as they constitute large 

proportions of the ecoregions of Asia, as shown in Table 3. Additionally, the NECOSS1 and NECOSS2 10 

experiments were conducted to examine the impact of additional observation sites depending on the 

choice of ecoregion. For the NECOSS1 experiment, two observation sites were added to the 115 and 137 

ecoregions and one observation site was allocated to the other six ecoregions. In contrast, the NECOSS2 

experiment allotted one observation site to each ecoregion. The observation sites in NECOSS1 and 

NECOSS2 in the ecoregions were selected by the order of highest normalized sensitivities in each 15 

ecoregion. 

Figure 8 shows the time series of the three-week moving average of PC, BIAS, and RMSD of the 

simulated surface CO2 fluxes for the ADD, NSS, NECOSS1, and NECOSS2 experiments, which shows 

the impact of using normalized self-sensitivities for the selection of additional observation sites. For the 

PC, all the experiments using normalized self-sensitivities (i.e., NSS, NECOSS1, and NECOSS2) show 20 

higher PC than the ADD experiment for most of the time (Fig. 8a). In particular, the PC of NSS is always 

higher than the PC of SS that showed temporarily lower PC compared to ADD from late April to mid-

August. Furthermore, the NECOSS1 and NECOSS2 experiments that also considered ecoregion 

information perform better than the NSS experiment without ecoregion information.  

Regarding BIAS, the experiments using the normalized self-sensitivities show a strong negative BIAS 25 

in mid- and late July (Fig. 8b). Although such tendencies are similar to that of ECOSS shown in Fig. 7b, 

the maximum negative BIAS of NSS, NECOSS1, and NECOSS2 are -14.40, -12.23, and -11.45, 

https://doi.org/10.5194/acp-2019-241
Preprint. Discussion started: 12 August 2019
c© Author(s) 2019. CC BY 4.0 License.



20 
 

respectively, which is comparatively smaller than that of ECOSS. Such an abrupt increase in BIAS could 

be associated with the sudden transition of surface carbon sources and sinks during summer. 

The NSS, NECOSS1, and NECOSS2 experiments show lower RMSDs compared to the ADD 

experiment (Fig. 8c). The RMSD of NSS is lower than that of SS for most of the time, and this is in 

contrast to SS that showed a degradation in summer and little improvement in other seasons compared to 5 

ADD in Fig. 7c. Moreover, the NECOSS1 and NECOSS2 experiments that additionally considered the 

ecoregion information demonstrate a further reduction in RMSD, especially in summer. The NECOSS1 

and NECOSS2 experiments have a slightly lower RMSD than ECOSS that considered pure self-

sensitivities and ecoregion information. The NECOSS1 and NECOSS2 experiments do not show 

significant differences due to minor differences in the choice of observation sites.  10 

The simulation results using the normalized self-sensitivities reconfirm that the self-sensitivity 

information could be used in designing the observation network. By considering the DA method of 

CT2013B that optimizes scaling factors assigned in ecoregions, the experiments using normalized self-

sensitivities could make simulations better than those using pure self-sensitivity. In addition, the 

additional consideration of ecoregion in the experiments using normalized self-sensitivities also 15 

contributes to improvements, which implies that the model's characteristics, such as ecoregion 

information, could also be one of the factors to be used in designing the surface CO2 observation network. 

 

3.5. Horizontal distributions of RMSD and uncertainty reduction  

Figure 9 shows the spatial distribution of the average of weekly RMSD calculated from the surface 20 

CO2 fluxes in Asia. The CNTL shows the highest RMSD among the experiments, with peaks mainly 

located in the Siberian area (Fig. 9a). The REDIST experiment shows a decrease in the high RMSD of 

the Siberian area shown in CNTL, but the RMSDs of eastern China and the southeastern part of the 

Tibetan Plateau (the Indochina Peninsula) slightly increase, and the RMSDs of northern India and the 

northeastern part of Asia remain nearly unchanged compared to CNTL (Fig. 9b). The distribution of 25 

RMSD in the ADD experiment is fairly similar to that of REDIST, except for the decrease of RMSD near 

the Tibetan Plateau and in southeastern Asia (Fig. 9c). Such a spatial distribution of RMSD in the ADD 

https://doi.org/10.5194/acp-2019-241
Preprint. Discussion started: 12 August 2019
c© Author(s) 2019. CC BY 4.0 License.



21 
 

experiment implies the need for supplementing observation sites efficiently. Figure 9d clearly shows the 

reduction in RMSD of northern India and the southeastern region of the Tibetan Plateau in the SS 

experiment compared to the REDIST and ADD experiments. This proves the impact of considering self-

sensitivity information for observation network studies. However, the performance of the SS experiment 

on some Siberian inland areas is poorer than those of the REDIST and ADD experiments, due to the 5 

relative absence of observation sites for that region. The ECOSS experiment using the ecoregion 

information shows comparatively lower RMSD in the Asia domain, except for the southeastern part of 

the Tibetan Plateau and northeastern Asia (Fig. 9e). The RMSD distribution of the NSS experiment 

confirms that the RMSD of the Siberian area is much reduced compared to that of the SS experiment, 

though its overall pattern is similar (Fig. 9f). The RMSDs of the NECOSS1 and NECOSS2 experiments 10 

are analogous to that of the ECOSS experiment (Fig. 9g). This can be attributed to the fact that most 

observation sites in those three experiments are identical (Tables 4 and 5). The simulated RMSD of the 

ALL experiment is the lowest in most of the domain among all sensitivity experiments (Fig. 9i). Such 

simulation results reconfirm that the observation network in Asia needs to be organized in a more efficient 

way to gain better optimization results of surface CO2 fluxes.  15 

Figure 10 shows the UR derived from the experiments, which corresponds with the previous results. 

Compared to the CNTL experiment, the uncertainty of the REDIST experiment is much reduced in the 

Siberian area, but the impact of REDIST is low below 50° N (Fig. 10a). Such a result seems to be related 

with the high UR values in that region in CNTL, because most observation sites in CNTL are located 

from 30° to 45° N. The ADD experiment with randomly added sites demonstrates slight increases in UR 20 

for the inland Siberian area and the nearby areas of the Tibetan Plateau, including China and India (Fig. 

10b). However, the UR in the Asian mid-latitudes is still lower than that in other Asian regions. Although 

the SS and ECOSS experiments have the same number of observation sites compared with the ADD 

experiment, the overall UR in the Asia domain in SS and ECOSS is higher than that of ADD (Figs. 10b, 

c, and d). The uncertainty in the SS experiment, which has comparatively more observation sites in India 25 

and southeastern Asia, is clearly reduced for that area. In contrast, the ECOSS experiment retaining 

comparatively more observation sites in the inland areas of Asia shows higher UR in the land areas, 

although UR in India and southeastern Asia is lower than that in the SS experiment. The experiments 
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using normalized self-sensitivities generally show distinct uncertainty reductions in inland Asia, although 

the UR of India and southeastern Asia in NSS is slightly lower than that of SS (Fig. 10e). This is because 

the observation sites of NSS are located only in the 115 and 137 ecoregions. Although the UR 

distributions of the NECOSS1 and NECOSS2 experiments are generally similar to those of the ECOSS 

experiment, the uncertainties in India and southeastern Asia decrease further in NECOSS1 and NECOSS2 5 

(Figs. 10f and g). The UR of the ALL experiment increases compared to those of other experiments as a 

number of observation sites in ALL sufficiently cover the Asian domain (Fig. 10h). 

Table 6 summarizes the overall scores of the simulations conducted in this study. The CNTL (ALL) 

experiment shows the lowest (highest) skill score among the simulations. The skill scores of other 

experiments range between these. The statistics shown in Table 6 reconfirm the impacts of redistributing 10 

current observation sites and adding extra observation sites discussed in this study. Firstly, the height 

specification for hypothetical observations does not seem to be very influential for OSSE results as only 

small differences were observed between the results of CNTL and CNTL_MOD. The impact of 

redistribution is noticeable because the performance of the REDIST experiment was generally better than 

that of the CNTL experiment. Moreover, the comparison between ADD, SS, and ECOSS reaffirms that 15 

adding more observation sites to the existing sites is effective in optimizing surface CO2 fluxes, and the 

addition strategy needs to be more effective to have better optimization results for surface CO2 fluxes. 

Moreover, the NSS, NECOSS1, and NECOSS2 experiments that used both normalized self-sensitivities 

and ecoregion information show that the normalized self-sensitivity and configuration of the data 

assimilation and model can be utilized as appropriate strategies in designing an observation network that 20 

enhances simulation results. The simulation result of the ALL experiment seems to suggest a possible 

limit of the improvement when using the DA method in CT2013B.  

4. Conclusions 

In this study, observation system simulation experiments using hypothetical observations were 

conducted to investigate the potential for an effective observation network for optimizing surface CO2 25 

fluxes in Asia. Several experiments, including redistributing existing stations and adding observation 

stations to the existing observation network, were conducted to assess the performance of the current 
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observation network and the impact of additional observation sites. For the addition experiment, random 

addition and addition strategies based on self-sensitivities, normalized self-sensitivities, and ecoregion 

information were tested and compared. The performance of each observation network was evaluated from 

statistics calculated from simulated surface CO2 fluxes and the uncertainty reduction.  

The results indicate that further optimization of the surface CO2 fluxes in Asia could be made by 5 

redistributing existing observation sites, given that the RMSD of the redistributed experiment was reduced 

by 12.8% compared to the experiment using the existing observation network (i.e., CNTL). The RMSD 

of the random addition experiment was reduced by 21.9% compared to CNTL. Although the experiment 

based on only self-sensitivity information was not better than that based on randomly added observation 

sites, the experiment based on both self-sensitivity and ecoregion information reduced the RMSD by 35.2% 10 

compared to that of CNTL. Moreover, the experiment based on both normalized self-sensitivity and 

ecoregion information further reduced the RMSD by approximately 40% compared to that of CNTL. 

Thus, the normalized self-sensitivity and ecoregion information could be used as strategies to select 

observation sites to construct the surface CO2 observation network.  

Although the simulation results showed an improvement in performance, the results also suggested 15 

that adding 10 extra observation sites in Asia may not be sufficient to fully optimize surface CO2 fluxes, 

and more observation sites are required. Reliable observation data from some satellite sensors could 

supplement the model simulations on the basis of continuous surface observation sites.  

This study suggests a method to design and evaluate the observation network to optimize surface CO2 

fluxes at the continental scale without a myriad of simulations (iterations) of the genetic algorithm or the 20 

incremental optimization used in previous studies. Thus, this approach could constitute a practical method 

to conduct such simulations with relatively limited computer resources. The observation network design 

method in this study could also be used to design an observation network to optimize global surface CO2 

fluxes.  
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Table 1. The model configuration and a priori fluxes used in this study. 
Prior Flux Biosphere Carnegie-Ames-Stanford Approach Global Fire Emission 

Database (CASA-GFED) v3.1 (van der Werf et al., 2006, 
2010) 

Ocean Jacobson et al. (2007) 
Fossil Fuel CASA-GFED v3.1 (van der Werf et al., 2006, 2010) 
Fires Carbon Dioxide Information and Analysis Center (CDIAC; 

Boden et al., 2010) and Emission Database for Global 
Atmospheric Research (EDGAR, European Commission, 
2009) databases 

Model Transport Model 5 (TM5) using ERA-interim reanalysis 
Model Resolution Domain 1(3°×2°) Globe  

Domain 2(1°×1°) Asia (12°S-70°N, 30°-168°E) 
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Table 2. Brief description of the experiments conducted in this study. 

Exp. name No. of stations Description 

CNTL 7 The control experiment that uses the observation site information 
in Asia of the existing NOAA observation network. 

CNTL_MOD 7 The same as the CNTL except for modifying observation station 
height information for hypothetical observations. 

REDIST 7 The experiment that redistributes 7 observations sites at random 
in Asia. 

ADD 17 The experiment that added 10 observation sites at random to the 
existing NOAA observation network.  

SS 17 The experiment that added 10 observation sites to the existing 
NOAA observation network with the self-sensitivity information.  

ECOSS 17 
The experiment that added 10 observation sites to the existing 
NOAA observation network with the self-sensitivity and 
ecoregion information (1-2 stations for each ecoregion) 

NSS 17 
The experiment that added 10 observation sites to the existing 
NOAA observation network with the normalized self-sensitivity 
information. 

NECOSS1 17 
The experiment that added 10 observation sites to the existing 
NOAA observation network with the normalized self-sensitivity 
and ecoregion information (1-2 stations for each ecoregion) 

NECOSS2 17 
The experiment that added 10 observation sites to the existing 
NOAA observation network with the normalized self-sensitivity 
and ecoregion information (1 station per ecoregion) 

ALL 905 The experiment that added observation sites at horizontal 2° inter
vals on land to the existing NOAA observation network. 
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Table 3. The proportion of the ecoregions in the Asia verification domain and the distribution of 

observation sites for the SS and ECOSS experiments. 

Ecoregion Index Count Proportion (%) SS ECOSS 
137 744 19.36  2 
115 657 17.10  2 
140 262 6.82  1 
147 248 6.45  1 
123 228 5.93  1 
157 222 5.78  1 
145 200 5.20   
117 150 3.90  1 
118 122 3.17   
136 122 3.17   
121 95 2.47   
166 80 2.08   
135 62 1.61   
141 59 1.54   
143 58 1.51 1  
171 54 1.41   
125 45 1.17 1  
162 44 1.14   
122 42 1.09   
154 39 1.01 1  
155 37 0.96   
156 36 0.94   
124 35 0.91   
134 34 0.88   
116 33 0.86   
128 24 0.62 1  
138 19 0.49 1  
160 15 0.39   
146 12 0.31   
144 11 0.29 1  
139 10 0.26 1  
163 9 0.23 2  
152 8 0.21   
130 5 0.13 1  
133 5 0.13   
191 5 0.13   
193 4 0.10   
194 4 0.10   
197 3 0.08   
201 1 0.03   
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Table 4. The locations and self-sensitivities for the observation sites in the SS and ECOSS experiments. 
SS ECOSS 

Ecoregion   
Index Lat Lon SS (%) Ecoregion 

Index Lat Lon SS (%) 

138 26.5 96.5 4.02 137 26.5 92.5 0.87 
163 4.5 114.5 3.83 137 28.5 118.5 0.65 
163 -5.5 138.5 3.29 115 58.5 62.5 1.35 
143 6.5 80.5 3.17 115 46.5 142.5 1.28 
139 24.5 74.5 2.48 140 44.5 54.5 0.29 
130 66.5 78.5 2.32 147 10.5 76.5 0.96 
128 56.5 84.5 1.99 123 66.5 80.5 1.12 
125 60.5 62.5 1.91 157 8.5 126.5 1.17 
144 46.5 124.5 1.87 117 52.5 118.5 0.68 
154 18.5 104.5 1.75 118 56.5 86.5 0.87 
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Table 5. The locations and ecoregion indices for the observation sites in the NSS, NECOSS1, and 

NECOSS2 experiments. 

NSS NECOSS1 NECOSS2 

Ecoregion 
Index Lat Lon Ecoregion 

Index Lat Lon Ecoregion 
Index) Lat Lon 

115 58.5 62.5 115 58.5 62.5 115 58.5 62.5 
115 46.5 142.5 115 46.5 142.5 137 26.5 92.5 
137 26.5 92.5 137 26.5 92.5 157 8.5 126.5 
115 54.5 84.5 137 28.5 118.5 123 66.5 80.5 
115 52.5 120.5 157 8.5 126.5 147 10.5 76.5 
137 28.5 118.5 123 66.5 80.5 117 48.5 132.5 
137 26.5 104.5 147 10.5 76.5 121 60.5 148.5 
137 46.5 54.5 121 60.5 148.5 166 0.5 110.5 
115 62.5 132.5 166 0.5 110.5 118 56.5 86.5 
137 34.5 72.5 117 52.5 118.5 155 -7.5 146.5 
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Table 6. The averaged statistics of surface CO2 fluxes (gC m-2 yr-1) for the experiments conducted in this 

study.  
Exp. 
name CNTL CNTL_MOD REDIST ADD SS ECOSS NSS NECOSS1 NECOSS2 ALL 

PC 0.965 0.966 0.973 0.977 0.98 0.984 0.983 0.987 0.986 0.998 

BIAS 1.169 1.245 1.055 1.679 1.627 -0.211 -0.168 0.232 -0.28 -0.17 

RMSD 70.06 70.528 60.547 54.708 53.572 45.388 47.034 41.9 42.218 15.947 
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Figure 1. The distribution of the nested TM5 model domain over Asia (black solid rectangle) and 
verification domain (black dashed rectangle) used in this study. 
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Figure 2. Time series of CO2 concentration from hypothetical observations, model simulations, and real 
observations. The gray solid line (OBS) denotes the value of real observation data, the black solid line  
indicates the value from the EXTASI experiment, the blue solid line denotes the value of the SF1 
experiment, and the red solid line denotes the average of the EXTASI and SF1, which regarded as True 5 
observation data in this study. 
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Figure 3. The distribution of observation sites in each observation network: a) the CNTL and 
CNTL_MOD, b–d) the REDIST, e–g) the ADD, h) the SS, i) the ECOSS, j) the NSS, k) the NECOSS1, 
l) the NECOSS2, and m) the ALL experiment. Red dots denote the observation sites of the NOAA 
observation network and black dots denote the hypothetical observation sites. 5 
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Figure 4. Time series of the three-week moving average of a) PC, b) BIAS, and c) RMSD of surface CO2 
flux (gC m-2 yr-1) for the CNTL (black solid line), CNTL_MOD (cyan solid line), and REDIST (blue 
solid line) experiments. 
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Figure 5. The same as Fig. 4 except for the CNTL (black solid line), ADD (dark green solid line), and 
ALL (purple solid line) experiments. 
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Figure 6. The spatial distribution of self-sensitivities (%) during the experimental period obtained from 
the ALL experiment.  
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Figure 7. The same as Fig. 4 except for the ADD (dark green solid line), SS (yellow solid line), and 
ECOSS (red solid line) experiments. 
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Figure 8. The same as Fig. 4 except for the ADD (dark green solid line), NSS (dark orange solid line), 
NECOSS1 (dark red solid line), and NECOSS2 (navy blue solid line) experiments. 
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Figure 9. The spatial distribution of the average of weekly RMSD of surface CO2 fluxes (gC m-2 yr-1) for 
a) the CNTL, b) the REDIST, c) the ADD, d) the SS, e) the ECOSS, f) the NSS, g) the NECOSS1, h) the 
NECOSS2, and i) the ALL experiments. 

  5 
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Figure 10. The spatial distribution of uncertainty reduction (%) for a) the REDIST, b) the ADD, c) the 
SS, d) the ECOSS, e) the NSS, f) the NECOSS1, g) the NECOSS2, and h) the ALL experiment, against 
the CNTL experiment. 

 5 
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