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Abstract. Continuous efforts have been made to monitor atmospheric CO2 mole fractions as it is one of 

the most influential greenhouse gases in Earth’s atmosphere. The atmospheric CO2 mole fractions are 10 

mostly determined by CO2 exchanges at the Earth’s surface (i.e., surface CO2 flux). Inverse modeling, 

which is a method to estimate the CO2 exchanges at the Earth’s surface, derives surface CO2 fluxes using 

model and observed atmospheric CO2 mole fraction data. Although observation data is crucial for 

successful modeling, comparatively fewer in-situ observation sites are located in Asia compared to 

Europe or North America. Based on the importance of the terrestrial ecosystem of Asia for global carbon 15 

exchanges, more observation stations and an effective observation network design are required. In this 

paper, several observation network experiments were conducted to optimize the surface CO2 flux of Asia 

using CarbonTracker and observation system simulation experiments (OSSEs). The impacts of the 

redistribution of and additions to the existing observation network of Asia were evaluated using 

hypothetical in-situ observation sites. In the case of the addition experiments, 10 observation stations, 20 

which is a practical number for real implementation, were added through three strategies: random addition, 

the influence matrix (i.e., self-sensitivity), and ecoregion information within the model. The simulated 

surface CO2 flux in Asia in summer can be improved by redistributing the existing observation network. 

The addition experiments revealed that considering both the distribution of normalized self-sensitivity 

and ecoregion information can yield better simulated surface CO2 fluxes compared to random addition, 25 

regardless of the season. This study provides a diagnosis of the existing observation network and useful 

information for future observation network design in Asia to estimate the surface CO2 flux, and also 
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suggests the use of an influence matrix for designing CO2 observation networks. Unlike other previous 

observation network studies with many numerical experiments for optimization, comparatively fewer 

experiments were required in this study. Thus, the methodology used in this study may be used for 

designing observation networks for monitoring greenhouse gases at both continental and global scales.  

1. Introduction 5 

CO2 is one of the most influential greenhouse gases in Earth’s atmosphere (Lacis et al., 2010). Thus, 

monitoring CO2 is very important to understand and constrain CO2 in the atmosphere. To monitor 

atmospheric CO2 precisely, continuous efforts are necessary. Inverse modeling, one of the methods to 

complete this mission, uses observed atmospheric CO2 mole fraction data and transport models to estimate 

the sources and sinks of surface CO2 flux (Enting, 2002; Gurney et al., 2002). Bayesian synthesis (Enting, 10 

2002), four dimensional variational data assimilation methods (4DVar; Chevallier et al., 2009a, 2009b, 

2010; Kou et al., 2017), and Ensemble Kalman Filter (EnKF; Peters et al., 2005, 2007, 2010; Feng et al., 

2009, 2016; Kang et al., 2011, 2012; Peylin et al., 2013; Kim et al., 2014a, 2014b, 2017, 2018a, 2018b) 

have been implemented and utilized to conduct inverse modeling. By comparing 13 inverse modeling 

systems, Peylin et al. (2013) showed that simulation results were similar to each other for regions with 15 

many observations, but dissimilar for regions with sparse observation coverage (e.g. the tropics and 

southern hemisphere). 

The terrestrial system in the northern hemisphere is crucial for global carbon exchanges, and Asia 

covers the largest area in the northern hemisphere (Hayes et al., 2011; Le Quéré et al., 2018). Asia also 

includes the Siberian region, which represents one of the significant areas for sources and sinks of 20 

atmospheric CO2 (Schulze et al., 1999; Houghton et al., 2007; Tamocai et al., 2009; Kurganova et al., 

2010; Schepaschenko et al., 2011; Siewert et al., 2015). Thus, the precise estimation of the surface CO2 

flux in Asia is highly necessary and required to fully understand global carbon exchanges. However, 

comparatively fewer in-situ observation sites are located in Asia compared to Europe and North America. 

Although the Center for Global Environmental Research (CGER) of the National Institute for 25 

Environmental Studies (NIES) in Japan, collaborating with the Russian Academy of Science (RAS), has 

built nine tower observation sites (Japan-Russia Siberian Tall Tower Inland Observation Network, JR-



3 
 

STATION) in Asia, and several studies have been conducted using continuously observed atmospheric 

CO2 and CH4 mole fractions since 2002 (Saeki et al., 2013; Sasakawa et al., 2010, 2013;  Kim et al., 

2017), the towers of the JR-STATION are mainly located in the Siberian region. In addition, eight stations 

of the JR-STATION are located in western Siberian. These JR-STATION sites, therefore, do not seem to 

be well-suited for optimizing the surface CO2 flux for the entire Asia region, and in-situ observation sites 5 

in Asia are still fewer compared to those in Europe or North America, even when the JR STATION sites 

are considered.  

In the meantime, the satellite-retrieved dry-air column-average mole fraction of CO2 (XCO2) could 

be used to supplement observations in the sparse observation regions, including Asia (Chevallier et al., 

2009a, 2009b, 2010; Maksyutov et al., 2013; Reuter et al., 2014; Feng et al., 2016). However, by 10 

comparing CO2 mole fractions observed in four World Meteorological Organization (WMO) Global 

Atmosphere Watch (GAW) stations in China to satellite-retrieved products from the Greenhouse Gases 

Observing Satellite (GOSAT), Cheng et al. (2018) reported that satellite-retrieved CO2 mole fractions 

showed similar seasonal variations to those of in-situ observations but the magnitudes retrieved from the 

satellite were comparatively lower than those of in-situ observations. Assimilating XCO2 data alone is 15 

therefore generally less effective than assimilating in-situ observations (Chevallier et al., 2009a). In 

contrast, Maksyutov et al. (2013) noted that uncertainties in surface CO2 flux estimations in sparse in-situ 

observation regions could be reduced when in-situ observations and GOSAT observation data were used 

simultaneously. In particular, Fischer et al. (2017) showed that uncertainties in surface CO2 flux 

estimation could be further decreased, even for the regions with in-situ observation sites, when in-situ 20 

observations and satellite-retrieved observations are used together. Thus, in-situ observation networks 

need to be well established to better utilize non in-situ observations like XCO2.  

Observation system simulation experiments (OSSEs), using simulated observation data, provide an 

opportunity to evaluate the impact of observation data from the current and potential observation sites on 

the performance of the modeling system (Patra et al., 2003; Yang et al., 2014; Byrne et al., 2017; Wang 25 

et al., 2018). Thus, OSSE can be used to evaluate the performance of current observation networks and 

to design future observation networks. Although several studies have been conducted to achieve this aim, 

most observation network design studies were restricted to comparatively smaller national scales such as 
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Australia, California in the USA, and South Africa (Ziehn et al. 2014, 2016; Lucas et al., 2015; Nickless 

et al., 2015). As potential observation sites are few in these studies due to the relatively small study area, 

these studies suggest an optimized network derived from a myriad of calculations using the incremental 

optimization (IO) and the genetic algorithm (GA). Due to time and computing restraints, the IO and GA 

methods seem ineffective or unfeasible for designing the observation network on continental scales like 5 

Asia. In addition, determining and redistributing all observation sites at once using the IO and GA 

methods may not be practical for most regions with existing observation sites. Adding or redistributing 

some sites given existing observation sites may be a more practical way to design the observation network. 

The influence matrix (i.e., analysis sensitivity or self-sensitivity) denotes the sensitivity of the analysis 

to the observations (Cardinali et al., 2004; Liu et al., 2009; Kim et al. 2014a; Kim et al. 2017). Similar to 10 

the numerical weather prediction (NWP), the relative impact of each CO2 mole fraction observation for 

the model analysis equivalent CO2 mole fraction induced by the optimized surface CO2 flux can be 

calculated (Kim et al., 2014a, 2017) and used as a strategy for selecting potential sites of CO2 mole 

fraction observations. The influence matrix would be a very efficient and intelligent strategy to select 

observation sites because the calculated impact of observation on the CO2 estimation is used to select 15 

observation sites. Although Wang et al. (2018) showed the potential impact of adding observation sites 

on the existing 14CO2 sites in Europe using OSSEs, the potential 14CO2 observation sites were not chosen 

based on specific selection strategies. Moreover, studies on diagnosing the current CO2 mole fraction 

observation network and evaluating the impact of adding and redistributing in-situ CO2 mole fraction 

observation sites in Asia are few up to this time. Considering the importance of the Asia region for global 20 

carbon exchange, studies on the observation network design in Asia to accurately estimate the surface 

CO2 flux are highly necessary. Such observation network studies could also provide helpful information 

for researchers and administrators who design the future observation network under practical conditions.  

In this study, many OSSEs were conducted using CarbonTracker (CT) to identify a better in-situ 

observation network for the purpose of optimizing surface CO2 flux estimation in Asia. Based on the 25 

hypothetical simulated observations, redistribution and addition experiments were performed to evaluate 

the performance of the existing observation network and the impact of additional observation sites, 

respectively. In the case of addition experiments, random addition and addition based on influence matrix 
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(self-sensitivity) as well as ecoregion information of the model were considered as strategies, as 

alternatives to IO and GA that have been used in previous studies. Section 2 briefly introduces the CT, 

influence matrix, hypothetical observations, experimental framework, and verification methods. Section 

3 presents the results of the observation network design experiments, and Sect. 4 provides a summary and 

the conclusions of this study. 5 

2. Methodology 

2.1 CarbonTracker and data assimilation methods 

CT2013B, developed by the Earth System Research Laboratory (ESRL) at the National Oceanic and 

Atmospheric Administration (NOAA), was used for this study. CT2013B estimates the surface CO2 flux 

using inverse modeling and has been widely used to calculate surface CO2 fluxes in North America, 10 

Europe, and Asia (Peters et al., 2004, 2005, 2007, 2010; Kim et al., 2012, 2014a, 2014b, 2017; Cheng et 

al., 2013; Kim et al., 2016, 2018a, 2018b).  

CT2013B consists of a priori flux modules, a transport model (TM5), observation data, and EnKF 

data assimilation. The estimated surface CO2 fluxes are mainly calculated by scaling fluxes from the flux 

modules composed of biosphere, ocean, fossil fuel, and fire fluxes. The optimized grid-point surface CO2 15 

fluxes within TM5 were derived as follows: 

 

𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = λ𝑟𝑟 ∙ 𝐹𝐹bio(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) + λ𝑟𝑟 ∙ 𝐹𝐹ocean(𝑥𝑥,𝑦𝑦, 𝑡𝑡) + 𝐹𝐹ff(𝑥𝑥,𝑦𝑦, 𝑡𝑡) + 𝐹𝐹fire(𝑥𝑥,𝑦𝑦, 𝑡𝑡)                                             (1) 

 

where 𝐹𝐹bio(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) , 𝐹𝐹ocean(𝑥𝑥,𝑦𝑦, 𝑡𝑡) , 𝐹𝐹ff(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) , and 𝐹𝐹fire(𝑥𝑥,𝑦𝑦, 𝑡𝑡)  denote a priori emissions of the 20 

biosphere, ocean, fossil fuel, and fires, respectively; λ𝑟𝑟 is the scaling factor with a 1-week resolution for 

ecoregions; 𝑥𝑥, 𝑦𝑦, and 𝑡𝑡 denote the zonal direction, the meridional direction, and time, respectively.  λ𝑟𝑟 is 

used for optimization of the surface CO2 flux through interactions with a priori emissions of the biosphere 

and the ocean. Thus, EnKF data assimilation in CT2013B optimizes not surface CO2 fluxes but the scaling 

factor. This means that the optimization of the scaling factors that were assigned to the ecoregions of the 25 

earth is crucial for the estimation of simulated surface CO2 fluxes. The ecoregions are defined as the mix 
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of the modified 19 vegetation types from Olson et al. (1992) and 11 Transcom regions (Gurney et al., 

2002) on land, with 30 ocean regions. As all 19 vegetation types are not used for the 11 Transcom regions, 

the number of effective ecoregions of the earth is 156 (Peters et al., 2010).  

TM5 is an off-line transport model used to calculate the transport of CO2 (Krol et al., 2005), which 

utilizes the atmospheric fields of the ERA-interim reanalysis data of the European Centre for Medium-5 

Range Weather Forecasts (ECMWF). TM5 utilizes the estimated surface CO2 fluxes at each grid-point 

suggested in Eq. (1) to calculate the spatiotemporal distribution of the model atmospheric CO2 

concentrations. In addition, from this spatiotemporal CO2 distribution, the model atmospheric CO2 

concentrations at the times and locations of the observation data are calculated, and these are used for the 

data assimilation process. The horizontal resolution of TM5 is 3° x 2° globally and the nested horizontal 10 

grid is 1° x 1° over Asia, with verification region inside of the nested domain over Asia (Fig. 1). The 

number of ecoregions of the verification region is 40, in which 36 are the Asian ecoregions and 4 are the 

ecoregions of Europe. Since the proportion of the 4 European ecoregions is approximately 0.5% of the 

verification region (Table 3), the verification region was considered to be located over Asia. A two-way 

nested grid was used to optimize surface CO2 fluxes in Asia. The model run including both forward and 15 

inversion runs was done globally with nesting over Asia and verification was done over the verification 

region located in Asia. Table 1 summarizes the priori flux emissions used for the flux module and 

describes the TM5 setup. 

An Ensemble Square Root Kalman Filter (EnSRF), one of the EnKF data assimilation methods 

(Evensen, 1994; Whitaker and Hamill, 2002), was employed in this study to optimize the scaling factor. 20 

EnSRF assimilates observation data one by one, and updates the analysis of ensemble mean and 

perturbations separately based on the following equations as: 

 

𝒙𝒙�𝑡𝑡a = 𝒙𝒙�𝑡𝑡b + 𝐊𝐊(𝒚𝒚o − 𝐇𝐇�𝒙𝒙�𝑡𝑡b�),                                                                                                                                                        (2) 

𝒙𝒙′𝑖𝑖
a = 𝒙𝒙′𝑖𝑖

b − �̃�𝐤𝐇𝐇�𝒙𝒙′𝑖𝑖
b�,                                                                                                                                                            (3) 25 

 

where 𝒙𝒙a and 𝒙𝒙b describe the analysis and background value of the state vector (𝒙𝒙); 𝒙𝒙� and 𝒙𝒙′ are the 

ensemble mean and perturbation of the state vector; 𝒚𝒚o is the observation vector; and 𝐇𝐇 describes the 



7 
 

observation operator that transforms the state vector from the model space to the observation space. TM5 

acts as the observation operator in CT2013B (Krol et al., 2005; Peters et al., 2005; Kim et al., 2016, 

2018a). 𝐊𝐊 and �̃�𝐤 denote the Kalman gain matrix and the reduced Kalman gain calculated as: 

 

𝐊𝐊 = �𝐏𝐏b𝐇𝐇T��𝐇𝐇𝐏𝐏b𝐇𝐇T + 𝐑𝐑�
−1

,                                                                                                                                                     (4) 5 

�̃�𝐤 = 𝐊𝐊 ⋅ 𝛼𝛼,                                                                                                                                                                                            (5) 

 

where 𝐏𝐏b is the background error covariance; 𝐑𝐑 is the observation error covariance for each observation; 

and 𝛼𝛼 is a scalar value that is multiplied to Kalman gain matrix at every calculation of the analysis, defined 

as: 10 

 

𝛼𝛼 = (1 + � 𝐑𝐑
𝐇𝐇𝐏𝐏b𝐇𝐇T+𝐑𝐑

)−1.                                                                                                                                                                    (6) 

 

By calculating the ensemble mean and perturbation independently, the underestimation of the analysis 

error covariance could be prevented (Whitaker and Hamill, 2002; Kim et al., 2012). 𝐏𝐏b𝐇𝐇T and 𝐇𝐇𝐏𝐏b𝐇𝐇T 15 

can be calculated as: 

 

𝐏𝐏𝐇𝐇T ≈ 1
𝑚𝑚−1

(𝒙𝒙′1,𝒙𝒙′2,⋯ ,𝒙𝒙′𝑚𝑚) ⋅ (𝐇𝐇𝒙𝒙′1,𝐇𝐇𝒙𝒙′2,⋯ ,𝐇𝐇𝒙𝒙′𝑚𝑚)T,                                                                                              (7) 

𝐇𝐇𝐏𝐏b𝐇𝐇T ≈ 1
𝑚𝑚−1

(𝐇𝐇𝒙𝒙′1,𝐇𝐇𝒙𝒙′2,⋯ ,𝐇𝐇𝒙𝒙′𝑚𝑚) ⋅ (𝐇𝐇𝑥𝑥′1,𝐇𝐇𝒙𝒙′2,⋯ ,𝐇𝐇𝒙𝒙′𝑚𝑚)T,                                                                            (8) 

 20 

where 𝑚𝑚 is the number of ensemble members.  

Unlike the approach of NWP, the time for CO2 dispersing around the atmosphere needs to be 

considered for CO2 data assimilation. Accordingly, a time lag is introduced in updating the scaling factor 

during the data assimilation process to consider the information for analysis time as well as for pre-

analysis time. A time lag of five weeks is employed in this study, consistent with previous studies (Peters 25 

et al., 2007, 2010, Kim et al., 2012, 2014a, 2014b, 2017). 
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In the EnSRF, the covariance localization method is necessary to reduce the impact of the sampling 

error due to the limited size of the ensemble and to avoid filter divergence due to the underestimation of 

the background error covariance (Houtekamer and Mitchell, 2001). Because calculating the physical 

distance between scaling factors is not feasible, instead of the covariance localization method, a statistical 

method is applied in this study. In this method, a Student’s 𝑡𝑡 test is applied on the correlations between 5 

the ensemble of the model CO2 concentrations and the ensemble of the scaling factors, and the Kalman 

gain matrix is then made to be zero for the cases where it has an insignificant statistical 𝑡𝑡 value (i.e. 95 % 

significance level), to exclude those insignificant impacts (Peters et al., 2007). 

The optimized mean scaling factor after one analysis cycle is used as one of the prior mean scaling 

factors for the next analysis step as: 10 

 

λ𝑡𝑡
b = �λ𝑡𝑡−2

a+λ𝑡𝑡−1
a+1

3
�,                                                                                                                                                                        (9) 

 

where, λ𝑡𝑡
b  is a prior mean scaling factor for the current analysis step; and λ𝑡𝑡−2

a  and λ𝑡𝑡−1
a  denote 

posterior mean scaling factors of previous analysis cycles. The information of current analysis propagates 15 

to the next step using Eq. (9) (Peters et al., 2007). 

 

2.2 Influence matrix 

The influence matrix of the EnKF system can be calculated as described in Liu et al. (2009) and Kim 

et al. (2014a). The analysis of the state vector and the influence matrix (𝐒𝐒o) that shows the contribution 20 

of the observation vector (𝒚𝒚o) to the analysis at the observation space (𝒚𝒚a) (i.e., the projection of analysis 

state vector  𝒙𝒙𝐚𝐚 on the observation space or model analysis equivalent to observations at observation 

locations) can be defined as:  

 

𝐱𝐱a = 𝐊𝐊𝐲𝐲o + (𝐈𝐈𝑛𝑛 − 𝐊𝐊𝐇𝐇)𝒙𝒙b,                                                                                                                                                             (10) 25 

𝐒𝐒o = ∂𝒚𝒚a

∂𝒚𝒚o
= 𝐊𝐊T𝐇𝐇T = 𝐑𝐑−1𝐇𝐇𝐏𝐏a𝐇𝐇T,                                                                                                                                             (11) 
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where, 𝐈𝐈𝑛𝑛 is the identity matrix with the size of n-dimensional analysis state vector. The influence matrix 

is proportional to the analysis error covariance and inversely proportional to the observation error 

covariance. Using Eq. (8), 𝐒𝐒o is expressed as: 

 5 

𝐒𝐒o = 𝐑𝐑−1𝐇𝐇𝐏𝐏a𝐇𝐇T = 1
𝑚𝑚−1

𝐑𝐑−1(𝐇𝐇𝐗𝐗a)(𝐇𝐇𝐗𝐗a)T,                                                                                                                       (12) 

 

where 𝐇𝐇𝐗𝐗a is the analysis of the ensemble perturbation at the observation space. The 𝑖𝑖th component of 

𝐇𝐇𝐗𝐗a  is defined as: 

 10 

𝐇𝐇𝐗𝐗𝑖𝑖a ≅ ℎ(𝒙𝒙𝑖𝑖a) − 1
𝑚𝑚
∑ ℎ(𝒙𝒙𝑖𝑖a)𝑚𝑚
𝑖𝑖=1 ,                                                                                                                                                (13) 

 

where 𝒙𝒙𝑖𝑖a is the 𝑖𝑖th member of the analysis ensemble; and ℎ(⋅) denotes the linearized or non-linearized 

observation operators. If there are no correlations between observation errors, the diagonal element of 

this influence matrix (i.e. self-sensitivity) is calculated as: 15 

 

𝐒𝐒𝑗𝑗𝑗𝑗o = ∂𝒚𝒚𝑗𝑗a

∂𝒚𝒚𝑗𝑗o
= � 1

𝑚𝑚−1
� 1
σ𝑗𝑗2

∑ (𝐇𝐇𝐗𝐗𝑖𝑖a)𝑗𝑗𝑚𝑚
𝑖𝑖=1 ⋅ (𝐇𝐇𝐗𝐗𝑖𝑖a)𝑗𝑗 ,                                                                                                              (14) 

 

where 𝜎𝜎𝑗𝑗2 is the observation error variance for the 𝑗𝑗th observation.  

According to Liu et al. (2009) and Kim et al. (2014a), 𝐒𝐒o represents the sensitivity of the analysis 20 

state vector 𝒚𝒚a to the observation state vector 𝒚𝒚o in the observation space (i.e., location). 𝐒𝐒o has a value 

between 0 and 1, which shows the contribution of a CO2 observation to the analyzed CO2 at the 

observation site. If  𝐒𝐒o is close to 0, the analysis is mainly derived from the background. In contrast, the 

influence of observation data to the analysis increases as  𝐒𝐒o goes to 1. The self-sensitivity was used as a 

criterion for selecting the observation locations in designing the observation network. 25 
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2.3 Simulated hypothetical observation and experimental setup 

In this paper, simulated hypothetical observations were created and used to design the observation 

network. Simulated hypothetical observations with similar values and seasonal variations compared to 

real CO2 observations were generated by averaging model CO2 mole fractions from the experiment 

conducted with real NOAA observation data (EXTASI) and model CO2 mole fractions from the 5 

experiment with a fixed scaling factor of 1 (SF1). In EXTASI experiment, the real CO2 mole fraction data 

were used to update the scaling factors in Eq. (1) to estimate the surface CO2 fluxes. In contrast, in SF1 

experiment, the scaling factors were fixed as 1. 

Figure 2 shows the station-averaged time series of CO2 mole fractions from real observations (OBS), 

EXTASI, SF1, and an average (i.e., simulated hypothetical observations: TRUE, hereafter) of EXTASI 10 

and SF1. The time series of EXTASI is the closest to that of OBS, whereas that of SF1 with a static scaling 

factor (i.e., 1) differs from OBS, particularly in summer. Kim et al. (2017, 2018) have shown that the 

largest difference in surface CO2 flux estimation between experiments with different settings appears in 

summer, which is associated with more sensitive response of inversion results to the inversion model 

configurations for the active season of the terrestrial ecosystem. The time series of TRUE is located 15 

between that of EXTASI and SF1, which implies that the difference between TRUE and OBS is smaller 

compared with that between SF1 and OBS. TRUE is the simulated hypothetical observation that is similar 

to the EXTASI assimilating real NOAA observation data, but is not the same as the EXTASI. This setup 

prevents EXTASI from having an advantage in the observation network experiments. If TRUE is the 

same as EXTASI, then assimilating TRUE data at the observation locations used in EXTASI would render 20 

the observation network used in EXTASI the optimal network in terms of several verification measures 

used in this study.  

Each hypothetical observation site has one CO2 observation per day and exists within the limited Asia 

domain shown in Fig. 1. The simulated values around afternoon (i.e., 13 local standard time (LST)) in the 

mid-latitudes in the northern hemisphere are averaged and utilized as TRUE data. The observation height 25 

of TRUE data at each site is set to 5 meters greater than the model elevation of the grid-point in order to 

use the observation operator for flask observation developed in NOAA. Moreover, each observation site 

is more than 1,000 km apart from other sites, located lower than 2,000 meters above sea level, and located 
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on the land regions in the Transcom Region from Gurney et al. (2002). This configuration was made to 

consider real-world constraints to optimize the surface CO2 fluxes in Asia. Model-data-mismatch (MDM) 

(i.e., observation error) for CO2 observation was set to 3 ppm, consistent with the previous setting of 3 

ppm for continuous observation site types (Peters et al., 2007; Kim et al., 2014b, 2017). 

All simulation results were produced under identical conditions except for the observation locations 5 

and data. 150 ensemble members were used for data assimilation, and experiments were carried out from 

27 September 2007 to 4 January 2009. The first three months of the experiments were considered as the 

spin-up period, thus the analysis was conducted from 27 December 2007 to 4 January 2009.  

As the experimental results depend on the distribution of observation sites, appropriate choices of the 

observation network are important. Experiments are therefore configured to investigate the impact of 10 

redistributing observation sites of CT2013B (hereafter, existing observation sites or network) and that of 

adding extra observation sites to the existing observation network based on random, self-sensitivity, and 

ecoregion information. Figure 3 shows the hypothetical observation networks used in this study. Figure 

3a presents the distribution of seven observation sites in Asia from the observation network of CT2013B, 

which are mostly located between 30 °N and 45 °N. The experiment and simulation results using this 15 

observation network were denoted as CNTL. Since the CNTL could have disadvantages due to the use of 

real observation information (i.e. the observation height of simulated sites are always above 5 meters from 

model topography, but this is not the case for CNTL), an additional experiment identical to CNTL, except 

that the observation heights were assigned above 5 meters from the model topography in the same way 

as for hypothetical observations, was also conducted and denoted as CNTL_MOD. Figures 3b, c, and d 20 

show the distribution of three observation networks, in which the seven observation sites in Asia are 

randomly redistributed. To obtain general results without sampling error, each random redistribution 

experiment was performed three times with different sets of randomly distributed observation sites, as 

denoted in previous observation network studies (e.g., Yang et al. 2014). The average of three random 

redistribution experiments was denoted as REDIST, to check the impact of the reallocation of the existing 25 

observation network.  

Figures 3e-m suggest the distributions of the observation networks to examine the impact of adding 

additional observation sites to the existing observation network. The 10 extra observation sites were added 
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as this number seems realistically viable for the future, considering the cost of operating and maintaining 

CO2 observation sites. Specifically, Figures 3e-h show the distribution of three observation networks with 

additional 10 observation sites added randomly to the existing observation network. The average of these 

three experiments was denoted as ADD. The experiment adding 10 observation sites to the existing 

observation network based on self-sensitivity is denoted as the SS experiment (Fig. 3h). The experiment 5 

adding 10 observation sites to the existing observation network based on both self-sensitivity and 

ecoregion information is denoted as the ECOSS experiment (Fig. 3i). The ECOSS experiment was 

conducted as the scaling factor in CT2013B is updated based on ecoregion, thus only considering self-

sensitivity makes the added observation sites cluster in a specific ecoregion and causes disadvantages in 

optimizing the scaling factor. As the self-sensitivity is generally inversely proportional to the number of 10 

assimilated observations (Kim et al., 2014a; 2017), the self-sensitivity normalized by the number of 

assimilated observations is also considered and utilized. Figures 3j-l show the distributions of the 

observation network for three experiments that used the normalized self-sensitivity as the selection 

criterion for added observation sites. The NSS experiment (Fig. 3j) used only the normalized self-

sensitivity as the selection strategy. The observation sites of the NECOSS1 (Fig. 3k) and NECOSS2 (Fig. 15 

3l) experiments were added based on the normalized self-sensitivity and ecoregion information. The 

NECOSS1 experiment allocated one or two observation sites per ecoregion, whereas NECOSS2 allocated 

one observation site per ecoregion. In addition, the observation networks that have observation sites at 

every 2° intervals on the land (Fig. 3m, ALL experiment) are suggested as the reference to examine the 

maximum possible impact of additional observation sites. In ALL experiment, the observation locations 20 

that are located 2000 m above the mean sea level over the Tibetan Plateau are not included due to difficult 

accessibility and maintenance as practical observing sites.  

The normalized self-sensitivity for 𝑗𝑗th observation is defined as: 

 

𝐍𝐍𝐒𝐒𝑗𝑗𝑗𝑗o = 𝑁𝑁𝑗𝑗
𝑁𝑁ALL

× 𝐒𝐒𝑗𝑗𝑗𝑗o,                                                                                                                                                                        (15) 25 

 

where 𝑁𝑁ALL denotes the total count of observation sites of the ALL experiment; and 𝑁𝑁𝑗𝑗 is the number of 

observation sites that have the same ecoregion as the 𝑗𝑗th observation site in the ALL experiment. Thus, 
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normalized self-sensitivities were calculated by multiplying self-sensitivities by the ratio of the number 

of observation sites in a specific ecoregion to that in the ALL experiment. 

The effect of the redistribution of the existing observation network and adding additional observation 

sites on the existing observation network can be diagnosed through the experiments detailed above. The 

method of adding observation sites in the experiments using self-sensitivity and ecoregion information is 5 

described in more detail in Sect. 3. Table 2 describes the list of observation network experiments and their 

relevant information. 

 

2.4. Verification method 

The nested model domain over Asia and the verification area (-9.5°S – 66.5°N, 60.5°E – 149.5°E) are 10 

shown in Fig. 1. The optimized surface CO2 flux in each experiment was verified against the hypothetical 

surface CO2 fluxes corresponding to TRUE. Weekly surface CO2 fluxes were analyzed to evaluate the 

performance of observation network experiments because the scaling factor has a weekly resolution. The 

Pearson product-moment correlation coefficient (Pattern Correlation; PC), the bias (BIAS), and the root 

mean square difference (RMSD) were compared and calculated as: 15 

 

PC = ∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖−𝐸𝐸𝐸𝐸𝐸𝐸������)(𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸−𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸��������)𝑛𝑛
𝑖𝑖=1

[�∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖−𝐸𝐸𝐸𝐸𝐸𝐸������)𝑛𝑛
𝑖𝑖=1 �∑ (𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑖𝑖−𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸��������)𝑛𝑛

𝑖𝑖=1 ��]
 ,                                                                                                                       (16) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛
∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ,                                                                                                                                              (17) 

𝑇𝑇𝑅𝑅𝐵𝐵𝑅𝑅 = �1
𝑛𝑛
∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 ,                                                                                                                                     (18) 

 20 

where 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖  and 𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑖𝑖  are the surface CO2 fluxes at the 𝑖𝑖th model grid-point of an experiment and 

TRUE, respectively, and n is the total number of model grid-point in the verification domain shown in 

Fig. 1. 
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To investigate the reduction of uncertainties for each experiment after data assimilation, uncertainty 

reduction (UR; Peters et al., 2005; Meirink et al., 2008; Chevallier et al., 2009b, Feng et al., 2009; Kim 

et al., 2014a, 2017, Kim et al., 2018b) was calculated as: 

 

UR = �1 − 𝜎𝜎EXP
𝜎𝜎CNTL

� × 100,                                                                                                                                                         (19) 5 

 

where 𝜎𝜎CNTL and 𝜎𝜎EXP denote 1σ standard deviations of the optimized scaling factor for the CNTL and 

an experiment. The UR was used to check the improvement of observation network experiments by 

comparing the posterior uncertainties of experiments with those of CNTL (i.e., the reference experiment). 

3. Results 10 

3.1. Effect of an observation network with observation sites redistributed randomly  

Figure 4 shows the time series of the three-week moving average of PC, BIAS, and RMSD for surface 

CO2 fluxes from the CNTL, CNTL_MOD, and REDIST experiments. Overall, REDIST is closer to TRUE 

compared to CNTL and CNTL_MOD. The PC of CNTL with the NOAA observation network decreases 

in mid-April and mid-July, as well as in late August compared to other months. In particular, the PC of 15 

CNTL fell to 0.919 in late August (Fig. 4a). This implies that, occasionally, the CNTL experiment may 

not be effective in optimizing surface CO2 fluxes in Asia. The PC of CNTL_MOD is quite similar to that 

of CNTL, except for the much lesser drop in late July compared to CNTL. In contrast, REDIST maintains 

a higher PC at almost every time compared to CNTL and CNTL_MOD. Particularly in late August, the 

PC of REDIST is comparatively higher (i.e., 0.955) than those of CNTL and CNTL_MOD (approximately 20 

0.93). This implies that surface CO2 fluxes in Asia could be optimized more effectively when using the 

observation sites of the REDIST experiment. 

Regarding the BIAS, the three experiments have common variations that increase and decrease around 

zero, and have high amplitudes in summer compared to other seasons (Fig. 4b), which is associated with 

large uncertainties in the CO2 mole fraction observations in summer shown in Fig. 2. In particular, 25 

CNTL_MOD (CNTL) shows the maximum positive BIAS of 23.74 (16.43) in early June. In contrast, the 
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BIAS of REDIST is approximately 10.28 at the same time and maintains its value closest to zero among 

the three experiments. Considering the impact of BIAS on steady simulations of the model, the time series 

of BIAS also supports that the observation network of REDIST can perform more reliably in optimizing 

surface CO2 fluxes in Asia compared to that of CNTL. 

The RMSDs of all three experiments increase much in summer (Fig. 4c), which may be caused by 5 

large uncertainties in the CO2 mole fraction observations in summer shown in Fig. 2. The time series of 

RMSDs of CNTL and CNTL_MOD have similar variations except for a slight phase shift, whereas that 

of REDIST shows a comparatively smaller increase in the RMSD in the summer. Specifically, the 

maximum RMSD of CNTL is 200.61 in mid-July and that of CNTL_MOD is 192.19 early in July, but 

that of REDIST is 127.32 at the beginning of June. Thus, REDIST is better than CNTL in simulating 10 

surface CO2 fluxes in Asia in summer. 

REDIST clearly outperforms CNTL and CNTL_MOD in summer, and an overall improvement is also 

observed from the comparison of the three experiments. The PC increases and the magnitudes of BIAS 

and RMSD decrease in REDIST compared to CNTL and CNTL_MOD. This implies that merely 

redistributing current observation sites in Asia could have more benefits in optimizing surface CO2 fluxes. 15 

This result seems to be somewhat attributable to the fact that most observation sites in Asia in the NOAA 

observation network of CT2013B are located in mid-latitudes (~35–45 ° N). 

Furthermore, CNTL and CNTL_MOD are not much different in simulating surface CO2 fluxes, which 

implies that the selection strategy of observation height in making hypothetical observations does not 

greatly affect the evaluation of the various observation networks. The real height information of the 20 

NOAA observation network in CNTL is therefore used for existing observation sites in Asia, and the 

observation height of additional hypothetical sites is set to 5 meters above the model topography in the 

experiments.  

 

3.2. Effect of an observation network with extra observation sites added randomly 25 

Figure 5 presents the time series of the three-week moving average of PC, BIAS, and RMSD for 

surface CO2 fluxes from the CNTL, ADD, and ALL experiments, which clearly show the effect of 
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randomly added observation sites. The decreases in the PC in the middle of April and in late July and 

August in CNTL do not appear in ADD and ALL (Fig. 5a). In particular, ALL maintains PC close to 1 

during the experimental period. Although keeping the observation network as ALL is difficult in reality, 

this result demonstrates the impact of holding many observation sites in Asia. The minimum of the PC of 

ADD is 0.962, which is higher than that of CNTL (0.919), implying that adding extra observation sites in 5 

Asia could increase the stability in simulating surface CO2 fluxes.  

Compared to the BIAS of CNTL with high variability, the BIAS of ADD decreased by approximately 

50% compared to that of CNTL and the absolute value of the maximum BIAS in ADD is 7.45 (Fig. 5b). 

Although ADD shows slightly higher BIAS than CNTL during the first two months, the time series of 

BIAS in ADD remains close to zero during the simulation period. The BIAS of ALL is the closest to 0 10 

compared to those of CNTL and ADD throughout the experimental period. 

In terms of the RMSD, the three experiments show larger values in the summer compared to other 

seasons (Fig. 5c), which is similar to the previous random redistribution experiments in Sect. 3.1. 

However, the RMSDs of ADD and ALL with more observation sites generally remain low during the 

simulation period. Specifically, compared to other seasons, the RMSD of CNTL in the summer increases 15 

by approximately three times and shows a four-fold increase in late July, rising to 200.61. Except in 

summer, the time series of RMSD of ADD is similar to or slightly lower than that of CNTL. In summer, 

the maximum RMSD of ADD is reduced to 109.18, maintaining lower values during the summer and not 

showing any sudden increase. ALL has the minimum RMSD among the three experiments throughout 

the simulation period, and reaches a maximum of only 34.37 in early July. Since this number does not 20 

exceed the minimums of CNTL and ADD, the ALL experiment can be regarded as the best observation 

network. This suggests that an accurate and stable optimization of surface CO2 fluxes in Asia is possible 

if CO2 observation sites are sufficient. 

The result of the observation network experiments with randomly added extra observation sites (i.e., 

ADD) also implies that the seven observation sites in Asia described in CT2013B do not seem to be 25 

sufficient to fully optimize the surface CO2 fluxes in the region. Although the ADD experiment with 10 

randomly added extra observation sites shows an improvement in optimization, more observation sites 

are necessary for optimizing surface CO2 fluxes in Asia, considering the result of the ALL experiment. 
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Moreover, the simulation result of the ADD experiment does not much outperform that of the REDIST 

experiment, although more observations were used. This implies that further consideration is required 

when adding observation sites to the existing observation network. Thus, rather than just adding 

observation sites randomly, selecting and adding more influential observation sites for Asia is crucial to 

construct an efficient surface CO2 observation network.  5 

 

3.3. Effect of an observation network with extra observation sites added using self-sensitivity and 
ecoregion information 

Considering the simulation results of Sect. 3.2, the addition of extra observation sites to the existing 

observation sites could improve the performance in simulating surface CO2 fluxes in Asia. In particular, 10 

the ALL experiment, which added many observation sites under the given modeling framework, shows a 

high level of reproducibility of TRUE. However, adding more than 900 observation sites in Asia does not 

seem to be possible in real situations. Moreover, the expected effect from the extra observation sites may 

not be effective if the additional observations are not influential. Thus, the efficient selection and 

supplementation of observation sites is inevitable considering these constraints under realistic conditions.  15 

In this study, self-sensitivity information obtained from the ALL experiment and ecoregion 

information used in CT2013B were used as additional strategies for the purpose of adding possible 

efficient observation sites in Asia. Since the self-sensitivity is the metric showing the impact of 

observations at each observation site for the model simulation results, as stated in Sect. 2.2, it can be used 

as a strategy for selecting potential observation sites. In addition, the proportion of each ecoregion in the 20 

Asia domain can also be utilized as a strategy in choosing observation sites, as the calculation of surface 

CO2 fluxes is based on the scaling factor for each ecoregion in CT2013B, and the scaling factor updated 

in the data assimilation process has the possibility to be more affected by the observation sites located in 

the same ecoregion (CarbonTracker Documentation CT2013B Release, 2015). 

Figure 6 shows the spatial distribution of self-sensitivity from the ALL experiment. Although the self-25 

sensitivity of each observation site varies from the others, four influential regions with high sensitivities 

are located in western Siberia, the southern part of the Tibetan Plateau, and southeastern and northeastern 

Asia. The highest (lowest) self-sensitivity of the hypothetical observation sites is 4.02% (0.04%). Thus, 
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the likelihood of using observations located in the aforementioned four regions increases when 

considering the self-sensitivity as the selection strategy. In contrast, the observation sites located in 

southwestern Asia and eastern Siberia are rarely chosen for the optimization due to the low value of self-

sensitivity. 

The self-sensitivity used for the SS and ECOSS experiments is the pure self-sensitivity without 5 

considering the number of assimilated observations. The 10 observation sites of the SS experiment were 

selected by employing self-sensitivity from the numerical order (highest first) and following the addition 

criteria (i.e., 1000 km distance between sites and observation height 5 meters above the model topography) 

used in Sect. 2.3. For the ECOSS experiment, the proportions of ecoregions in the Asia verification 

domain were calculated from the model grid-points. Following this, the observation sites were selected 10 

from the order of principal ecoregions with self-sensitivity information. Specifically, the land ecoregion 

information, omitting that of the oceans, was utilized for the selection criteria as the land in the northern 

hemisphere is crucial for the global carbon exchange. Table 3 displays the proportions of ecoregions in 

the Asia verification domain and the distribution of observation sites in SS and ECOSS. As the ecoregions 

with 115 (Conifer Forest, Eurasia Boreal) and 137 (Grass/Shrub, Eurasia Temperate) indices constitute 15 

relatively large proportions of the ecoregions in Asia (Table 3), two observation sites were assigned for 

each of these two ecoregions. The other ecoregions have one observation site per ecoregion. When 

selecting the aforementioned two and one observation sites in the ecoregions, the observation sites with 

the highest self-sensitivities were selected. The observation sites of SS are mostly located in ecoregions 

that constitute lower proportions compared to those of ECOSS because the self-sensitivity is generally 20 

inversely proportional to the number of assimilated observations, as shown in Kim et al. (2014a, 2017). 

The time series of the three-week moving average of PC, BIAS, and RMSD of the simulated surface 

CO2 fluxes for the ADD, SS, and ECOSS experiments are shown in Fig. 7, which shows the impact of 

additional observation sites considering self-sensitivity information. The SS and ECOSS experiments 

show higher PC compared with ADD, except that the PC of SS is lower than that of ADD in late April 25 

and mid-August. In particular, the PC of ECOSS is superior to that of ADD throughout the experimental 

period and is more stable than that of SS. This result implies that the impact of extra observation sites 
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added from self-sensitivity and ecoregion information is greater in optimizing surface CO2 fluxes in Asia 

than that of randomly added observation sites. 

However, the BIAS of SS shows a sudden increase in early June, with a maximum positive BIAS of 

21.79 (Fig. 7b), which is associated with concentrated sites by large SS values in certain ecoregions that 

cause not enough DA in other ecoregions. Although the BIAS of ECOSS is generally closer to 0 than that 5 

of ADD, except in July, ECOSS shows the maximum negative BIAS of -15.78 in late July. These 

tendencies suggest that the DA method that optimizes parameters such as the scaling factor used in 

CT2013B may occasionally have trouble in optimizing surface CO2 fluxes when using limited 

observation sites for a larger area. 

Nevertheless, the ECOSS experiment that considered both self-sensitivity and ecoregion information 10 

maintains lower RMSD than the ADD experiment over the experimental period. Additionally, except in 

the period from April to late-August, the RMSD of SS is lower than that of ADD, which differs from 

ADD that is mainly better than CNTL in summer, as shown in Fig. 5. Thus, compared to ADD and CNTL, 

the SS (ECOSS) experiment demonstrates improvement in the other seasons except summer (over the 

experimental period). 15 

The increased RMSD of SS during the spring-summer period compared to that of ADD seems to be 

related to the DA method used in CT2013B. As most observation sites added in SS are located in the 

ecoregions with relatively small proportions of the Asia domain (Table 3), they may have disadvantages 

in optimizing the scaling factor of major ecoregions. This is somewhat relevant to the distribution of 

observation sites in the ALL experiment, which has observation sites at 2° intervals, consequently leading 20 

to the uneven distribution of observation sites (i.e., major ecoregions with more observation sites and 

minor ecoregions with fewer observation sites) in Asia. As the self-sensitivity generally has an inverse 

relationship with the number of assimilated observations, the self-sensitivities of major ecoregions are 

typically lower than those of minor ecoregions, as shown in Table 4.  

The simulation results of SS and ECOSS confirm that influential observation sites for optimizing 25 

surface CO2 fluxes in Asia certainly exist, and the self-sensitivity information could be used for designing 

the observation network. The ECOSS experiment especially, which considers both ecoregion information 

and self-sensitivity, shows a better performance compared to the SS experiment, which suggests that 
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considering characteristics of the specific model and data assimilation configurations can also contribute 

to the improvement in optimization. This further implies that an observation network based on the self-

sensitivity and ecoregion information could be better for optimizing surface CO2 fluxes in Asia than that 

based on randomly added observation sites, though the same number of observations are used. 

 5 

3.4. Effect of an observation network with extra observation sites added using normalized self-
sensitivity and ecoregion information 

As stated in Sect. 3.3, using the pure self-sensitivities acquired from the ALL experiment for 

observation network studies could be inappropriate in certain occasions because they were derived from 

an uneven number of sites for each ecoregion. Thus, self-sensitivity could be normalized (Eq. (15)) and 10 

used for the selection of observation sites. Table 5 shows the information for observation sites in the NSS, 

NECOSS1, and NECOSS2 experiments that used the normalized self-sensitivities as the selection 

strategy. The observation sites of the NSS experiment are located only in the 115 (Conifer Forest) and 

137 (Grass/Shrub) ecoregions. This is because they have higher normalized sensitivities than other 

regions as they constitute large proportions of the ecoregions of Asia, as shown in Table 3. Additionally, 15 

the NECOSS1 and NECOSS2 experiments were conducted to examine the impact of additional 

observation sites depending on the choice of ecoregion. For the NECOSS1 experiment, two observation 

sites were added to the 115 (Conifer Forest) and 137 (Grass/Shrub) ecoregions and one observation site 

each was allocated to the other six ecoregions. In contrast, the NECOSS2 experiment allotted one 

observation site to each ecoregion. The observation sites in NECOSS1 and NECOSS2 in the ecoregions 20 

were selected by the order of highest normalized sensitivities in each ecoregion. 

Figure 8 shows the time series of the three-week moving average of PC, BIAS, and RMSD of the 

simulated surface CO2 fluxes for the ADD, NSS, NECOSS1, and NECOSS2 experiments, which shows 

the impact of using normalized self-sensitivities for the selection of additional observation sites. For the 

PC, all the experiments using normalized self-sensitivities (i.e., NSS, NECOSS1, and NECOSS2) show 25 

higher PC than the ADD experiment for most of the time (Fig. 8a). In particular, the PC of NSS is always 

higher than the PC of SS that showed temporarily lower PC compared to ADD from late April to mid-
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August. Furthermore, the NECOSS1 and NECOSS2 experiments that also considered ecoregion 

information perform better than the NSS experiment without ecoregion information.  

Regarding BIAS, the experiments using the normalized self-sensitivities show a strong negative BIAS 

in mid- and late July (Fig. 8b). Although such tendencies are similar to that of ECOSS shown in Fig. 7b, 

the maximum negative BIAS of NSS, NECOSS1, and NECOSS2 are -14.40, -12.23, and -11.45, 5 

respectively, which is comparatively smaller than that of ECOSS. Such an abrupt increase in BIAS could 

be associated with the sudden transition of surface CO2 sources and sinks during summer. 

The NSS, NECOSS1, and NECOSS2 experiments show lower RMSDs compared to the ADD 

experiment (Fig. 8c). The RMSD of NSS is lower than that of ADD for most of the time, which is different 

from SS that showed a degradation in summer and little improvement in other seasons compared to ADD 10 

in Fig. 7c. Moreover, the NECOSS1 and NECOSS2 experiments that additionally considered the 

ecoregion information demonstrate a further reduction in RMSD, especially in summer. The NECOSS1 

and NECOSS2 experiments have a slightly lower RMSD than ECOSS that considered pure self-

sensitivities and ecoregion information. The NECOSS1 and NECOSS2 experiments do not show 

significant differences due to minor differences in the choice of observation sites.  15 

The simulation results using the normalized self-sensitivities reconfirm that the self-sensitivity 

information could be used in designing the observation network. By considering the DA method of 

CT2013B that optimizes scaling factors assigned in ecoregions, the experiments using normalized self-

sensitivities could make simulations better than those using pure self-sensitivity. In addition, the 

additional consideration of ecoregion in the experiments using normalized self-sensitivities also 20 

contributes to improvements, which implies that the model's characteristics, such as ecoregion 

information, could also be one of the factors to be used in designing the surface CO2 observation network. 

 

3.5. Horizontal distributions of RMSD and uncertainty reduction  

Figure 9 shows the spatial distribution of the average of weekly RMSD calculated from the surface 25 

CO2 fluxes in Asia. The CNTL shows the highest RMSD among the experiments, with peaks mainly 

located in the Siberian area (Fig. 9a). The REDIST experiment shows a decrease in the high RMSD of 
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the Siberian area shown in CNTL, but the RMSDs of eastern China and the southeastern part of the 

Tibetan Plateau (the Indochina Peninsula) slightly increase, and the RMSDs of northern India and the 

northeastern part of Asia remain nearly unchanged compared to CNTL (Fig. 9b). The distribution of 

RMSD in the ADD experiment is fairly similar to that of REDIST, except for the decrease of RMSD near 

the Tibetan Plateau and in southeastern Asia (Fig. 9c). Such a spatial distribution of RMSD in the ADD 5 

experiment implies the need for supplementing observation sites efficiently. Figure 9d clearly shows the 

reduction in RMSD of northern India and the southeastern region of the Tibetan Plateau in the SS 

experiment compared to the REDIST and ADD experiments. This proves the impact of considering self-

sensitivity information for observation network studies. However, the performance of the SS experiment 

on some Siberian inland areas is poorer than those of the REDIST and ADD experiments, due to the 10 

relative absence of observation sites for that region. The ECOSS experiment using the ecoregion 

information shows comparatively lower RMSD in the Asia domain, except for the southeastern part of 

the Tibetan Plateau and northeastern Asia (Fig. 9e). The RMSD distribution of the NSS experiment 

confirms that the RMSD of the Siberian area is much reduced compared to that of the SS experiment, 

though its overall pattern is similar (Fig. 9f). The RMSDs of the NECOSS1 and NECOSS2 experiments 15 

are analogous to that of the ECOSS experiment (Fig. 9g). This can be attributed to the fact that most 

observation sites in those three experiments are identical (Tables 4 and 5). The simulated RMSD of the 

ALL experiment is the lowest in most of the domain among all sensitivity experiments (Fig. 9i). Such 

simulation results reconfirm that the observation network in Asia needs to be organized in a more efficient 

way to gain better optimization results of surface CO2 fluxes. The spatial RMSD distribution during the 20 

summer from June to August (not shown) is also similar to that for whole year shown in Fig. 9. 

Figure 10 shows the UR derived from the experiments, which corresponds with the previous results. 

Compared to the CNTL experiment, the uncertainty of the REDIST experiment is much reduced in the 

Siberian area, but the impact of REDIST is low south of 50° N (Fig. 10a). Such a result seems to be related 

with the high UR values in that region in CNTL, because most observation sites in CNTL are located 25 

from 30° to 45° N. The ADD experiment with randomly added sites demonstrates slightly more UR for 

the inland Siberian area and the nearby areas of the Tibetan Plateau including China and India, than 

REDIST (Fig. 10b). However, the UR in the Asian mid-latitudes is still lower than that in other Asian 
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regions. Although the SS and ECOSS experiments have the same number of observation sites compared 

with the ADD experiment, the overall UR in the Asia domain in SS and ECOSS is higher than that of 

ADD (Figs. 10b, c, and d). The uncertainty in the SS experiment, which has comparatively more 

observation sites in India and southeastern Asia, is clearly reduced for that area. In contrast, the ECOSS 

experiment retaining comparatively more observation sites in the inland areas of Asia shows higher UR 5 

in the land areas, although UR in India and southeastern Asia is lower than that in the SS experiment. The 

experiments using normalized self-sensitivities generally show distinct uncertainty reductions in inland 

Asia, although the UR of India and southeastern Asia in NSS is slightly lower than that of SS (Fig. 10e). 

This is because the observation sites of NSS are located only in the 115 (Conifer Forest) and 137 

(Grass/Shrub) ecoregions. Although the UR distributions of the NECOSS1 and NECOSS2 experiments 10 

are generally similar to those of the ECOSS experiment, the uncertainties in India and southeastern Asia 

decrease further in NECOSS1 and NECOSS2 (Figs. 10f and g). The UR of the ALL experiment increases 

compared to those of other experiments as a number of observation sites in ALL sufficiently cover the 

Asian domain (Fig. 10h). 

Table 6 summarizes the overall scores of the simulations conducted in this study. The CNTL (ALL) 15 

experiment shows the lowest (highest) skill score among the simulations. The skill scores of other 

experiments range between these. The statistics shown in Table 6 reconfirm the impacts of redistributing 

current observation sites and adding extra observation sites discussed in this study. Firstly, the height 

specification for hypothetical observations does not seem to be very influential for the results of OSSEs 

as only small differences were observed between the results of CNTL and CNTL_MOD. The impact of 20 

redistribution is noticeable because the performance of the REDIST experiment was generally better than 

that of the CNTL experiment. Moreover, the comparison between ADD, SS, and ECOSS reaffirms that 

adding more observation sites to the existing sites is effective in optimizing surface CO2 fluxes, and the 

addition strategy needs to be more effective to have better optimization results for surface CO2 fluxes. 

Moreover, the NSS, NECOSS1, and NECOSS2 experiments that used both normalized self-sensitivities 25 

and ecoregion information show that the normalized self-sensitivity and configuration of the data 

assimilation and model can be utilized as appropriate strategies in designing an observation network that 
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enhances simulation results. The simulation result of the ALL experiment seems to suggest a possible 

limit of the improvement when using the DA method in CT2013B.  

 

3.6. Additional experiments with more surface observation sites 

Until now, the seven observation sites in Asia from the observation network of CT2013B was used to 5 

evaluate several strategies to determine an effective observation network for optimizing surface CO2 

fluxes in Asia. Currently, surface CO2 mole fraction observations from 18 observation sites are used for 

CT2017 (Fig. 11). In this section, the experimental results based on 18 observation sites similar to those 

based on seven observation sites above are shown to reaffirm the validity of the normalized self-sensitivity 

and ecoregion information as selection strategies for potential observation sites. Descriptions of additional 10 

experiments are shown in Table 2. Instead of CNTL, ADD, NSS, and NECOSS1 based on seven sites, 

CNTL_18, ADD_18, NSS_18, and NECOSS1_18 are configured.  

Figure 12 shows the time series of the three-week moving average of PC, BIAS, and RMSD of the 

simulated surface CO2 fluxes for the ALL, CNTL_18, ADD_18, NSS_18, and NECOSS1_18 experiments, 

which shows the impact of using normalized self-sensitivities for the selection of additional observation 15 

sites. CNTL_18 with 11 more sites shows a better performance when compared to CNTL shown in Fig. 

4, and other experiments with 10 more observation sites compared to CNTL_18 show more improved 

results. For the PC, the ALL shows a best score and the ADD_18, NSS_18, and NECOSS1_18 

experiments show similar PC values (Fig. 12a). Although no discernible big difference exists, the more 

stable and higher one is the NECOSS1_18.  The CNTL_18 and NSS_18 show slightly higher positive 20 

BIAS in July and NECOSS1_18 shows higher negative BIAS in June and August, but the BIAS seems to 

be held close to zero for all experiments (Fig. 12b). For the RMSD, the experiments with 10 more 

observation sites are located between the ALL and CNTL_18, and the NECOSS1_18 shows the lowest 

RMSD among three of them though the differences are slightly small (Fig. 12c).  

The impact of using normalized self-sensitivities and ecoregions in determining observation sites is 25 

still shown in the additional experiments based on 18 observation sites, although the improvement is 

slightly reduced compared to the experiments based on 7 observation sites. The less improvement in the 
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experiments based on 18 observation sites compared to those based on 7 observation sites seems to be 

associated with the locations of 11 additional observation sites mostly in Siberian regions where lack 

observation data in CNTL and show high sensitivities in Fig. 6. Most of additional observation sites based 

on CT2017 are mainly located in highly sensitive regions in Siberia in Fig. 6. Thus, they can cover the 

regions that lack observation data in the experiments based on 7 observation sites. 5 

4. Conclusions 

In this study, observation system simulation experiments using hypothetical observations were 

conducted to investigate the potential for an effective observation network for optimizing surface CO2 

fluxes in Asia. Several experiments, including redistributing existing stations and adding observation 

stations to the existing observation network, were conducted to assess the performance of the current 10 

observation network and the impact of additional observation sites. For the addition experiment, random 

addition and addition strategies based on self-sensitivities, normalized self-sensitivities, and ecoregion 

information were tested and compared. The performance of each observation network was evaluated from 

statistics calculated from simulated surface CO2 fluxes and the uncertainty reduction.  

The results indicate that further optimization of the surface CO2 fluxes in Asia could be made by 15 

redistributing existing observation sites, given that the RMSD of the redistributed experiment was reduced 

by 12.8% compared to the experiment using the existing observation network (i.e., CNTL). The RMSD 

of the random addition experiment was reduced by 21.9% compared to CNTL. Although the experiment 

based on only self-sensitivity information was not better than that based on randomly added observation 

sites, the experiment based on both self-sensitivity and ecoregion information reduced the RMSD by 35.2% 20 

compared to that of CNTL. Moreover, the experiment based on both normalized self-sensitivity and 

ecoregion information further reduced the RMSD by approximately 40% compared to that of CNTL. 

Thus, the normalized self-sensitivity and ecoregion information could be used as strategies to select 

observation sites to construct the surface CO2 observation network. The additional experiments based on 

18 observation sites used for CT2017 also show similar results compared to the experiments based on 7 25 

observation sites used for CT2013B, which reaffirms the validity of the normalized self-sensitivity and 

ecoregion information as selection strategies for potential observation sites. 
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Although the simulation results showed an improvement in performance, the results also suggested 

that adding 10 extra observation sites in Asia may not be sufficient to fully optimize surface CO2 fluxes, 

and more observation sites are required. Reliable observation data from some satellite sensors could 

supplement the model simulations on the basis of continuous surface observation sites. As the quality of 

satellite observation data increases, the observation network design for both surface and satellite 5 

observation data using the strategies (i.e., normalized self-sensitivity and ecoregion information) of this 

study will be investigated in the future. 

This study suggests a method to design and evaluate the observation network to optimize surface CO2 

fluxes at the continental scale without a myriad of simulations (iterations) of the genetic algorithm or the 

incremental optimization used in previous studies. Thus, this approach could constitute a practical method 10 

to conduct such simulations with relatively limited computer resources. The observation network design 

method in this study could also be used to design an observation network to optimize global surface CO2 

fluxes.  
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Table 1. The model configuration and a priori fluxes used in this study. 
Prior Flux Biosphere Carnegie-Ames-Stanford Approach Global Fire Emission 

Database (CASA-GFED) v3.1 (van der Werf et al., 2006, 
2010) 

Ocean Jacobson et al. (2007) 
Fossil Fuel CASA-GFED v3.1 (van der Werf et al., 2006, 2010) 
Fires Carbon Dioxide Information and Analysis Center (CDIAC; 

Boden et al., 2010) and Emission Database for Global 
Atmospheric Research (EDGAR, European Commission, 
2009) databases 

Model Transport Model 5 (TM5) using ERA-interim reanalysis 
Model Resolution Domain 1(3°×2°) Globe  

Domain 2(1°×1°) Asia (12°S-70°N, 30°-168°E) 
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Table 2. Brief description of the experiments conducted in this study. 

Exp. name No. of stations Description 

CNTL 7 The control experiment that uses the observation site information 
in Asia of the existing 7 NOAA observation network. 

CNTL_MOD 7 The same as the CNTL except for modifying observation station 
height information for hypothetical observations. 

REDIST 7 The experiment that redistributes 7 observations sites at random 
in Asia. 

ADD 17 The experiment that added 10 observation sites at random to the 
existing 7 NOAA observation network.  

SS 17 The experiment that added 10 observation sites to the existing 7 
NOAA observation network with the self-sensitivity information.  

ECOSS 17 
The experiment that added 10 observation sites to the existing 7 
NOAA observation network with the self-sensitivity and 
ecoregion information (1-2 stations for each ecoregion) 

NSS 17 
The experiment that added 10 observation sites to the existing 7 
NOAA observation network with the normalized self-sensitivity 
information. 

NECOSS1 17 
The experiment that added 10 observation sites to the existing 7 
NOAA observation network with the normalized self-sensitivity 
and ecoregion information (1-2 stations for each ecoregion). 

NECOSS2 17 
The experiment that added 10 observation sites to the existing 7 
NOAA observation network with the normalized self-sensitivity 
and ecoregion information (1 station per ecoregion). 

ALL 905 The experiment that added observation sites at horizontal 2° inter
vals on land to the existing 7 NOAA observation network. 

CNTL_18 18 The control experiment that uses the observation site information 
in Asia of the existing 18 NOAA observation network. 

ADD_18 28 The experiment that added 10 observation sites at random to the 
existing 18 NOAA observation network.  

NSS_18 28 
The experiment that added 10 observation sites to the existing 18 
NOAA observation network with the normalized self-sensitivity 
information. 

NECOSS1_18 28 
The experiment that added 10 observation sites to the existing 18 
NOAA observation network with the normalized self-sensitivity 
and ecoregion information (1-2 stations for each ecoregion).k. 
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Table 3. The information of the ecoregions in the verification domain and the distribution of observation 

sites for the SS and ECOSS experiments. 

Ecoregion Index Transcom Region Land Ecosystem Type Count Proportion (%) SS ECOSS 

137 Eurasia Temperate Grass/Shrub 744 19.36  2 

115 Eurasia Boreal Conifer Forest 657 17.1  2 

140 Eurasia Temperate Semitundra 262 6.82  1 

147 Eurasia Temperate Crops 248 6.45  1 

123 Eurasia Boreal Northern Taiga 228 5.93  1 

157 Tropical Asia Tropical Forest 222 5.78  1 

145 Eurasia Temperate Deserts 200 5.2   

117 Eurasia Boreal Mixed Forest 150 3.9  1 

118 Eurasia Boreal Grass/Shrub 122 3.17  1 

136 Eurasia Temperate Mixed Forest 122 3.17   

121 Eurasia Boreal Semitundra 95 2.47   

166 Tropical Asia Crops 80 2.08   

135 Eurasia Temperate Broadleaf Forest 62 1.61   

141 Eurasia Temperate Fields/Woods/Savanna 59 1.54   

143 Eurasia Temperate Forest/Field 58 1.51 1  

171 Tropical Asia Water 54 1.41   

125 Eurasia Boreal Wetland 45 1.17 1  

162 Tropical Asia Forest/Field 44 1.14   

122 Eurasia Boreal Fields/Woods/Savanna 42 1.09   

154 Tropical Asia Broadleaf Forest 39 1.01 1  

155 Tropical Asia Mixed Forest 37 0.96   

156 Tropical Asia Grass/Shrub 36 0.94   

124 Eurasia Boreal Forest/Field 35 0.91   

134 Eurasia Temperate Conifer Forest 34 0.88   

116 Eurasia Boreal Broadleaf Forest 33 0.86   

128 Eurasia Boreal Crops 24 0.62 1  

138 Eurasia Temperate Tropical Forest 19 0.49 1  

160 Tropical Asia Fields/Woods/Savanna 15 0.39   

146 Eurasia Temperate Shrub/Tree/Suc 12 0.31   

144 Eurasia Temperate Wetland 11 0.29 1  
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139 Eurasia Temperate Scrub/Woods 10 0.26 1  

163 Tropical Asia Wetland 9 0.23 2  

152 Eurasia Temperate Water 8 0.21   

130 Eurasia Boreal Wooded Tundra 5 0.13 1  

133 Eurasia Boreal Water 5 0.13   

191 Europe Conifer Forest 5 0.13   

193 Europe Mixed Forest 4 0.1   

194 Europe Grass/Shrub 4 0.1   

197 Europe Semitundra 3 0.08   

201 Europe Wetland 1 0.03     
 



40 
 

Table 4. The locations and self-sensitivities for the observation sites in the SS and ECOSS experiments. 
SS ECOSS 

Transcom  
Region 

Land Ecosystem  
Type Lat Lon SS (%) Transcom  

Region 
Land Ecosystem 

Type Lat Lon SS (%) 

Eurasia Temperate Tropical Forest 26.5 96.5 4.02 Eurasia Temperate Grass/Shrub 26.5 92.5 0.87 
Tropical Asia Wetland 4.5 114.5 3.83 Eurasia Temperate Grass/Shrub 28.5 118.5 0.65 
Tropical Asia Wetland -5.5 138.5 3.29 Eurasia Boreal Conifer Forest 58.5 62.5 1.35 

Eurasia Temperate Forest/Field 6.5 80.5 3.17 Eurasia Boreal Conifer Forest 46.5 142.5 1.28 
Eurasia Temperate Scrub/Woods 24.5 74.5 2.48 Eurasia Temperate Semitundra 44.5 54.5 0.29 

Eurasia Boreal Wooded Tundra 66.5 78.5 2.32 Eurasia Temperate Crops 10.5 76.5 0.96 
Eurasia Boreal Crops 56.5 84.5 1.99 Eurasia Boreal Northern Taiga 66.5 80.5 1.12 
Eurasia Boreal Wetland 60.5 62.5 1.91 Tropical Asia Tropical Forest 8.5 126.5 1.17 

Eurasia Temperate Wetland 46.5 124.5 1.87 Eurasia Boreal Mixed Forest 52.5 118.5 0.68 
Tropical Asia Broadleaf Forest 18.5 104.5 1.75 Eurasia Boreal Grass/Shrub 56.5 86.5 0.87 
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Table 5. The locations and ecoregion indices for the observation sites in the NSS, NECOSS1, and 

NECOSS2 experiments. 

NSS NECOSS1 NECOSS2 

Transcom 
Region  

Land 
Ecosystem 

Type 
Lat Lon Transcom 

Region  

Land 
Ecosystem 

Type 
Lat Lon Transcom 

Region  

Land 
Ecosystem 

Type 
Lat Lon 

Eurasia 
Boreal 

Conifer 
Forest 58.5 62.5 Eurasia 

Boreal 
Conifer 
Forest 58.5 62.5 Eurasia 

Boreal 
Conifer 
Forest 58.5 62.5 

Eurasia 
Boreal 

Conifer 
Forest 46.5 142.5 Eurasia 

Boreal 
Conifer 
Forest 46.5 142.

5 
Eurasia 

Temperate Grass/Shrub 26.5 92.5 

Eurasia 
Temperate Grass/Shrub 26.5 92.5 Eurasia 

Temperate Grass/Shrub 26.5 92.5 Tropical 
Asia 

Tropical 
Forest 8.5 126.5 

Eurasia 
Boreal 

Conifer 
Forest 54.5 84.5 Eurasia 

Temperate Grass/Shrub 28.5 118.
5 

Eurasia 
Boreal 

Northern 
Taiga 66.5 80.5 

Eurasia 
Boreal 

Conifer 
Forest 52.5 120.5 Tropical 

Asia 
Tropical 
Forest 8.5 126.

5 
Eurasia 

Temperate Crops 10.5 76.5 

Eurasia 
Temperate Grass/Shrub 28.5 118.5 Eurasia 

Boreal 
Northern 

Taiga 66.5 80.5 Eurasia 
Boreal 

Mixed 
Forest 48.5 132.5 

Eurasia 
Temperate Grass/Shrub 26.5 104.5 Eurasia 

Temperate Crops 10.5 76.5 Eurasia 
Boreal Semitundra 60.5 148.5 

Eurasia 
Temperate Grass/Shrub 46.5 54.5 Eurasia 

Boreal Semitundra 60.5 148.
5 

Tropical 
Asia Crops 0.5 110.5 

Eurasia 
Boreal 

Conifer 
Forest 62.5 132.5 Tropical 

Asia Crops 0.5 110.
5 

Eurasia 
Boreal Grass/Shrub 56.5 86.5 

Eurasia 
Temperate Grass/Shrub 34.5 72.5 Eurasia 

Boreal 
Mixed 
Forest 52.5 118.

5 
Tropical 

Asia 
Mixed 
Forest -7.5 146.5 
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Table 6. The averaged statistics of surface CO2 fluxes (gC m-2 yr-1) for the experiments conducted in this 

study.  
Exp. 
name CNTL CNTL_MOD REDIST ADD SS ECOSS NSS NECOSS1 NECOSS2 ALL 

PC 0.965 0.966 0.973 0.977 0.98 0.984 0.983 0.987 0.986 0.998 

BIAS 1.169 1.245 1.055 1.679 1.627 -0.211 -0.168 0.232 -0.28 -0.17 

RMSD 70.06 70.528 60.547 54.708 53.572 45.388 47.034 41.9 42.218 15.947 
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Figure 1. The distribution of a) the nested TM5 model domain over Asia (black solid rectangle) and 
verification domain (black dashed rectangle) and b) ecoregions in Asia used in this study.  
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Figure 2. Time series of CO2 concentration from hypothetical observations, model simulations, and real 
observations. The gray solid line (OBS) denotes the value of real observation data, the black solid line 
indicates the value from the EXTASI experiment, the blue solid line denotes the value of the SF1 
experiment, and the red solid line (AVG) denotes the average of the EXTASI and SF1, which regarded 5 
as True observation data in this study. 
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Figure 3. The distribution of observation sites in each observation network: a) the CNTL and 
CNTL_MOD, b–d) the REDIST, e–g) the ADD, h) the SS, i) the ECOSS, j) the NSS, k) the NECOSS1, 
l) the NECOSS2, and m) the ALL experiment. Red dots denote the observation sites of the NOAA 
observation network and black dots denote the hypothetical observation sites. 5 
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Figure 4. Time series of the three-week moving average of a) PC, b) BIAS, and c) RMSD of surface CO2 
flux (gC m-2 yr-1) for the CNTL (black solid line), CNTL_MOD (cyan solid line), and REDIST (blue 
solid line) experiments. 
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Figure 5. The same as Fig. 4 except for the CNTL (black solid line), ADD (dark green solid line), and 
ALL (purple solid line) experiments. 
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Figure 6. The spatial distribution of self-sensitivities (%) during the experimental period obtained from 
the ALL experiment.  
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Figure 7. The same as Fig. 4 except for the ADD (dark green solid line), SS (yellow solid line), and 
ECOSS (red solid line) experiments. 
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Figure 8. The same as Fig. 4 except for the ADD (dark green solid line), NSS (dark orange solid line), 
NECOSS1 (dark red solid line), and NECOSS2 (navy blue solid line) experiments. 
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Figure 9. The spatial distribution of the average of weekly RMSD of surface CO2 fluxes (gC m-2 yr-1) for 
a) the CNTL, b) the REDIST, c) the ADD, d) the SS, e) the ECOSS, f) the NSS, g) the NECOSS1, h) the 
NECOSS2, and i) the ALL experiments. 

  5 
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Figure 10. The spatial distribution of uncertainty reduction (%) for a) the REDIST, b) the ADD, c) the 
SS, d) the ECOSS, e) the NSS, f) the NECOSS1, g) the NECOSS2, and h) the ALL experiment, against 
the CNTL experiment. 

 5 
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Figure 11. The distribution of observation sites of CNTL_18 in Asia domain: Red dots denote 7 
observation sites of CT2013B and blue dots denote additional 11 observation sites of CT2017. 
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Figure 12. The same as Fig. 4 except for the CNTL_18 (blue solid line), ADD_18 (dark green solid line), 
NSS_18 (dark orange solid line), NECOSS1_18 (dark red solid line), and ALL (purple solid line) 
experiments. 
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