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Abstract 
The top-of-atmosphere (TOA) outgoing longwave flux over the 9.6-μm ozone band is a 
fundamental quantity for understanding chemistry-climate coupling. However, observed TOA 
fluxes are hard to estimate as they exhibit considerable variability in space and time that 35 
depend on the distributions of clouds, ozone (O3), water vapor (H2O), air temperature (Ta), and 
surface temperature (Ts). Benchmarking present day fluxes and quantifying the relative 
influence of their drivers is the first step for estimating climate feedbacks from ozone radiative 
forcing and predicting radiative forcing evolution. 
 40 
To that end, we constructed observational instantaneous radiative kernels (IRKs) under clear-
sky conditions, representing the sensitivities of the TOA flux in the 9.6-μm ozone band to the 
vertical distribution of geophysical variables, including O3, H2O, Ta, and Ts based upon the Aura 
Tropospheric Emission Spectrometer (TES) measurements. Applying these kernels to present-
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day simulations from the Chemistry-Climate Model Initiative (CCMI) project as compared to a 
2006 reanalysis assimilating satellite observations, we show that the models have large 
differences in TOA flux, attributable to different geophysical variables. In particular, model 
simulations continue to diverge from observations in the tropics, as reported in previous 
studies of the Atmospheric Chemistry Climate Model Inter-comparison Project (ACCMIP) 5 
simulations. The principal culprits are tropical mid and upper tropospheric ozone followed by 
tropical lower tropospheric H2O. Five models out of the eight studied here have TOA flux biases 
exceeding 100 mWm-2 attributable to tropospheric ozone bias. Another set of five models have 
flux biases over 50 mWm-2 due to H2O. On the other hand, Ta radiative bias is negligible in all 
models (no more than 30 mWm-2). We found that AM3 and CMAM have the lowest TOA flux 10 
biases globally but are a result of cancellation of opposite biases due to difference processes. 
Overall, the multi-model ensemble mean bias is –133 ± 98 mWm-2, indicating that they are too 
atmospherically opaque due to trapping too much radiation in the atmosphere by 
overestimated tropical tropospheric O3 and H2O. Having too much O3 and H2O in the 
troposphere would have different impacts on the sensitivity of TOA flux to O3 and these 15 
competing effects add more uncertainties on the ozone radiative forcing.  We find that the 
inter-model TOA outgoing longwave radiation (OLR) difference is well anti-correlated with their 
ozone band flux bias. This suggests that there is significant radiative compensation in the 
calculation of model outgoing longwave radiation. 
 20 
1. Introduction 
 
Tropospheric ozone (O3) is the third important anthropogenic greenhouse gas (GHG) in terms of 
radiative forcing (RF) as a consequence of O3 precursor and methane (CH4) emission increases 
since pre-industrial times to the present day. Tropospheric O3 adjusted RF ranges widely from 25 
+0.2 to +0.6 Wm-2 computed from chemistry-climate model ensembles (IPCC AR5, 2013) 
(Bowman, et al., 2013;Stevenson, et al., 2013). The large uncertainty of the tropospheric O3 RF 
is driven in part by the model responses to climate change.  Without a good long-term record of 
the historical O3 levels (Young, et al., 2017;Gaudel, et al., 2018), such estimates are highly 
dependent on the model assumptions of past O3 levels. Differences between models in physical 30 
climate, chemical, and radiative processes conspire to complicate the assessment of the 
accuracy of these RF calculations. Consequently, a method to disentangle the key players 
caused the model differences to observations as well as the difference between the models is 
critical to robust estimates of chemistry-climate coupling. 
 35 
About 80% of tropospheric O3 RF is due to O3 longwave absorption with the remaining 20% 
from the shortwave absorption (IPCC AR5, 2013). In the longwave, 97% of the total longwave 
absorption is in the 9.6-μm O3 band (Rothman, et al., 1987). The global outgoing longwave 
radiation (OLR) spectra were first observed from space for a few months in 1970. Radiance 
observations were taken during April 1970 and January 1971 by the NASA Infrared 40 
Interferometeric Spectrometer (IRIS) and then from October 1997 for 9 month by the 
Interferometeric Monitor of Greenhouse Gases (IMG) instrument, on board the Japanese 
Advanced Earth Observing Satellite “Midori” (ADEOS) satellite. Harries, et al. (2001) showed 
that the changes in the greenhouse gas features between the observed spectra taken 30 years 
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apart by these two instruments suggest increases in greenhouse gas forcing. Over the last two 
decades, a new generation of thermal infrared satellite instruments have provided a unique 
opportunity to continuously monitor the outgoing radiances covering the 9.6-μm O3 band 
globally, such as NASA’s Tropospheric Emission Spectrometer (TES) and Atmospheric Infrared 
Sounder (AIRS), ESA’s Infrared Atmospheric Sounding Interferometer (IASI), and NOAA’s Cross-5 
track Infrared Sounder (CrIS). These valuable long-term global measurements can be used to 
derive the top-of-atmosphere (TOA) O3 band flux and the sensitivity of the flux to the vertical 
distributions of O3, defined as instantaneous radiative kernels (IRKs) (Worden, et al., 
2011;Doniki, et al., 2015).  

 10 
The TES observed global TOA outgoing fluxes at the 9.6-μm O3 band in clear sky (Fig. 1) show 
strong geographic variations as a result of the short life-time of O3 (Worden et al., 2011; 
Bowman et al., 2013). Consequently, the global O3 GHG effect is more unevenly distributed 
than long-lived GHG, such as CO2. In addition, the variations of the TOA fluxes are not only 
highly dependent on the distributions of O3, but are also dependent on water vapor (H2O), air 15 
temperature (Ta), and surface temperature (Ts) (Kuai et al., 2017).  
 
There is an additional factor where the large-scale atmospheric structure sets the overall 
atmospheric opacity, which describes the fraction of the light that fails to pass through the 
atmosphere due to the absorption or scattering.  For example, O3 changes in more opaque 20 
regions, e.g., the Western Pacific, a wet region due to convection, result in a much smaller 
change in TOA flux than in more transparent regions, e.g., the Middle East, a dry region due to 
downwelling (Kuai, et al., 2017). This opacity has a direct impact on radiative forcing 
calculations.  
 25 
Chemistry-climate models diverge significantly in the simulation of these processes, which are 
difficult to disentangle because it is hard to quantify the response of the TOA flux due to the 
change in atmospheric opacity. In this study, we introduce a method to use observational based 
IRKs to quantitatively estimate the contributions of the model biases in O3, H2O, Ta and Ts to the 
TOA flux biases.  30 
 
In addition, the presence of clouds is the primary control on atmospheric opacity. Under the 
cloudy sky conditions, the roles of these variables other than cloud on TOA flux are much 
weaker. In addition, the variation in clouds could affect model estimates not only of the ozone 
but also of the flux sensitivity to ozone and other variables. Both ozone and sensitivity will 35 
impact the ozone radiative flux but in opposite directions. With cloud cover, the O3 loss will be 
reduced. That means too much cloud would lead to more ozone production. The presence of 
the cloud would also cause weaker flux sensitivity to O3 and other variables (IRKs). Therefore, 
the cloud effect is a battle between the impact on ozone estimation and the radiative sensitivity 
to ozone (IRK). The differences in cloud variations between the models will complicate the 40 
radiative effect. Furthermore, the study of the cloud effect is also currently limited by the global 
observations of total cloud cover and IRK product under realistic cloud conditions. Without 
knowing which models have better cloud cover, we benefit from using IRK based on the 
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observed cloud free data by TES. Therefore, here we first try to access the role of O3, H2O, Ta 
and Ts in the variation of the TOA flux without cloud effect. 
 
Worden et. al, 2008 first attempted to disentangle these effects from satellites. They 
subsequently developed the IRK in Worden et al, (2011) for O3, which is used in this study as a 5 
powerful tool to attribute model variability. IRKs for O3 represent the sensitivity of TOA fluxes to 
the vertical distributions of the observed O3. Aghedo, et al. (2011) applied the TES IRKs to 
evaluate the O3 radiative effect of chemistry-climate models’ O3 biases in the Atmospheric 
Chemistry Climate Model Inter-comparison project (ACCMIP) (Lamarque, et al., 2013). Bowman 
et al. (2013) found model OLR bias due to O3 is correlated with RF in the ACCMIP models. This 10 
correlation helped to reduce the inter-model divergence in RF by about 30% (Myhre, et al., 
2013). Doniki et al. (2015), updated the IRKs’ calculation with a more accurate, but 
computationally more complicated method, a five Gaussian Integration (GI) method, to replace 
the anisotropic approximation. They computed the O3 IRKs with IASI observations and also 
showed that between the two methods there are about 20% differences in IRKs and about 20-15 
25% differences in the Longwave Radiative Effect (LWRE). They also found that the day and 
night difference of LWRE is mainly controlled by the Ts change instead of O3 amount change. 
Kuai et al., (2017) updated the computational method for the TES O3 IRK product with the five 
GI method and revealed the hydrological controls on the global distribution of the O3 GHG 
effect. The study showed that H2O, Ta and Ts affect the O3 IRK strength through relative 20 
humidity. 
 
Therefore, the TOA flux in the 9.6-micron band depends on more than O3.  Consequently, in this 
study we expand the TES observation-based IRKs to other quantities, including H2O profiles, Ta 
profiles, and Ta. We apply these IRKs to help understand the reasons for the model divergence 25 
in the TOA flux.  
 
The questions that have never been answered before include 1) How do the model-based flux 
and the flux sensitivity compare to the observational-based flux and sensitivity? 2) How do they 
compare between the models? 3) How do the flux biases in models relate to the RF variation? 30 
Thus, benchmarking present day O3 band flux is the first step in answering all these questions, 
and would help to further understand the correlations between the bias in TOA flux and the 
bias in O3 RF, and eventually improve the estimation of the climate feedbacks from O3 forcing. 
 
To benchmark the model simulated geophysical quantities, a recently developed multi-species 35 
multi-satellite Tropospheric Chemistry Reanalysis (TCR) product (Miyazaki, et al., 2015) is used 
in this study to compare to the model results. This chemical reanalysis assimilates data from 
multiple satellites with sensitivity over complementary parts of the atmosphere, which provides 
better information than single-species chemical data assimilation. Satellite observations have 
the occasional issue of temporal discontinuity due to instrument performance and irregular 40 
spatial coverage, which can be circumvented by chemical data assimilation. Miyazaki et al., 
(2015) showed statistically the model error against independent aircraft and ozonesonde 
observations in the assimilated species, e.g. O3, NO2, and CO, is significantly reduced. The multi-
species assimilation improves the Northern/Southern Hemisphere OH ratio and provides the 
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emission estimates with interannual variation. The comparison of O3 reanalysis to the ACCMIP 
ensemble O3 simulation in Miyazaki and Bowman (2017)  quantified the model discrepancies in 
terms of seasonal amplitude, spatial variability, and inter-hemispheric gradient. For example, 
the ensemble mean is 6-11 ppb too high in the northern extra tropics, while up to 18 ppb too 
low in the southern tropics over the Atlantic in the lower troposphere. In this study, we use the 5 
same O3 reanalysis data (Miyazaki and Bowman, 2017) to understand the model bias in the 
Chemistry-Climate Model Initiative (CCMI) project (Morgenstern et al., 2017), a follow up model 
inter-comparison study for ACCMIP. The multi-species assimilation also provides the 
opportunity to optimize the chemical related species of O3 and the emission sources of the 
precursors simultaneously. Further work by Miyazaki, et al. (2017) showed that the surface 10 
emission of nitrogen oxides (NOx) over a 10-year period (2005-2014) has a positive trend in 
regions including India, China, and the Middle East, but a negative trend over the USA, southern 
Africa, and western Europe. The global total emission stays almost constant between 2005 
(47.9 Tg N yr-1) and 2014 (47.5 Tg N yr-1). Therefore, the O3 reanalysis data from TCR represents 
the state-of-the-art for the current knowledge of the global distribution of tropospheric O3 by 15 
combining the complementary information from model and satellite observations for O3 and its 
precursors. 
 
In this paper, we demonstrate a method to use the IRK products and the model biases relative 
to the reanalyzed tropospheric composition (O3 and H2O) and atmospheric state (Ts and Ta) to 20 
quantitatively attribute the radiative biases of the flux in a suite of CCMI models to these 
dominant components. The method and IRKs are described in section 2. The models and 
reanalysis data are introduced in the next section. Section 4 discusses the inter-comparison 
between models’ flux biases, the bias attribution to the dominant components, and the 
geospatial distribution of the biases. Lastly, conclusion and future directions are summarized in 25 
section 5.  
 
2. Instantaneous radiative kernels (IRKs) for the climate variables  
 
The TOA flux in the 9.6-μm O3 band (Fig. 1) is defined as  30 
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where 𝑣 is the frequency, integrated over the O3 band from 980 to 1080 cm-1. 𝐿"#$(𝑣, 𝜃, 𝜙, 𝑞) 
is the upwelling TOA radiance at frequency 𝑣, zenith angle 𝜃 and azimuth angle 𝜙. We assume 35 
here that the radiance is symmetric in the azimuthal direction. The outgoing TOA radiances, 
𝐿"#$, are also a function of the atmospheric state, which is represented by variable ‘𝑞’, e.g. H2O, 
O3, and Ta, that is in turn a function of altitude, z. 
 
The IRKs (Equation 2) represent the sensitivities of the TOA radiative flux in the 9.6-μm O3 band 40 
to the changes in the vertical distribution of an atmospheric variable.  
 



6 
 

𝜕𝐹"#$
𝜕𝑞(𝑧;)

= & & &
𝜕𝐿(𝑣, 𝜃, 𝜙, 𝑞)

𝜕𝑞(𝑧;)
𝑠𝑖𝑛	(𝜃)𝑐𝑜𝑠	(𝜃)	𝑑𝜃𝑑𝜙𝑑𝑣														

6
2

0

26

07
(2)	

 
Where 𝑧;  is altitude in discretized level l. When 𝑞 represents the Ts, 𝑧;  becomes a single surface 
value at l = 0. The partial derivative term is the spectral radiance Jacobians calculated 
analytically by the TES radiative transfer model. 5 
 
In this study, we expanded the TES global O3 IRKs to IRKs with respect to H2O, Ta, and Ts. The 
TOA flux sensitivities to H2O or Ta still refer to the spectral window region in the 9.6-μm O3 band 
for the flux. All the kernels are computed with the five-angle Gaussian Integration method 
(Doniki et al., 2015, Kuai et al., 2017). Figures 2 (a), (c), and (e) show examples of IRK profiles for 10 
O3, H2O, and Ta for 2006. The TOA flux is most sensitive to each variable at very different 
vertical levels. The O3 IRK peaks in the middle and upper troposphere (600 to 200 hPa), a higher 
level than the peaks in both H2O and Ta IRKs. The mid and upper tropospheric O3 near 500 hPa 
has the largest impact on the TOA flux change (close to 1 mWm-2ppb-1 in the tropics). The H2O 
IRK peaks near 700 hPa, a little higher than the Ta IRK. The Ta IRK is maximal closest to the 15 
surface, suggesting that the O3 band flux is most sensitive to boundary layer Ta near 900 hPa. 
The strength of the peaks all decrease with increasing latitude for all the three variables but the 
peak altitude does not change significantly except for the H2O IRKs in the polar region, which 
peaks at a slightly higher level than in lower latitudes. 
 20 
In addition, the Ts IRK is greater than zero, which means increases in Ts would increase the 
outgoing TOA flux. However, the IRKs for the GHGs, i.e. H2O and O3, are negative, because the 
increase in gas concentrations reduces the upwelling flux at TOA due to radiative absorption by 
the gas.  
 25 
The global vertical distribution of the zonal averaged kernels for O3, H2O, and Ta are also shown 
below their profile plots in Fig. 2 (b), (d), and (f). The sensitivities of the TOA flux to these three 
variables are strongest in the tropics and decrease with latitude. Furthermore, the IRK for Ts is 
also shown in Fig. 2 (g) and (h). Unlike the other IRKs, the Ts IRK is not a function of altitude so 
we show the winter (Dec.-Feb.) and summer (Jun.-Aug.) seasonal average of its global 30 
distribution. The flux sensitivities are found to be largest over the major deserts, like the Sahara, 
Middle East, and Australia, corresponding to the regions with the highest values of Ts. We also 
notice that the values of the Ts IRKs in the Inter Tropical Convergence Zone (ITCZ) are much 
lower than in the subtropics, which suggests that the atmosphere opacity has an impact on the 
strength of the Ts IRKs. 35 
 
3. A method to attribute the flux biases 
 
The flux biases between observations and models under the clear-sky conditions can be 
described as: 40 
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where  𝛿𝐹"#$= , is the total TOA flux bias in the O3 band at the 𝑖th location. The four terms on the 
right hand side of the equation are the products of the IRKs and the biases in the geophysical 
quantities (i.e. O3, H2O, Ta, and Ts). These biases are then vertically integrated on index, l, over 5 
the domain 𝐿 , which in our case is the troposphere. The summation is the vertical integral from 
the surface to the tropopause. 
 
Here we assume that the biases due to other physical processes, e.g., surface emissivity or 
other atmospheric species, have much less influences on the TOA flux variation. For example, 10 
the model bias in global emissivity is not accessible, but is believed to be quite small compared 
to O3, H2O, Ta, and Ts. We also assume that the nonlinearity terms are much smaller than these 
four first order terms.       
 
Following Bowman et al., (2013), the delta terms in Equation (3) are the model biases with 15 
respect to the reanalysis data, defined as below 
 

𝛿𝑞=,; = 𝑞HIJ
=,; − 𝑞FGG=H

=,; 																					(4)	
 
where 𝑞HIJ

=,;  and	𝑞FGG=H
=,;  represents the model and reanalysis O3, H2O, Ta, or Ts at the 𝑖th location 20 

and the 𝑙th altitude level respectively.  
 
The mean flux bias or the mean bias components from tropospheric uncertainties are 
calculated from Equations (3) and (4) as 
 25 

 𝛿𝐹M
N = 1

OP
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STUVW
X
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(𝑞HIJ
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where	𝑤= 	is	area-weighted	for	the	latitude	bands,	𝐷N 	is	a	set	of	observed	locations,	𝑁N 	is	the	
number	of	locations	in	the	domain	of	𝐷N 	and	tropospheric	levels		of	𝐿	up	to	the	tropopause.	
We	 use	 the	 chemical	 tropopause	 O3	 =	 150	 ppb	 (Naik,	 et	 al.,	 2005;Hansen,	 et	 al.,	30 
2007;Bowman,	et	al.,	2013;Kuai,	et	al.,	2017).	The	domain	of	𝐷N 	can	be	zonal	bands	for	the	
zonal	mean	or	global	area	for	the	global	mean,	respectively.	The	global	mean	of	the	flux	bias	
and	its	components	will	be	denoted	as	𝛿𝐹	and	𝛿𝐹M ,	respectively.	
 
4. Chemistry-climate models and the reanalysis data  35 
 
4.1 Models and simulations 
 
We analyze six models from the CCMI study (Table 1) (Morgenstern, et al., 2017;Eyring, et al., 
2013). It is a combined activity of the International Global Atmospheric Chemistry (IGAC) and 40 
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Stratosphere-troposphere Processes And their Role in Climate (SPARC) (Randel, et al., 2004). 
The CCMI coordinates a number of model experiments that capture the variability and 
evolution of air quality, tropospheric chemistry, stratospheric O3, and global climate. This 
approach builds on the legacy of previous chemistry-climate model inter-comparisons, such as 
the Chemistry-Climate Model Validation (CCM-Val; SPARC, 2010) (Eyring, et al., 2010) and the 5 
ACCMIP. In this study we use the experiment REF-C1, which is analogous to the REF-B1 
experiment of CCMVal-2 (Table S30 in Morgenstern et al., 2017). REF-C1 require to use historic 
forcing and observed sea surface conditions. The models are free-running and simulate the 
recent past (1960–2010). We did not choose to use REF-C1SD (specified dynamics) because 
specified dynamics nudged the wind and temperature of the model to be constrained to the 10 
reanalysis data. The long-term climatological biases relative to the reanalysis between the 
models are minimized. Our study aims to find a correlation between the present day radiative 
bias and the RF from present day to future by the model predictions. Therefore, we prefer to 
keep the model differences in simulating longer-term climatology between their free runs. 
 15 
We note that SOCOL3 and EMAC are both based on different versions of the ECHAM5 climate 
model. We also added two additional model simulations with AM3 from NOAA and CESM from 
NCAR. These two simulations are not the specific CCMI experiment run; however, these two 
models have been used in many studies, and including them in this study provides more useful 
information on the TOA flux diversity among the most recent models.  20 
 
 
4.2 Tropospheric Chemistry Reanalysis (TCR-1) data 
 
We computed the biases in the geophysical variables between the model and the reanalysis 25 
data. To compute the O3 bias in models, we used the satellite-based O3 reanalysis from multi-
constituent multi-satellite data assimilation: Tropospheric Chemistry Reanalysis version 1 (TCR-
1) (Miyazaki, et al., 2015;Miyazaki and Bowman, 2017) as the best synthesis of the observations. 
The reanalysis provides comprehensive spatiotemporal and multi-variable evaluation of model 
performance that complements direct comparisons against individual measurements, which 30 
may suffer from significant sampling bias (Miyazaki and Bowman, 2017). 
  
TCR-1 assimilated multiple species data from multiple satellite products for the period from 
2005 to 2017, e.g., combined TES and MLS observations for O3, integrated OMI, SCIAMACHY 
and GOME-2 for tropospheric NO2 column, MOPITT for CO, and MLS for HNO3. TCR-1 used a 35 
global CTM MIROC-Chem (Watanabe, et al., 2011) as a forecast, which includes 92 species and 
262 reactions. The model has 2.8° horizontal resolution with 32 vertical layers up to 4 hPa. The 
data assimilation was based on an ensemble Kalman filter with 32 ensemble members, which 
was used to simultaneously optimize concentrations and emissions of various species. 
  40 
As summarized by Miyazaki and Bowman (2017), the mean bias in the reanalysis dataset 
against the WOUDC ozonesonde observations is from −3.9 to −2.9 ppb at the NH high latitudes 
(55°N –90°N); −0.9 to −0.1 ppb at the NH mid-latitudes (15°N –55°N); and −1.0 to −0.1 ppb at 
the SH mid-latitudes (55°S –15°S), between 850 and 500 hPa. On average, the bias is about 0.9 
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ppb at the tropics and mid-latitudes between 500 and 200 hPa. These biases are much smaller 
than biased in the model simulation without data assimilation, demonstrating that the multi-
satellite data assimilation provides comprehensive constraints on the entire tropospheric 
profile of O3. 
  5 
For the purpose of consistency, we also use outputs of H2O, Ta, and Ts from the reanalysis to 
estimate the model biases. In the reanalysis calculation, meteorological fields simulated by the 
atmospheric general circulation model MIROC-AGCM (Watanabe et al., 2011) were nudged 
toward the 6-hourly ERA-Interim meteorological reanalysis (Dee et al., 2011) for zonal wind (τ = 
1 day) and temperature (τ = 3 days) to reproduce past meteorological fields while simulating 10 
short-term (<six hours) meteorological variations, which were used to drive the CTM, as 
similarly employed in CCMI C1SD simulations. Thus, the reanalysis dataset provides realistic and 
comprehensive estimates for both chemical and meteorological fields required for the TOA flux 
evaluations. 
 15 
5. Results 
 
5.1 The latitudinal distribution of the TOA flux bias 
 
Figure 3 shows the latitudinal distribution of the zonal and annual mean of the TOA flux bias 20 
from each model relative to the reanalysis. The largest divergence between models is located at 
the tropics where most models underestimate the flux with the exception of CMAM. The low 
bias in the model ensemble implies the model atmosphere is more opaque than the chemical 
reanalysis leading to a 133 mWm-2 outgoing flux reduction on average. The TOA flux in an 
opaque atmosphere is less sensitive to changes in tropospheric composition than a more 25 
transparent one. Under those conditions, the models would underestimate the radiative 
feedback from composition since the IRKs estimated under an opaque atmosphere will be 
weaker than those under a realistic (more transparent) atmosphere.  
 
Two models that have larger low biases at the equatorial region than other models are SOCOL3 30 
and MRI-ESM1r1. Their global means of the flux bias are more than –200 mWm-2 (Table 2). The 
following analysis will help to clarify the source of the bias in the models. 
 
5.2 Flux bias attribution 
 35 
The total TOA flux bias is caused by biases from atmospheric composition and temperature. In 
order to determine the primary drivers of these biases, we apply the IRKs to the differences 
between model and the chemical reanalysis as described in Equation (3). Figure 4 shows the 
contribution of O3 (blue), H2O (green), Ts (red), and Ta (yellow) for each model to the total TOA 
flux bias (black). The global mean bias is summarized in Table 2.  40 
 
In general, O3 and H2O are the two dominant drivers for most models where the large biases 
are concentrated in the tropics and subtropics. There are only three models (GEOSCCM, CMAM, 
and CESM) whose O3 radiative biases (𝛿𝐹#] in Table 2) are less than 50 mWm-2 and are almost 
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negligible zonally. While the flux bias is better represented in these models it does not follow 
that they represent more accurately tropospheric O3 as will be shown in the following section. 
The other five models (AM3, SOCOL3, EMAC-L47MA, EMAC-L90MA, and MRI-ESM1r1) have 
significant negative peaks at low latitudes (Fig. 3 and 4), actually resulting from their strong O3 
contributed biases (from 80 to 180 mWm-2, numbers are highlighted in Table 2).  5 
 
The TOA flux bias from H2O is the second largest component for most models. Similar to O3, 
most models show the fluxes are biased low in the tropics due to the H2O uncertainties with the 
exception of CMAM, which has the strongest global mean bias (127.9 mWm-2). Note that, in the 
reanalysis, no data assimilation (or nudging) was applied for specific humidity. Watanabe et al 10 
(2011) demonstrated a dry bias in the lower troposphere and a wet bias in the middle and 
upper troposphere in MIROC-AGCM, primarily attributable to temperature biases. Nevertheless, 
the reported H2O biases can be greatly reduced in the reanalysis, because of the nudging 
applied for temperature. 
 15 
The flux bias due to Ta is found to be negligible in all models, which indicates that the model Ta 
estimates provide reasonable radiative fluxes. Ts radiative bias is also meridionally weak relative 
to the flux bias in O3 and H2O (Fig 4). With the exception of CMAM, the Ts ensemble global 
mean bias is less than 35 mWm-2 (see Table 2). Figure 4 suggests the strong bias from Ts in 
CMAM (–100.2 mWm-2 ) comes from the two subtropical regions.  20 
 
Interestingly, the positive flux bias due to H2O (127.9 mWm-2) is compensated by the negative 
flux bias due to Ts (–100.2 mWm-2) in CMAM leading to the lowest global mean in 𝛿𝐹 (42.9 
mWm-2, calculated with Equation 5). This compensation is also true for AM3 but between a 
positive H2O radiative bias (87.7 mWm-2) and negative O3 radiative bias (-140 mWm-2). This 25 
analysis reveals that these two models are both right but for wrong—and opposite--reasons. 
 
However, all the other models have a strong negative global mean bias and are mostly driven 
by the two major components (O3 and H2O). SOCOL3 and MRI-ESM1r1 are the two models that 
have the strongest low bias up to –200 mWm-2, which is mainly due to their strong O3 radiative 30 
bias (–180 mWm-2). Their O3 estimates are both biased high in the tropics and subtropics. We 
will show later that such bias is particularly strong in the upper troposphere.  
 
5.3 Vertically-resolved radiative bias of the O3, H2O and T 
 35 
The zonal flux biases among the models are both significant and mainly in the tropics.  However, 
those biases are the vertically integrated product of the model profile bias and the IRKs both 
with their own vertical structures. The vertically-resolved radiative bias can provide more 
insight into the processes leading to the biases. To further investigate, we examined the 
vertically-resolved flux bias for O3, H2O and Ta (Fig. 5-7) and the global distribution for Ts (Fig. 8). 40 
These are computed from Equation 3 before the vertical summation.  These figures show that 
the maximum contribution to the flux bias is a balance between the peak of the IRKs (Fig 1) and 
the peak of the geophysical quantities’ bias (Fig. 9-12). The positive tropical O3 radiative bias for 
GEOSCCM, CMAM, and CESM is commonly centered in the mid-troposphere corresponding to 
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the peak of the IRKs (Fig. 5). On the other hand, the primary O3 flux bias contribution in the 
tropics for SOCOL3, EMAC-L47MA, EMAC-L90MA, and MRI-ESM1r1 is in the upper troposphere 
around 200 hPa even though the IRKs are roughly half the peak sensitivity.  These strong 
negative biases exceed 15 mWm-2.  
 5 
The strong tropical H2O radiative bias collapses to shallower tropical regions below 400 hPa and 
is maximized near 800 hPa for most models exceeding 50 mWm-2 (Fig. 6). CMAM has the 
unique and strongest net positive bias of above 50 mWm-2 centered lower and close to 900 hPa. 
While most models flux bias is centered near 800 hPa, particularly, GEOSCCM, AM3, and CESM 
show a more vertically uniform—and opposing—flux bias.  10 
 
Figure 7 indicates that tropical Ta radiative bias is largely negligible for vertical layers above 600 
hPa as a consequence of the rapid decrease in sensitivity of the Ta IRKs. The maximum bias is in 
the lower troposphere between 900 hPa to surface. CMAM and CESM both show the strongest 
positive bias exceeding 10 mWm-2 over most of the tropics. However, CESM has a 15 
compensating negative bias from 700-800 hPa that leads to a mean global bias of only 6.4 
mWm-2 (Table 2), whereas CMAM has a positive bias throughout, leading to an atmospheric Ta 
radiative bias of 22.5 mWm-2, the largest of the models studied here.  
 
Surprisingly, the model ensemble Ts turns out to be the 2nd largest contributor to the total bias 20 
(Table 2) instead of H2O, driven primarily by 3 models: CMAM, CESM, and GEOSCCM as shown 
in Fig. 8. CMAM shows a negative bias that covers all of Africa, exceeding 500 mWm-2, and Asia 
centered over India.  Consequently, CMAM has the largest total bias (−100.2 ± 93.3 mWm-2).  
CESM and GEOSCCM Ts radiative biases, on the other hand, are centered at high latitudes in the 
Western Hemisphere over the Eastern US and Canada exceeding 300 mWm-2. 25 
 
The vertically and spatially concentrated radiative biases provide clues as to what processes are 
the most important for the total flux bias. These processes drive the distribution of the 
constituents, which we will discuss in detail in the next sections. 
 30 
 
5.4 The spatial source of TOA flux bias 
 
The source of the attributed flux biases can be traced back to their spatial origins, which can 
provide more insight into the underlying processes and the differences between the models.  35 
 
5.4.1 O3 bias 
 
Figure 9 shows a vertically resolved zonal averaged distribution of O3 biases between the model 
and the chemical reanalysis similar to that in Fig. 5.  Three models (GEOSCCM, CMAM, and 40 
CESM) have the weakest globally averaged O3 radiative bias reported in Table 2 (−33.5 mWm-2, 
−7.3 mWm-2, and 3.3 mWm-2). These three models also have the lowest O3 bias in tropical 
troposphere on average (−1.1 ppb, −1.3 ppb, and 3.0 ppb, reported in Table 3) and as a 
consequence have weaker radiative bias in the region with the strongest O3 IRK globally (0.9 
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mWm-2, 1.4 mWm-2, and 2.1 mWm-2, reported in Table 4). On the other hand, the O3 bias is 
greater than 7 ppb for all the other models and results in a large O3 radiative bias in the tropics, 
especially SOCOL3 (13.4 ppb in the tropical O3 bias and -9.2 mWm-2; see Table 3 and Table 4) 
and MRI-ESM1r1 (13.7 ppb and −10 mWm-2).  
 5 
GEOSCCM, CMAM, and CESM also commonly have a vertically compensated pattern in the 
tropics that biased high in the upper troposphere while biased low in the middle and lower 
troposphere (Fig. 9). Their O3 low biases in the middle troposphere are approximately 5 to 10 
ppb, where the peak of the IRK centered, but the high biases in the upper troposphere are 
about 5 ppb. Such a high-low pattern leads to compensation during the vertical integration 10 
through the troposphere into the radiative effect at the top of the atmosphere. The 
corresponding vertical resolved O3 radiative bias for these three models in Fig. 5 shows the 
consistent tropical vertical distribution but in an opposite sign since the O3 IRK is negative. In 
contrast, the other five models have vertically systematic biases high in the tropical O3, and the 
biases increase from the middle troposphere to the upper troposphere. Especially SOCOL3 and 15 
MRI-ESM1r1 strongly overestimate O3 by more than 20 ppb in a wide region of tropical upper 
troposphere.  The O3 radiative biases in this region remain significantly high, stronger than −15 
mWm-2, causing these two models to have the highest O3 radiative biases in the global and 
annual mean (both about −183 mWm-2). 
 20 
The systematic bias in the entire tropical tropospheric O3 and strong overestimation of upper 
troposphere in SOCOL3 and MRI-ESM1r1 could be caused by several factors. For example, the 
transport from the lower stratosphere could be too high. Alternatively, precursor emissions of 
tropospheric O3 could also be too high. The analysis with the spatially explicit biases provides 
important clues to implicate the specific processes that individual modeling groups can 25 
investigate. 
 
The GEOSCCM has been used to study the tropospheric O3 response to variations in the El Nino-
Southern Oscillation (ENSO) where (Oman, et al., 2011;2013) compared the model to satellite 
observations. These regular comparisons may have led to the improved simulation of 30 
tropospheric O3 profiles and consequently lower vertical O3 bias. The GEOSCCM model in the 
CCMI study uses the tropospheric/stratospheric chemical package developed within the Global 
Modeling Initiative (GMI) program (Duncan, et al., 2007) which has more realistic ozone 
chemistry, an internally generated quasi-biennial oscillation, an improved air/sea roughness 
parameterization and other improvements (Oman and Douglass, 2014). 35 
 
Nielsen, et al. (2017) showed that GEOSCCM successfully reproduces the changes in the quasi-
global (60°S–60°N) annual-mean trend in total O3 column since 1960s to the present day. For 
the present-day atmosphere, simulated tropospheric partial column O3 from GESCCM Ref-C1 
for CCMI was compared to satellite observations of OMI and MLS (Ziemke, et al., 2011). The 40 
differences are mostly a few Browner Dobson (DU) except the Northern Hemisphere subtropics 
and middle latitudes in autumn and winter with the 4–6 DU biases which are under 
investigation.  
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The finding that SOCOL3 and MRI-EMS1r1 both have strong overestimates in the tropical upper 
troposphere is also understandable. SOCOL3 is the third generation of the coupled chemistry-
climate model (CCM) SOCOL (modeling tools for studies of SOlar Climate Ozone Links). Several 
steps have been taken to improve the SOCOL model simulation of O3. Stenke et al., 2013 first 
attempted to reduce the O3 bias in their middle-atmosphere by updating their middle-5 
atmosphere general circulation with an advanced advection scheme. Revell, et al. (2015) 
revealed that ozone precursor emissions are the biggest players that control the global-mean 
change in tropospheric ozone. In a parallel study, Revell, et al., 2018 developed an updated 
version of “SOCOL3.0”, “SOCOL3.1”, to reduce the tropospheric ozone bias. By improving the 
treatment of ozone sink processes, the tropospheric column ozone bias in “SOCOLv3.1” is 10 
reduced up to 8 DU, mostly due to the inclusion of N2O5 hydrolysis on tropospheric aerosols. 
We expect that the future similar analysis with the SOCOL3.1 could show a reduced flux bias for 
this model. 
 
Meanwhile the strong tropical upper tropospheric O3 biases in MRI-EMS1r1 are believed to be 15 
related to the weak tropical convective updraft and the large lightning NOx emissions in the 
model. The model with weak updraft fails to bring enough low O3 air from the surface to the 
upper troposphere in the tropics or overestimates the upper tropospheric mixing of 
stratospheric ozone-rich air. In addition, the global lightning NOx (LNOx) emission used in MRI-
EMS1r1 is 10 TgN/yr. The best estimate of annual mean LNOx based on satellite data 20 
assimilation is 6.3 TgN/yr (Miyazaki, et al., 2014). The LNOx in GEOSCCM is approximately 5 
TgN/yr (Martini, et al., 2011), which shows less tropical upper tropospheric O3 bias compared to 
MRI-EMS1r1. Thus, the overestimation of the O3 precursor in the upper troposphere is another 
reason for too much O3. Figure. A1 shows the improvement in the radiative biases due to less 
O3 bias in the experiment by half the LNOx emissions in MRI-EMS1r1 (see the appendix). 25 
 
In summary, the potential reasons for the prevalence of O3 radiative bias in tropical mid and 
upper troposphere in the models could be due to following facts: (1) the tropical O3 IRK is 
strongest in this region (Fig. 2); (2) the largest O3 bias in the models also centered in the same 
place (e.g. SOCOL3 and MRI-EMS1r1, Fig. 9); 3) the simulations with the systematic bias 30 
throughout the tropical troposphere, when vertically integrated, accumulated into a larger 
column bias when compared to the models with vertically random biases. 
 
 
 35 
5.4.2 H2O bias 
 
H2O turns out to be the primary contributor for three models (GEOSCCM, CMAM, and CESM) 
since their O3 radiative bias is small. It is also the second dominant driver after O3 in the other 
five models. Different from O3, H2O IRKs in Fig. 2 show the strongest sensitivity to the tropical 40 
lower troposphere centered at 800 hPa, where H2O is most concentrated globally. We found 
the model biases in H2O are strongest in the tropical lower troposphere. It explains why the 
strongest radiative bias from H2O is also located in the tropical region near 800 hPa in all 
models as shown in Fig. 6. Figure 10 and Table 3 further help to indicate that  H2O is biased low 
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only in two models, AM3 (–586.5 ppm) and CMAM (–506.6 ppm). We note that H2O IRKs are 
also negative as O3. Therefore, these two models have the unique overestimates in H2O 
radiative bias at low latitudes (see Fig. 4) while all the other models are predominantly biased 
high in tropical H2O concentrations, which result in the negative radiative biases.  
 5 
5.4.3 Ta bias 

 
We found the Ta radiative biases in these model ensembles are all negligible. There are two 
reasons. One is that the Ta biases are small overall (less than 2 K) even at the tropical lower 
troposphere (below 1 K on average in Table 3). The other reason is that the compensation in 10 
the vertical integration helps to reduce the radiative bias at the top of atmosphere. 
 
Figure 11 shows that the model biases in Ta range within ±2 K for all the models because the 
current chemistry-climate models have been well-developed to simulate the global 
atmospheric Ta fields relative to reanalysis. The region with strongest sensitivity, identified by 15 
the Ta IRKs (Fig. 2), is the tropical lower troposphere (the region within ±30° and below 800 hPa). 
The Ta biases in the tropics shift between positive and negative vertically in most models except 
CMAM, which is systematically biased (Fig. 11). The oscillated Ta biases suggest that simulated 
air temperatures stay around the reanalyzed profiles. These models better represent the air 
temperature than the trace gases like H2O and O3. The oscillation around the reanalyzed profile 20 
leads to vertical compensation in the air Ta radiative bias. Therefore, the flux bias from Ta is a 
small component compared to the radiative bias from O3 and H2O. Figure 4 suggests the only 
model that has a small tropical peak in the Ta radiative component is CMAM, which has the 
strongest Ta radiative bias (22.5±40.5 mWm-2 in Table 2) among all the models. Figure 11 shows 
that this model has a deep region with strong bias of about 2 K at tropical and also persistently 25 
overestimated Ta vertically. Figure 7 further suggests the strong radiative bias in CMAM mainly 
comes from the tropical lower troposphere (>10 mWm-2 below 800 hPa). While the other 
models have vertical compensation in the tropics (less than 0.5 K bias on average, see Table 3) 
and therefore they are less biased in TOA flux (less than 1 mWm-2 in Table 4). The two EMAC 
models both have strong biases at the southern high latitude but still have weak radiative effect 30 
at this region (see Fig. 7) due to much weaker Ta IRK at high latitudes. 
 
5.4.4 Ts bias 
 
The global distribution of the Ta biases indicates that the biases in Sea Surface Temperature 35 
(SST) are smaller than the biases in land Ts for all the models (Fig. 12) because the CCMI 
experiment (REF-C1) selected in this study used the observed SST. CMAM is the model that has 
the strongest Ts radiative bias (-100.2 ±93.3 mWm-2 in Table 2) which peaks in both sub-tropical 
regions (Fig. 4). These large negative biases are due to the large underestimates of the Ts  over 
the major deserts, e.g., the Sahara, Middle East and Australia (Fig. 12). In other words, the real 40 
deserts’ surface is hotter than the model’s prediction. At the same time, the Ts IRKs at the 
subtropical desert region are also strongest globally since the TOA flux is more sensitive to Ta 
when the atmosphere is transparent, which is due to the downdraft of the Hadley cell control 
the region (Kuai et al., 2017). The downwelling airflow results in less precipitation and less 
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cloud as well as higher Ts during summer over the desert surface. These factors cause the 
CMAM to have the largest Ts radiative bias compare to all the other models. 
 
In contrast, two EMAC models and MRI-ESM1r1 also have strong high bias in Ts at Siberia (> 4 K 
in Fig. 12) but the radiative bias is much less significant compared with the Middle East in 5 
CMAM in Fig. 8. The Ts IRKs are weaker during the winter season at high latitudes than the low 
latitudes if the Ts is low (Fig. 2). However, the IRKs at the subtropical desert region stay strong 
during winter. Therefore, the annual mean of the Ts radiative bias is much weaker at Siberia in 
two EMAC models and MRI-ESM1r1 than the Middle East region in CMAM. Consequently, the 
global annual means of the Ta radiative biases for two EMAC models and MRI-ESM1r1 are small 10 
although the large biases in Ts are found in their Siberia region.  
 
6. Correlation to the broadband OLR 
 
The analysis up to this point has been limited to the 9.6 micron band. We posed the question as 15 
to whether biases in this band could provide any insight into biases in the entire OLR band.  To 
that end, we found an anti-correlation (R = – 0.6) between the global mean of the O3 band flux 
biases and the clear sky broadband OLR calculated internally by the models as shown in Fig. 13 
(a).  The CMAM OLR is inconsistent with the ensemble (more than 2 Wm-2 higher than all the 
other models) and therefore it is excluded in the correlation. Interestingly, a very similar 20 
regression line and anti-correlation coefficient (R = – 0.6) are found between the O3 radiative 
bias and the broadband OLR (Fig. 13 b). The similar regression line indicates that the O3 
radiative bias dominates the 9.6-micron TOA flux distribution, which is confirmed by the 
attribution analysis that O3 radiative bias is the largest term in five of eight models. The anti-
correlation suggests a radiative compensation between the 9.6-micron band and the other 25 
parts of the OLR assuming a constant globally integrated OLR at TOA. More interestingly, a 
strong correlation (R = 0.9) is found between Ts radiative bias and broadband OLR (Fig. 13 [c]) 
because the Ts affects the entire baseline of the outgoing radiance and its radiative effect plays 
the same role in the O3 band as in the entire OLR. However, there is no significant correlation 
found between Ta radiative bias and OLR, likely because there is no coherent bias in Ta radiative 30 
effect between the O3 band and in the entire OLR. There is neither a correlation between the 
H2O radiative bias and broadband OLR. H2O absorption is ubiquitous in the OLR. Consequently, 
biases in the 9.6-micron band do not drive the magnitude of the overall H2O absorption in spite 
of the H2O biases. 
 35 
The anti-correlation between the biases in the 9.6-μm band and in the entire OLR band would 
suggest some bias drivers in the 9.6-μm band must play different roles at the other part of the 
OLR band. The further investigation of these processes would help to explain the radiative 
effect of different biases on the OLR estimations from models (Huang, et al., 2008)(Huang, et al., 
2014). 40 
 
7. Conclusions 
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We have demonstrated a new method to quantitatively attribute the biases in O3 band TOA flux 
from chemistry-climate model ensembles to O3, H2O, Ta, and Ts radiative components without 
cloud effect using observationally-constrained IRKs in the clear sky. The study also provides the 
first vertically and globally resolved view of the radiative bias for each component.  An IRK 
depicts the sensitivity of TOA fluxes to the vertical distribution of the geophysical quantities, 5 
such as O3, H2O, Ta, and Ts.  While the products of 9.6-μm O3 band IRK for O3, H2O, Ta, and Ts 
have been developed with the satellite observations by Aura TES, the record could be extended 
by MetOP-IASI and SNPP-CrIS Fourier Transform Spectrometer (FTS) measurements. We 
compute the model biases against reanalysis data for four key variables: O3, H2O, Ta, and Ts. 
Especially for O3 biases, the newly developed TCR-1 O3 assimilation data (Miyazaki et al., 2015; 10 
Miyazaki and Bowman 2017) are, for the first time, used as the state-of-the-art benchmark for 
tropospheric O3 in models. These specific bias comparisons for the CCMI study cause the 
modelers to investigate the reasons for these biases and motivate them to improve their 
simulations. For example, MRI-ESM1r1 shows the reduced LNOx emission help to improve their 
tropical upper tropospheric O3 and its radiative bias. 15 
 
O3 abundance is found to be the dominant driver for the ensemble flux bias. Tropical 
tropospheric O3 is too high for most models and accounts for about 70% of the flux bias (Table 
2). The second driver in the model ensemble becomes the Ts instead of H2O because the Ts 
radiative components are commonly biased low in the model ensemble while the H2O radiative 20 
biases between models are biased randomly in both directions with large diversity. For 
individual models, however, H2O is the second most important driver, a larger component than 
Ts, for many cases, such as AM3, SOCOL3, and MRI-ESM1r1.  
 
In addition to determining that the tropospheric O3 and H2O are overestimated, and the surface 25 
is too cold, the study also tells us the geolocations, in latitudes and altitudes, of the deviations 
in these geophysical quantities that propagate into the flux bias.  
 
The largest spread of the flux bias between the models is found in the tropics. The principal 
contributors governing each model are different and controlled by different processes over 30 
different regions. The flux biases in five of the eight models (AM3, SOCOL3, EMAC-L47MA, 
EMAC-L90MA, and MRI-ESM1r1) are primary driven by too much O3 in the tropical middle and 
upper troposphere. H2O is a big driver in five models (AM3, SOCOL3, GEOSCCM, CMAM, and 
CESM). Ts is an important contributor in CMAM in addition to its H2O. 
 35 
Although AM3 and CMAM overall have relative lower TOA flux biases globally, we found they 
are actually right for wrong reasons.  In AM3, the dominant positive H2O radiative bias (87.7 
mWm-2 in Table 2) happens to be cancelled by the dominant negative O3 component (–140 
mWm-2).  While in CMAM, the large positive H2O component (127.9 mWm-2) is mostly be 
compensate by Ts radiative bias (–100.2 mWm-2). The two relatively young models among the 40 
model ensembles, SOCOL3 and MRI-ESM1r1, have a large potential to be improved for their 
fluxes by reducing their strong negative radiative biases from both tropical upper tropospheric 
O3 and tropical lower tropospheric H2O. 
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On average, the model ensemble underestimates the flux by about 133 mWm-2 due to 
overestimated tropical tropospheric O3 and H2O. The underestimate of the TOA flux implies the 
model atmosphere is too opaque. In a more opaque atmosphere, the change in flux will be 
weaker for the same change in tropospheric O3 because the sensitivity (i.e., IRKs) is weaker. 
With such feedback, the O3 RF, the changes in O3 GHG effect from pre-industrial times to the 5 
present day, would likely be underestimated. The opacity of the atmosphere is controlled by 
climate processes, such as the hydrological cycle, that is showed can indirectly affect the O3 
GHG effect and RF, as discussed in Kuai et al., (2017).  
 
The spatially explicit and process-focused differences could be used as a basis for emergent 10 
constraints (Bowman et al, 2013).  New techniques such as hierarchical emergent constraints 
(HEC) can harness this spatial information so that specific processes affecting O3 RF can be 
identified (Bowman, et al., 2018). Moreover, if this correlation exists between the TOA flux bias 
and the O3 RF, then the similar issue could be found in the RF of other GHGs, such as CO2 and 
CH4. That is a subject for future research. 15 
 
Finally, although the chemical reanalysis dataset provides comprehensive information on model 
radiative biases, we need to understand its performance. For instance, further improvements 
are still needed for lower tropospheric O3 (Miyazaki and Bowman 2017). Ingesting more 
datasets and applying a bias correction procedure would be useful to improve reanalysis 20 
accuracy. The lower tropospheric O3 analysis would benefit from the recently developed 
satellite retrievals with high sensitivity to the lower troposphere (Fu, et al., 2018) and the 
optimization of additional precursor emissions. 
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Appendix 10 
 
Here we compare the MRI-EMS1r1 experiment run: RefC1_50%LNOx with its RefC1 run. The 
new run’s emission decreases by about 50% compared with the original run. The global 
lightning NOx emission annual mean in 2006 simulated in the experiment run is reduced from 
~10.79 TgN/yr in RefC1 to ~5.21TgN/yr. The 10-year average changes from ~10.44 TgN/yr to 15 
~5.18 TgN/yr. 
 
We found the total flux bias is much reduced due to the improved O3 radiative bias (Fig. A1 top 
two plots). As we expected, the vertical resolved O3 radiative bias shows that the 
overestimation of the tropical upper tropospheric O3 radiative bias is much weaker in the new 20 
run (the middle two panels). This improvement is due to the lower O3 biases in this region 
caused by reduced LNOx emission (the bottom plots). 
 
We also see some changes in the latitudinal distributions of the H2O radiative bias. This is 
because the reduction of the upper tropospheric O3 will cause the model responses in the O3 25 
heating rate, which would have radiative effect on the temperature, atmospheric stabilities, 
and convective activity (Nowack, et al., 2015). All these factors would impact water vapor and 
cloud formation.  
 
 30 
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Figure 1. The clear sky TES observed TOA flux at 9.6-μm O3 band, annually averaged in 2006. 
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Figure 2. TES 2006 IRK for four primary components (O3, H2O, Ta, and Ts). Figures (a), (c), and (e) 
are IRK of latitudinal band averages in the tropics (30°S~30°N), mid-latitudes of both 
hemispheres (30°~60°), and high-latitudes of both hemispheres (60°~90°). The figures below 10 
them are the pole-to-pole vertical distribution of the zonally averaged IRK. The global 
distribution of IRK for Ts is plotted for winter season (December to February) in (g) and summer 
season (June to August) in (h).  

 
 15 
 



23 
 

 
Figure 3. The latitudinal distribution of the zonal flux bias (model – reanalysis) with latitude 
weight. 
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Figure 4. The attribution of the total TOA flux bias for each model to four dominant 
components and their latitudinal distribution. The black curves are the same as the colored 
curves in Figure 3. 
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Figure 5. Vertical resolved O3 radiative bias. The black curves are the zero lines. 
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Figure 6. Vertical resolved H2O radiative bias. The black curves are the zero lines. 
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Figure 7. Vertical resolved Ta radiative bias. The black curves are the zero lines. 
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Figure 8. Global distribution of the Ts radiative bias. 
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Figure 9. The zonal averaged vertical-latitudinal distribution of O3 model biases to the TCR-1 O3 
assimilation data. The black curves are the zero lines. 
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Figure 10. The zonal averaged vertical-latitudinal distribution of H2O biases (model to the ERA 
reanalysis data). The black curves are the zero lines. 
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Figure 11. The zonal averaged vertical-latitudinal distribution of Ta biases from models to the 
reanalysis data. The black curves are the zero lines. 
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Figure 12. The global distribution of Ta biases from models to the reanalysis data 
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Figure 13. The correlation of the ozone band TOA flux biases to the model calculated 
broadband OLR (a) and the correlation of the attributed radiative components to the 
broadband OLR (b – e). 5 
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Fig. A1. The comparison of the MRI-ESM1r1 experiment of half LNOx in total flux bias (top 
row), O3 radiative bias (middle row), and O3 bias (bottom row). Left: new run with half LNOx. 
Right: RefC1 run.  5 
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Table 1. The chemistry-climate models and their experiment simulations 
 

  Model  Institutes  CCMI runs 

1  CMAM 
CCCma, Environment and Climate 
Change Canada  REF-C1  r1i1p1  v1 

2  SOCOL3 ETH-Zurich, PMOD/WRC   REF-C1  r1i1p1  v1 
3  GEOSCCM NASA/GSFC  REF-C1  r1i1p1  v1 
4  EMAC-L47MA DLR-IPA,KIT-IMK-ASF,KIT-SCC-SLC, 

FZJ-IEK-7,FUB, UMZ-IPA,MPIC, CYI 
 REF-C1  r1i1p1  v1 

5  EMAC-L90MA  REF-C1 r1i1p1  v1 
6  MRI-ESM1r1 MRI  REF-C1  r1i1p1  v1 
7  AM3 NOAA GFDL - - - 
8  CESM NCAR - - - 

 
 ERA-Interim,  
 TCR-1 Reanalysis - - - 

 
 
 5 
 
 
 
Table 2 The global mean of the flux bias (mWm-2) and the dominant components due to 
tropospheric O3, H2O, Ta, and Ts. The numbers in parentheses are the standard deviation of the 10 
zonal distribution. For the ensemble, the standard deviation is computed from the variation 
between the models. The highlighted red numbers are the extreme values for the large biases. 
Two green numbers highlight the models that have relative small global and annual averaged 
TOA flux bias. 

 15 

Models 𝛿𝐹	
 	

𝛿𝐹"_  𝛿𝐹"̀ 	 𝛿𝐹ab#	 𝛿𝐹#c 	
AM3 –78.1 (46.2) –11.7 (30.0) –14.2 (7.8)  87.7 (76.4) –140 (117.1) 
SOCOL3 –283.6 (290.0) –11.6 (22.3) 5.9 (13.9) –94.5 (124.6) –183.5 (187.5)  
GEOSCCM –139.9 (112.0) –27.2(38.5) 1.1 (12.0) –80.3 (120.9) –33.5 (28.0)  
CMAM 42.9 (118.5) –100.2 (93.3) 22.5 (40.5) 127.9 (100.7) –7.3 (28.8) 
EMAC-L47MA –154.4 (150.0) –3.3 (27.3) 2.9 (14.8) –28 (56.1) –125.9 (128.2) 
EMAC-L90MA –130.2 (142.7) –8.7 (36.0) –4.1 (6.6) –30.5 (63.0) –86.9 (108.7) 
MRI-ESM1r1 –228.5 (281.8) –2.7 (17.9) –0.1 (6.8) –43.6(86.6) –182 (213.7) 
CESM –91.1 (89.0) –31.1 (33.9) 6.4 (13.9) –69.7 (113.0) 3.3 (43.8) 
Ensemble –132.9 (98) –24.6 (32) 2.6 (10) –16.4 (81) –94.5 (75) 
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Table 3. Models’ bias in the tropical troposphere 
between 25°S and 25°N, and below 200 hPa. 

Models 𝛿𝑂] (ppb) 𝛿𝐻d𝑂 (ppm) 𝛿𝑇F (K) 
AM3  7.4  (5.0) –586.5 (669.9) –1.0 (0.8) 
SOCOL3  13.4 (6.8) 330.3 (1067.3) 0.1 (0.4) 
GEOSCCM –1.1(4.3) –506.6 (949.1) 0.5 (0.5) 
CMAM –1.3 (3.9) 18.1 (949.5) 1.0 (0.4) 
EMAC-L47MA 10.4 (6.1) –20.2 (729.1) –0.2 (0.6) 
EMAC-L90MA  8.2 (5.6) 203.1 (845.1) –0.9 (1.0) 
MRI-ESM1r1  13.7 (9.3) 386.9 (679.9) 0.1 (0.4) 
CESM –3.0 (4.4) 22.0 (630.7) 0.3 (0.7) 
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Table 4. Models’ flux bias (mWm-2) in the tropic troposphere  
between 25°S and 25°N, and below 200 hPa.  10 

 
Model 𝛿𝐹#c 	 𝛿𝐹ab#	 𝛿𝐹"̀ 	
AM3  -4.8 (3.7) 6.9 (10.5) -0.7 (1.4) 
SOCOL3  -9.2 (5.3) -9.1 (21.6) 1.0 (2.2) 
GEOSCCM 1.0  (3.3) -8.5 (14.1) 0.7 (1.4) 
CMAM  1.4 (2.8) 9.1 (18.5) 3.1 (5.0) 
EMAC-L47MA  -7.2 (4.8) -3.2 (15.3) 1.0 (2.9) 
EMAC-L90MA -5.6 (4.2) -2.7 (16.4) 0.2 (2.2) 
MRI-ESM1r1 -10.0 (7.4) -5.5 (16.4) 0.3 (2.0) 
CESM  2.1 (3.4) -8.3 (15.0) 1.3 (4.5) 
Ensemble -4.06 (4.90) -2.66 (7.02) 0.86 (1.1) 

 


