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Abstract. We study an ensemble of six multi-year global Bayesian CO2 atmospheric inversions that vary in terms of 

assimilated observations (either column retrievals from one of two satellites or surface air sample measurements) and transport 

model. The time series of inferred annual fluxes are first compared with each other at various spatial scales. We then objectively 

evaluate the small inversion ensemble based on a large dataset of accurate aircraft measurements in the free troposphere over 

the globe, that are independent from all assimilated data. The measured variables are connected with the inferred fluxes through 5 
mass-conserving transport in the global atmosphere and are part of the inversion results. Large-scale annual fluxes estimated 

from the bias-corrected land retrievals of the second Orbiting Carbon Observatory (OCO-2) differ from the prior fluxes much, 

but are similar to the fluxes estimated from the surface network within the uncertainty of these surface-based estimates. The 

OCO-2- and surface-based inversions have similar performance when projected in the space of the aircraft data, but relative 

strengths and weaknesses of the two flux estimates vary within the Northern and Tropical parts of the continents. The 10 
verification data also suggests that the more complex and more recent transport model does not improve the inversion skill. In 

contrast, the inversion using bias-corrected retrievals from the Greenhouse Gases Observing Satellite (GOSAT) or, to a larger 

extent, a non-Bayesian inversion that simply adjusts a recent bottom-up flux estimate with the annual growth rate diagnosed 

from marine surface measurements, estimate much different fluxes and fit the aircraft data less. Our study highlights a way to 

rate global atmospheric inversions. It suggests that some satellite retrievals can now provide inversion results that are, despite 15 
their uncertainty, comparable in credibility to traditional inversions using the accurate but sparse surface network and that are 

therefore complementary for studies of the global carbon budget.  

1. Introduction 

Carbon dioxide (CO2) is increasingly monitored in the global atmosphere due to its important role in climate change. For 

example, NOAA’s GlobalView Plus Observation Package (ObsPack, Cooperative Global Atmospheric Data Integration 20 
Project, 2018) archives high-quality measurements made at the surface or from aircraft by various institutes. Despite occasional 

budget difficulties (Houweling et al., 2012), the number of collected data points has exponentially increased over the years, 

with, in reference to 1980, six times more measurements in 2000 and 100 times more measurements in 2017. In addition, the 

ground-based Total Carbon Column Observation Network of column retrievals (TCCON, Wunch et al., 2011) is less than 15 

years old but already operates about 30 sites over the globe. Other measurements, like the recent AirCore technique that 25 
samples air in freefall tubes (Karion et al., 2010) or the COllaborative Carbon Column Observing Network (COCCON, Frey 

et al. 2018), have also emerged in the past decade. Most remarkably, the number of spectrometers designed to monitor the CO2 

column from space has grown from one in 2002 to six at the end of 2018 (Crisp et al., 2018). The primary motivation for this 

increase of CO2 observations has been to further our understanding of the global surface fluxes of carbon, with the additional 

help of meteorological data (e.g., Bolin and Keeling, 1963; WMO, 2018). This is done in practice by inversion of atmospheric 30 
transport models within a Bayesian framework (e.g., Peylin et al., 2013). Scientists have urged caution when interpreting this 

growing amount of data because the uncertainty of the available meteorological information was identified early as a critical 

limitation on the exploitable measurement information. This limitation motivated the creation of the international Atmospheric 

Tracer Transport Model Intercomparison project 25 years ago (TransCom, Law et al., 1996) and is still relevant today (Schuh 

et al., 2018). Adequate representation of the various error statistics involved in the Bayesian estimation remains a challenge 35 
(e.g., Bocquet et al., 2011). In addition, column retrievals, made from measured radiances from space or on the ground after 

complex processing, cannot fundamentally be calibrated relative to WMO-traceable standards, in contrast to surface 

measurements like those in ObsPack GlobalView Plus. Indeed, systematic errors in the retrievals at the sub-μmol/mol level 

(10-6 mol/mol, abbreviated as part per million, ppm) are enough to affect the flux estimation (Chevallier et al. 2007), but the 

current TCCON retrievals that serve as the best reference for column retrievals with global coverage, have commensurate 40 
offset uncertainties (Wunch et al., 2015). 

A given inversion configuration is made of one or several observation types, a transport model and a few statistical models. 

Many of them seem reasonable. Though model disagreement has been reduced over the last couple of decades, current 

inversion results show an unacceptably large spread, even for zonal averages (e.g., Le Quéré et al., 2018). This study aims at 

evaluating whether simple measures of quality based on airborne measurements in the free troposphere can distinguish between 45 
six inversion configurations. These inversion configurations differ in the assimilated data and in the transport model. The 

assimilated data are either surface measurements in ObsPack and related databases, retrievals from the Greenhouse Gases 

Observing Satellite (GOSAT) or the second Orbiting Carbon Observatory (OCO-2). The transport models are two versions of 

the atmospheric general circulation model of the Laboratoire de Météorologie Dynamique (LMDz, Hourdin et al., 2013) 

nudged towards analysed meteorological variables. The Bayesian inversion system from the Copernicus Atmosphere 50 
Monitoring service (CAMS, https://atmosphere.copernicus.eu/, Chevallier et al., 2005) is used in all six inversions. We use a 

“poor man’s inversion” (Chevallier et al., 2009) based on recent bottom-up fluxes and on the global annual atmospheric growth 
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rate estimated from the average of marine surface measurements (Conway et al., 2014) to define a baseline for the skill of each 

Bayesian inversion result.  

Our use of airborne measurements in the free troposphere as verification data is motivated by their frequent, WMO-traceable 

calibration, their independence from all data assimilated here (including the measurements in the boundary layer) and their 

spatial distribution that samples all oceans and continents. Arguably they are the only CO2 dataset that possesses all of three 5 
qualities.   

In the following, data and models are described in Section 2, while Section 3 presents the various results. They are discussed 

in Section 4. Section 5 concludes the study. 

2. Model, system and data 

2.1. Transport models 10 

LMDz is the atmospheric component of the Earth system model of Institut Pierre-Simon-Laplace (Dufresne et al., 2013) which 

has been contributing to the recent versions of the Climate Model Intercomparison Project (CMIP) established by the World 

Climate Research Programme (https://cmip.llnl.gov/). Here, we use its off-line version (Hourdin et al. 2006) to simulate the 

transport of CO2. The off-line LMDz model reads a frozen archive of 3-hourly-mean meteorological data pre-computed by the 

full LMDz so that it only needs to simulate large-scale advection and subgrid transport processes (i.e. deep convection and 15 
boundary-layer turbulence). LMDz is nudged towards 6-hourly analysed meteorological variables, here either ERA-Interim 

(Dee et al., 2011) or ERA-5 (https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era5, access 31 

January 2019) with a relaxation time of 3 hours. On-line and Off-line models are consistently run at the same spatial resolution 

in order to avoid any challenging interpolation of the air mass fluxes for the subgrid processes: here 39 eta-pressure layers 

between the surface and around 80 km above sea level, and 96×96 grid-points, i.e. a horizontal resolution of 1.89o×3.75o in 20 
longitude. This configuration discretizes the 2-7 km above sea level region of the atmosphere, that will be a major focus in the 

following, into 6 to 10 layers, depending on local orography. 

We use two physical formulations of LMDz, called 5A (in code identification number 1649) and 6A (in code identification 

number 3353), as described by Remaud et al. (2018, and references therein). The gap between the two versions represents 

about six years of development from the LMDz team and includes, e.g., a complete revision of radiation, the introduction of 25 
the thermodynamical effect of ice and changes in the subgrid-scale parameterizations (convection, boundary layer dynamics) 

and in the land surface processes. For version 5A, horizontal winds are nudged towards ERA-Interim, but we use the new 

ERA-5 for LMDz6A. Therefore, the differences between the two versions cannot be exclusively attributed to subgrid-scale 

processes, since boundary variables (nudging files and land processes) differ as well.  

2.2. Inversion system 30 

LMDz is embedded within the CAMS CO2 inversion system. This system minimizes a Bayesian cost function to optimize the 

grid-cell  eight-day surface fluxes (with a distinction between local night-time fluxes and daytime fluxes, but without fossil 

fuel emissions, that are prescribed) and the initial state of CO2. To do so, it assimilates a series of CO2 observations over a 

given time window within the LMDz model. The minimization approach is called ‘variational’ because it explicitly computes 

the gradient of the cost function using the adjoint code of LMDz. Prior information about the surface fluxes is provided to the 35 
Bayesian system by a combination of climatologies and other types of measurement-driven flux estimates (e.g., Emission 

Database for Global Atmospheric Research version 4.3.2, Crippa et al, 2016, scaled globally and annually from Le Quéré et 

al., 2018, for the fossil fuel emissions or Landschützer et al., 2017, for the ocean fluxes). Details can be found in Chevallier 

(2018). Of special interest here is the fact that, when integrated over a calendar year, prior natural fluxes are zero over all land 

grid points: this implies that the interannual variability of the inferred annual-mean of terrestrial vegetation fluxes is generated 40 
by the assimilated observations only. Over a full year, the total 1-sigma uncertainty (resulting from assigned error variances 

that vary in space and time, and from assigned temporal and spatial error correlations) for these prior land fluxes amounts to 

about 3.0 GtC∙a-1. The error statistics for the open ocean correspond to a global air-sea flux uncertainty about 0.5 GtC∙a-1. 

The assimilation window is either 19 years for the surface measurements (from January 2000 until October 2018), eight years 

for the GOSAT retrievals (from January 2009 until December 2016) or four years for the OCO-2 retrievals (from September 45 
2014 until July 2018).  

2.3. Assimilated observations 
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All assimilated observations are dry air mole fraction of CO2. 

Assimilated surface air sample measurements have been selected from four large ongoing databases of atmospheric CO2 

measurements: (i) NOAA’s ObsPack (Cooperative Global Atmospheric Data Integration Project, 2018, and CarbonTracker 

Team, 2018), (ii) the World Data Centre for Greenhouse Gases archive (WDCGG, https://gaw.kishou.go.jp/), (iii) the Réseau 

Atmosphérique de Mesure des Composés à Effet de Serre database (RAMCES, http://www.lsce.ipsl.fr/), and (iv) the Integrated 5 
Carbon Observation System- Atmospheric Thematic Center (ICOS-ATC, https://icos-atc.lsce.ipsl.fr/). The list of selected sites 

is given by Chevallier (2018). Each dataset provides at least five years of measurements. The error variances assigned to these 

measurements in the inversion system correspond to transport modelling uncertainty (analytical measurement uncertainty of 

in situ CO2 data is a negligible component) and are computed as the variance of the high frequency variability of the de-

seasonalized and de-trended CO2 time series of the daily-mean measurements at each site. These variances are then inflated in 10 
order to give the same weight to each measurement day at a given location. 

GOSAT was launched in January 2009, as a joint project of Japan Aerospace Exploration Agency (JAXA), NIES (National 

Institute of Environmental Studies) and Japan's Ministry of the Environment (MOE) (Kuze et al., 2009). OCO-2 is a NASA 

satellite that was launched in July 2014 (Eldering et al. 2017). Both satellites still collect scientific data today. They orbit 

around the Earth from pole to pole with a local crossing time at the Equator in the early local afternoon. Each carry a 15 
spectrometer that measures the sunlight reflected by the Earth and its atmosphere in the near-infrared/ shortwave infrared 

spectral regions, with high spectral resolution (>~ 20,000) such that individual gas absorption lines are resolved. OCO-2 

provides spatially dense data with a narrow swath and with footprints of a few km2, while GOSAT provides coarser-resolution 

data (100 km2 at nadir) with low spatial density. Various algorithms have been developed to retrieve the column-average dry 

air-mole fraction of CO2 in the atmosphere (XCO2) from the measured radiance spectrums. For GOSAT, we use bias-corrected 20 
XCO2 retrievals from product OCO Full Physics (OCFP) v7.1 made by the University of Leicester and available from the 

Copernicus Climate Change Service for the period April 2009 – December 2016 (https://climate.copernicus.eu/). For OCO-2, 

we use NASA’s Atmospheric CO2 Observations from Space (ACOS) bias-corrected retrievals, version 9 (Kiel et al., 2018; 

O’Dell et al., 2018) from September 2014 until July 2018. In both cases, a previous release of the CAMS surface-based 

inversion contributed to the retrieval official bias-correction to some extent. We neglect this dependency in the following 25 
because other reference data are used that reduce the weight of the CAMS inversion (e.g., TCCON), and because the bias-

correction schemes rely on 2 to 5 time- and space- invariant parameters only, with internal retrieval variables (e.g., the retrieved 

vertical CO2 gradient between the surface and the free troposphere) as predictors. We do not tune the official retrieval bias-

corrections. To reduce data volume without loss of information at the scale of a global model, OCO-2 retrievals have been 

averaged in 10-s bins for the Model Intercomparison Project (MIP) of OCO-2, as described in Crowell et al. (2019), and we 30 
use them in this form. The retrieval averaging kernels, prior profiles and Bayesian uncertainty are accounted for in the 

assimilation of both types of satellite retrievals. For OCO-2 retrievals, we also use the transport uncertainty term that is 

provided by the OCO-2 MIP (Crowell et al., 2019). 

We only consider “good” retrievals as identified by variable xco2_quality_flag of each product. Both land and ocean data are 

used for GOSAT. GOSAT data over ocean have matured in the ~10 years since they were first produced, and have reached a 35 
point where they appear to have smaller biases than over land (Zhou et al., 2016). Their direct inclusion in inversions also 

appears to be beneficial (Deng et al., 2016).  However, though the ocean biases in OCO-2 have been substantially reduced 

since the initial version 7 (O’Dell et al. 2018), initial inversion tests using OCO-2 ocean observations still produced highly 

unrealistic results and are hence left out of this work.  As for GOSAT, this situation may change in time and OCO-2 ocean 

data could be beneficial in future inversion set-ups. Despite the exclusion of ocean retrievals and the 10 s averaging, there are 40 
still 65% more OCO-2 retrievals than GOSAT retrievals assimilated on average per month.   

2.4. Verification observations 

We use some specific measurements of the dry air mole fraction of CO2 as verification data. They are aircraft measurements 

in the free troposphere made between July 2009 and December 2017 and archived in different ObsPacks (Cooperative Global 

Atmospheric Data Integration Project, 2018, and NOAA Carbon Cycle Group ObsPack Team, 2018). Table 1 lists the various 45 
aircraft measurement sites, campaigns or programs. For simplicity, all sites, campaigns or programs will be referred to as 

“programs” in the following. All measurements have been calibrated to the WMO CO2 X2007 scale or to the NIES 09 CO2 

scale to better than 0.1 ppm (e.g., Machida et al., 2008; Sweeney et al., 2015). We note that no aircraft data is assimilated here 

(Section 2.3). 

We define the free troposphere as the altitudes comprised between 2 and 7 km above sea level. We avoid data below 2 km 50 
because (i) local anthropogenic emissions affect many aircraft measurements there, and (ii) some of the aircraft flew in the 
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vicinity of measurement sites that have been used in the surface-based inversions. We avoid data above 7 km because the 

measurement variations (and the flux regional signal) are much reduced there. A few outliers for which the difference between 

model and observation is larger than 40 ppm are rejected. 

We define two periods for the following statistical computations. They are based on the availability of the satellite retrievals 

and of the aircraft data in the databases used here: a “GOSAT period” from July 2009 until September 2016 and an “OCO-2 5 
period” from December 2014 until December 2017. Note that they overlap and that there is a minimum of three months 

between the temporal bounds of the verification data and the temporal bounds of the assimilated data in order to account for 

inversion spin-up and spin-down.  Figure 1 shows the geographical location of the verification data for the two periods.  

2.5. Poor man’s inversion 

In order to put the differences between inversion simulations and aircraft measurements in perspective, we compare them to 10 
an inversion that only assimilated the annual global growth rate of CO2. This baseline, called “the poor man’s inversion” by 

Chevallier et al. (2009), adjusts prior natural fluxes over land in order to fit the annual trend of globally-averaged marine 

measurements (http://www.esrl.noaa.gov/gmd/ccgg/trends/, access 10 January 2019) multiplied by a conversion factor (2.086 

GtC·ppm-1, from Prather, 2012) when combined with prior ocean and fossil fuel fluxes. The correction to the natural land 

fluxes is made proportional to the prior error standard deviations assigned within a given inversion system. In the case of the 15 
CAMS system here, the prior error standard deviations are themselves proportional to a climatology of heterotrophic 

respiration fluxes simulated by a vegetation model, with a ceiling of 4 gC·m-2·day-1. This simple approach is not Bayesian 

because prior error correlations are ignored, but it still allows transport models to fit atmospheric data with less bias than its 

prior fluxes because it closes the carbon budget in a plausible way. 

Over the ocean and for the fossil fuel emissions, we choose the same prior fluxes as for the six Bayesian inversions 20 
(Landschützer et al., 2017, Crippa et al, 2016, Le Quéré et al., 2018, see Section 2.2). However, we choose more informed 

natural fluxes over land than for the Bayesian inversions: rather than letting the inversion fully free to locate the annual land 

sinks (see Section 2.2), we take a simulation of a dynamic global vegetation model that accounts for land-use, climate and CO2 

history (simulation ORCHIDEE-Trunk in Le Quéré et al., 2018). When multiplied by 2.086 GtC·ppm-1, this combination of 

prior fluxes already fits the annual trend of globally-averaged marine measurements with a root-mean-square difference of 0.3 25 
ppm·a-1, By construction, the poor man’s adjustment brings these annual global differences to zero. 

For the comparison of the poor man’s inversion with aircraft measurements, we use LMDz5A. We start the poor man’s 

simulation on 1 January 2000 from a 3D prior initial state of CO2. We then add an offset to the simulation so that its mean bias 

with respect to NOAA’s surface measurements at South Pole Observatory (Cooperative Global Atmospheric Data Integration 

Project, 2018) over the 2010-2017 period is zero. This offset addresses the uncertainty of the initial state and the uncertainty 30 
of the 2.086 GtC·ppm-1 conversion factor. 

3. Results 

3.1. Principle 

We build an ensemble of six Bayesian inversions using the inversion system of Section 2.2, the two transport model versions 

of Section 2.1, and the three observation datasets of Section 2.3. The assimilation periods differ (Section 2.2), but the prior 35 
fluxes and the prior error model are the same. For each inversion, the posterior model simulation statistically fits its own 

assimilated data well within their 1-sigma uncertainty. Note that the surface-based inversion with LMDz5A is exactly the CO2 

inversion product 18r1 of CAMS that was released in November 2018 (http://atmosphere.copernicus.eu/). In the figures, we 

will refer to the surface-based inversions by the generic name “SURF” for simplicity.  

We first present the carbon budget estimates. We choose to look at fluxes at the annual scale only, knowing that over land, the 40 
inferred interannual variability is completely driven by the assimilated observations (because prior natural fluxes over land are 

zero on annual average for the Bayesian inversions, see Section 2.2). As we will see, it is relatively large. Except at the global 

scale, capturing the interannual variability well is particularly challenging because its estimation accumulates all errors made 

throughout the seasonal cycle. 

Then we compare the inversion performance vis-à-vis the aircraft measurements of Section 2.4, to the performance of the poor 45 
man’s inversion of Section 2.5. This comparison is made for two periods (Section 2.4). For each of them, we will only consider 

the inversions that cover the window completely, which means that the GOSAT-based (or OCO-2-based) inversions will not 

be used in the results for the “OCO-2 period” (or “GOSAT period”). The projection of the inversion fluxes onto the space of 
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the aircraft-measured variables (mole fractions) is made by the same LMDz model version that was used in the inversion. 

Doing this, we are consistent with the way the inversion system distributes the well-constrained total mass of carbon in the 

atmosphere and we avoid error compensations between the version used in the assimilation and the one used in the evaluation. 

The model is directly sampled at measurement time and space, without any interpolation. 

3.2. Annual budgets 5 

The time series of the annual natural carbon budgets at several very broad scales are displayed in Figure 2 for the period 

between 2004 and 2017: the globe, the northern or southern extra-Tropics, and the Tropics with lands and oceans either 

separated or combined. At this scale, the influence of the transport model version is hardly distinguishable (coloured solid 

lines vs. coloured dashed lines). The poor man’s inversion (black dashed lines) locates the land sink mostly in the northern 

extra-Tropics but also in the Tropics (consistent with its prior information shown in Fig. 8 of Le Quéré et al., 2018), while the 10 
six Bayesian inversions put it more in the northern extra-Tropics (starting from a null prior on annual average). All approaches 

converge towards near-neutral southern extra-Tropical lands (that represent a relatively small surface area). Over the oceans, 

the surface-based inversions vary little from the prior (which is equal to the poor man’s estimate there), but the GOSAT-based 

inversions reduce the ocean sink by about 0.5 GtC·a-1 in 2015; the OCO-2-based inversions increase it by up to 1 GtC·a-1. We 

recall that years 2015 and 2016 correspond to a strong El Niño event associated with a large CO2 growth rate (e.g., Mahli et 15 
al., 2018 and references therein). The GOSAT inversions seem to underestimate the beginning of this anomaly (see the top 

row of Figure 2), and to attribute it to the southern extra-Tropical oceans rather than to the Tropical lands like the other 

inversions. OCO-2-based fluxes are close to the surface-based fluxes, except for the increased ocean sink (which appears to 

be regularly spread between the three bands). The OCO-2-based and surface-based growth rates are very similar, but do not 

fully overlap with the poor-man fluxes because they do not fully agree with NOAA’s estimates, in particular in 2016 when 20 
they diagnose a smaller rate (by 0.25 ppm·a-1 if we use the 2.086 GtC·ppm-1 conversion factor). 

Figure 3 and Figure 4 focus on the Bayesian inversion results at the scale of the 22 regions of the TransCom 3 experiment 

(Gurney et al., 2002): 11 regions over land and 11 regions over the oceans that together tile the whole globe. At this scale, the 

impact of the choice of the LMDz version appears: LMDz6A induces slightly less year-to-year variability for the surface-

based inversion for some years (see the 2010s for region Europe, the last couple of years for region Eurasian Temperate, or 25 
the full time series for region North Atlantic Temperate), and the two model versions can yield different baselines (see regions 

North and South American Temperate, or the three Atlantic regions). The two GOSAT-based inversions show larger year-to-

year variability than the other ones. The OCO-2-based inversions broadly agree with the surface-based inversions for the 

temporal variability of the fluxes in most regions (North American Boreal, Southern Africa, Eurasian Boreal, Tropical Asia, 

Europe) but there are noticeable differences in the North American Temperate, South American Tropical and Temperate, and 30 
Australia regions. While being clearly distinct from the inversion prior fluxes (that are zero on annual average over land), and 

from the GOSAT-based fluxes, we note the agreement of the two OCO-2-based inversions with the 6A SURF inversion and 

the poor man’s fluxes (that are informed by an up-to-date bottom-up simulation) in the two boreal regions, despite the lack of 

OCO-2 data there during half of the year as a consequence of insufficient insolation (see, e.g., Deng et al., 2014). The main 

differences between inversions OCO-2 and SURF over the ocean are regions North Pacific Temperate and Southern Ocean. 35 

Figure 5 compares the difference between fluxes estimated by assimilating either OCO-2-or the surface data within LMDz6A, 

to the posterior uncertainty diagnosed from the Bayesian system (Chevallier et al. 2007) for the surface-based inversion. For 

all regions discussed so far, this difference is usually within the Bayesian uncertainty standard deviation (but reaches up to 2.6 

times this quantity in Northern Africa for 2015), which means that the difference between the two flux estimates at this scale 

is mostly not statistically significant. 40 

Figure 6 further zooms in to the pixel-scale for year 2015, a year that is common between all inversions. Only the LMDz5A 

results for the satellite-based inversions are shown. For the two surface-based inversions, the change of transport model leaves 

the flux patterns generally unchanged but slightly modulates their amplitude. In contrast, the two satellite-based inversions 

show more differences in the flux pattern. They suggest large flux gradients in southern Africa and South America: similar 

together in Africa, with a large sink in the tropical evergreen forests and large sources around; different in America with a 45 
source over the tropical evergreen forests for GOSAT and over a northeast corner for OCO-2. The broad flux patterns in the 

lands of the Northern Hemisphere are similar between the four maps, but OCO-2 has flux gradients closer to SURF than to 

GOSAT in America while the opposite is seen in South-east Asia. The Tropical ocean outgassing region reduces with OCO-2 

and expands to the south with GOSAT.   

3.3. Differences with aircraft data 50 
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Figure 7 presents the statistics of model-minus-measurement differences per measurement program for the GOSAT period. 

Note that the data number varies by several orders of magnitude among the programs: there are a few hundreds of samples for 

most of the 37 programs, but a few thousands for CALNEX2010, KORUS-AQ, ORCAS, SGP and ATom, a few 10,000s for 

ACT, DC3, DISCOVER-AQ, GSFC, HIPPO, SEAC4RS, and SONGNEX2015, and 900,000 for CONTRAIL. Obviously, 

many measurements may fit into a single time-space block of the global transport model. We will only discuss bias differences 5 
larger than 0.15 ppm (i.e. above the calibration uncertainty of the aircraft data, see Section 2.4) and that are statistically 

significant at the 0.05 level, as reported on the figure. The computation of the significance level is made with an unpaired t-

test when comparing inversion results that assimilated different data (we assume that changing the assimilated data makes the 

inversion results independent), and with a paired t-test when comparing inversion results that assimilated the same data (we 

assume that inversion results in which only the transport model varies are dependent). In practice, changing the independency 10 
assumption only affects the detail of the significance-level results, but not the overall picture. 

Comparing solid and dotted lines, we see no benefit of LMDz6A vs. LMDz5A, since version 6A increases the absolute bias 

of SURF for eight programs (three in Brazil –  RBA-B, ALF, and TAB –, CALNEX2010, DISCOVER-AQ, ACT, THD and 

LEF) and improves it for four of them (the fourth Brazilian site – SAN –, SEAC4RS, KORUS-AQ, ETL). There is no obvious 

consistency between the changes brought by LMDz6A to the surface-based inversion and those brought to the GOSAT-based 15 
inversion. For SAN and SENEX2013, the two surface-based inversions have larger absolute biases than the GOSAT-based 

ones, but perform better for 11 other sites. The poor man’s inversion shows the worse biases north of 45oN, but usually performs 

better than the GOSAT-based inversion in the Southern Hemisphere, likely helped by the tuning with the South Pole 

Observatory data. Between the Equator and 45oN, the relative performance of the poor man’s inversion is uneven but it is 

usually not as good as SURF. In terms of standard deviation (bottom row), the surface-based inversions have the smallest ones. 20 

There are 26 aircraft programs in the OCO-2 period. They challenge SURF a bit less (Figure 8) than for the GOSAT period: 

apart from INPE, GSFC and KORUS-AQ (12% of the programs), all absolute SURF biases are less than 0.45 ppm, while 

seven programs (19% of the programs, i.e. SAN, SENEX2013, KORUS-AQ, DISCOVER-AQ, HIL, AAO, and CAR) 

exceeded this threshold previously. The relatively close flux estimates between SURF and OCO-2 inversions (Figure 2 - Figure 

6) translate into relatively close performance compared to the aircraft. SURF performs better than OCO-2 for INPE and ACT 25 
in terms of biases, and worse for GSFC and KORUS-AQ. The poor man’s simulation has lesser skill than in the GOSAT 

period:,it performs much worse than the surface-based and the OCO-2-based inversions in the Northern Hemisphere, and 

comparably or better in the Southern one. If we combine all measurements together, the root-mean-square difference for the 

OCO-2-based and the surface-based inversions varies only between 1.51 and 1.56 ppm. The standard deviations are 

comparable between the OCO-2-based inversions and the surface-based inversions. LMDz6A improves the SURF biases for 30 
KORUS-AQ and degrades them at three other ones (INPE, LEF and ETL). This lack of improvement also appears for OCO-

2 (degradation at INPE, KORUS-AQ, and ABOVE). The statistics for four programs (ORCAS, KORUS-AQ, ACT and 

SONGNEX2015) are directly comparable between the two periods because the corresponding data are fully in both of them: 

in all four, OCO-2 performs better than GOSAT. 

Figure 9 reformulates the bias statistics of Figure 8 on a map of the differences between the absolute biases of inversions OCO-35 
2 and SURF. Like for the program biases, some points are more robust than others (due to varying amount of data), but there 

is some large-scale coherence, with better performance of SURF in the Southern Hemisphere (as could already be seen in 

Figure 7 and Figure 8) and in central and Eastern US, while OCO-2 yields smaller biases in the Northern Hemisphere sub-

tropics and in Europe. Other parts of the globe are less consistent such as the western Pacific edge or boreal America. 

3.4. Pixel attribution 40 

Liu and Bowman (2016) proposed a method to quantify the impact of flux changes over the globe on the corresponding change 

in the mean squared error (MSE) of the transport model simulation with respect to n independent measurements. They 

demonstrated it in the case of the flux changes from their prior values to their posterior values within the approximations of a 

linear transport model M (including the sampling operator at measurement time and location) and of an unchanged initial state 

of CO2. It is actually valid for other types of changes within an inversion, provided they respect the tangent-linear hypothesis 45 
for the transport model. The change in the MSE (δMSE) is expressed as a finite sum of terms. There is one term for each 

element i of the inversion control vector (i.e., a CO2 flux at a given time and location, or some part of the 3D initial state of 

CO2). Term i is the product of the corresponding change in the control vector (i.e. a scalar δfi), times the corresponding row of 

the transpose of the linear model M, times (dot product here) the vector of the sum of the differences between the two model 

simulations (one, C1, before the change in the control vector and one, C2, after the change) and all verification measurements 50 
(δC1+δC2, both vectors with dimension n): 
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    δMSE = Σi δfi [ MT (δC1+δC2) ]i     (1) 

Interestingly, the second product in this formula can be calculated by the adjoint code of the transport model, if it exists, which 

is the case for LMDz (Section 2.2). Further detail is given in Liu and Bowman (2016). 

We apply this approach to interpret the difference between the OCO-2-based and the surface-based inversions using LMDz5A. 

The overall MSE is very similar between both (1.52 ppm2), but the relative performance still varies in space and time (Figure 5 
8 and Figure 9) and we hope to extract some further insight into the relative merits of each dataset. In practice, we compute 

δC1+δC2 using the LMDz model linearized around the inversion prior simulation in order to respect the underlying hypothesis. 

However, some inconsistencies for the initial state of CO2 could not be completely removed between δC1 and δC2 due to the 

different starting date of each inversion. The map of the sum of all contributions of the flux changes δfi (from the surface-based 

inversion to the OCO-2-based inversion) at a given pixel to the change in MSE (δMSE) is presented in Figure 10. Positive 10 
values occur when the OCO-2-based fluxes increase the MSE relative to the surface-based fluxes. This happens in the Western 

contiguous US, the northeastern South America, Western Europe, Turkey, the West Siberian Plain and eastern Siberia. 

Contributions to reduce the MSE (negative values) are mostly in Alaska and the eastern contiguous US, western South 

America, southern Africa, South and South-east Asia, and Indonesia. No noticeable contribution is seen over the ocean, where 

OCO-2 retrievals have not been assimilated. By construction, regions that are not well observed downstream by aircraft have 15 
lesser contributions, like in Africa. This feature makes the relative magnitude of the patterns among each other not much 

informative about the flux quality. We will therefore pay more attention to the sign of the dominant patterns. 

The map of Figure 9, which refers to differences in absolute biases within moving windows, is in principle not directly 

comparable with Figure 10, which refers to MSEs. However, bias changes are much larger than standard deviation changes 

(Figure 8) which makes the map of root-mean-square errors (RMSEs, not shown) very similar to Figure 9. Differences between 20 
the patterns of Figure 9 in the space of free-tropospheric mole fractions and those of Figure 10 in the space of fluxes are linked 

to the way CO2 is transported between the surface and the free troposphere. Dominating westerlies outside the Tropics bring 

the positive flux contributions of Figure 10 to the west of the positive RMSE variations of Figure 9, like from the western to 

eastern US, or, at a much larger scale, from Eurasia to Alaska. Similarly, negative flux contributions from the eastern US 

induce negative RMSE variations in the central North Atlantic Ocean, and tropical easterlies link the negative flux 25 
contributions from Southern Africa to the negative RMSE variations in the tropical Atlantic Ocean. The distance between flux 

signal and free tropospheric signal implies an important role for the transport model in attributing the latter to the former so 

that these patterns should be considered with caution, as has been the case for inversion systems in general. 

4. Discussion 

Interest in atmospheric CO2 observations has grown dramatically over the last decade, with the hope that they can reliably 30 
quantify the evolution of the CO2 sources and sinks. However, a suite of physical and statistical models is needed to estimate 

the latter from the former. For instance, the link between some of these observations, like the satellite retrievals, and 

measurement standards is not direct and needs to be empirically made. We also lack measurements dedicated to the 

development and validation of atmospheric transport models, in particular for subgrid-scale processes. Therefore, the various 

underlying models are still in development and our current source-sink estimation capability is not clear: there is no consensus 35 
about the latitudinal distribution of the natural carbon fluxes (Le Quéré et al., 2018) or about the carbon budget of relatively 

well-documented regions like Europe (Reuter et al., 2017). We have defined here quality measures for global inversion systems 

in order to evaluate the current skill of global inversions, through the example of the CAMS inversion system. By focussing 

on a specific inversion system, we have avoided the problem of heterogeneity of TransCom-type ensembles, that gather 

systems with various degrees of sophistication (resolution of the transport model, size of the control vector), but we still varied 40 
the assimilated data (surface or satellite) and the transport model in order to generate a small inversion ensemble. 

In practice, quality measures for a data assimilation system must rely on unbiased and independent data (Talagrand, 2015). 

The property of unbiasedness means that the errors are null on statistical average. The property of independence means that 

the errors affecting the verification data must not be correlated with the errors affecting the observations that have been used 

in the inversion. Ideally, the verification data should be the carbon fluxes to be evaluated, but in the specific case of global 45 
inverse systems, the spatial resolution of existing flux observations (of the order of a hundred meters) is much smaller than the 

spatial resolution of global transport models (larger than a degree). Therefore, one has no option but to evaluate the analysed 

CO2 fields (that are the combination of the analysed surface fluxes, of an analysed initial state of CO2 and of the transport 

model used in the inversion) rather than the analysed surface fluxes alone, both of them being related through mass-conserving 

transport in the global atmosphere. This can be done with atmospheric observations like those listed in the Introduction: surface 50 
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measurements, aircraft measurements, TCCON retrievals, AirCore measurements or satellite retrievals. We remove TCCON 

and the satellite data from the list on the criterion of unbiasedness (Figure 9 suggests that we are interested here in signals that 

are smaller than the TCCON trueness), the surface data on the criterion of independence (the surface data in ObsPack-type 

databases that are well simulated by the transport models are usually assimilated), and the AirCore data because of limited 

time and space coverage so far. This leaves aircraft data as an obvious choice to define objective measures of quality of the 5 
inversion systems, when they are not assimilated. They have served this role in the past to some extent, starting from Peylin et 

al. (2006) or Stephens et al. (2007) (see also Pickett-Heaps et al., 2011; Basu et al., 2014; Houweling et al., 2015; Frankenberg 

et al., 2016; Le Quéré et al., 2018; Crowell et al., 2019), but few aircraft measurement programs have been used so far and, as 

a consequence, their use has rarely been formulated in terms of quality assurance or quality control processes for atmospheric 

inversions. Compared to previous studies, we benefit from a much larger number of aircraft measurements over the globe in 10 
the free troposphere (600,000 for the OCO-2 period, twice as much for the GOSAT period) and from more recent satellite 

retrievals. 

We have used data between 2 and 7 km above sea level only, where the age of air varies significantly (Krol et al., 2018). 

Aircraft data in this region of the atmosphere only sample a portion of the carbon cycle. With their sparse coverage at places, 

they may miss some of the tropical flux signal that can reach higher levels within a few days, but flux errors compensate at the 15 
global scale such that errors in the Tropics that would not be directly seen will likely induce errors elsewhere that can be seen. 

Conversely, our 5-km wide layer still represents a large portion of the column observed by the satellites. However, with the 

use of individual pointwise measurements (rather than profile averages), we hope to have minimized the possible advantage 

given to the satellite inversions with respect to the surface-based inversions. The gradient between mole fractions in the 

boundary layer and the free troposphere is also informative (Stephens et al., 2007). It provides complementary information 20 
about inversion quality, provided that the minority of measurements above urban areas or in the vicinity of assimilated surface 

sites are excluded. This has not been explored here.  

For our ensemble of six Bayesian inversion results, we have seen that large differences in the estimated annual subcontinental 

fluxes (GOSAT-based vs. surface-based results) are paralleled by different quality of fit to the aircraft data, with GOSAT-

based results performing less well. An additional poor man’s inversion that simply adjusts very recent bottom-up flux estimates 25 
with the annual global growth rate, has larger differences than the surface-based and the OCO-2-based  inversions in terms of 

flux and the aircraft data. Changing the transport model affected the flux estimation only at the scale of TransCom-type regions: 

no benefit could be seen with respect to aircraft data, despite six years of model development within the CMIP framework by 

the LMDz team and despite improved nudging meteorological variables between the two versions (from ERA-Interim to ERA-

5). This suggests that LMDz transport errors play a much smaller role in the quality of our inversion results than the choice of 30 
assimilated data. In comparison to the GOSAT results, or to previous OCO-2 inversion results (Crowell et al., 2019), OCO-2-

based annual fluxes are surprisingly close to the surface-based fluxes (usually within 1 σ of the Bayesian uncertainty of the 

surface-based fluxes). Consequently, the aircraft data used here do not allow us to distinguish between the quality of OCO-2-

based fluxes and surface-based fluxes. The poor man’s inversion still performs worse despite the contribution of a recent 

dynamic global vegetation model simulation, showing that the OCO-2 performance is not trivial. Following Liu and Bowman 35 
(2016), we attribute the simulation error changes in the free troposphere for the OCO-2 period to flux differences in specific 

regions of the globe. We find a rather homogeneous geographical distribution of the flux performance with OCO-2-based 

fluxes and surface-based fluxes alternating as the best ones over continental land masses. This adjoint analysis also illustrates 

the large footprint of our aircraft data in the free troposphere in terms of flux information, which prevents using them for the 

evaluation of local fluxes, given our choice of altitude range of 2 -7 km above sea level. 40 

5. Conclusions 

Within the limitations imposed by the use of two different verification periods, bias-corrected OCO-2 retrievals perform better 

than GOSAT retrievals in our inversion system. Upstream, both inferred flux time series do not overlap with each other at all 

scales studied here (for instance in the tropical lands) in terms of both the mean and variability. This prevents us from 

computing flux anomalies from one vs. the other. Within the study timeframe, it was not possible to test more than a couple 45 
of different versions of the GOSAT retrievals or other ways to assimilate the OCO-2 retrievals. Indeed, each one of our six 

Bayesian inversions represented a large computational effort that lasted between four and six weeks on a parallel cluster. We 

could therefore not identify the distinctive asset of OCO-2 vs. GOSAT in our system: either the data density, the data precision, 

the data trueness (linked both to the quality of the physical retrieval scheme and to its empirical bias-correction), or a 

combination of these qualities at once. Further, other GOSAT-based inversions could be more competitive if made differently 50 
(e.g., with a different bias-correction), while other OCO-2-based inversions (e.g., with a different transport model or with 

different retrievals), or ours with ACOS v9 retrievals after our study period (e.g., if the empirical bias-correction is less efficient 
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for later months), could still be found deficient for carbon specialists. As we have shown, aircraft data can help ranking the 

skill of these alternative inversion configurations between each other and vs. ours (all data used here, apart from the recent 

INPE data, are publicly available).  

This validation strategy assumes that airborne measurement programs are continued while new satellite observations are made, 

and that these programs fairly sample the diversity of CO2 plumes in the free troposphere. In this respect, the situation is not 5 
satisfactory at present in some parts of the world, like Africa. This validation strategy also implies that aircraft data are kept 

independent from the inversion system, and therefore that observations dedicated to the free troposphere (aircraft or satellite 

partial column retrievals) are not assimilated. This is usually the case, for instance because of the challenging characterization 

of model errors in simulating aircraft profiles or because systematic errors for partial column retrievals are too large. Zhang et 

al. (2014) or Alden et al. (2016) presented a different strategy in which aircraft profile measurements are assimilated: a 10 
compromise has to be found between exploiting valuable data directly (in particular in areas void of surface measurements), 

or keeping them for validation.  

Finally, the evidence provided by aircraft measurements in the free troposphere suggests that the quality of OCO-2 retrievals 

over land is now high enough to provide results that are comparable in credibility to the reference (but sparse) surface air 

sample network, within the above-discussed limits. For ocean retrievals, this remains unclear as OCO-2 ocean soundings were 15 
not tested in this work. The consistency of results from the surface and OCO-2-driven inversions, in stark contrast to the 

bottom-up fluxes or to the GOSAT-driven inversion, does not seem to be fortuitous. It may reinforce some specific conclusions 

from the surface network, for instance pertaining to the location of the land sink in latitude during the recent years. Remaining 

differences between fluxes from these two flux inversion types require further analysis and underline their complementarity. 

The best results may now be obtained by inversions that simultaneously assimilate both observation types. 20 
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Table 1 : Aircraft measurement programs used here. Note that programs ALF, PAN, RBA-B, SAN and TEF are 

gathered under identifier INPE (for Instituto Nacional de Pesquisas Espaciais) in Figure 8. 

Measurement 

program 

identifier in 

ObsPack 

Measurement program name  Specific doi Data providers 

AAO Airborne Aerosol Observatory, 

Bondville, Illinois (NOAA/ESRL 

Global Greenhouse Gas Reference 

Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

ABOVE Arctic-Boreal Vulnerability Experiment 

(NASA Airborne Science) 

https://doi.org/10.333

4/ORNLDAAC/1658 
Sweeney, C.; McKain, K. 

ACG Alaska Coast Guard (NOAA/ESRL 

Global Greenhouse Gas Reference 

Network aircraft program) 

 
Sweeney, C.; McKain, K.; Karion, A.; 

Dlugokencky, E.J. 

ACT Atmospheric Carbon and Transport – 

America (NASA Airborne Science) 

https://daac.ornl.gov/cgi-

bin/dataset_lister.pl?p=37 

https://doi.org/10.333

4/ORNLDAAC/1593 

 

In situ : Davis, K.J.; DiGangi, J.P.; 

Yang, M. 

Flasks: Sweeney, C.; Baier, B.; Lang, P.. 

ALF Aircraft Observation of Atmospheric 

GHG at Alta Floresta, Mato Grosso by 

LaGEE/INPE 

 
Gatti, L.V.; Miller, J.B.; Gloor, E.; 

Peters, W. 

AOA Aircraft Observation of Atmospheric 

trace gases by JMA 
 ghg_obs@met.kishou.go.jp 

BNE Beaver Crossing, Nebraska 

(NOAA/ESRL Global Greenhouse Gas 

Reference Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

CALNEX2010 California Nexus 2010 (NASA Airborne 

Science) 
 Ryerson, T.B.; Peischl, J.; Aikin, K.C. 

CAR Briggsdale, Colorado (NOAA/ESRL 

Global Greenhouse Gas Reference 

Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

CMA Offshore Cape May, New Jersey 

(NOAA/ESRL Global Greenhouse Gas 

Reference Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

CON CONTRAIL (Comprehensive 

Observation Network for TRace gases 

by AIrLiner) 

http://dx.doi.org/10.1

7595/20180208.001 

Machida, T.; Matsueda, H.; Sawa, Y.  

Niwa, Y. 

CRV Carbon in Arctic Reservoirs 

Vulnerability Experiment (CARVE, 

NASA Airborne Science) 

 
Sweeney, C.; Karion, A.; Miller, J.B.;  

Miller, C.E; Dlugokencky, E.J. 
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DC3 Deep Convective Clouds and Chemistry 

(NASA Airborne Science) 
 Chen, G.; DiGangi, J.P.; Beyersdorf, A. 

DISCOVER-AQ Deriving Information on Surface 

Conditions from Column and Vertically 

Resolved Observations Relevant to Air 

Quality (NASA Airborne Science) 

 Chen, G.; DiGangi, J.P.; Yang, M. 

DND Dahlen, North Dakota (NOAA/ESRL 

Global Greenhouse Gas Reference 

Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

ESP Estevan Point,  British Columbia 

(NOAA/ESRL Global Greenhouse Gas 

Reference Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

ETL East Trout Lake, Saskatchewan 

(NOAA/ESRL Global Greenhouse Gas 

Reference Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

GSFC NASA GODDARD Space Flight Center 

Aircraft Campaign 
 Kawa, S.R.; Abshire, J.B.; Riris, H 

HIL Homer, Illinois (NOAA/ESRL Global 

Greenhouse Gas Reference Network 

aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

HIP 
HIPPO (HIAPER Pole-to-Pole 

Observations) 

https://doi.org/10.333

4/CDIAC/HIPPO_01

0 

Wofsy, S.C.; Stephens, B.B.; Elkins, 

J.W.; Hintsa, E.J.; Moore, F. 

KORUS-AQ Korea-United States Air Quality Study 

(NASA Airborne Science) 
 Chen, G.; DiGangi, J.P.; Shook, M. 

LEF Park Falls, Wisconsin (NOAA/ESRL 

Global Greenhouse Gas Reference 

Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

NHA Offshore Portsmouth, New Hampshire 

(NOAA/ESRL Global Greenhouse Gas 

Reference Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

ORC ORCAS (O2/N2 Ratio and CO2 Airborne 

Southern Ocean Study) 

https://doi.org/10.506

5/D6SB445X 

Stephens, B.B.; Sweeney, C.; McKain, 

K.; Kort, E.A. 

PAN Aircraft Observation of Atmospheric 

GHG at Pantanal, Mato grosso do Sul by 

LaGEE/INPE 

 
Gatti, L.V.; Miller, J.B.; Gloor, E.; 

Peters, W. 

PFA Poker Flat, Alaska (NOAA/ESRL 

Global Greenhouse Gas Reference 

Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

RBA-B Aircraft Observation of Atmospheric 

GHG at Rio Branco, Acre by 

LaGEE/INPE 

 
Gatti, L.V.; Miller, J.B.; Gloor, E. ; 

Peters, W. 
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RTA Rarotonga (NOAA/ESRL Global 

Greenhouse Gas Reference Network 

aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

SAN Aircraft Observation of Atmospheric 

GHG at Santarém, Pará by 

LaGEE/INPE 

 
Gatti, L.V.; Miller, J.B.; Gloor, E.; 

Peters, W. 

SCA Offshore Charleston, South Carolina 

(NOAA/ESRL Global Greenhouse Gas 

Reference Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

SEAC4RS Studies of Emissions and Atmospheric 

Composition, Clouds and Climate 

Coupling by Regional Surveys (NASA 

Airborne Science) 

 Chen, G.; DiGangi, J.P.; Beyersdorf, A. 

SENEX2013 Southeast Nexus 2013 (air campaign)  Ryerson, T.B.; Peischl, J.; Aikin, K.C. 

SGP Southern Great Plains, Oklahoma 

(NOAA/ESRL Global Greenhouse Gas 

Reference Network aircraft program) 

 
Sweeney, C.; Dlugokencky, E.J.; 

Biraud, S. 

SONGNEX2015 Shale Oil and Natural Gas Nexus 2015 

(air campaign) 
 Ryerson, T.B.; Peischl, J.; Aikin, K.C. 

TAB Aircraft Observation of Atmospheric 

GHG at Tabatinga, Amazonas by 

LaGEE/INPE 

 
Gatti, L.V.; Gloor, E.; Miller, J.B.; 

Peters, W. 

TEF Aircraft Observation of Atmospheric 

GHG at Tefe, Amazonas by 

LaGEE/INPE 

 
Gatti, L.V.; Gloor, E.; Miller, J.B.; 

Peters, W. 

TGC Offshore Corpus Christi, Texas 

(NOAA/ESRL Global Greenhouse Gas 

Reference Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

THD Trinidad Head, California 

(NOAA/ESRL Global Greenhouse Gas 

Reference Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 

TOM ATom, Atmospheric Tomography 

Mission (NASA Airborne Science) 

https://doi.org/10.333

4/ORNLDAAC/1593 
McKain, K.; Sweeney, C. 

WBI West Branch, Iowa (NOAA/ESRL 

Global Greenhouse Gas Reference 

Network aircraft program) 

 Sweeney, C.; Dlugokencky, E.J. 
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Figure 1 : Location of the aircraft measurements used in the free troposphere for the two verification periods. Note 

that the two periods overlap by 22 months, so that many data appear on both maps. 
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Figure 2 : Time series of Inferred natural CO2 annual flux (without the prescribed fossil fuel emissions) between 2004 

and 2017, averaged over the globe or over all lands or oceans. In the case of lands and oceans three broad latitude 

bands are also defined: northern extra-Tropics (north of 25oN), Tropics (within 25o of the Equator), and southern extra-

Tropics (south of 25oS). Inversions with LMDz5A (LMDz6A) are shown in continuous (dashed) coloured lines. In the 

sign convention, positive fluxes correspond to a net carbon source into the atmosphere. The last year of the GOSAT 5 
inversions (2016) is not represented because of likely edge effects. Note that the prior fluxes are zero over land at this 

temporal scale (see Section 2.2) and that they are equal to curve “Poor Man” over the ocean (see Section 2.5). 
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Figure 3 : Time series of Inferred natural CO2 annual flux (without the prescribed fossil fuel emissions) between 2004 

and 2017, averaged over TransCom 3 land regions. Inversions with LMDz5A (LMDz6A) are shown in continuous 

(dashed) coloured lines. In the sign convention, positive fluxes correspond to a net carbon source into the atmosphere. 

The last year of the GOSAT inversions (2016) is not represented because of likely edge effects. Note that the prior fluxes 

are zero over land at this temporal scale (see Section 2.2). 5 
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Figure 4 : Same as Figure 3 but for oceanic regions. Note that the prior fluxes over the ocean are equal to curve “Poor 

Man” (see Section 2.5). 
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Figure 5 : Ratio of the absolute difference (δflux) between the OCO-2-based annual fluxes and the surface-based annual 

fluxes to the Bayesian posterior flux uncertainty for the surface-based fluxes (σa), in %, for years 2015, 2016, and 2017. 

Both inversions correspond to LMDz6A. 
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Figure 6 : Grid-point budget of the natural CO2 fluxes for the year 2015. In the sign convention, positive fluxes 

correspond to a net carbon source into the atmosphere. 
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Figure 7 : Model-minus-observation absolute differences and standard deviations over the GOSAT period per 

measurement program for the surface-based inversion (SURF, red line), the GOSAT-based inversion (GOSAT, blue 

line) and the poor man’s inversion (shaded area). Inversions with LMDz5A (LMDz6A) are shown in continuous 

(dashed) coloured lines. The number of measurement per site, campaign or program varies between 113 (BNE) and 

901,846 (CON). The program definition is given in Table 1. They are ranked by increasing mean latitude (North is on 5 
the right), irrespective of their latitudinal coverage (which is large of several tens of degrees for ORC, TOM, HIP and 

CON). These mean latitudes are shown in the middle of the panel. For each program, a green circle appears in the 

upper panel if the difference between the GOSAT bias and the SURF bias using LMDz5A is statistically significant (see 

the main text for a definition) and exceeds 0.15 ppm. Similarly, a blue (red) circle indicates that the difference between 

LMDz5A and LMDz6A for SURF (GOSAT) is statistically significant and exceeds 0.15 ppm.    10 
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Figure 8 : Same as Figure 7 for the OCO-2 period. The number of measurements per program varies here between 133 

(CRV) and 211,358 (CON).   
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Figure 9 : Difference between the model-minus-observation absolute differences in 10o moving windows (top). Negative 

(positive) values denote areas where the OCO-2-based inversion has smaller (larger) biases than the surface-based 

inversion. Both inversions use LMDz5A. The bottom figure gives the number of data that contribute to the bias 

computation in each 10o moving window. Biases are computed only in the windows where there are more than 100 

measurements. 5 
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Figure 10 : Contribution of the grid-point flux changes to the change in the variance of CO2 model-measurement 

differences between the OCO-2-based inversion and the surface-based inversion (variance of the former minus 

variance of the latter), in ppm2. Both inversions use LMDz5A. Note that the fluxes themselves are illustrated in the left 

column of Figure 6. 
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