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Abstract. Southern Ocean (SO) shortwave (SW) radiation biases are a common problem in contemporary general circulation
models (GCMs), with most models exhibiting a tendency to absorb too much incoming SW radiation. These biases have
been attributed to deficiencies in the representation of clouds during the austral summer months, either due to cloud cover
or cloud albedo being too low. The problem has been the focus of many studies, most of which utilised satellite datasets for
model evaluation. We use multi-year ship based observations and the CERES spaceborne radiation budget measurements to
contrast cloud representation and SW radiation in the atmospheric component Global Atmosphere (GA) version 7.1 of the
HadGEM3 GCM and the MERRA-2 reanalysis. We find that the prevailing bias is negative in GA7.1 and positive in MERRA-
2. GA7.1 performs better than MERRA-2 in terms of absolute SW bias. Significant errors of up to 21 Wm~2 (GA7.1) and
39 Wm~2 (MERRA-2) are present in both models in the austral summer. Using ship-based ceilometer observations, we find
low cloud below 2 km to be predominant in the Ross Sea and the Indian Ocean sectors of the SO. Utilising a novel surface
lidar simulator developed for this study, derived from an existing COSP-ACTSIM spaceborne lidar simulator, we find that
GA7.1 and MERRA-2 both underestimate low cloud and fog occurrence relative to the ship observations on average by 4—
9% (GA7.1) and 18% (MERRA-2). Based on radiosonde observations, we also find the low cloud to be strongly linked to
boundary-layer atmospheric stability and the sea surface temperature. GA7.1 and MERRA-2 do not represent the observed
relationship between boundary layer stability and clouds well. We find that MERRA-2 has a much greater proportion of cloud
liquid water in the SO in austral summer than GA7.1, a likely key contributor to the difference in the SW radiation bias. Our
results suggest that subgrid-scale processes (cloud and boundary layer parametrisations) are responsible for the bias, and that
in GA7.1 a major part of the SW radiation bias can be explained by cloud cover underestimation, relative to underestimation

of cloud albedo.
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1 Introduction

Clouds are considered one of the largest sources of uncertainty in estimating global climate sensitivity (Boucher et al., 2013;
Flato et al., 2014; Bony et al., 2015). Clouds over oceans are especially important for determining the radiation budget due
to the low albedo of the sea surface compared to land. Over the Southern Ocean (SO), cloud cover is very high at over 80%,
with boundary-layer clouds being particularly common (Mace et al., 2009). Excess downward shortwave (SW) radiation in
general circulation models (GCMs), with a bias over the SO of up to 30 Wm™2, is a problem well-documented by Trenberth
and Fasullo (2010) and Hyder et al. (2018), and has been the subject of many studies. Bodas-Salcedo et al. (2014) evaluated
the SW bias in a number of GCMs and found that a strong SW bias is a very common feature, leading to increased sea surface
temperature (SST) in the SO and corresponding biases in the storm track position. Trenberth and Fasullo (2010) note that a
poor representation of clouds might lead to unrealistic climate change projections in the Southern Hemisphere. The SW bias
has also been linked to large-scale model problems such as the double-Intertropical Convergence Zone (Hwang and Frierson,
2013), biases in the position of the midlatitude jet (Ceppi et al., 2012) and errors in the meridional energy transport (Mason
et al., 2014). Bodas-Salcedo et al. (2012) studied the SO SW bias in the context of the Global Atmosphere (GA) 2.0 and 3.0
models and found that mid-topped and stratocumulus clouds are the dominant contributors to the bias.

Due to its extent and magnitude, the SW radiation bias is believed to limit accuracy of the models, especially for modelling
the Southern Hemisphere climate. A model based on the Hadley Centre Global Environmental Model version 3 (HadGEM3)
is currently used in New Zealand for assessing future climate (Williams et al., 2016). In this paper we evaluate the atmospheric
component of HadGEM3, GA7.1 (Walters et al., 2019) and the reanalysis Modern-Era Retrospective analysis for Research and
Applications, version 2 (MERRA-2) using observations collected in the SO on a number of voyages. Ship-based atmospheric
observations in the SO provide a unique view of the atmosphere not available via any other means. Boundary layer observations
by satellite instruments are limited by the presence of an almost continuous cloud cover, potentially obscuring the view of low
level clouds. The frequently used active instruments CloudSat (Stephens et al., 2002) and Cloud—Aerosol Lidar and Infrared
Pathfinder Satellite Observation (CALIPSO) (Winker et al., 2010) are both of limited use when observing low level, thick
or multi-layer cloud: CloudSat is affected by surface clutter below approximately 1.2 km (Marchand et al., 2008) and the
CALIPSO lidar signal cannot pass through thick cloud. Likewise, passive instruments and datasets such as the Moderate
Resolution Imaging Spectroradiometer (MODIS) (Salomonson et al., 2002) and the International Satellite Cloud Climatology
Project (ISCCP) (Rossow and Schiffer, 1999) can only observe radiation scattered or emitted from the cloud top of optically
thick clouds. Therefore, one can accurately identify the cloud top height or cloud top pressure with satellite instruments,
but not always the cloud base height (CBH) or the vertical profile of cloud, although there has been some recent progress
on deriving CBH statistically from CALIPSO measurements (Miilmenstédt et al., 2018). Ship-based measurements therefore
provide valuable extra information.

Multiple explanations of the SW radiation bias have been proposed: cloud underestimation in the cold sectors of cyclones
(Bodas-Salcedo et al., 2014), cloud—aerosol interaction (Vergara-Temprado et al., 2018), cloud homogeneity representation

(Loveridge and Davies, 2019), lack of supercooled liquid (cloud liquid at air temperature below 0 °C) (Kay et al., 2016; Bodas-
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Salcedo et al., 2016) and the “too few, too bright” problem (Nam et al., 2012; Klein et al., 2013; Wall et al., 2017). Each model
can exhibit the bias for a different set of reasons, and results from one model evaluation therefore do not necessarily explain
biases in all other models (Mason et al., 2015). The use of SO voyage data for atmospheric model evaluation is not new, and
has recently been used by Sato et al. (2018) to evaluate the impact of SO radiosonde observations on the accuracy of weather
forecasting models. Klekociuk et al. (2019) contrasted SO cloud observations with the ECMWF Interim reanalysis (ERA-
Interim) and the Antarctic Mesoscale Prediction System—Weather Research and Forecasting Model (AMPS-WRF) (Powers
et al., 2012), and found that these models underestimate the coverage of the predominantly low cloud. Protat et al. (2017)
compared ship-based 95 GHz cloud radar measurements at 43—48°S in March 2015 with the Australian Community Climate
and Earth-System Simulator (ACCESS) NWP model, a model related to HadGEM3, and found low cloud peaking at 80% cloud
cover, which was underestimated in the model. The clouds were also more spread out vertically (especially due to “multilayer”
situations defined as co-occurrence of cloud below and above 3 km) and more likely to have intermediate cloud fraction rather
than very low or very high cloud fraction. Previous studies have documented that supercooled liquid is often present in the
SO cloud in the austral summer months (Morrison et al., 2011; Huang et al., 2012; Chubb et al., 2013; Huang et al., 2016;
Bodas-Salcedo et al., 2016; Jolly et al., 2018; Listowski et al., 2019) and is linked to SO SW radiation biases in GCMs, which
underestimate the amount of supercooled liquid in clouds in favour of ice. Warm clouds generally reflect more SW radiation
than cold clouds containing the same amount of water (Vergara-Temprado et al., 2018). In particular, Kay et al. (2016) reported
a successful reduction of SO absorbed SW radiation in the Community Atmosphere Model version 5 (CAMS) by decreasing
the shallow convection ice detrainment temperature and thereby increasing the amount of supercooled liquid cloud.

Two common techniques used for model cloud evaluation have been cloud regimes (Williams and Webb, 2009; Haynes et al.,
2011; Mason et al., 2014, 2015; McDonald et al., 2016; Jin et al., 2017; McDonald and Parsons, 2018; Schuddeboom et al.,
2018, 2019) and cyclone compositing (Bodas-Salcedo et al., 2012; Williams et al., 2013; Bodas-Salcedo et al., 2014, 2016;
Williams and Bodas-Salcedo, 2017), both of which link the SW radiation bias to specific cloud regimes and cyclone sectors.
We use simple statistical techniques, rather than sophisticated classification or machine learning algorithms, the advantage of
which is easier interpretation for the purpose of model development.

We first assess the magnitude of the Top of Atmosphere (TOA) SO SW radiation bias in a nudged run of GA7.1 ("GA7.IN")
and MERRA-2 with respect to the Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled
(EBAF) and CERES Synoptic (SYN) products (Section 5.1). This allows us to identify the underlying magnitude of the SW
bias and how this might change based on the ship track sampling pattern. We then evaluate cloud occurrence in GA7.1N
and MERRA-2 relative to the SO ceilometer observations and compare SO radiosonde observations with pseudo-radiosonde
profiles derived from the models (Sections 5.2 and 5.3). Lastly, we look at zonal plots of potential temperature, humidity,
cloud liquid and ice content in GA7.1N and MERRA-2 to show how these models differ in their atmospheric stability and
representation of clouds (Section 5.4). Our aim is to identify how differences between GA7.1N and MERRA-2 can explain the

TOA outgoing SW radiation bias, assuming misrepresentation of clouds is the major contributor to the bias.
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2 Datasets

We used an observational dataset of ceilometer and radiosonde data comprising multiple SO voyages (Section 2.1), GA7.1N
atmospheric model simulations (Section 2.2) and the MERRA-2 reanalysis (Section 2.3). Later in the text, we will refer to
GA7.1N and MERRA-2 together as “the models”, even though MERRA-2 is more specifically a reanalysis. CERES satellite
observations (Wielicki et al., 1996) were also used as a reference for TOA outgoing SW radiation and an National Snow and
Ice Data Center (NSIDC) satellite-based dataset (Maslanik and Stroeve, 1999) was used as an auxiliary dataset for identifying

sea ice.
2.1 Ship observations

We use ship-based ceilometer and radiosonde observations made in the SO on 5 voyages between 2015 and 2018 (Table 1 and

Figure 1):!

2015 TAN1502 voyage of the NIWA ship RV Tangaroa from Wellington, New Zealand to the Ross Sea.

2015-2016 voyages (V1-V3) of the Australian Antarctic Division (AAD) icebreaker Aurora Australis from Hobart,
Australia to Mawson, Davis, Casey and Macquarie Island (“AA157)

2016 Royal New Zealand Navy (RNZN) ship HMNZS Wellington voyages (“HMNZSW16”).

2017 NBP1704 voyage of the NSF icebreaker RV Nathaniel B. Palmer from Lyttelton, New Zealand to the Ross Sea.

2018 TAN1802 voyage of RV Tangaroa from Wellington to the Ross Sea (Hartery et al., 2019).

Together, these voyages cover latitudes between 41 and 78°S and the months of November to June inclusive. A total of 298
days of observations were collected. Geographically, the voyages mostly cover the Ross Sea sector of the SO, with only AA15
covering the Indian Ocean sector (Figure 1). This sampling emphasises the Ross Sea sector over other parts of the SO, although
the SO SW radiation bias is present at all longitudes in the SO (Section 5.1), affected by the atmospheric circulation (Jones
and Simmonds, 1993; Sinclair, 1994, 1995; Simmonds and Keay, 2000; Simmonds et al., 2003; Simmonds, 2003; Hoskins and
Hodges, 2005; Hodges et al., 2011). The voyage observations were performed using a range of instruments (described below).
Table 2 details which instruments were deployed on each voyage.

The primary instruments were the Lufft CHM 15k and Vaisala CL51 ceilometers. A ceilometer is an instrument which
typically uses a single-wavelength laser to emit pulses vertically into the atmosphere and measures subsequent backscatter
resolved on a large number of vertical levels based on the timing of the retrieved signal (Emeis, 2010). Depending on the
wavelength, the emitted signal interacts with cloud droplets, ice crystals and precipitation by Mie scattering, and to a lesser

extent with aerosol and atmospheric gases by Rayleigh scattering (Bohren and Huffman, 1998). The signal is quickly attenuated

'The voyage name pattern is a 2-6 character ship name followed by a 2 digit year and a 2 digit sequence number. TANxxxx and NBPxxxx are official

voyage names, while HMNZSW16 and AA15 are names made for the purpose of this study.
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in thick cloud and therefore it is normally not possible to observe mid and high level parts of such a cloud, or a multi-layer
cloud. The main derived quantity determined from the backscatter is CBH, but it is also possible to apply a cloud detection
algorithm to determine cloud occurrence by height. The range-normalised signal is affected by noise which increases with the
square of range. A major source of noise is solar radiation which causes a diurnal variation in noise levels (Kotthaus et al.,
2016). Due to signal attenuation and noise ceilometers cannot measure clouds obscured by a lower cloud, and therefore cannot
be used for 1:1 comparison with model clouds without using a lidar simulator, which accounts for this effect (Chepfer et al.,
2008). The Lufft CHM 15k ceilometer operates in the near-infrared spectrum at 1064 nm, measuring lidar backscatter up to a
maximum height of 15 km, producing 1024 regularly spaced bins (about 15 m resolution). The sampling rate of the instrument
is 2 s. The Vaisala CL51 ceilometer operates in the near-infrared spectrum at 910 nm. The sampling rate of the instrument is 2
s and range is 7.7 km, producing 770 regularly spaced bins (10 m resolution).

Radiosonde observations were performed on the TAN1802 and NBP1704 voyages south of 60°S. Temperature, pressure,
relative humidity and Global Navigation Satellite System (GNSS) coordinates (from which wind speed and direction are
derived) were retrieved to altitudes of about 10-20 km, terminated by a loss of radio communication or balloon burst.

On the TAN1802 voyage we used iMet-1 ABx radiosondes, measuring pressure, air temperature, relative humidity and
GNSS coordinates of the sonde (from which wind speed and direction are derived). The sondes were launched three times
per day at about 8:00, 12:00 and 20:00 UTC on 100 g Kaymont weather balloons. They reached a typical altitude of 10-20
km, and then terminated by balloon burst or loss of radio communication. We used 10 s resolution profiles generated by the
vendor-supplied iMetOS-II control software for further processing.

Automatic weather station (AWS) data were available on the TAN1502, TAN1802 and NBP1704 voyages. These included
variables such as air temperature, pressure, sea surface temperature, wind speed and wind direction. Voyage track coordinates

were obtained from the ships’ GNSS receivers.
2.2 HadGEM3

HadGEM3 (Walters et al., 2019) is a general circulation model developed by the UK Met Office and the Unified Model
Partnership. It can be used in a “nudging” (Telford et al., 2008) mode, in which winds and potential temperature are relaxed
towards the ERA-Interim reanalysis (Dee et al., 2011). The Met Office Global Atmosphere 7.1 (GA7.1) is the atmospheric
component of HadGEM3 (Walters et al., 2019), based on the Unified Model (UM) version 11.0.

The model runs used the HadISST sea surface temperature dataset (Rayner et al., 2003) as lateral boundary conditions. The
nudged simulations represent atmospheric dynamics as determined by observations. The model was run on a 1.875°x1.25°
(longitude x latitude) “N96” resolution grid, which corresponds to a horizontal resolution of about 100x 140 km at 60°S and
85 vertical levels. The model output fields were sampled every 6 hours (instantaneous) and daily (mean). In our analysis we

used a nudged run of GA7.1 ("GA7.1N") between years 2015 and 2018, corresponding to the ship observations.
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2.3 MERRA-2

Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is a reanalysis provided by the NASA Global
Modelling and Assimilation Office (Gelaro et al., 2017). The reanalysis was chosen for its contrasting results of TOA outgoing
SW radiation bias in the SO compared to GA7.1. As shown later (Figure 3), its bias is positive rather than negative, when
CERES is used as a reference.

We used the following products (Bosilovich et al., 2015):

1-hourly average Radiation Diagnostics (product “M2TINXRAD.5.12.4”)

3-hourly instantaneous Assimilated Meteorological Fields (product “M2I3NVASM.5.12.4”)

1-hourly instantaneous Single-Level Diagnostics (product “M2I1NXASM.5.12.4”)

3-hourly average Assimilated Meteorological Fields (product “M2T3NVASM.5.12.4%)

1-hourly average Single Level Diagnostics (product “M2T1INXSLV.5.12.4”)

We used the “Radiation Diagnostics” in TOA outgoing SW radiation evaluation (Section 5.1), the instantaneous “Assim-
ilate Meteorological Fields” and “Single-Level Diagnostics” products to generate simulated ceilometer profiles and pseudo-
radiosonde profiles (Section 5.2 and 5.3), and the average “Assimilate Meteorological Fields” and “Single-Level Diagnostics”
to generate zonal plane plots of thermodynamic and cloud fields (Section 5.4). The 4-dimensional MERRA-2 fields were pro-
vided on pressure and model levels. For our analysis we chose to use the model-level products (72 levels) due to their higher

vertical resolution compared to pressure-level products. The analysed time period of MERRA-2 data was 2015-2018.
24 CERES

The Clouds and the Earth’s Radiant Energy System (CERES) is a set of low Earth orbit (LEO) satellite instruments and a
dataset of SW and longwave (LW) radiation observations (Loeb et al., 2018; Doelling et al., 2016). The CERES instruments
(called FM1 to FM6) provide a continuous record of observations since the first deployment on the Tropical Rainfall Measuring
Mission (TRMM) satellite in 1997 (Simpson et al., 1996), and have been flown on Terra, Aqua (Parkinson, 2003), the Suomi
NPOESS Preparatory Project (Suomi NPP) and Joint Polar Satellite System-1 (JPSS-1) (Goldberg et al., 2013) satellites since.
Currently CERES is considered the best available global Earth radiation datasets, and is often used as the primary dataset
for GCM tuning and validation (Schmidt et al., 2017; Hourdin et al., 2017). We used the following CERES products in our

analysis:

— CERES SYNldeg-Day Edition 4A (configuration code 406406 and 407406) product of daily average radiation (“CERES
SYN”).

— CERES EBAF-TOA Edition 4.1 (CERES_EBAF_Ed4.1) product of monthly energy-balanced average radiation (“CERES
EBAF”).
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Due to the sun-synchronous orbits of the LEO satellite platforms, the Flight Model (FM) instruments of CERES do not
capture the full diurnal variation of radiation. The EBAF and and SYN1deg products are adjusted for diurnal variation by using
1-hourly geostationary satellite observations between 60°S and 60°N, and use an algorithm to account for changing solar zenith
angle and diurnal land heating. The CERES EBAF-TOA Edition 4.1 product is a Level 3B product, which means it has been

globally balanced by ocean heat measurements using the Argo network (Roemmich and Team, 2009).
2.5 NSIDC sea ice concentration

We used the Near-Real-Time Defense Meteorological Satellite Program (DMPS) Special Sensor Microwave Imager/Sounder
(SSMIS) Daily Polar Gridded Sea Ice Concentrations, Version 1 product (NSIDC-0081) (Maslanik and Stroeve, 1999) provided
by the National Snow and Ice Data Center (NSIDC) to classify observations into those affected and unaffected by sea ice. The
sea ice concentration product has a resolution of 25 x 25 km. We used a cutoff value of 15% of sea ice concentration for the

binary classification of sea ice, in line with previous studies (Comiso and Nishio, 2008).

3 Methods
3.1 Lidar simulator

CFMIP Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), a set of instrument simulators developed by the
Cloud Feedback Model Intercomparison Project (CFMIP), was extended with a surface lidar simulator and used to produce
virtual lidar measurements from model fields (Kuma et al., 2020). Resampling, noise reduction and cloud detection were
performed on observational and (where applicable) model lidar data in a consistent way to reduce structural uncertainty (see
Section 3.2). The schematic in Figure 2 shows the processing pipeline utilised in this study.

COSP was originally developed as a satellite simulator package whose aim is to produce virtual satellite (and more recently
ground-based) observations from atmospheric model fields in order to improve comparisons of model output with observations
(Bodas-Salcedo et al., 2011). This approach is required because physical quantities derived from satellite observations gener-
ally do not directly correspond to model fields. COSP accounts for the limited view of the satellite instrument by calculating
radiative transfer through the atmosphere, i.e. attenuation by hydrometeors and air molecules and backscattering. COSP com-
prises multiple instrument simulators, such as MODIS, ISCCP, MISR, CALIPSO and CloudSat. It has been used extensively
by previous studies of model cloud, for example by Kay et al. (2012), Franklin et al. (2013), Klein et al. (2013), Williams and
Bodas-Salcedo (2017), Jin et al. (2017) , and Schuddeboom et al. (2018). COSP is planned to be used in the upcoming Coupled
Model Intercomparison Project Phase 6 (CMIP6) (Webb et al., 2017).

For our analysis, we have developed a ground-based lidar simulator by modifying the COSP ACTSIM spaceborne lidar
simulator (Chiriaco et al., 2006) (see the Code and data availability section at the end of the document). This required reversing
of the vertical layers, as the surface lidar looks from the surface up rather than down from space to the surface, and changing

the radiation wavelength affecting Mie scattering by cloud droplets and Rayleigh scattering by air molecules. In this paper
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we present only a brief description of the surface lidar simulator, with a more complete description planned in an upcoming
paper. The new simulator is made available as part of the Automatic Lidar and Ceilometer Framework (ALCF) at https:
/alcf-lidar.github.io.

The recently introduced COSP version 2 (Swales et al., 2018) added support for a surface lidar simulator, although we believe
our implementation, developed before COSPv2 was available, is more complete in the present context due to its treatment of
Mie scattering at wavelengths other than 532 nm (the wavelength of the CALIPSO lidar). Previously, a surface lidar simulator
based on COSP has been used by Chiriaco et al. (2018) and Bastin et al. (2018). A ground-based radar simulator in COSP has
also recently been implemented (Zhang et al., 2018).

The surface lidar simulator takes model cloud liquid and ice mixing ratios, cloud fraction and thermodynamic profiles as
the input, and calculates vertical profiles of attenuated backscatter. This can be done either by running the simulator “online”

within the model code or “offline” on the model output. We used the offline approach in our analysis.
3.2 Lidar data processing

Lidar data in this study came from two different instruments: Lufft CHM 15k and Vaisala CL51 ceilometers and the lidar
simulator. These instruments use different output formats, wavelengths, sampling rates and range bins, as previously noted.
Backscatter and derived fields such as CBH are provided in the firmware generated data products, but the backscatter is
uncalibrated and the derived fields such as cloud detection are based on instrument-dependent algorithms. Therefore, we
performed consistent subsampling, noise reduction and cloud detection on data from both instruments, and applied the same
methods to the lidar simulator output. As part of the processing we developed a publicly available tool called cl2nc (“CL to
NetCDF”) for converting the Vaisala CL51 ceilometer data format to NetCDF (see the Code and data availability section at the

end of the document).
3.2.1 Calibration

The backscatter profiles produced by the Lufft CHM 15k and Vaisala CL51 ceilometers are not calibrated to physical units,

Lsr=1. To calibrate these backscatter fields we used the method described by O’Connor

even though they are expressed in m™
et al. (2004). This method uses the lidar ratio (LR) to calculate a calibration factor based on a known value of the LR in fully
scattering cloudy scenes (18.8 &+ 0.8 sr), such as thick stratocumulus clouds, which are common over the SO. We applied this
technique by using visually identified scenes and choosing a calibration factor which achieves the known value. Due to the
nature of the conditions (LR can be highly variable even in thick cloud scenes), the calibration is likely accurate to only about
50% of the backscatter value. We do not expect this to have a serious impact on the accuracy of cloud detection completed in
this study, largely because the predominantly low cloud tends to cause backscatter orders of magnitude greater than clear air,

and because of the very large differences in cloud occurrence between the observations and models.
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3.2.2 Subsampling, noise removal and cloud detection

In order to simplify further processing and increase the signal-to-noise ratio, we subsampled the ceilometer observations at a
sampling rate of 5 minutes by averaging multiple profiles, and vertically averaging on regularly spaced 50 m bins. We expect
that in most cases cloud was almost constant on this time and vertical scale, and therefore we were not averaging together
different cloud types or clear and cloudy profiles. At the same time as subsampling, we performed noise removal by estimating
the noise distribution (mean and standard deviation) based on returns in the uppermost range bins (i.e. 300 samples over 5 min
when sampling rate was 2 s), and subtracting the range-scaled noise mean from the backscatter. We then used the range-scaled
noise standard deviation (o) for cloud detection: a bin was considered cloudy if the calibrated backscatter minus 3¢ exceeded
20x10~% m~1sr~t. This threshold was chosen subjectively so that cloud was visually well separated from other features, such
as boundary-layer aerosol and noise on backscatter profile plots. The same threshold was used on both the observations and

output from the COSP surface lidar simulator and thus should cause little bias.
3.2.3 Model lidar data processing

We used the same sampling rate (5 min) and model levels as range bins on the surface lidar simulator output. For each vertical
profile we used model data at the same location as the ship and the same time relative to the start of the year. Model data
were selected using nearest-neighbour interpolation. The model resolution is lower than the distance travelled by the ship
in 5 minutes, therefore the same model data were used multiple times to generate consecutive profiles. However, we also
used the SCOPS (Webb et al., 2001) subcolumn generator included in COSP to generate 10 random samples of cloud for each
profile based on cloud fraction and the maximum/random cloud overlap assumption (Bodas-Salcedo, 2010). The lidar simulator
processes each sample individually. The resulting cloud occurrence is calculated as the average of the 10 samples. The lidar
simulator does not generate noise, and therefore we did not perform any noise removal on the simulated profiles, but we used
the same threshold of 20x10~% m~!sr~! and vertical bins of 50 m for detecting cloud (as used on the observations). For the
MERRA-2 cloud occurrence analysis, we applied the lidar simulator on the 3-hourly instantaneous Assimilated Meteorological

Fields (M2I3NVASM.5.12.4) product.

4 Spatiotemporal subsets investigated

Because our observational dataset does not span the entire geographical area of the SO and all months of the year, and the
atmospheric conditions in the SO are geographically variable, we subset the datasets into a number of geographical regions
by latitude and time periods by season. The geographical regions investigated are 50-75°S by 5 degrees of latitude, and the
temporal periods investigated are austral summer of December, January, February (DJF) and autumn months of March, April,
May (MAM).

We do not use data from 70-75°S and 50-55°S in all parts of the analysis. The data from 70-75°S are likely affected

by circulation induced by land near the Ross Sea (Coggins et al., 2014), and therefore may not be representative of the SO in
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general. This decision builds on the analysis detailed in Jolly et al. (2018) which shows a significant gradient in cloud properties
between the Ross Ice Shelf and the Ross Sea and strong influences associated with synoptic conditions. The data from 50-55°S
were relatively sparse (the ships spent relatively little time passing through this latitudes). Radiosonde observations were only
available south of 60°S.

There is likely temporal variability present within the DJF and MAM time periods, but we decided to limit the number of
temporal subsets to maintain a reasonable quantity of observations in each subset. The magnitude of the SO TOA outgoing SW
radiation bias is primarily modulated by incoming solar radiation, which is the highest in DJF. The voyages do not uniformly
cover all geographical regions or time periods, with the largest number of observations in the Ross Sea sector south of New
Zealand (TAN1802, TAN1502, HMNZSW16, NBP1704), followed by the Indian Ocean sector south of Western Australia

(AA15). Temporally, the voyage observations mostly cover summer to autumn months of the year.

5 Results
5.1 Shortwave radiation balance

Figure 3 shows TOA outgoing SW radiation in CERES, GA7.1 and MERRA-2. We present this panel plot in order to evaluate
how well GA7.1N and MERRA-2 are performing in terms of SW radiation bias in the SO relative to CERES. This analysis
assumes that CERES is a good observational reference, although it is affected by errors of lower order of magnitude (2.5 Wm ™2
"regional monthly uncertainty" (Loeb et al., 2018, sec. 4a.)). The plots reveal relatively zonally symmetric pattern of negative
and positive bias on the annual (Figure 3b, c) and seasonal (Figure 3e, f, h, i) time scales. GA7.1N shows predominantly
negiative bias, while MERRA-2 shows predominantly positive bias. The annual average is dominanted by the bias in DJF due
to the relatively strong incoming solar radiation in DJF. The bias displays very similar geographical pattern on the annual scale,
DJF and MAM. The bias is much lower in MAM compared to DJF due to lower incoming solar radiation.

We chose 1 January 2018 as a representative day in DJF to show the daily scale. On the daily scale (Figure 3j, k, 1), the
patterns are closely linked to synoptic features. The region on the eastern side of the Antarctic Peninsula shows the greatest
negative bias in the models. The relatively zonally symmetric annual and seasonal means suggest that there is not a significant
need for subsetting by longitude, and that latitude averages can be very useful in identifying the key features of the SW radiation
biases. The daily synoptic features are generally well-correlated between CERES and the models, which is expected in nudged
model runs and reanalyses. MERRA-2 has greater TOA outgoing SW radiation than GA7.1N on all three time periods presented
here. Considering that cloud is the dominant factor affecting SW radiation in the SO, this can only be associated with either
cloud cover which is too high, or cloud albedo which is too high. GA7.1N reflects too little SW radiation south of 60°S and too
much north of 60°S (Figure 3b, e, h). MERRA-2 reflects too much SW radiation in most of the SO except for coastal regions
of Antarctica (approx. 65-70°S) and the eastern side of the Antarctic Peninsula. The opposite sign of SW radiation bias in
GAT7.1N compared to MERRA-2 suggests that contrasting the two models could be useful for uncovering the cause of the bias.

Figure 4 shows line plots of zonal mean reflected SW radiation and bias relative to CERES by month in multiple latitude

bands between 50 and 70°S, with the southernmost band 65-70°S limited to 180-80°W to avoid covering land areas in
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Antarctica. The annual cycle follows the expected seasonal pattern modulated by varying incoming solar radiation with maxima
of reflected radiation in December and maxima of bias in December and January. The Antarctic sea ice extent, at its minimum
in February and peaking in September, is also likely a secondary modulating factor of the TOA outgoing SW radiation at higher
latitudes. The models represent the seasonal pattern well, but differ substantially during the periods of peak incoming solar
radiation. The GA7.1N model (Figure 4b, e, h, k) exhibits bias ranging from -21 to +11 Wm™2. The bias is positive north of
55°S and negative south of this latitude, with the greatest absolute bias between 60 and 65°S. MERRA-2 displays a clearly
different bias from GA7.1N, ranging from -12 to 39 Wm~2 (Figure 4c, f, i, 1). The peak SW bias in MERRA-2 is positive for
latitudes north of 65°S and negative south of this this latitude. The absolute bias in MERRA-2 is much larger than in GA7.1N
north of 60°S and similar to GA7.1N south of this latitude. Therefore, the MERRA-2 results are valuable for contrasting with
GA7.1. The strong latitudinal variation of the TOA outgoing SW radiation bias is important to take into consideration. Previous
studies of SO clouds often did not discern different latitudes.

Figure 5 shows scatter plot of the TOA outgoing SW radiation bias in GA7.1N and MERRA-2 as a function of near-surface
air temperature and relative humidity between 55 and 70°S in January 2018. The bias is predominantly negative in GA7.1N and
positive MERRA-2. There is a strong cluster of negative bias at temperature around 0 °C in GA7.1N and -2 °C in MERRA-2,
and a cluster of positive bias at higher temperatures. This is consistent with the latitudinal dependence of bias in both models

shown above.
5.2 Cloud occurrence in model and observations

To understand how clouds contribute to the SW bias, we examine cloud cover and cloud occurrence as a function of height
in the models and observations. Figure 6 shows cloud occurrence profiles derived from ceilometer observations on different
voyages and GA7.1N and MERRA-2 model output derived via the COSP surface lidar simulator, in subsets by latitude and
season. Most notably, the observed cloud cover is consistently very high in the observations (80—-100%) for all periods and
latitude bands examined and greater than 90% in most of the subsets. This finding differs substantially from the modelled cloud
cover derived via the surface lidar simulator, which ranges between 69 and 100% in GA7.1N, and is about 4-9% lower than
observations across the subsets. The cloud cover in MERRA-2 is also lower than observed and much lower than in GA7.1N,
spanning 51-95%. Only in 4 subsets is the cloud cover greater in GA7.1N than observed, and only in 1 subset is the cloud
cover greater in MERRA-2 than observed (out of 21 subsets). Our analysis therefore shows that cloud cover is underestimated
in both GA7.1N and MERRA-2 in the evaluated geographical regions and seasons.

Examination of the vertical distributions in Figure 6 shows that observations have a strong predominance of cloud below 2
km and peaking below 500 m in most subsets, including a substantial amount of surface-level fog in some subsets. In contrast,
GA7.1N and MERRA-2 simulate clouds at a higher altitude, peaking at about 500 m and generally the peak is higher than in
observed clouds. Especially, clouds below 500 m and fog appear to be lacking in the models.

The subsets in Figure 6 are derived from uneven length of ship observations (1.0-28.9 days) due to the limited availability of
data. The longer subsets (Figure 6a4, b4, c2, c4, f1) appear marginally more consistent between the models and observations

in terms of the cloud ocurrence profile, but the cloud cover is still markedly underestimated.
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Figure 7 shows the model subsets of Figure 6 as points by their cloud cover bias relative to observations. It can be seen that
GA7.1N underestimates cloud cover by about 4% and MERRA-2 by 16% when non-weighted averages are considered, and by
9% (GA7.1N) and 18% (MERRA-2) when weighted averages are considered.

Due to the nature of the lidar measurements, middle to high clouds may be obscured by low clouds, as the laser signal
is quickly attenuated by thick cloud. Therefore, the lack of clouds above 2 km in the plots does not imply that no clouds
are present. The lidar simulator, however, ensures unbiased 1:1 comparison with observations by accounting for the signal
attenuation.

The results demonstrate the value of surface cloud measurements in the SO relative to satellite measurements such as Cloud-
Sat and CALIPSO, which would likely provide a biased sample of these clouds because of “ground clutter” and obscuration

by higher-level clouds, respectively (Alexander and Protat, 2018).
5.3 Radiosonde observations

We use radiosonde measurements performed on TAN1802 and NBP1704 to evaluate boundary layer properties and correlate
them with clouds observed by a ceilometer. We compare the observations with “pseudo-radiosonde” profiles extracted from
model fields at the same location and time. The location is based on the GNSS coordinates of the ship at the time of the balloon
launch (the ballon trajectory length was generally not long enough to span multiple model grid cells in the lower troposphere).

We define a new quantity “SST lifting level” (SLL) derived from SST and boundary layer atmospheric potential temperature,
defined as the level to which an air parcel with the same temperature as SST, rising from the sea surface, would rise adiabatically
by buoyancy. That is, it is the level closest to the surface at which potential temperature is equal to SST, provided the air parcel
is permitted to rise to this level by buoyancy (otherwise the air parcel does not rise and SLL is O m). This quantitiy is applicable
in sea ice-free conditions in the SO, when cold Antarctic air is warmed by the open sea surface and is lifted by buoyancy
until it reaches a limit imposed by the atmospheric stability of the atmosphere. Alongside the lifting condensation level (LCL)
we found SLL to be a useful quantity for evaluation of CBH. The authors are not aware of any previous use of SLL, but this
definition is supported by observations (see below).

Apart from SLL and LCL, we also use the lower tropospheric stability (LTS) (Klein and Hartmann, 1993). LTS is defined as
the difference between potential temperature at 700 hPa and sea level pressure (Klein and Hartmann, 1993). It has been used
in multiple previous studies (Williams et al., 2006; Franklin et al., 2013; Williams et al., 2013; Naud et al., 2014).

Figure 8 shows the observed and modelled relationship between CBH and the minimum of SLL and LCL (“min{SLL,LCL}”),
LTS, SLL and LCL. A large fraction of the observed points (OBS) in Figure 8a lie close to the origin (40% in the first 100 m
in observations, vs. 26% and 17% in GA7.1N and MERRA-2, respectively), which suggests that near zero min{SLL,LCL} is
a good indicator of fog or very low cloud, a relationship not well-represented in the models. The remaining observed points
show a close equivalence between min{SLL,LCL} and CBH, while the models do not represent this equivalence well. The
histogram in Figure 8a reveals that about 42% of observed profiles have CBH within 100 m of min{SLL,LCL}, while only
about 28% of GA7.1N and 21% of MERRA-2 profiles do.
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Using SLL or LCL as a predictor for CBH individually resulted in a weaker relationship than min{SLL,LCL}: 25% and 31%
of OBS profiles have CBH within 100 m of SLL and LCL, respectively (Figure 8c, d). This suggests that min{SLL,LCL} is
more strongly related to CBH than SLL or LCL individually. Figure 8b shows CBH as a function of LTS. LTS does not display
a good predictive ability for CBH in this dataset, with the exception of very stable profiles (LTS > 15 K), when observed CBH
was below 250 m in all but one case.

Figure 9 shows the distribution of min{SLL,LCL} derived from radiosonde observations and model fields. In observations,
the quantity almost consistently peaks near the ground and reaches up to 1.5 km in ice-free cases (Figure 9al-aS5, b4). GA7.1N
represents this distribution relatively well. This is not the case with MERRA-2, which is less likely to peak near the ground
(Figure 9a3, a5, c4). The sea-ice cases (Figure 9b5, b6) show markedly different observed distribution of the quantity, with
peak at about 300 m. GA7.1N and MERRA-2 represent the distribution over sea ice relatively poorely.

5.4 Zonal plane comparison of GA7.1N and MERRA-2

In order to better understand the differences in the SW radiation bias between GA7.1N and MERRA-2, we inspect zonal
plane plots of cloud occurrence and thermodynamic fields of the models in DJF 2017/18 and 1 January 2018 (Figure 10). The
figure shows seasonal and daily average cloud liquid and ice mixing ratio contours plotted over two different backgrounds —
potential temperature and relative humidity (RH). The daily average plots (Figure 10c, d) show a very pronounced difference
between the cloud liquid amount between the two models, with MERRA-2 simulating a much greater amount of cloud liquid.
In contrast, GA7.1N simulates cloud with ice, which are nearly absent in MERRA-2 at the chosen contour levels. The liquid
content is generally concentrated near SLL in MERRA-2, but much less so in GA7.1N, where SLL is often at 0 m. The cloud
ice in GA7.1N generally has significantly greater vertical extent than the cloud liquid. These differences are also present on
the seasonal scale (Figure 10a, b). The difference in potential temperature between the models is relatively small. GA7.1N,
however, shows a slightly higher potential temperature. The RH field is very different between GA7.1N and MERRA-2, with
MERRA-2 simulating higher RH by about 10%.

Pehaps most interestngly, the vertically integrated liquid and ice content (Figure 10i, j) is very different between the models.
Both models simulate almost the same liquid + ice total, but the phase composition of cloud in GA7.1N is majority ice, while

in MERRA-2 it is almost entirely liquid.

6 Discussion

The TOA outgoing SW radiation assessment shows that the models exhibit monthly average biases of up to 39 Wm ™2
(MERRA-2, 50-55°S in December), and that these biases have a significant latitudinal dependency, with the opposite sign
of bias between different latitude bands. In GA7.1N the bias is predominantly negative, while in MERRA-2 the bias is pre-
dominanly positive. Similar pattern of bias is present in both models. The bias is positive north of 55°S (65°S) in GA7.1N
(MERRA-2) and negative south of this latitude. This finding is consistent with Schuddeboom et al. (2019), who observed
opposite sign of SW cloud radiative effect south and north of 55°S in GA7.1.
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A very similar geographical pattern of bias is present in DJF and MAM, suggesting that similar cloud biases are present in
both seasons. This is also supported by Figure 6, which does not display a significant difference in observed cloud occurrence
and bias in the models between DJF and MAM. Consistent with the maximum of incoming solar radiation, December and
January were found to be the months with the greatest absolute bias in the models. Therefore, fixing the representation of
clouds in the SO in these months is relatively more important than in other months.

Figure 5 suggests that the bias correlates not only with latitude, but also with near-surface air temperature. The negative
bias is strongly clustered around 0 °C in GA7.1N, and -2 °C in MERRA-2, and positive bias is predominantly correlated with
higher temperature.

The ship-based lidar cloud occurrence revealed close to 100% cloud cover in multiple subsets. Subsetting allowed us to iden-
tify whether the cloud cover is substantially different by latitude and season, and also sample independent weather situations
(it is expected that cloud occurrence profiles are highly correlated over several days due to persistance of synoptic situations).
The subsets show a relatively consistent cloud occurrence profile peaking below 500 m, and almost zero above 2 km (possibly
also due to obscuration of lidar signal by lower clouds). The models generally do not reproduce this profile well. Apart from
underestimating the total cloud cover, the peak of cloud occurrence in the models is higher than observed. Improving the cloud
profile representation in the models is likely key for improving the SW radiation bias.

The effect of clouds on SW radiation is the product of cloud cover (the fraction of the sky containing clouds) and cloud
albedo (the fraction of SW radiation reflected by the clouds). With our ship-based lidar observations we measured cloud
cover (total, and cloud cover as a function of height), while we did not measure cloud albedo. The cloud cover was almost
consistently underestimated in both GA7.1N and MERRA-2 across all latitudes. At the same time, the satellite observations
show that MERRA-2 reflects too much all-sky SW radiation. Therefore, the cloud albedo in MERRA-2 must be too high in
order to cause too much all-sky SW radiation reflection despite the lack of cloud cover. This effect is visible on the daily scale
in Figure 3j-1, where the individual clouds in MERRA-2 appear significantly brighter than on satellite observations.

Remarkably, the observed cloud ocurrence profiles appear to be similar between the DJF and MAM seasons and latitude
bands between 55 and 70°S (Figure 6): if we focus on the subsets with more than 10 days (Figure 6a4, b4, c2, c4, f1), i.e. not
heavily skewed toward a single weather situation, we find that they are all characterised by a peak below 500 m of 25-60% and
falling to near-zero above 2—-3 km, sometimes with a minor secondary peak between 1 and 2 km. The simulated profiles show
a slightly higher altitude of the primary peak between 0 and 1 km, underestimated in MERRA-2 by up about two thirds, falling
to near-zero between 2 and 3 km, without any substantial secondary peak. The total cloud fraction appears to be more strongly
underestimated at high latitudes in GA7.1N in DJF, by 8-28% (Figure 6¢2, c4) vs. 8% (Figure 6b4). This is an important
consideration in connection with the SW radiation bias, which shows a strong latitudinal gradient of the TOA outgoing SW
radiation bias in the models (Figure 3, 4). Based on the the presented results a plausible explanation for the SW radiation bias
could be overestimation of cloud albedo north of about 55°S (65°S) in GA7.1N (MERRA-2) causing positive TOA outgoing
SW radiation bias north of this latitude and underestimation of cloud cover over the whole SO causing negative TOA outgoing

SW radiation bias south of this latitude.
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In the ship observations we found a notable correspondence between CBH, SLL and LCL. Boundary layer thermodynamics,
determining the lifting levels, is a plausible driver of cloud formation in the absence of other forcing. We examined SLL
in models and radiosonde observations, and found differences which are likely too small to explain the cloud occurrence
differences between the models and ceilometer observations. Bodas-Salcedo et al. (2012), in their analysis of an earlier version
of the GA model (GA3.0) using cyclone composites also noted that biases in thermodynamics are not likely to explain the
SW radiation bias, but may still play a significant role. The presence of positive TOA outgoing SW radiation bias in the SO
between 50 and 55°S in GA7.1, which contrasts with the negative bias south of the latitude, is important because it places a
limit on the applicability of other studies which used SO observational data from regions north of 55°S (Lang et al., 2018).

In Section 5.3 we show that min{SLL,LCL} has a stronger equivalence to CBH than SLL, LCL individually or LTS. This
relationship becomes quite notable when examining the individual voyage radiosonde profiles (not presented here). We hy-
pothesise that the theoretical reason for this relationship is the following. When SLL is higher than LCL, an air parcel warmed
by the sea surface to temperature close to SST rises by buoyancy past LCL to a level with the equivalent potential temperature.
The water vapour starts to condensate at LCL (assuming enough cloud condensation nuclei are present at 100% saturation),
forming cloud with CBH equal to LCL. If SLL is lower than LCL, the air parcel rises to the level of equivalent potential
temperature, where air lifted from the sea surface eventually accumulates, potentially forming cloud if enough moisture is
transported from the sea surface. The models do not represent the observed relationship well, and improving this relationship
may be one way of improving the cloud simulation.

Considering the strong observed relationship between min{SLL,LCL} and CBH (CBH tends to occur at the same level as
min{SLL,LCL}), we evaluated the distribution of min{SLL,LCL} in the models in comparison with radiosonde observations
(Figure 9). We found that GA7.1N represents this distribution relatively well in sea-ice-free cases, while MERRA-2 underesti-
mates cases when min{SLL,LCL} was near the surface. This may be the reason for the underestimation of very low cloud and
fog in this model identified in the comparison with lidar observations. Therefore, improving the distribution of the quantity in
MERRA-2 may lead to improvement of low cloud simulation.

It is interesting to contrast our results with previous studies which used cyclone compositing for the TOA SW radiation bias
evaluation in GCMs. We cannot make substantial conclusions from our results on how much of the model bias is attributable
to cyclones. It appears, however, that the cloud cover and cloud liquid and ice mixing ratio bias in GA7.1N is systematic rather
than isolated to cyclonic activities due to its relative consistency across spatiotemporal subsets in the high latitude SO. This
does not rule out even greater biases related to cyclonic sectors. Specifically, Bodas-Salcedo et al. (2014) evaluated a large set
of models, including HadGEM2-A, a predecessor model to HadGEM3, likely affected by similar biases, and found that about
80% of grid cells south of 55°S could be classified as affected by a cyclone, and that these grid cells were responsible for the
majority of the total SW radiation bias. Moreover, their cyclone compositing showed that the bias in HadGEM2-A was largely
negative in the cold quadrants, and near zero in the warm quadrants. Their results also indicate a strong contrast in SW bias
south and north of 55°S, similar to the result we found in GA7.1N. We think these results can be reconciled with our study
by assuming that the model has a particular difficulty in representing cloud in situations when near-surface air temperature

is lower than the SST. In these regions the heat flux is from the ocean to the atmosphere is positive, which in the austral
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summer predominantly occur south of 55°S and in the cold sectors of cyclones. The cloud representation when near-surface
air temperature is greater than SST is relatively more accurate, this case occurring predominantly north of 55°S and in the
warm sector of cyclones. As shown in Figure 5, the negative TOA outgoing SW radiation bias in the models is clustered at
zero and sub-zero temperatures. This suggests a possible explanation that sub-zero air mass advecting from Antarctica or from
sea ice covered areas over warm water (cold-air outbreaks) could be inducing low cloud and fog, and this process is not well
represented in the models (Bodas-Salcedo et al., 2012).

Previous studies have documented that supercooled liquid is often present in the SO cloud in summer months (Morrison
et al., 2011; Huang et al., 2012; Chubb et al., 2013; Huang et al., 2016; Bodas-Salcedo et al., 2016; Jolly et al., 2018; Listowski
et al., 2019). We cannot substantially add to these findings with our observations, although preliminary analysis of a polarising
lidar Sigma Space MiniMPL profiles from the TAN1802 voyage suggests supercooled liquid was commonly present in the
ubiquitous stratocumulus cloud. The side-by-side comparison of cloud liquid and ice mixing ratios on the zonal plane (Figure
10) suggests that models can differ significantly in their representation of cloud phase, with GA7.IN simulating markedly
less supercooled liquid than MERRA-2. This is the most likely the explanation for the overestimation of TOA outgoing SW
radiation in MERRA-2, despite the underestimated cloud cover in this model. If cloud cover is increased in MERRA-2 to better
match with the lidar observations, the cloud albedo would have to be lowered to obtain a reasonable match of TOA outgoing
SW radiation with CERES.

The 2016-2018 voyages may have been affected by the unusually low sea ice extent (discussed below), which can have a
significant effect on cloud (Frey et al., 2018; Taylor et al., 2015). The modulating effect of sea ice on cloud in the SO has
previously been shown by Listowski et al. (2019) and there is an apparent difference in cloud between the Ross Sea and Ross
Ice Shelf as shown by Jolly et al. (2018), with cloud over the ice shelf having smaller cloud cover, a greater amount of altostratus
cloud and a smaller amount of deep convective cloud. The sea ice and ice shelves block transport of heat and moisture to the
atmosphere. Their low thermal conductivity and high albedo mean the surface can cool to very low temperature and thus have
an effect on the radiation balance of the atmosphere. We did not focus on sea ice conditions, since one can expect the effect of
cloud biases on the SW radiation bias over sea ice to be small — the ice surface is already highly reflective in the SW, and the
presence of cloud has little impact on the grid cell SW reflectivity (the SW albedo of cloud is similar to sea ice, depending on
the sea ice concentration).

The Antarctic sea ice extent has undergone a rapid decrease starting in the spring of 2016 after about a decade of slightly
increasing extent (Turner et al., 2017; Stuecker et al., 2017; Doddridge and Marshall, 2017; Kusahara et al., 2018; Schlosser
et al., 2018; Ludescher et al., 2018). The sea ice extent due to this decrease was found to be the lowest on observational
record since 1979, and the Ross Sea was particularly affected by this anomaly. The unusually low sea ice extent likely affected
atmospheric observations made on the voyages presented in this study, e.g. the TAN1802 voyage in February and March
2018 to the Ross Sea experienced no sea ice during the entire voyage. Because sea ice is an important factor influencing the
atmospheric boundary-layer stability and radiation balance, a significant secondary effect on cloud cover, cloud phase and
opacity is expected. Sea ice is, however, not expected to be responsible for the SO SW radiation bias described here, because

the bias is present even when sea ice concentration is prescribed from satellite observations, as is the case in the nudged run
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GA7.1 and the MERRA-2 reanalysis. Given that few of the ship-based observations were collected before 2016, we cannot
reliably estimate how the anomalous sea ice extent affected our results.

In our results we found that even when model atmospheric dynamics is prescribed based on past observations, the TOA
outgoing SW radiation bias is large and cloud occurrence, especially of low cloud and fog, is underestimated. CBH is found
to be strongly linked to the boundary layer thermodynamics, and this link does not seem to be well represented in GA7.1N
and MERRA-2. We therefore expect that cloud and boundary layer parametrisations (as part of subgrid scale processes in the
models) are responsible for this bias. We have identified parts of the GA7.1N model most likely responsible: the large-scale
cloud scheme, the PC2 scheme (Wilson et al., 2008a, b) and the boundary layer scheme. A future study should focus on these
schemes to identify the parts responsible for the bias. In particular, the model should improve simulation of very low cloud and
fog and achieve a closer match between the lifting levels and CBH (Figure 8a).

In Table 3 we present a simple calculation how the GA7.1N peak TOA outgoing SW radiation bias would change if the cloud
cover were increased by 5% (as suggested by Figure 7), assuming the cloud albedo does not change. This correction would
explain 51-111% of the bias depending on the latitude. The remaining part of the bias must be attributed to cloud albedo. One
way this could be improved is by increasing the supercooled liquid fraction, or by increasing the total cloud water (liquid +
ice) path. Therefore, our results suggest that in GA7.1N underestimation of cloud cover is responsible for the majority of the

negative TOA outgoing SW radiation bias, relative to underestimation of cloud albedo.

7 Conclusions

We analysed 4 years of observational SO ship data, and contrasted them with a nudged run of the GA7.1 GCM, and MERRA-2
reanalysis. We used satellite observations of the Earth radiation budget to assess the TOA outgoing SW radiation bias in the SO
in the models. We examined the total cloud cover and vertical distribution of cloud as measured by ceilometers and simulated
by a ceilometer simulator based on the model data. We also compared SO radiosonde observations from two voyages with
pseudo-radiosonde profiles from the models in order to assess boundary layer stability and the correlation between cloud base
and atmospheric lifting levels. We also compared model fields of cloud liquid and ice content, potential temperature and relative
humidity in a zonal plane analysis across the SO to contrast cloud and thermodynamics simulated by GA7.1N and MERRA-2.

The SO SW radiation bias is significant in GA7.1N and MERRA-2, and tends to be positive in the northern parts of the
SO and negative in the southern parts of the SO in both models. MERRA-2 shows greater absolute bias than GA7.IN. SO
ship-based lidar and radiosonde observations are a valuable tool for model cloud evaluation, considering the amount of low
cloud in this region which is likely poorly sampled by satellite instruments due to possible obscuration by higher overlapping

cloud. The main findings of this study are that multi-year ship-based observations:

— corroborate satellite-based evidence of underestimated cloud cover, with both GA7.1N and MERRA-2 underestimating
cloud cover on average by about 4-9% (GA7.1N) and 18% (MERRA-2),
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— show that low cloud below 2 km is almost continuous in the SO in summer months in sea ice-free conditions, and not

well represented in the models,

— indicate that boundary layer thermodynamics is a strong driver of cloud in the SO, and this relationship is not well

represented in the models,

— suggest that subgrid-scale processes in situations when near-surface atmospheric temperature is lower or close to SST

are responsible for the cloud misrepresentation.

Here, we introduced a new quantity (a thermodynamic level) called SST lifting level (SLL), which is the level of neutral
buoyancy of an adiabatically lifted parcel with temperature equal to SST. The motivation for introducing this level was the
frequently observed occurrence of cloud base at this height, together with LCL. We think that this is explained by the strongly
thermodynamically-driven cloud in the Soutern Ocean boundary layer and is linked to the particular conditions of the summer-
time Southern Ocean: sub-zero temperature of the near-surface atmosphere, destabilised by the relatively warmer (near-zero)
sea surface.

Future studies of SO cloud representation in the GA model could focus on specific details of the model subgrid-scale
cloud processes (such as the large scale cloud, boundary layer and convection schemes), and how their tuning impacts cloud
occurrence distributions compared to the ship observations. The stark difference between GA7.1N and MERRA-2 cloud liquid
and ice content also remains to be explained, and could provide valuable insight for improving the SO SW radiation bias in the

model and the reanalysis.

Code and data availability. The original COSP version 1 simulator is open source and available publicly at https://github.com/CFMIP/
COSPv1. The modified COSP version 1 simulator including the ground-based lidar simulator used in this study is open source and available
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cl2nc. The CERES EBAF and SYN1deg products are available publicly from the CERES website: https://ceres.larc.nasa.gov/. The Neal-
Real-Time DMPS SSMIS Daily Polar Gridded Sea Ice Concentrations product is available publicly from the NSIDC website: https://nsidc.
org/data/nsidc-0081. The Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) is available publicly from the Met Office
website: https://www.metoffice.gov.uk/hadobs/hadisst/. The MERRA-2 data are available publicly from the MERRA-2 website: https://
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Figure 1. Map showing tracks of voyages used in this study. The ship observational dataset comprises 5 voyages between 2015 and 2018,

spanning months from November to June and latitudes between 40°S and 78°S, of which data between 50°S and 70°S are used in this study.
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Figure 2. Schematic of the processing pipeline utilised in this study to produce lidar and radiosonde statistics from observations and model

data.
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MERRA-2

Figure 3. Geographical distribution of the TOA outgoing SW radiation in CERES, GA7.1N and MERRA-2. The plots show global all
sky SW radiation as annual (2015-2018; a—c), seasonal (2015-2018 DJF, MAM; d—i) and daily (1 January 2018; j-1) mean. The blue-red

colormap shows bias relative to CERES (b, c, e, f, h, 1), while the grayscale colormap shows absolute values (a, d, g, j, k, 1).
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Figure 4. Zonal means of the TOA outgoing SW radiation in CERES, GA7.1N and MERRA-2 during the years 2015-2018 in 5-degree
latitude bands between 50 and 70°S. The plots show monthly zonal mean TOA outgoing SW radiation (blue) and its difference relative to

CERES (red) as a function of month. Shown are also the maxima ("max") and the difference from CERES ("max A").
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Figure 5. Scatter plot of SW radiation bias in (a) GA7.1N and (b) MERRA-2 grid cells between 55°S and 70°S in January 2018. Each point
represents a daily average of SW radiation bias as a function of near-surface air temperature and near-surface relative humidity. The bias is

expressed as a percentage of the incoming solar radiation in the grid cell. The points are a random sample of 100000 points.
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Figure 6. Cloud occurrence frequency as a function of height derived from ceilometer observations (OBS) and model fields (GA7.1N and

MERRA-2). The observational and model data were subsetted by latitude and season (DJF, MAM) along the voyage track. The numbers at

the top of each panel show total (vertically integrated) cloud cover and the number of days the ship spent passing through the spatiotemporal

subset. The height in the plots is limited to 6 km. There was no significant amount of cloud detected above this level.
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tional to the number of days of observations in the subset. The solid lines are averages, and dashed lines are averages weighted by the number

of days the ship spent passing through the spatiotemporal subset.
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Figure 8. Scatter plots of radiosonde measurements on the TAN1802 and NBP1704 voyages between February and May and 60-70°S

latitude. Corresponding profiles from GA7.1N and MERRA-2 are selected, i.e. having the same geographical coordinates and the same time

of the year. Each point on the scatter plots represents a radiosonde profile. The plots compare three datasets: observations (OBS), GA7.1N
and MERRA-2. The radiosonde observations are matched with ceilometer (OBS) and COSP-based CBH (GA7.1N and MERRA-2). (a)
shows the points as a function of min{SLL, LCL} and CBH. The inset histogram shows distribution of the difference of CBH and min{SLL,

LCL} in bins of 100 m, where each bin contains three bars for the three datasets. (b, c, d) show the points as a function of LTS, SLL and

LCL, respectively.
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Figure 9. Histogram of min{SLL,LCL} derived from radiosonde observations (OBS) on TAN1802 and NBP1704, and the equivalent profiles
in GA7.IN and MERRA-2. Shown are subsets by latitude between 60 and 75°S and seasons DJF and MAM. The numbers at the top of each
panel indicate the number of profiles which make up the histogram and the percentage of sea ice cases determined from NSIDC satellite-

derived sea ice concentration.
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Figure 10. Zonal plane plot of cloud liquid and ice mixing ratios in GA7.1N and MERRA-2 at 60°S. The cloud liquid and ice mixing ratios
are plotted as contours on top of the potential temperature fields (a—d) and relative humidity fields (e-h). SLL is indicated by a white line. (a,
b, e, f) show a seasonal average in DJF 2017/2018 and (c, d, g, h) show a daily average on 1 January 2018. (i, j) show the column-integrated
values of cloud liquid and ice water as a function of longitude corresponding to the plots above. All liquid shown in the plots is supercooled

(air temperature is less than 0 °C everywhere).
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Table 1. Table of voyages. The table lists voyages analysed in this study. Listed is the voyage name (Voyage), which is the official name of

the voyage or an abbreviation for the purpose of this study, ship name (Ship), organisation (Org.), start and end dates of the voyage (Start,

End), number of days spent at sea (Days), target region of the SO (Region), maximum and minimum geographical coordinates of the voyage

track (Lat., Lon.).

Voyage Ship Org. Start End Days  Region Lat. Lon.
TAN1502 RV Tangaroa NIWA  2015-01-20  2015-03-12 51 Ross Sea 41°S-75°S  162°E-174°W
TAN1802 RV Tangaroa NIWA  2018-02-08  2018-03-21 41 Ross Sea 41°S-74°S  170°E-175°W
HMNZSW16 HMNZS Wellington RNZN  2016-11-20  2016-12-20 20 Ross Sea 36°S-68°S  166°E-180°E
NBP1704 RV Nathaniel B. Palmer ~ NSF 2017-04-11  2017-06-13 63 Ross Sea 53°S-78°S  163°E-174°W
AA15 (AA V1-V3)  Aurora Australis AAD 2015-10-22  2016-02-22 123 Indian O. sector ~ 42°S-69°S  62°E-160°E
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Table 2. Table of deployments. The table cells indicate if data from a given instrument (row) was available from a voyage (column).

Instrument/Voyage AALIS TANI1502 HMNZSW16 NBP1704 TANI1802

Lufft CHM 15k v v v
Vaisala CL51 v v

iMet radiosondes v
Radiosondes (other) v

39



Table 3. A table showing a "back-of-the-envelope" calculation how the GA7.1N peak TOA outgoing SW radiation bias (Figure 4) would
change if the cloud cover were increased by 5% (Figure 7), asssuming the cloud albedo does not change. The "corrected" TOA outgoing SW

radiation is calculated by multiplying the original value by 1.05.

Latitude ~ TOA out. SW at max. A (Wm~2)  Max. A TOA out. SW (Wm~2)  Corrected Max. A TOA out. SW (Wm—2)  Explained error

55-60°S 199 -9 0.95 111%
60-65°S 214 -21 -10.3 51%
65-70°S 243 -16 3.85 76%
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