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Abstract. Information on the rate of diffusion of organic molecules within secondary organic aerosol (SOA) is needed to 

accurately predict the effects of SOA on climate and air quality.  Often, researchers have predicted diffusion rates of organic 

molecules within SOA using measurements of viscosity and the Stokes-Einstein relation (D ∝ 1/ where D is the diffusion 

coefficient and η is viscosity).  However, the accuracy of this relation for predicting diffusion in SOA remains uncertain. We 20 

measured diffusion coefficients over eight orders in magnitude in proxies of SOA including citric acid, sorbitol, and a sucrose-

citric acid mixture. These results were combined with literature data to evaluate the Stokes-Einstein relation for predicting 

diffusion of organic molecules in SOA.  Although almost all the data agrees with the Stokes-Einstein relation within a factor 

of ten, a fractional Stokes-Einstein relation (D ∝ C/t) with t = 0.93 and C = 1.66 is a better model for predicting diffusion of 

organic molecules in the SOA proxies studied.  In addition, based on the output from a chemical transport model, the Stokes-25 

Einstein relation can over predict mixing times of organic molecules within SOA by as much as one order of magnitude at an 

altitude 3 km, compared to the fractional Stokes-Einstein relation with t = 0.93 and C = 1.66.  These differences can be 

important for predicting growth, evaporation, and reaction rates of SOA in the middle and upper part of the troposphere. These 

results also have implications for other areas where diffusion of organic molecules within organic-water matrices is important. 

1 Introduction 30 

Atmospheric aerosols, suspensions of micrometer and sub-micrometer particles in the Earth’s atmosphere, modify climate by 

interacting with incoming solar radiation and by altering cloud formation and cloud properties (Stocker et al., 2013). These 
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aerosols also negatively impact air quality and may facilitate the long-range transport of pollutants (Friedman et al., 2014; Mu 

et al., 2018; Shrivastava et al., 2017a; Vaden et al., 2011; Zelenyuk et al., 2012). 

A large fraction of atmospheric aerosols are classified as secondary organic aerosol (SOA). SOA is formed in the atmosphere 

when volatile organic molecules, emitted from both anthropogenic and natural sources, are oxidized and partition to the particle 

phase (Ervens et al., 2011; Hallquist et al., 2009). The exact chemical composition of SOA remains uncertain; however, 5 

measurements have shown that SOA contains 1000s of different organic molecules and the average oxygen-to-carbon (O:C) 

ratio of organic molecules in SOA ranges from 0.3 – 1.0 or even higher (Aiken et al., 2008; Cappa and Wilson, 2012; Chen et 

al., 2009; DeCarlo et al., 2008; Ditto et al., 2018; Hawkins et al., 2010; Heald et al., 2010; Jimenez et al., 2009; Laskin et al., 

2018; Ng et al., 2010; Nozière et al., 2015; Takahama et al., 2011; Tsimpidi et al., 2018). SOA also contains a range of organic 

functional groups including alcohols and carboxylic acids (Claeys et al., 2004, 2007; Edney et al., 2005; Fisseha et al., 2004; 10 

Glasius et al., 2000; Liu et al., 2011; Surratt et al., 2006, 2010).  

In order to accurately predict the impacts of SOA on climate, air quality, and the long-range transport of pollutants, information 

on the rate of diffusion of organic molecules within SOA is needed. For example, predictions of SOA mass, which has major 

implications for climate and air quality, can vary by an order of magnitude when the molecular diffusion rate of organic 

molecules in SOA is varied in models (Shiraiwa and Seinfeld, 2012). Predictions of SOA particle size, which has implications 15 

for climate and visibility, also varies significantly in simulations as the diffusion rate of organic molecules is varied (Zaveri et 

al., 2014, 2018). Reactivity and photochemistry in SOA can also depend on diffusion rates (Davies and Wilson, 2015; Hinks 

et al., 2016; Lakey et al., 2016; Li et al., 2015; Lignell et al., 2014; Liu et al., 2018; Shiraiwa et al., 2011; Zhang et al., 2018; 

Zhou et al., 2013). 

In some cases, diffusion rates of organic molecules in SOA have been measured or inferred from experiments (Abramson et 20 

al., 2013; Liu et al., 2016; Perraud et al., 2012; Ullmann et al., 2019; Ye et al., 2016). However, in most cases researchers have 

predicted diffusion rates of organic molecules within SOA using measurements of viscosities and the Stokes-Einstein relation 

(Booth et al., 2014; Hosny et al., 2013; Koop et al., 2011; Maclean et al., 2017; Power et al., 2013; Renbaum-Wolff et al., 

2013; Shiraiwa et al., 2011; Song et al., 2015, 2016a). This is due to the development and application of several techniques 

which can measure viscosity of ambient aerosol or small volumes in the laboratory (Grayson et al., 2015; Pajunoja et al., 2014; 25 

Renbaum-Wolff et al., 2013; Song et al., 2016b; Virtanen et al., 2010). The Stokes-Einstein relation (Eq. 1) states that diffusion 

is inversely related to viscosity: 

 

                                                                                             𝐷 =
𝑘𝑇

6𝜋𝜂𝑅𝐻
                                                                                                  (1) 

 30 

where D is the diffusion coefficient, k is the Boltzmann constant, T is the temperature in Kelvin, RH is the hydrodynamic radius 

of the diffusing species, and η is the viscosity of the matrix.  Until now, only a few studies have investigated the accuracy of 

the Stokes-Einstein relation for predicting diffusion coefficients of organic molecules in SOA, and almost all of these studies 
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relied on sucrose as a proxy for SOA particles (Bastelberger et al., 2017; Chenyakin et al., 2017; Price et al., 2016). Sucrose 

was used as a proxy for SOA in these studies because 1) sucrose has an O:C ratio similar to that of highly oxidized components 

of SOA and 2) viscosity and diffusion data for sucrose existed in the literature (mainly from the food science literature, as well 

as from Power et al. (2013), who reported viscosities far outside the range of what had previously been reported. However, 

studies with other proxies of SOA are required to determine if the Stokes-Einstein relation can accurately represent the 5 

diffusion of organic molecules in SOA, and to more accurately predict the role of SOA in climate, air quality, and transport of 

pollutants (Reid et al., 2018; Shrivastava et al., 2017b). 

In the following we expand on the previous studies with sucrose matrices by testing the Stokes-Einstein relation in the 

following proxies for SOA: 2-hydroxypropane-1,2,3-tricarboxylic acid (i.e. citric acid), 1,2,3,4,5,6-hexanol (i.e. sorbitol), and 

a mixture of citric acid and sucrose. These proxies have functional groups that have been identified in SOA, and O:C ratios 10 

similar to those ratios found in the most highly oxidized components of SOA in the atmosphere (1.16, 1.0, and 0.92 for citric 

acid, sorbitol, and sucrose respectively). To test the Stokes-Einstein relation, we first determined diffusion coefficients of 

fluorescent organic molecules as a function of water activity (aw) in these SOA proxies using rectangular area fluorescence 

recovery after photobleaching (rFRAP; Deschout et al., 2010).  Studies as a function of aw are critical because as the relative 

humidity (RH) changes in the atmosphere, aw (and hence water content) in SOA will change to maintain equilibrium with the 15 

gas phase. The diffusing organic molecules studied in this work were the fluorescent organic molecules rhodamine 6G and 

cresyl violet (Fig. S1).  Details of the experiments are given in the Methods section.  The measured diffusion coefficients are 

compared with predictions using literature viscosities (Rovelli et al., n.d.; Song et al., 2016b) and the Stokes-Einstein relation.  

The results from the current study are then combined with literature diffusion (Champion et al., 1997; Chenyakin et al., 2017; 

Price et al., 2016; Rampp et al., 2000; Ullmann et al., 2019) and viscosity (Först et al., 2002; Grayson et al., 2017; Green and 20 

Perry, 2007; Haynes, 2015; Lide, 2001; Migliori et al., 2007; Power et al., 2013; Quintas et al., 2006; Rovelli et al., n.d.; 

Swindells et al., 1958; Telis et al., 2007; Ullmann et al., 2019) data to assess the ability of the Stokes-Einstein relation to 

predict diffusion of organic molecules in atmospheric SOA. The ability of the fractional Stokes-Einstein relation (see below) 

to predict diffusion is also tested. 

In addition to atmospheric applications, the results from this study have implications for other areas where diffusion of organic 25 

molecules within organic-water matrices is important, such as the cryopreservation of proteins (Cicerone and Douglas, 2012; 

Fox, 1995; Miller et al., 1998), the storage of food products (Champion et al., 1997; van der Sman and Meinders, 2013), and 

the viability of pharmaceutical formulations (Shamblin et al., 1999). The results also have implications for our understanding 

of the properties of deeply supercooled and supersaturated glass forming solutions, which are important for a wide range of 

applications and technologies (Angell, 1995; Debenedetti and Stillinger, 2001; Ediger, 2000). 30 
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2 Methods 

2.1 Preparation of fluorescent organic-water films 

The technique used here to measure diffusion coefficients required thin films containing the organic matrix (i.e. citric acid or 

sorbitol or a mixture of citric acid and sucrose), water, and trace amounts of the diffusing organic molecules (i.e. fluorescent 

organic molecules). Citric acid (≥ 99 % purity) and sorbitol (≥ 98 % purity) were purchased from Sigma-Aldrich and used as 5 

received. Rhodamine 6G chloride (≥ 99 % purity), and cresyl violet acetate (≥75 % purity) were purchased from Acros 

Organics and Santa Cruz Biotechnology respectively, and used as received. Solutions containing the organic matrix, water, 

and the diffusing molecules were prepared gravimetrically. 55 weight percent citric acid solutions and 30 weight percent 

sorbitol and sucrose-citric acid solutions were used to prepare the citric acid, sorbitol, and sucrose-citric acid thin films, 

respectively. A mass ratio of 60:40 sucrose to citric acid was used for the sucrose-citric acid matrix. The concentrations of 10 

rhodamine 6G and cresyl violet in the solutions were 0.06 mM and 0.08 mM, respectively.  After the solutions were prepared 

gravimetrically, the solutions were passed through a 0.02 µm filter (Whatman™) to eliminate impurities. Droplets of the 

solution were placed on cleaned siliconized hydrophobic slides (Hampton Research), by either nebulizing the bulk solution or 

using the tip of a sterilized needle (BD PrecisionGlide Needle, BD, Franklin Lakes, NJ, USA).  The generated droplets ranged 

in diameter from 100 to 1300 µm. After the droplets were located on the hydrophobic slides, the hydrophobic slides were 15 

placed inside sealed glass containers with a controlled water activity (aw). The aw was set by placing saturated inorganic salt 

solutions with known aw values within the sealed glass containers.  The aw values used ranged from 0.14 to 0.86.  When the aw 

values were higher than 0.86 recovery times were too fast to measure with the rFRAP setup.  When the aw values were lower 

than 0.14 or 0.23, depending on the organic solute, solution droplets often crystallized.  The slides holding the droplets were 

left inside the sealed glass containers for an extended period of time to allow the droplets to equilibrate with the surrounding 20 

aw. The method used to calculate equilibration times is explained in Section S1, and conditioning times for all samples are 

given in Tables S1-S4. Experimental times for conditioning were a minimum of three times longer than calculated equilibration 

times.  

After the droplets on the slides reached equilibrium with the aw of the airspace over the salt solution, the sealed glass containers 

holding the slides and conditioned droplets were brought into a Glove Bag™ (Glas-Col). The aw within the Glove Bag was 25 

controlled using a humidified flow of N2 gas and monitored using a handheld hygrometer. The aw within the Glove Bag™ was 

set to the same aw as used to condition the droplets, to prevent the droplets from being exposed to an unknown and uncontrolled 

aw. To form a thin film, aluminum spacers were placed on the siliconized glass slide holding the droplets, followed by another 

siliconized glass slide, which sandwiched the droplets and the aluminum spacers. The thickness of the aluminum spacers (30-

50 µm) determined the thickness of the thin film. The two slides were sealed together by vacuum grease spread around the 30 

perimeter of one slide before sandwiching (see Fig. S2 in the Supplement for details).  

The organic matrices were often supersaturated with respect to crystalline citric acid or sorbitol.  Nevertheless, crystallization 

was not observed in most cases until aw values ≲ 0.14 - 0.23, depending on the organic matrix, because the solutions were 
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passed through a 0.02 µm filter and the glass slides used to make the thin films were covered with a hydrophobic coating.  

Filtration likely removed heterogeneous nuclei that could initiate crystallization and the hydrophobic coating reduced the 

ability of these surfaces to promote heterogeneous nucleation (Bodsworth et al., 2010; Pant et al., 2006; Price et al., 2014; 

Wheeler and Bertram, 2012). In the cases where crystallization was observed, determined using optical microscopy, the films 

were not used in rFRAP experiments. An image demonstrating the difference in appearance between crystallized and non-5 

crystallized droplets is given in Figure S3. 

 

2.2 Rectangular area fluorescence recovery after photobleaching (rFRAP) technique and extraction of diffusion 

coefficients 

Diffusion coefficients were measured using the rFRAP technique reported by Deschout et al. (2010). The technique uses a 10 

confocal laser scanning microscope to photobleach fluorescent molecules in a specified volume of an organic thin film 

containing fluorescent molecules. The photobleaching event initially reduces the fluorescence intensity within the bleached 

volume.  Afterward, the fluorescence intensity within the photobleached volume recovers due to the diffusion of fluorescent 

molecules from outside of the bleached region.  From the time-dependent recovery of the fluorescence intensity, diffusion 

coefficients are determined. All diffusion coefficients reported here were measured at 295 ± 1 K. 15 

The rFRAP experiments were performed on a Zeiss Axio Observer LSM 510MP laser scanning microscope with a 10X, 0.3 

NA objective and a pinhole setting between 80 and 120 μm. Photobleaching and the subsequent acquisition of recovery images 

were done using a 543 nm helium–neon (HeNe) laser. The bleach parameters (e.g. laser intensity, iterations, laser speed) were 

varied for each experiment so that the fraction of fluorescent molecules being photobleached in the bleach region was about 

30%. A photobleaching of about 30% was suggested by Deschout et al. (2010), who report that diffusion coefficients measured 20 

with the rFRAP technique are independent of the extent of photobleaching up to a bleach depth of 50%.  

Bleached areas ranged from 20 µm2 to 400 µm2. The geometry of the photobleached region was a square with sides of length 

lx and ly ranging from 4.5 to 20 µm. Smaller bleach areas were used in experiments where diffusion was slower in order to 

shorten recovery times. Chenyakin et al. (2017) showed that measured diffusion coefficients varied by less than the 

experimental uncertainty when the bleach area was varied from 1 µm2 to 2500 µm2 in sucrose-water films. Similarly, Deschout 25 

et al. (2010) demonstrated that diffusion coefficients varied by less than the experimental uncertainty when the bleach area 

was varied from approximately 4 µm2 to 144 µm2 in sucrose-water films.  The images collected during a rFRAP experiment 

represent fluorescence intensities as a function of x and y coordinates, and are taken at regular time intervals after 

photobleaching.  An example of images recorded during a rFRAP experiment are shown in Fig. S4. Every image taken 

following the photobleaching event is normalized relative to an image taken before photobleaching. To reduce noise, all images 30 

are downsized by averaging from a resolution of 512x512 pixels to 128x128 pixels. 

The mathematical description of the fluorescence intensity as a function of position (x and y) and time (t) after photobleaching 

a rectangular area in a thin film, was given by Deschout et al. (2010): 
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where F(x,y,t) is the fluorescence intensity at position x and y after a time t, F0(x,y) corresponds to the initial intensity at 

position x and y before photobleaching, K0 is related to the initial fraction of photobleached molecules in the bleach region, 5 

and lx and ly correspond to the size (length) of the bleach region in the x and y directions. The parameter r represents the 

resolution of the microscope, t is the time after photobleaching, and D is the diffusion coefficient.   

The images collected during a rFRAP experiment were fit to Eq. (2) using a Matlab script (The Mathworks, Natick, MA, 

USA), with the terms K0, and r2 + 4Dt left as free parameters. An additional normalization factor was also left as a free 

parameter, and returned a value close to 1, since images recorded after photobleaching were normalized to the pre-bleach 10 

image before fitting. To determine the bleach width (lx, ly), Eq. (2) was fit to the first five images recorded after photobleaching 

a film with the bleach width (lx, ly) left as a free parameter. The bleach width returned by the fit to the first five frames was 

then used as input in Eq. (2) to analyze the full set of images.  

From the fitting procedure, a value for r2+4Dt was determined for each image, and was plotted as a function of time after 

photobleaching. A straight line was then fit to the r2+4Dt vs. t plot, and from the slope of the line D was calculated. An example 15 

is shown in Fig. S5. As the intensity of the fluorescence in the bleached region recovers, the noise in the data become large 

relative to the difference in fluorescence intensity between the bleached and non-bleached regions (i.e. signal). To ensure we 

only use data with a reasonable signal to noise, images were not used if this signal was less than 3 the standard deviation of 

the noise. 

Figure S6 shows a cross section of the fluorescence intensity along the x direction from the data in Fig. S4. To generate the 20 

cross-sectional view, at each position x, the measured fluorescence intensity is averaged over the width of the photobleached 

region in the y direction (black squares). Also included in Fig. S6 are cross-sectional views of the calculated fluorescence 

intensity along the x direction generated from the fitting procedure (solid red lines). To generate the line, Eq. (2) was first fit 

to the images.  The resulting fit was then averaged over the width of the photobleached region in the y direction. The good 

agreement between the measured cross section and the predicted cross section illustrates that Eq. (2) describes the rFRAP data 25 

well.   

Equation (2) assumes that there is no net diffusion in the axial direction (i.e. z-direction). Deschout et al. (2010) have shown 

that Eq. (2) gives accurate diffusion coefficients when the numerical aperture of the microscope is low (≤ 0.45) and the 

thickness of the fluorescent films is small (≤ 120 m), which is consistent with the numerical aperture of 0.30 and film thickness 

of 30–50 μm used here. 30 
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3 Results and Discussion 

3.1 Diffusion coefficients of organic molecules in citric acid, sorbitol, and sucrose-citric acid matrices 

The measured diffusion coefficients of organic molecules in matrices of citric acid, sorbitol, and sucrose-citric acid as a 

function of water activity (aw) are shown in Fig. 1 (and listed in Tables S1-S4).  The measured diffusion coefficients depend 

strongly on aw for all three proxies of SOA.  As aw increases from 0.23 (0.14 in one case) to 0.86, diffusion coefficients increase 5 

by between five and eight orders of magnitude. This dependence on aw arises from the plasticizing influence of water on these 

matrices; as aw increases (and hence the water content increases) the viscosity decreases (Koop et al., 2011). In addition, the 

measured diffusion coefficients varied significantly from matrix to matrix at the same aw (Fig. 1).  As an example, at aw = 0.23 

the diffusion coefficient of rhodamine 6G is about four orders of magnitude larger in citric acid compared to the sucrose-citric 

acid mixture.   10 

We also considered the relationship between log (D) – log (kT/6πRH) and log (η), a comparison that allows the identification 

of deviations from the Stokes-Einstein relation (Fig. 2). By plotting log (D) – log (kT/6πRH) we account for differences in 

hydrodynamic radii of diffusing species and small differences in temperature (within a range of 6 K).  The viscosity 

corresponding to each measured diffusion coefficient was determined from relationships between aw and viscosity developed 

from literature data (Figs. S7-S9).  The solid line in Fig. 2 corresponds to the relationship between log (D) – log (kT/6πRH) 15 

and log (η) if the Stokes-Einstein relation (Eq. 1) is obeyed. Figure 2 shows that the diffusion coefficients of the fluorescent 

organic molecules depend strongly on viscosity, with the diffusion coefficients varying by approximately eight orders of 

magnitude as viscosity varied by eight orders of magnitude. If the uncertainties of the measurements are considered, all the 

data points except three (89 % of the data) are consistent with predictions from the Stokes-Einstein relation (meaning that the 

error bars on the measurements overlap with the solid line in Fig. 2) over eight orders of magnitude change in diffusion 20 

coefficients. This finding is remarkable considering the assumptions inherent in the Stokes-Einstein relation (e.g. the diffusing 

species is a hard sphere that experiences the fluid as a homogeneous continuum and no slip at the boundary of the diffusing 

species).   

3.2 Comparison with relevant literature data  

Previous studies have used sucrose to evaluate the ability of the Stokes-Einstein relation to predict diffusion coefficients of 25 

organic molecules in SOA (Bastelberger et al., 2017; Chenyakin et al., 2017; Price et al., 2016). In addition, a recent study 

(Ullmann et al., 2019) used SOA generated in the laboratory from the oxidation of limonene, subsequently exposed to NH3 (g) 

(i.e. brown limonene SOA) to evaluate the Stokes-Einstein relation.  Although studies with SOA generated in the laboratory 

are especially interesting, that previous study was limited to relatively low viscosities (≤ 102 Pa s), where a breakdown of the 

Stokes-Einstein relation is less expected.  In Fig. 3a we have combined the results from the current study (i.e. the results from 30 

Fig. 2) with previous studies of diffusion and viscosity in sucrose and brown limonene SOA (Champion et al., 1997; Chenyakin 

et al., 2017; Price et al., 2016; Rampp et al., 2000; Ullmann et al., 2019). To be consistent with the current study, we have not 
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included data in Fig. 3a if the diffusion coefficients and viscosities were measured at, or calculated using, temperatures outside 

the range of 292 – 298 K and if the radius of the diffusing molecule was smaller than to the radius of the molecules in the fluid 

matrix.  Previous work has shown that the Stokes-Einstein relation is not applicable when the radius of the diffusing molecule 

is less than the radius of the matrix molecules, and those cases are beyond the scope of this work (Bastelberger et al., 2017; 

Davies and Wilson, 2016; Marshall et al., 2016; Power et al., 2013; Price et al., 2016; Shiraiwa et al., 2011).  Additional details 5 

for the data shown in Fig. 3a are included in section S2 and Table S5.  

 

Based on Fig. 3a the diffusion coefficients of the organic molecules in sucrose matrices and matrices consisting of SOA 

generated in the laboratory depend strongly on viscosity, similar to the results shown in Fig. 2. In addition, almost all the data 

agree with the Stokes-Einstein relation (solid line in Fig. 3a) within a factor of ten.  This finding is in stark contrast with the 10 

diffusion of water in organic-water mixtures, where much larger deviations between measured and predicted diffusion 

coefficients were observed over the same viscosity range (Davies and Wilson, 2016; Marshall et al., 2016; Price et al., 2016).   

In Fig. 3b, we show the differences between the measured values and the solid line in Fig. 3a as a function of viscosity.  If the 

Stokes-Einstein relation describes the data well, these differences (i.e. residuals) should be scattered symmetrically about zero, 

while the magnitude of the residuals should be less than or equal to the uncertainty in the measurements. However, the residuals 15 

are skewed to be positive, especially as viscosity increases, with measured diffusion faster than expected based on the Stokes-

Einstein relation. Figure 3b suggests that the Stokes-Einstein relation may not be the optimal model for predicting diffusion 

coefficients in SOA, particularly at high viscosities. 

3.3 Fractional Stokes-Einstein relation 

When deviation from the Stokes-Einstein relation has been observed in the past, a fractional Stokes-Einstein relation (D ∝ 20 

1/t, where t is an empirical fit parameter) has often been used to quantify the relationship between diffusion and viscosity. 

For example, Price et al. (2016) showed that a fractional Stokes-Einstein relation can accurately represent the diffusion of 

sucrose in a sucrose matrix over a wide range of viscosities (from roughly 100 – 106 Pa s) with t = 0.90. Building on that work, 

the data in Fig. 3a were fit to the following fractional Stokes-Einstein relation: 

                                                                                       𝐷 = 𝐶
𝑘𝑇

6𝜋𝜂𝑡𝑅𝐻
                                                                                                (3) 25 

where t and C are empirical fit parameters.  When fitting Eq. 3 to the data, we used the additional constraint that log (D) – log 

(kT/6πRH) equals 3 when the viscosity is 10-3 Pa s, which is equivalent to assuming the Stokes-Einstein relation is valid at a 

viscosity of 10-3 Pa s (roughly the viscosity of water).  The best fit to the data (represented by the dashed line in Fig. 3a) resulted 

in a t value of 0.93 and a C value of 1.66. 

In Fig. 3c, we plotted the difference between the measured values shown in Fig. 3a and the predicted values using the fractional 30 

Stokes-Einstein relation (dashed line in Fig. 3a).  These residuals are more symmetrically scattered about zero compared to 

the residuals plotted in Fig. 3b.   In addition, the sum-of-squared residuals (r2) in Fig 3c was less than the sum-of-squared 
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residuals in Fig. 3b (r2 = 10.8 compared to 19.7). This suggests that the fractional Stokes-Einstein relation with an exponent 

value of t = 0.93 and C = 1.66 may be the better model for predicting diffusion coefficients of organic molecules in SOA 

compared to the traditional Stokes-Einstein relation. 

3.4 Implications for atmospheric mixing times 

To investigate the atmospheric implications of these results, we considered the mixing times of organic molecules within SOA 5 

in the atmosphere as a function of viscosity using both the Stokes-Einstein relation (Eq. 1) and the fractional Stokes-Einstein 

relation (Eq. 3) with t = 0.93 and C = 1.66.  Mixing times were calculated with the following equation (Seinfeld and Pandis, 

2006; Shiraiwa et al., 2011): 

                                                                                    𝜏𝑚𝑖𝑥 =
𝑑𝑝

2

4𝜋2𝐷
                                                                             (4) 

where τmix is the characteristic mixing time, dp is the SOA particle diameter, and D is the diffusion coefficient.  τmix corresponds 10 

to the time at which the concentration of the diffusing molecules at the centre of the particle deviates by less than a factor of 

1/e from the equilibrium concentration. We assumed a dp of 200 nm, which is roughly the median diameter in the volume 

distribution of ambient SOA (Martin et al., 2010; Pöschl et al., 2010; Riipinen et al., 2011). We assumed a value of 0.38 nm 

for RH based on literature values for molecular weight (175 g mol-1; Huff Hartz et al., 2005) and the density (1.3 g cm-3; Chen 

and Hopke, 2009; Saathoff et al., 2009) of SOA molecules, and assuming a spherical symmetry of the diffusing species.  15 

Figure 4 shows the calculated mixing times of 200 nm particles as a function of the viscosity of the matrix.  The mixing time 

of 1 hour is highlighted, since when calculating the growth and evaporation of SOA and the long-range transport of pollutants 

using chemical transport models, a mixing times of < 1 hour for organic molecules within SOA is often assumed (Hallquist et 

al., 2009).  At a viscosity of 5 x 106 Pa s, the mixing time is > 1 hour based on the Stokes-Einstein relation, but remains < 1 

hour based on the fractional Stokes-Einstein relation.  Furthermore, at high viscosities > 5 x 106 Pa s, the mixing times predicted 20 

with the traditional Stokes-Einstein relation are at least a factor of 5 greater than those predicted with the fractional Stokes-

Einstein relation.  

Recently, Shiraiwa et al. (2017) estimated mixing times of organic molecules in SOA particles in the global atmosphere using 

the global chemistry climate model EMAC (Jöckel et al., 2006) and the organic module ORACLE (Tsimpidi et al., 2014). 

Glass transition temperatures of SOA compounds were predicted based on molar mass and the O:C ratio of SOA components, 25 

followed by predictions of viscosity.  Diffusion coefficients and mixing times were predicted using the Stokes-Einstein 

relation. To further explore the implications of our results, we calculated mixing times of organic molecules in SOA globally 

using the same approach as Shiraiwa et al. (2017) and compared predictions using the Stokes-Einstein relation and predictions 

using the fractional Stokes-Einstein relation with t = 0.93 and C = 1.66. Shown in Fig. 5 are results from these calculations.  

At all latitudes at the surface, the mixing times are well below the 1 hour often assumed in chemical transport models, 30 

regardless if the Stokes-Einstein relation or the fractional Stokes-Einstein relation is used (Fig. 5a). On the other hand, at an 

altitude of approximately 1.4 km, the latitudes where the mixing times exceed 1 hr will depend on whether the Stokes-Einstein 
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relation or fractional Stokes-Einstein relation is used (Fig. 5b). At an altitude of 3.2 km the mixing times are well above the 1-

hour cut-off regardless of what relation is used, and the Stokes-Einstein relation can over predict mixing times of SOA particles 

by as much as one order of magnitude compared to the fractional Stokes-Einstein relation (Fig. 5c).  A caveat is that the 

predictions at 3.2 km are based on viscosities higher than the viscosities studied in the current work.  Hence, at 3.2 km the 

Stokes-Einstein and fractional Stokes-Einstein relations are being used outside the viscosity range tested here.  Although 5 

experimentally challenging, additional studies are recommended to determine if the fractional Stokes-Einstein relation with t 

= 0.93 and C = 1.66 is able to accurately predict diffusion coefficients of organic molecules in proxies of SOA at viscosities 

higher than investigated in the current study. 

4 Summary and Conclusions 

We report measured diffusion coefficients of fluorescent organic molecules in a variety of SOA proxies. The reported diffusion 10 

coefficients varied by about eight orders of magnitude as the water activity in the SOA proxies varied from 0.23 (0.14 in one 

case) to 0.86. By combining the new diffusion coefficients with literature data, we have shown that, in almost all cases, the 

Stokes-Einstein relation correctly predicts diffusion coefficients of organic molecules in SOA proxies within a factor of ten.  

This finding is in stark contrast with the diffusion of water in SOA proxies, where much larger deviations between measured 

and predicted diffusion coefficients have been observed over the same viscosity range.  Even though the Stokes-Einstein 15 

relation correctly predicts diffusion of organic molecules in the majority of cases within a factor of ten, a sum-of-squared 

residuals analysis shows that a fractional Stokes-Einstein relation with an exponent of t = 0.93 and C = 1.66 is a better model 

for predicting diffusion coefficients in SOA proxies, for the range of viscosities included in this study. This is consistent with 

earlier work that showed the fractional Stokes-Einstein relation is able to reproduce measured diffusion coefficients of sucrose 

in sucrose-water matrices. The fractional Stokes-Einstein relation predicts faster diffusion coefficients and therefore shorter 20 

mixing times of SOA particles in the atmosphere. At an altitude of 3.2 km, the difference in mixing times predicted by the 

two relations is as much as one order of magnitude. 
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Figures 

 

Figure 1. Measured diffusion coefficients of fluorescent organic molecules in various organic matrices as a function of water activity 

(aw). X-error bars represent the uncertainty in the measured aw (0.025) and y-error bars correspond to two times the standard 

deviation in the diffusion measurements. Each data point is the average of a minimum of four measurements.  Indicated in the legend 5 
are the fluorescent organic molecules studied and the corresponding matrices. 
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Figure 2. Plot of log (D) – log (kT/6πRH) as a function of log () for measurements shown in Fig. 1.   Viscosities () were determined 

from relationships between viscosity and aw (Figs. S7 –S9). T corresponds to the experimental temperature and RH corresponds to 

the radius of each diffusing species (see Table S5). The x-error bars were calculated using the uncertainty in aw at which the samples 

were conditioned (± 0.025) and uncertainties in the viscosity-aw parameterizations. The y-error bars represent 2 times the standard 5 
deviation of the diffusion measurements. The black line represents the relationship between log (D) – log (kT/6πRH) and log () 

predicted by the Stokes-Einstein relation (slope = -1). Shown at the bottom of the figure are various substances and their approximate 

room temperature viscosities to provide context, as in Koop et al. (2011). The image of tar pitch is part of an image from the pitch 

drop experiment (image courtesy of Wikimedia Commons, GNU Free Documentation License, University of Queensland, John 

Mainstone). 10 
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Figure 3. a) Plot of log (D) – log (kT/6πRH) as a function of log () for new measurements reported in this work and literature data. 

Indicated in the legend are the diffusing organic molecules studied and the corresponding matrices. T corresponds to the 

experimental temperature of each diffusion measurement and RH corresponds to the radius of each diffusing species (Section S2 and 

Table S5). The symbols represent measured data points. The solid line represents the relationship between log (D) – log (kT/6πRH) 5 
and log () predicted by the Stokes-Einstein relation, while the dashed line represents the relationship between log (D) – log 

(kT/6πRH) and log () predicted by a fractional Stokes-Einstein relation with slope = -0.93 and intercept 0.219 (equal to the log of 

the C value, 1.66).  Panels b) and c) are plots of the differences (i.e. residuals) between measured and predicted values of log (D) – 

log(kT/6πRH) using the Stokes-Einstein relation and the fractional Stokes-Einstein relation, respectively. The sum-of-squared 

residuals for the Stokes-Einstein relation is 19.7 and the sum-of-squared residuals for the fractional Stokes-Einstein relation is 10.8. 10 
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Figure 4. Mixing times of organic molecules within a 200 nm particle as a function of viscosity using the Stokes-Einstein relation 

(black line) and a fractional Stokes-Einstein relation (red line). The dashed lines indicate that the relations were extrapolated to 

viscosities beyond the tested range of viscosities (≥ 4 x 106 Pa s).  
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Figure 5. Mixing times (in hours) of organic molecules in 200 nm SOA particles at a) the surface, b) 850 hPa or 1.4 km altitude, 

and c) 700 hPa or 3.2 km altitude, using diffusion coefficients calculated with the Stokes-Einstein relation (solid black lines) and 

the fractional Stokes-Einstein relation (dashed black lines). A one-hour mixing time, which is often assumed in chemical transport 

models, is also indicated in each figure with a horizontal dotted line.  5 
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