1	Jason Surratt,
2	Co-Editor of ACP
3	
4	
5	Dear Jason Surratt,
6	
7	Listed below are our responses to the comments from the reviewers of our manuscript. We
8	thank the reviewers for carefully reading our manuscript and for their very helpful suggestions!
9	For clarity and visual distinction, the referee comments or questions are listed here in black
10	below each referee statement with matching numbers (e.g. [1]). Authors responses are in red
12	below each referee statement with matching numbers (e.g. [A1]).
13	Sincerely,
14	
15	Mijung Song
16	Assistant Professor of Earth and Environmental Sciences
17	Chonbuk National University
18	
19	
20	
21	Response to Referee #1 (Reviewer comments in black text)
21 22	Response to Referee #1 (Reviewer comments in black text)
21 22 23	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced
21 22 23 24	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α-pinene ozonolysis and α-pinene photo-oxidation with/without ammonia" by Ham et al.
21 22 23 24 25	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α-pinene ozonolysis and α-pinene photo-oxidation with/without ammonia" by Ham et al. characterizes the presence or absence of LLPS at high relative humidities under certain
21 22 23 24 25 26	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α-pinene ozonolysis and α-pinene photo-oxidation with/without ammonia" by Ham et al. characterizes the presence or absence of LLPS at high relative humidities under certain experimental conditions, as expressed in the title. The data are compelling and the writing is
21 22 23 24 25 26 27	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α-pinene ozonolysis and α-pinene photo-oxidation with/without ammonia" by Ham et al. characterizes the presence or absence of LLPS at high relative humidities under certain experimental conditions, as expressed in the title. The data are compelling and the writing is clear. This study builds directly on the corresponding author's prior work in this area. These
21 22 23 24 25 26 27 28	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α-pinene ozonolysis and α-pinene photo-oxidation with/without ammonia" by Ham et al. characterizes the presence or absence of LLPS at high relative humidities under certain experimental conditions, as expressed in the title. The data are compelling and the writing is clear. This study builds directly on the corresponding author's prior work in this area. These systems are expected to impact the formation of CCN, and as a result, are relevant to the
21 22 23 24 25 26 27 28 29	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α-pinene ozonolysis and α-pinene photo-oxidation with/without ammonia" by Ham et al. characterizes the presence or absence of LLPS at high relative humidities under certain experimental conditions, as expressed in the title. The data are compelling and the writing is clear. This study builds directly on the corresponding author's prior work in this area. These systems are expected to impact the formation of CCN, and as a result, are relevant to the audience of Atmospheric Chemistry and Physics. My one main concern about the paper is that
21 22 23 24 25 26 27 28 29 30	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α -pinene ozonolysis and α -pinene photo-oxidation with/without ammonia" by Ham et al. characterizes the presence or absence of LLPS at high relative humidities under certain experimental conditions, as expressed in the title. The data are compelling and the writing is clear. This study builds directly on the corresponding author's prior work in this area. These systems are expected to impact the formation of CCN, and as a result, are relevant to the audience of Atmospheric Chemistry and Physics. My one main concern about the paper is that the conclusions are too far reaching. In particular, the authors relate their findings to the O:C
21 22 23 24 25 26 27 28 29 30 31	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α -pinene ozonolysis and α -pinene photo-oxidation with/without ammonia" by Ham et al. characterizes the presence or absence of LLPS at high relative humidities under certain experimental conditions, as expressed in the title. The data are compelling and the writing is clear. This study builds directly on the corresponding author's prior work in this area. These systems are expected to impact the formation of CCN, and as a result, are relevant to the audience of Atmospheric Chemistry and Physics. My one main concern about the paper is that the conclusions are too far reaching. In particular, the authors relate their findings to the O:C ratio needed for LLPS without measuring the O:C ratio for their systems.
21 22 23 24 25 26 27 28 29 30 31 32	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α -pinene ozonolysis and α -pinene photo-oxidation with/without ammonia" by Ham et al. characterizes the presence or absence of LLPS at high relative humidities under certain experimental conditions, as expressed in the title. The data are compelling and the writing is clear. This study builds directly on the corresponding author's prior work in this area. These systems are expected to impact the formation of CCN, and as a result, are relevant to the audience of Atmospheric Chemistry and Physics. My one main concern about the paper is that the conclusions are too far reaching. In particular, the authors relate their findings to the O:C ratio needed for LLPS without measuring the O:C ratio for their systems.
21 22 23 24 25 26 27 28 29 30 31 32 33	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α-pinene ozonolysis and α-pinene photo-oxidation with/without ammonia" by Ham et al. characterizes the presence or absence of LLPS at high relative humidities under certain experimental conditions, as expressed in the title. The data are compelling and the writing is clear. This study builds directly on the corresponding author's prior work in this area. These systems are expected to impact the formation of CCN, and as a result, are relevant to the audience of Atmospheric Chemistry and Physics. My one main concern about the paper is that the conclusions are too far reaching. In particular, the authors relate their findings to the O:C ratio needed for LLPS without measuring the O:C ratio for their systems.
21 22 23 24 25 26 27 28 29 30 31 32 33 34	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α-pinene ozonolysis and α-pinene photo-oxidation with/without ammonia" by Ham et al. characterizes the presence or absence of LLPS at high relative humidities under certain experimental conditions, as expressed in the title. The data are compelling and the writing is clear. This study builds directly on the corresponding author's prior work in this area. These systems are expected to impact the formation of CCN, and as a result, are relevant to the audience of Atmospheric Chemistry and Physics. My one main concern about the paper is that the conclusions are too far reaching. In particular, the authors relate their findings to the O:C ratio needed for LLPS without measuring the O:C ratio for their systems. <i>Major comments</i> <i>[1]</i> How much does the O:C vary for oxidation in different chambers or flow reactors under
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	Response to Referee #1 (Reviewer comments in black text) The paper "Liquid-liquid phase separation in secondary organic aerosol particles produced from α-pinene ozonolysis and α-pinene photo-oxidation with/without ammonia" by Ham et al. characterizes the presence or absence of LLPS at high relative humidities under certain experimental conditions, as expressed in the title. The data are compelling and the writing is clear. This study builds directly on the corresponding author's prior work in this area. These systems are expected to impact the formation of CCN, and as a result, are relevant to the audience of Atmospheric Chemistry and Physics. My one main concern about the paper is that the conclusions are too far reaching. In particular, the authors relate their findings to the O:C ratio needed for LLPS without measuring the O:C ratio for their systems. <i>Major comments</i> <i>[1]</i> How much does the O:C vary for oxidation in different chambers or flow reactors under the same reactant concentrations? I am skeptical that conclusions about O:C and LLPS can be

37 How relevant is it to have aerosol particles just composed of secondary organic material with

1 no other species?

2

[A1] Thank you for the comment. It is difficult to answer since there is no reference showing 3 O:C ranges for SOA generated from α -pinene photo-oxidation under the same reactant 4 concentrations using different chambers or flow reactors. Lambe et al. (2015) compared the 5 6 O:C ranges of SOA particles produced from α -pinene photo-oxidation using different chambers 7 and flow reactors (Fig. 2a in Lambe et al., 2015) although the experimental conditions were 8 not exactly same. The O:C varies in the range of 0.3 - 1.0 depending on experimental conditions 9 and chambers/reactors. In our study, we chose the O:C ranges (0.4 - 0.9) in the literature that were the closest to our experimental condition. 10 11 As shown in Fig. 6 in the manuscript, there appears to be a relationship between the occurrence of LLPS and the O:C of the SOA particles. This behavior was also observed in bulk solutions 12 13 containing two organics and water (Ganbavale et al., 2015). We will add sentences below in the revised manuscript (pg. 10, lines: 3-8). An additional study on O:C limit for occurrence and 14 15 absence of LLPS of organic aerosol particles will come up very soon. However, as the three referees pointed out that the O:C conclusion for LLPS is too strong at this stage, we will put 16 17 down the values in the abstract.

18

"Similar to the results of LLPS in the SOA particles with O:C ratio, bulk solutions containing two organics and water also showed the miscibility gap (Ganbavale et al., 2015). For example, bulk solutions of two organics with a low O:C and water (e.g. a mixture of 1-butanol, 1propanol, and water) formed two liquid phases (Ganbavale et al., 2015). However, bulk solutions of two organics with a high O:C and water (e.g. a mixture of ethanol, acetic acid, and water) formed a single liquid phase."

25

As mentioned in Introduction section (pg. 2, lines: 4-5), it has been found that SOA particles
comprise from 20 to 80 % of ultrafine aerosol particles depending on the location (Zhang et al.,
2007; Jimenez et al., 2009).

29

30 References:

Ganbavale, G., Zuend, A., Marcolli, C., and Peter, T.: Improved AIOMFAC model
parameterisation of the temperature dependence of activity coefficients for aqueous
organic mixtures, Atmos. Chem. Phys., 15, 447-493, 10.5194/acp-15-447-2015, 2015.

1 Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., 2 DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. 3 M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, 4 P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., 5 Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., 6 Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, 7 8 L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Javne, J. T., Herndon, S. C., Trimborn, A. 9 M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and 10 Worsnop, D. R.: Evolution of Organic Aerosols in the Atmosphere, Science, 326, 1525-11 1529, DOI 10.1126/science.1180353, 2009. 12

Lambe, A. T., Chhabra, P. S., Onasch, T. B., Brune, W. H., Hunter, J. F., Kroll, J. H., Cummings,
M. J., Brogan, J. F., Parmar, Y., Worsnop, D. R., Kolb, C. E., and Davidovits, P.: Effect of
oxidant concentration, exposure time, and seed particles on secondary organic aerosol
chemical composition and yield, Atmos. Chem. Phys., 15, 3063-3075, 10.5194/acp-153063-2015, 2015.

18 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., 19 DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, 20 S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., 21 Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, 22 J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated 23 species in organic aerosols in anthropogenically-influenced Northern Hemisphere 24 midlatitudes, Geophys. Res. Lett., 34, Artn L13801Doi 10.1029/2007gl029979, 2007. 25

26

27 Minor comments

[2] pg 3, line 2: You could add Rastak et al. 2017, Hodas et al. 2016, Altaf et al. 2018 here as
well.

30

31 [A2] Thank you. These references will be included in the revised manuscript.

- 1
- *[3]* pg 3 line 12: Really, too few systems have been studied so far to define these boundaries in
 comparison to the number of systems explored for LLPS in the presence of inorganic salts.
- 4

5 [*A3*] We agree the referee's comment that only a few systems have been studied on the effect 6 of O:C for occurrence of LLPS in organic aerosols compared to studies for LLPS in the 7 presence of inorganic salts. To address the referee's comment, we will add this point to the 8 revised manuscript in Introduction (pg. 3, lines: 18-19).

9

"Since still a few systems have been studied so far, more studies are needed to confirm the
effect of O:C for LLPS in organic particles."

12

[4] pg 4 line 14: I don't understand these two different timescales. Do these correspond todifferent residence times in the flow cell? Only one number is given for residence time.

15

[A4] These are OH exposures that correspond to the atmospheric aging time of 0.5 day and 2.5 16 17 day as shown in Table 1. Atmospheric aging time was determined using OH radical concentration in the flow reactor, atmospheric OH radical concentration $(1.5 \times 10^6 \text{ molecules})$ 18 cm⁻³), and residence time in the flow reactor (3.63 min). OH concentrations in the flow reactor 19 were calculated using first order photochemical decay of toluene with OH radical (Babar et al., 20 21 2017). The concentration of OH radicals was estimated from the photochemical corrosion of toluene because toluene is well known for its OH reaction rate 5.48×10^{-12} molecules cm⁻³ s⁻¹ 22 with insignificant reaction rate with O₃ (Atkinson and Aschmann, 1989). This will be included 23 24 in Sect. 2.1 in the revised manuscript.

25

- Atkinson, R. and Aschmann, S. M.: Rate constants for the gas-phase reactions of the OH radical
 with a series of aromatic hydrocarbons at 296 ± 2 K, Int. J. Chem. Kinet., 21(5), 355–365,
 doi:10.1002/kin.550210506, 1989.
- Babar, Z. B., Park, J.-H., and Lim, H.-J.: Influence of NH₃ on secondary organic aerosols from
 the ozonolysis and photooxidation of α-pinene in a flow reactor, Atmos. Environ., 164,
 71-84, 10.1016/j.atmosenv.2017.05.034, 2017.
- 33

[5] pg 4: How similar are the concentrations of α-pinene and ammonia to atmospheric
 concentrations?

3

[A5] α -pinene and ammonia concentrations have been measured in the range of ~10 - 600 ppt 4 (Kim et al., 2005; Jaars et al., 2018) and 0.3 - 120 ppb (Carmichael et al., 2003; Meng et al., 5 2011; Artíñano et al., 2018; Song et al., 2018; Kumar et al., 2019), respectively, in different 6 7 environments (i.e. forest and polluted regions). Compared to the concentrations of α -pinene and ammonia in the atmosphere, much higher concentrations of the α -pinene and ammonia 8 9 were used in this study due to the experimental constraints for SOA generation. Further studies 10 are needed to confirm LLPS in SOA particles produced more atmospherically relevant the VOC mass concentrations. We will address this point in Summary Sect. (pg. 11, lines: 18-21). 11

12

- Artíñano, B., Pujadas, M., Alonso-Blanco, E., Becerril-Valle, M., Coz, E., Gómez-Moreno, F.
 J., Salvador, P., Nuñez, L., Palacios, M. and Diaz, E.: Real-time monitoring of atmospheric
 ammonia during a pollution episode in Madrid (Spain), Atmos. Environ., 189, 80–88,
 doi:10.1016/j.atmosenv.2018.06.037, 2018.
- 18 Carmichael, G. R., Cotrina, J. S., Lacaux, J.-P., Kimani, W., Pienaar, J., Chan, L. ., Thongboonchoo, N., Boonjawat, J., Viet, P. H., Shrestha, A. B., Chen, T., Brunke, E. B., 19 Tavares, T., Bilici, E., Athayde, A., Peng, L. C., Woo, J.-H., Murano, K., Jie, T., Barturen, 20 O., Kirouane, A., Dhiharto, S., Ferm, M., Jose, A. M., Guoan, D., Cerda, J. C., Mohan, M., 21 Bala, R., Mossberg, C., Upatum, P., Harjanto, H., Richard, S. and Adhikary, S. P.: 22 Measurements of sulfur dioxide, ozone and ammonia concentrations in Asia, Africa, and 23 South America using passive samplers, Atmos. Environ., 37(9-10), 1293-1308, 24 doi:10.1016/s1352-2310(02)01009-9, 2003. 25
- Jaars, K., Vestenius, M., Zyl, P. G. Van, Beukes, J. P., Hellén, H., Vakkari, V., Venter, M.,
 Josipovic, M. and Hakola, H.: Receptor modelling and risk assessment of volatile organic
 compounds measured at a regional background site in South Africa, Atmos. Environ.,
 172(November 2017), 133–148, doi:10.1016/j.atmosenv.2017.10.047, 2018.
- Kim, K., Kim, J., and Lim, J.: Comparison of anthropogenic and natural VOC concentrations
 in the forest ambient air, J. Kor. Soc. Environ. Anal., 8(3), 132-136, 2005.

1	Kumar, A., Patil, R. S., Dikshit, A. K. and Kumar, R.: Assessment of Spatial Ambient
2	Concentration of NH3 and its Health Impact for Mumbai City TT, Asian J. Atmos. Environ.,
3	13(1), 11-19 [online] Available from: http://www.dbpia.co.kr/Article/NODE07993471,
4	2019.
5	Meng, Z. Y., Lin, W. L., Jiang, X. M., Yan, P., Wang, Y., Zhang, Y. M., Jia, X. F. and Yu, X. L.:
6	Characteristics of atmospheric ammonia over Beijing, China, Atmospheric Chemistry and
7	Physics, Atmos. Chem. Phys., 11(12), 6139-6151, doi:10.5194/acp-11-6139-2011, 2011.
8	Song, L., Liu, X., Skiba, U., Zhu, B., Zhang, X., Liu, M., Twigg, M., Shen, J., Dore, A., Reis,
9	S., Coyle, M., Zhang, W., Levy, P. and Fowler, D.: Ambient concentrations and deposition
10	rates of selected reactive nitrogen species and their contribution to PM2.5 aerosols at three
11	locations with contrasting land use in southwest China, Environ. Pollut., 233(2), 1164-
12	1176, doi:10.1016/j.envpol.2017.10.002, 2018.
13	
14	[6] pg 4: How much O_3 is expected to be converted to OH? What is the concentration of O_3 in
15	the flow reactor? What are the expected rate coefficients for α -pinene oxidation with OH vs.
16	$O_3?$
17	
18	[A6] In case of α -pinene photo-oxidation at 10% RH corresponding to the atmospheric aging
19	time of 0.5 d and 2.5 d, residual O_3 concentrations in the flow reactor were approximately 1300
20	ppb and 3600 ppb, respectively, as already mentioned in the main text of the manuscript (pg.
21	4, lines 18-22). In case of α -pinene photo-oxidation at the atmospheric aging time of 0.5 d and
22	2.5 d, the OH-reaction rates were 6 and 12 times higher than O_3 -reaction rates, respectively.
23	The detailed method of SOA particle generation was described previously by Babar et al.
24	(2017).
25	
26	Reference:
27	Babar, Z. B., Park, JH., and Lim, HJ.: Influence of NH ₃ on secondary organic aerosols from
28	the ozonolysis and photooxidation of α -pinene in a flow reactor, Atmos. Environ., 164,
29	71-84, 10.1016/j.atmosenv.2017.05.034, 2017.
30	
31	[7] pg 6, line 12: I don't understand how the written sentences leads to this subset of references

on LLPS. Be more specific about the "consistent results" that this paper has in common withthose cited.

3

[A7] The references will be relocated in the revised manuscript to make this point clear (pg. 6,
lines: 21-26).

6

"Moreover, previous studies using surface tension (Jasper, 1972), spreading coefficient
(Kwamena et al., 2010; Reid et al., 2011), Raman spectroscopy (Song et al., 2013; Gorkowski
et al., 2016; Gorkowski et al., 2017), atomic force microscopy (Zhang et al., 2018), and
scanning electron microscopy (O'Brien et al., 2015) showed consistent results with regard to
the morphology of the particles consisting of organic and inorganic salts"

- 12
- 13 Reference:
- Gorkowski, K., Beydoun, H., Aboff, M., Walker, J. S., Reid, J. P., and Sullivan, R. C.: Advanced
 aerosol optical tweezers chamber design to facilitate phase-separation and equilibration
 timescale experiments on complex droplets, Aerosol. Sci. Tech., 50, 1327-1341,
 10.1080/02786826.2016.1224317, 2016.
- Gorkowski, K., Donahue, N. M., and Sullivan, R. C.: Emulsified and Liquid Liquid PhaseSeparated States of alpha-Pinene Secondary Organic Aerosol Determined Using Aerosol
 Optical Tweezers, Environ. Sci. Technol., 51, 12154-12163, 10.1021/acs.est.7b03250,
 2017.
- Jasper, J. J.: The surface tension of pure liquid compounds, J. Phys. Chem. Ref. Data, 1, 841–
 1009, https://doi.org/10.1063/1.3253106, 1972.

Kwamena, N. O. A., Buajarern, J., and Reid, J. P.: Equilibrium Morphology of Mixed
Organic/Inorganic/Aqueous Aerosol Droplets: Investigating the Effect of Relative
Humidity and Surfactants, J. Phys. Chem. A., 114, 5787-5795, 10.1021/jp1003648, 2010.

O'Brien, R. E., Wang, B. B., Kelly, S. T., Lundt, N., You, Y., Bertram, A. K., Leone, S. R.,
Laskin, A., and Gilles, M. K.: Liquid-Liquid Phase Separation in Aerosol Particles:
Imaging at the Nanometer Scale, Environ. Sci. Technol., 49, 4995-5002,
10.1021/acs.est.5b00062, 2015.

1	Reid, J. P., Dennis-Smither, B. J., Kwamena, N. O. A., Miles, R. E. H., Hanford, K. L., and
2	Homer, C. J.: The morphology of aerosol particles consisting of hydrophobic and
3	hydrophilic phases: hydrocarbons, alcohols and fatty acids as the hydrophobic component,
4	Phys. Chem. Chem. Phys., 13, 15559-15572, 10.1039/c1cp21510h, 2011.
5	Song, M., Marcolli, C., Krieger, U. K., Lienhard, D. M., and Peter, T.: Morphologies of mixed
6	organic/inorganic/aqueous aerosol droplets, Faraday. Discuss., 165, 289-316,
7	10.1039/c3fd00049d, 2013.
8	Zhang, Y., Chen, Y. Z., Lambe, A. T., Olson, N. E., Lei, Z. Y., Craig, R. L., Zhang, Z. F., Gold,
9	A., Onasch, T. B., Jayne, J. T., Worsnop, D. R., Gaston, C. J., Thornton, J. A., Vizuete, W.,
10	Ault, A. P., and Surratt, J. D.: Effect of the Aerosol-Phase State on Secondary Organic
11	Aerosol Formation from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPDX),
12	Environ. Sci. Tech. Let., 5, 167-174, 10.1021/acs.estlett.8b00044, 2018.
13	
14	[8] pg 6, line 18: Is the mass concentration at SOA provided for a specific RH?
15	
16	[A8] These are dry SOA mass concentrations at 60% RH measured by SMPS. We will give
17	more information in Experimental Sect. (pg. 6, line: 28 to pg. 7, line: 4).
18	
19	"A diffusion dryer loaded with silica gel was used at the upstream of Scanning Mobility Particle
20	Sizer (SMPS+C, Grimm, Germany) for the measurement of dry SOA mass concentrations.
21	After dilution, the mass concentrations of the SOA particles were measured to range between
22	~480 $\mu g \cdot m^{\text{-3}}$ and ~880 $\mu g \cdot m^{\text{-3}}$ using the SMPS for different experimental conditions as
23	presented in Tables 1 and 2."

1 Response to Referee #2 (Reviewer comments in black text)

2

This manuscript studied the liquid-liquid phase separation criteria of α -pinene derived SOA 3 from both ozonolysis and photo-oxidation pathways with and without the exposure of ammonia 4 gas. The results show that only the ozonolysis pathway could generate LLPS at high relative 5 humidity, regardless of ammonia exposure or not. The manuscript is an extension of the 6 7 author's previous work and the results are interesting. However, the lack of direct 8 measurements of the chemical composition of the SOA makes it more difficult and less 9 convincing to justify the conclusions that the authors made. I suggest the authors either include more evidence or modify the conclusions based on existing evidence before publishing the 10 11 manuscript. I outline some comments below for the manuscript.

12

13 Major comments

[1] The author stated that "The O:C ratio for the SOA particles derived from pinene ozonolysis 14 ranges from 0.42–0.44 as per Li et al. (2015), whereas that for SOA particles derived from α -15 pinene photo-oxidation is 0.40-0.90 according to Lambe et al. (2015)." And then the author 16 17 makes the conclusion that "LLPS occurred when the average O:C ratio was between 0.34 and 0.44. However, LLPS did not occur when the average O:C ratio was between 0.40 and 1.30." 18 19 Please note that the regions of O:C ratios between the LLPS and non-LLPS are overlapping, 20 which makes the conclusion confusing. The author should try to narrow down the O:C ratio 21 for the non-LLPS regions. I recall that the paper by Lambe et al. 2015 shows the O:C ratio 22 based on different OH exposure times. So maybe the authors can compare the OH exposure 23 time in this study with that of the Lambe et al. to obtain a more precise O:C value for photooxidation of a-pinene in the flow tube. 24

25

[A1] Thank you for the comment. The referee suggested to narrow down the O:C regions for 26 27 the non-LLPS due to O:C overlapping. However, we would like to keep it with the ranges at this stage because 1) the O:C ranges (0.4 - 0.9) were from literature (Lambe et al., 2015, 28 29 exposure time: 0.2 - 17 days) that was the closest to our experimental condition (not our direct measurement), and 2) previous studies have also showed O:C region overlapping for LLPS and 30 31 non-LLPS (Renbaum-Wolff et al., 2016; Rastak et al., 2017; Song et al., 2017). An additional study on O:C limit for occurrence and absence of LLPS of organic aerosol particles will come 32 33 up very soon.

2 References:

Lambe, A. T., Chhabra, P. S., Onasch, T. B., Brune, W. H., Hunter, J. F., Kroll, J. H., Cummings,
M. J., Brogan, J. F., Parmar, Y., Worsnop, D. R., Kolb, C. E., and Davidovits, P.: Effect of
oxidant concentration, exposure time, and seed particles on secondary organic aerosol
chemical composition and yield, Atmos. Chem. Phys., 15, 3063-3075, 10.5194/acp-153063-2015, 2015.

Rastak, N., Pajunoja, A., Navarro, J. C. A., Ma, J., Song, M., Partridge, D. G., Kirkevag, A.,
Leong, Y., Hu, W. W., Taylor, N. F., Lambe, A., Cerully, K., Bougiatioti, A., Liu, P., Krejci,
R., Petaja, T., Percival, C., Davidovits, P., Worsnop, D. R., Ekman, A. M. L., Nenes, A.,
Martin, S., Jimenez, J. L., Collins, D. R., Topping, D. O., Bertram, A. K., Zuend, A.,
Virtanen, A., and Riipinen, I.: Microphysical explanation of the RH-dependent water
affinity of biogenic organic aerosol and its importance for climate, Geophys. Res. Lett.,
44, 5167-5177, 2017.

Renbaum-wolff, L., Song, M., Marcolli, C., Zhang, Y., and Liu, P. F.: Observations and
implications of liquid – liquid phase separation at high relative humidities in secondary
organic material produced by α -pinene ozonolysis without inorganic salts, Atmos. Chem.
Phys., 16, 7969-7979, 10.5194/acp-16-7969-2016, 2016.

Song, M., Liu, P. F., Martin, S. T., and Bertram, A. K.: Liquid-liquid phase separation in
particles containing secondary organic material free of inorganic salts, Atmos. Chem.
Phys., 17, 11261-11271, 2017.

22

[2] Since there is no direct measurement of the chemical composition of the SOA generated 23 24 from this study, the authors should include more research results to back up the O:C ratios for a-pinene SOA under ozonolysis and photo-oxidation. For instance, Shilling, et al 2009 25 26 (http://www.atmos-chem-phys.net/9/771/2009/) shows the O:C values of ozonolysis SOA are 27 0.3-0.45; Zhang et al 2015 (https://doi.org/10.5194/acp-15-7819-2015, 2015.) used flow tube 28 studies which is similar to the authors' setup, and shows the O:C values are 0.42-0.45; Chen et al. (www.atmos-chemphys. net/13/5017/2013) used PAM and shows the photo-oxidation SOA 29 has O:C values of 0.6-0.9, all of which are different from the literature values the authors 30 31 provided in the manuscript. More of these past literatures data need to be included to provide

1	a more convincing conclusion of the O:C values of a-pinene SOA since no actual measurement
2	was made during the experiment.

4 [A2] Thank you for the comment. We fully agree the Reviewer's comment. As the three 5 Reviewers suggested, we will add more references for O:C ratio of SOA particles produced by 6 α -pinene ozonolysis and α -pinene photo-oxidation using flow reactors or flow tube reactors 7 under similar reactant concentrations in the revised manuscript (Table S1). 8 9 [3] The authors' results seem to imply that whether or not adding ammonia, it would not change the LLPS within the range of the error bars within the reaction timescale of this experiment. 10 11 However, this result was not included in the conclusion part. The author should state this result more clearly. 12 13 14 [A3] Thank you for the suggestion! To make it clearer, we will include sentences in Summary 15 Sect (pg. 11, lines: 9-11). 16 17 "LLPS occurred in the SOA particles produced by α -pinene ozonolysis while no LLPS was observed in the SOA particles produced by α -pinene photo-oxidation. In addition, the 18 19 occurrence of LLPS did not depend on the presence and absence of NH₃." 20 [4] The author states that O:C values have an influence on the LLPS. How about H:C values? 21 22 Did any literature suggest that H:C values can alter the LLPS as well? 23 [A4] In previous studies of Song et al. (2012) and You et al. (2013), they showed no 24 25 relationship with H:C for occurrence of LLPS in particles containing organic and inorganic 26 salts.

27

- Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.: Liquid-liquid phase separation
 in aerosol particles: Dependence on O:C, organic functionalities, and compositional
 complexity, Geophys. Res. Lett., 39, 1-5, 10.1029/2012GL052807, 2012.
- You, Y., Renbaum-Wolff, L., and Bertram, A. K.: Liquid-liquid phase separation in particles
 containing organics mixed with ammonium sulfate, ammonium bisulfate, ammonium

- nitrate or sodium chloride, Atmos. Chem. Phys., 13, 11723-11734, 10.5194/acp-13-11723 2013, 2013.
- 3

[5] The experimental conditions were not very clear and detailed. Table 1 needs to include
more information such as the mode diameter of the particles generated under each situation
and the mass concentrations of the particles.

7

8 [A5] As suggested, Tables 1 and 2 will be updated in the revised manuscript to include
9 geometric mean diameter and mass concentration of particles for each experimental condition.
10

11 [6] The particles generated from the flow tube should be submicron, however the authors 12 described the size collected on the substrate was 1-5 um. Why would be such difference 13 between the particles suspended and on the substrate? I suppose it was due to impaction of the 14 plate. How would this morphology change affect the LLPS process? Have you compared with 15 size values from past AFM and SEM studies performed by Andrew Ault et al.?

16

17 [A6] In this study, the SOA particles during generation were collected on a hydrophobic 18 substrate at the outlet of the flow tube reactor. During the particle collection time, the SOA 19 particles might coagulate on the substrate resulting in larger particles consisting of up to \sim 5 20 µm. To make it clearer, an optical image of the SOA particles on a hydrophobic substrate at 21 the outlet of the flow tube reactor will be included in Supplement (Fig. S1).

For the LLPS experiments, supermicron particles consisting of $20 - 80 \mu m$ in diameter are 22 23 required since the microscope is equipped with a long working distance objective and a flow-24 cell. In order to obtain the appropriate particle sizes for the LLPS experiments, the SOA 25 particles collected on the substrate at the outlet of the flow tube reactor underwent a process of growth and coagulation at ~100 % RH. The detailed method of producing supermicron particles 26 27 was described previously in Renbaum-Wolff et al. (2016) and Song et al. (2015). In our study, 28 we did not observe a dependence of LLPS on the particle size across the studied range. Ault et 29 al. (2013) also showed that LLPS occurred in sea spray aerosol particles consisting of 0.3 - 2μm. We will include this reference in Introduction Sect (pg. 2, line 23). 30

31

Ault, A. P., Guasco, T. L., Ryder, O. S., Baltrusaitis, J., Cuadra-Rodriguez, L. A., Collins, D.
 B., Ruppel, M. J., Prather, K. A., Bertram, T. H., Grassia, V. H.: Inside versus Outside:
 Ion Redistribution in HNO3 Reacted Sea Spray Aerosol Particles as Determined by Single
 Particle Analysis, J. Am. Chem. Soc., 135(39), 14528-14531, 2013.

Renbaum-Wolff, L., Song, M., Marcolli, C., Zhang, Y., and Liu, P. F.: Observations and
implications of liquid – liquid phase separation at high relative humidities in secondary

7 organic material produced by α -pinene ozonolysis without inorganic salts, Atmos. Chem.

8 Phys., 16, 7969-7979, 10.5194/acp-16-7969-2016, 2016.

Song, M., Liu, P. F., Hanna, S. J., Li, Y. J., Martin, S. T., and Bertram, A. K.: Relative humiditydependent viscosities of isoprene-derived secondary organic material and atmospheric
implications for isoprene-dominant forests, Atmos. Chem. Phys., 15, 5145-5159,
10.5194/acp-15-5145-2015, 2015.

13

14 Minor comments

15 [7] The author states that the error bar of the relative humidity control system is 2%, however 16 the results show that the LLPS occurs at 95.8+/- 2.3% and 95.4+/- 2.9%. Since the system has 17 an intrinsic error of 2%, the error bar of the final results should not be down to one decimal 18 point. The results should round up and end at 96% and 95%.

19

[A7] As stated in Sect. 2.2 (pg. 6, line: 5), the uncertainty of the RH after calibration was $\pm 2.0\%$. The uncertainties of the separation relative humidity (SRH) upon moistening and the merging relative humidity (MRH) upon drying indicate the 2σ from several humidity cycles for one sample and from the uncertainty of the calibration as stated in Table 1 and 2. To make this point clearer, we will add sentences in Sect. 3.1 in the revised manuscript (pg. 6, line: 30 to pg. 7, line: 2).

26

[8] The author should specify more in detail how the OH concentrations were calculated. Was
it using the rate constant from Eqns 1 and 2? How would the high concentration of a-pinene
vapor (1000 ppb) affect the calculation of the OH concentration?

30

[A8] As suggested, we will add the information of the OH concentrations and the method in
the revised manuscript (pg: 4, lines: 13-18):

2 "In the flow reactor, OH concentrations were determined from the photochemical decay of toluene because toluene is well known for its OH reaction rate. The OH reaction rate constant 3 (k_{OH}) of toluene is 5.48×10^{-12} molecules cm⁻³ s⁻¹ with insignificant reaction rate with O₃ 4 (Atkinson and Aschmann, 1989). OH concentrations were calculated by varying O₃ and RH 5 6 from 2000 ppb to 8000 ppb and 10% to 60%, respectively. OH concentrations were calculated 7 by first order decay of toluene by reaction with OH radicals (Babar et al., 2017)" 8 References: 9 Atkinson, R. and Aschmann, S. M.: Rate constants for the gas-phase reactions of the OH radical 10 with a series of aromatic hydrocarbons at 296 ± 2 K, Int. J. Chem. Kinet., 21(5), 355-365, 11 12 doi:10.1002/kin.550210506, 1989. Babar, Z. B., Park, J.-H., and Lim, H.-J.: Influence of NH₃ on secondary organic aerosols from 13 the ozonolysis and photooxidation of α -pinene in a flow reactor, Atmos. Environ., 164, 14 15 71-84, 10.1016/j.atmosenv.2017.05.034, 2017.

1 Response to Referee #3 (Reviewer comments in black text)

2

This work investigate the liquid-liquid phase separation of α -pinene derived SOA from both 3 ozonolysis and photo-oxidation in the presence or absence of ammonia gas. This work shows 4 that only reaction products originated from ozonolysis of α -pinene undergo phase separation 5 6 at a very high humidity. The authors suggest that bulk elemental composition (e.g. O/C ratio) 7 could be a good proxy for determining the phase separation of α -pinene derived SOA formed 8 from ozonolysis and photo-oxidation. This work provide valuable data which allow us to better 9 understand the phase state and morphology of ambient SOA. I have a few comments for the authors' consideration. 10

11

12 Major comments

13 [1] Abstract, "LLPS occurred when the O:C ratio was less than ~ 0.44 and LLPS did not occur 14 when the O:C ratio was greater than ~ 0.40 . When LLPS was observed". Since the elemental 15 ratios of the SOAs have not been measured in this work, it may not be appropriate to put down 16 the O/C ratios in the abstract.

17

[A1] We agree the referee's suggestion. We will remove the value from the Abstract assuggested.

20

[2] Experiment section, my major comments are how the high gas-phase concentration of αpinene, ozone, OH, ammonia and aerosol mass loading used in this study affect the molecular
composition of the SOAs, which would ultimately govern the phase separation of the aerosols.
The authors should give more discussion on these aspects.

25

[A2] For the case of α -pinene ozonolysis and photo-oxidation, high gas phase concentration of 26 α -pinene elevates SOA mass loadings and yield by the condensation of low volatile species 27 into particle phase (Cocker et al., 2001; Na et al., 2007; Saathoff et al., 2008; Wang et al., 2014). 28 It has been reported that this did not significantly affect the molecular compositions (Shilling 29 et al., 2008; Shilling et al., 2009; Bertram et al., 2011; Chen et al., 2011; Zuend and Seinfeld, 30 31 2012). For instance, Shilling et al. (2009) and Zuend and Seinfeld (2012) showed that the O:C in α -pinene SOA did not depend significantly on mass loadings. Table S1 will be updated with 32 the references in the revised manuscript. 33

2 References:

Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata,
M., Liu, A., You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid
phase separation, efflorescence, and deliquescence of mixed particles of ammonium
sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle
and the oxygen-to-carbon elemental ratio of the organic component, Atmos. Chem. Phys.,
11, 10995-11006, 10.5194/acp-11-10995-2011, 2011.

- 9 Chen, Q., Liu, Y., Donahue, N. M., Shilling, J. E., and Martin, S. T.: Particle-Phase Chemistry
 10 of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental
 11 Ratios Provide Constraints, Environ. Sci. Technol., 45, 4763–4770,
 12 doi:10.1021/es104398s, 2011.
- Cocker, D. R., Flagan, R. C. and Seinfeld, J. H.: State-of-the-Art Chamber Facility for Studying
 Atmospheric Aerosol Chemistry, Environ. Sci. Technol., 35(12), 2594–2601,
 doi:10.1021/es0019169, 2001.
- Na, K., Song, C., Switzer, C., and Cocker, D. R.: Effect of ammonia on secondary organic
 aerosol formation from alpha-Pinene ozonolysis in dry and humid conditions, Environ. Sci.
 Technol., 41, 6096-6102, 10.1021/es061956y, 2007.
- Saathoff, H., Naumann, K.-H., M€ohler, O., Jonsson, Å.M., Hallquist, M., Kiendler-Scharr, A.,
 Mentel, T.F., Tillmann, R., Schurath, U.: Temperature dependence of yields of secondary
 organic aerosols from the ozonolysis of a-pinene and limonene. Atmos. Chem. Phys.
 Discuss. 8, 15595e15664. <u>http://dx.doi.org/10.5194/acpd-8-15595-2008</u>, 2008.
- Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., McKinney,
 K. A., and Martin, S. T.: Particle mass yield in secondary organic aerosol formed by the
 dark ozonolysis of α-pinene, Atmos. Chem. Phys., 8, 2073–2088, doi:10.5194/acp-8-20732008, 2008.
- Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., DeCarlo, P.
 F., Aiken, A. C., Sueper, D., Jimenez, J. L., Martin, S. T.: Loading-dependent elemental
 composition of α-pinene SOA particles, Atmos. Chem. Phys., 9, 771-782, 10.5194/acp-9771-2009, 2009.

Wang, X., Liu, T., Bernard, F., Ding, X., Wen, S., Zhang, Y., Zhang, Z., He, Q., Lü, S., Chen,
 J., Saunders, S., Yu, J.: Design and characterization of a smog chamber for studying gas phase chemical mechanisms and aerosol formation. Atmos. Meas. Tech. 7, 301e313.
 <u>http://dx.doi.org/10.5194/amt-7-301-2014</u>, 2014.

Zuend, A., and Seinfeld, J. H.: Modeling the gas-particle partitioning of secondary organic
aerosol: the importance of liquid-liquid phase separation, Atmos. Chem. Phys., 12, 38573882, 10.5194/acp-12-3857-2012, 2012.

- 8
- 9

10 [3] Page 5, line 13, "During a humidity cycle, RH was reduced from $\sim 100\%$ to 0%, and then, 11 it was increased to $\sim 100\%$ at a rate of 0.5–1.0% RH·min⁻¹ if LLPS was not observed. If LLPS 12 was observed, the RH was reduced from $\sim 100\%$ to $\sim 5-10\%$ lower than the RH at which 13 the two liquid phases merged into one phase, followed by an increase to $\sim 100\%$ RH at a rate 14 of 0.1–0.5% RH·min⁻¹." Could the authors elaborate how they could confirm an equilibrium 15 state could be achieved for all systems under these RH increasing or decreasing rate?

16

17 [A3] This is a good point. At the beginning of LLPS experiments, the SOA particles were 18 equilibrated at ~100% RH for 60 min. Then, a humidity cycle was performed at a rate of 0.1 -19 0.5 % RH·min⁻¹ for occurrence of LLPS and at a rate of 0.5 - 1.0 % RH·min⁻¹ for absence of 20 LLPS. We did not observe a dependence of LLPS and non-LLPS on the RH ramp rate. This 21 point will be included in the revised manuscript (pg. 5, lines: 22-26).

22

²³ "During a humidity cycle, RH was reduced from ~100% to ~5 – 10% lower than the RH at ²⁴ which the two liquid phases merged into one phase, followed by an increase to ~100% RH at ²⁵ a rate of 0.1 – 0.5% RH·min⁻¹. If LLPS was not observed, RH was reduced from ~100% to ²⁶ ~0%, and then, it was increased to ~100% at a rate of 0.5 – 1.0% RH·min⁻¹. We did not observe ²⁷ a dependence of LLPS on the humidity ramp rate."

28

29 [4] Page 6, line 17, As shown Table 1, the phase separation was observed at very high RH.

30 Could the authors explain why this happens for the investigated systems?

Also, in addition to the comments on the O/C ratios, could the authors explain why the phase

separation does not occur for the SOAs generated from photooxidation of α-pinene (e.g. from
 a molecular insight or perspective)?

3

[A4] As RH increases, water molecules would increase in the particle leaving organic
molecules which are less hydrophilic resulting in phase separation in the SOA particles.
Previous studies showed that a number of water-soluble organic compounds such as carboxylic
acids were identified in the SOA particles produced from α-pinene photo-oxidation (Reinning
et al., 2008; Eddingsaas et al., 2012).

9

10 References:

- Eddingsaas, N. C., Loza, C. L., Yee, L. D., Chan, M., Schilling, K. A., Chhabra, P. S., Seinfeld,
 J. H., and Wennberg, P. O.: alpha-pinene photooxidation under controlled chemical
 conditions Part 2: SOA yield and composition in low- and high-NOx environments,
 Atmos. Chem. Phys., 12, 7413-7427, 10.5194/acp-12-7413-2012, 2012.
- Reinnig, M.C., Müller, L., Warnke, J., Hoffmann, T.: Characterization of selected organic
 compound classes in secondary organic aerosol from biogenic VOCs by HPLC/MSn, Anal.
 Bioanal. Chem., 391, 171–182, https://doi.org/10.1007/s00216-008-1964-5, 2008.
- 18
- 19 [5] Page 9, line 16, "The range of O:C ratio corresponding to the absence of LLPS is wider 20 than that reported by a previous work (Song et al., 2017). The difference could be attributed to 21 the fact that the SOA particles were generated from different types of VOCs." Could the authors 22 elaborate this point a more?
- 23

[A5] Thank you for the comment. To make this point clearer, we will modify the sentences in
Sect. 3.4 (pg. 9, line: 29 to pg. 10, line: 2).

26

²⁷ "However, LLPS did not occur when the average O:C ratio was between 0.45 and 1.30 in this ²⁸ study. Using a new type of SOA particle generated from α -pinene photo-oxidation, we suggest ²⁹ that the absence of LLPS is wider than that reported by a previous work (0.52 - 1.30) (Song et ³⁰ al., 2017).

31

Song, M., Liu, P. F., Martin, S. T., and Bertram, A. K.: Liquid-liquid phase separation in
 particles containing secondary organic material free of inorganic salts, Atmos. Chem.
 Phys., 17, 11261-11271, 2017.

4

5 [6] Page 10, line 19, "Moreover, LLPS occurred in the SOA particles at high RH (as high as ~ 100%), implying that these results can provide additional information toward the CCN properties of organic particles." Could the authors elaborate what addition information could be gained from the results of this work? How this information would help us to better understand the CCN properties of the particles?

10

[A6] We fully agree the referee's suggestion. We will address LLPS occurrence and related
CCN properties in the revised manuscript (pg. 10 lines: 18-25).

13

"The two phases consisting of an organic-rich shell and water-rich core were observed at RH as high as ~100% in all cases. Recent studies of Rastak et al. (2017) and Liu et al. (2018) showed from laboratory study and modeling results that the presence of LLPS in organic particles at ~100% RH can lead to lower surface tension, and finally a lower kinetic barrier to CCN activation. Our result can also give an additional insight into attempting more accurate predictions of the CCN properties of organic particles (Petters et al. 2006; Hodas et al. 2016; Renbaum-Wolff et al., 2016; Ovadnevaite et al., 2017; Rastak et al., 2017; Liu et al., 2018)."

21

22 References:

Hodas, N., Zuend, A., Schilling, K., Berkemeier, T., Shiraiwa, M., Flagan, R. C., and Seinfeld,
J. H.: Discontinuities in hygroscopic growth below and above water saturation for
laboratory surrogates of oligomers in organic atmospheric aerosols, Atmos. Chem. Phys.,
16, 12767-12792, 10.5194/acp-16-12767-2016, 2016.

Liu, P. F., Song, M., Zhao, T. N., Gunthe, S. S., Ham, S. H., He, Y. P., Qin, Y. M., Gong, Z. H.,
Amorim, J. C., Bertram, A. K., and Martin, S. T.: Resolving the mechanisms of
hygroscopic growth and cloud condensation nuclei activity for organic particulate matter,
Nat. Commun., 9, ARTN 4076 10.1038/s41467-018-06622-2, 2018.

Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G., Ceburnis, D., Decesari,
 S., Rinaldi, M., Hodas, N., Facchini, M. C., Seinfeld, J. H., and Dowd, C. O.: Surface
 tension prevails over solute effect in organic-influenced cloud droplet activation, Nature,
 546, 637-641, 10.1038/nature22806, 2017.

Petters, M. D., Kreidenweis, S. M., Snider, J. R., Koehler, K. A., Wang, Q., Prenni, A. J., and
Demott, P. J.: Cloud droplet activation of polymerized organic aerosol, Tellus. B., 58, 196205, 10.1111/j.1600-0889, 2006.

Rastak, N., Pajunoja, A., Navarro, J. C. A., Ma, J., Song, M., Partridge, D. G., Kirkevag, A.,
Leong, Y., Hu, W. W., Taylor, N. F., Lambe, A., Cerully, K., Bougiatioti, A., Liu, P., Krejci,
R., Petaja, T., Percival, C., Davidovits, P., Worsnop, D. R., Ekman, A. M. L., Nenes, A.,
Martin, S., Jimenez, J. L., Collins, D. R., Topping, D. O., Bertram, A. K., Zuend, A.,
Virtanen, A., and Riipinen, I.: Microphysical explanation of the RH-dependent water
affinity of biogenic organic aerosol and its importance for climate, Geophys. Res. Lett.,
44, 5167-5177, 2017.

Renbaum-wolff, L., Song, M., Marcolli, C., Zhang, Y., and Liu, P. F.: Observations and
implications of liquid – liquid phase separation at high relative humidities in secondary
organic material produced by α -pinene ozonolysis without inorganic salts, Atmos. Chem.
Phys., 16, 7969-7979, 10.5194/acp-16-7969-2016, 2016.