1 Reviewer-1

2 We appreciate your review and critique of the manuscript. Thank you.

3 Please note: Line numbers stated here are from the original manuscript.

4 The paper presents results from a measurement campaign (CCOPE) on the Chilean Pacific Coast. The 5 data consist of particle number concentrations measured with a condensation particle counter (CPC) 6 and size distributions measured with a high-resolution optical particle counter (UHSAS) at a 7 measurement station near the town of Arauco. The data are used for parameterizations of aerosol properties relevant to cloud and precipitation processes: number-to-volume ratios, concentrations of 8 9 cloud condensation nuclei and sea-salt aerosol. The goal is to use these parameterizations for 10 interpreting other data collected during the campaign on the Nahuelbuta Mountains about 30 – 100 11 km south of Arauco. The paper is basically well written and I can recommend its publication in ACP after some corrections and more detailed explanations. 12

It is in a way pleasant to see that it is still possible to make relevant observations even with such very simple traditional aerosol instrumentation when the setup in most similar campaigns today consists of several instruments measuring both physical properties and chemical composition. On the other hand, the lack of knowledge of size distributions at sizes smaller than those measured with the UHSAS, chemical composition and hygroscopicity increase the uncertainty of the interpretations. Discuss this.

18 We feel that the last four paragraphs of Section 4.4 address this. Please see Section 4.4 of the 19 revised manuscript. Finally, since estimates of the effective supersaturation (Hudson 1984) are 20 generally smaller than 0.2%, at least in liquid-only stratocumulus (Snider et al. 2017), we do not think 21 that lack of knowledge at $D < 0.06 \mu m$ is a limiting factor.

Hudson, J. G., 1984: Cloud condensation nuclei measurements within clouds. J. Climate Appl.
Meteor., 23, 42–51, doi:10.1175/1520-0450(1984)023,0042:CCNMWC.2.0.CO;2.

Snider, J.R., D.Leon and Z.Wang, Droplet Concentration and Spectral Broadening in Southeast
 Pacific Stratocumulus, J. Atmos. Sci., 74, 719-749, 2017

27 The trajectories were calculated with HYSPLIT by using the GDAS wind data with a 0.5° spatial resolution. This is so coarse that the effects of local topography are not properly taken into account. 28 29 The measurement site is very close to the town of Arauco and the sea, Gulf of Arauco is to the north of 30 it and to the west of Arauco there are some hills higher than 300 m. As a result, even when the HYSPLIT trajectories show that wind blows from the west local wind in Arauco may have blown from other 31 32 directions bringing anthropogenic aerosol from the town. The main goal of the paper is to use the 33 parameterizations in the CCOPE data interpretations and modeling. During westerly winds the Nahuelbuta Mountains are definitely not affected by the anthropogenic sources around the Gulf of 34 Arauco whereas your measurement station obviously is – the average total particle number 35 36 concentration in air that you classified as "clean" was 2759 ± 1827 cm⁻³. This is high compared with 37 marine aerosol essentially everywhere, possibly also on the coast directly to the west of the Nahuelbuta Mountains. In light of this, discuss the validity of the results for CCOPE. 38

39 Yes, spatial resolution of the GDAS is a factor limiting our ability to stratify measurements made at the Arauco Site. In spite of the limitation, our conditional sampling does demonstrate that aerosol 40 41 surface area at the Arauco site is, on average, smaller than that reported by Hegg and Kaufman (1998) 42 over the western Atlantic in air that had advected from the United States. The comparison of aerosol 43 surface area is discussed in Sect. 5 of the manuscript. Related to your point about representativeness, 44 the Arauco CPC data can be used to generate lower and upper quartile values of N_{CPC} ensemble. The 45 quartiles are 789 and 2151 cm⁻³, respectively. We did not present these N_{CPC} quartiles in the 46 manuscript, but they are easily derived using the N_{CPC} ensemble described in the Supplementary Material (manuscript) or using the data reader we provided (see section titled "Data Availability"). The 47 48 lower quartile N_{CPC} (789 cm⁻³) indicates that 25% of the time conditions were comparable to the 49 wintertime average at THD (Section 4.1).

You also assert that "..directly west of Nahuelbuta Mountains.." a more pristine aerosol state may exist. We are not convinced this is true. In Fig. 1 (revised manuscript), Lebu (population 24,000) and Cañete (population 32,000) are included. Another small city (Curanilahue) was in Figure 1 of the original manuscript. These small cities increase the possibility that cloud and precipitation over the Nahuelbuta are impacted by anthropogenic aerosols, even in a westerly flowing air. Furthermore, source/receptor relationships for aerosols on the Central Chilean Coast depend on source strength and 56 a host of meteorological factors (e.g., extratropical cyclone track, thermal stability, and etc.). 57 Onshore/offshore flow that occurs during meteorologically quiescent periods (sea/land breeze 58 circulations), could also be significant. For example, if the sea/land circulation creates a "strip" of 59 aerosol contamination within the near-shore zone, and this air is brought onshore during episodes of persistent westerly airflow. A "coastal strip" of larger cloud droplet concentration is evident in analyses 60 61 of satellite retrievals in Wood et al. (2012; their figure 4). The latter compliments the retrievals of 62 Bennartz (2007), who we cite in the manuscript (Sect. 5). However, neither Wood et al. (2012) nor Bennartz (2007) segregate the satellite data into wintertime and summertime ensembles. As we state 63 in the manuscript (Sect. 5), further analysis of the satellite retrievals are needed to investigate if the 64 65 coastal strip exists both in winter and in summer.

The previous paragraph focused on aerosol-cloud interactions occurring within the planetary
boundary layer; an additional dimension of the problem is aerosol resident above the planetary
boundary layer. We acknowledge this in Sect. 5 (original and revised manuscript).

In summary, we feel that the caveats provided in the manuscript (Sections 5 and 6) are
sufficient for numerical modelling of wintertime Chilean Coastal clouds and precipitation. We are
confident that such modelling will extend understanding beyond the analyses provided here and in
Massmann et al. (2017).

Hegg, D. A., and Y. J. Kaufman, Measurements of the relationship between submicron aerosol
number and volume concentration, J. Geophys. Res., 103, 5671-5678, 1998

Massmann, A.K., J.R. Minder, R.D. Garreaud, D.E. Kingsmill, R.A. Valenzuela, A. Montecinos, S.L.
Fults, and J.R. Snider, 2017, The Chilean Coastal Orographic Precipitation Experiment: Observing the
Influence of Microphysical Rain Regimes on Coastal Orographic Precipitation. J. Hydrometeor., 18,
2723–2743, https://doi.org/10.1175/JHM-D-17-0005.1, 2017

- Bennartz, R., Global assessment of marine boundary layer cloud droplet number concentration
 from satellite, J. Geophys. Res., 112, D02201, 2007
- Wood, R. (2006), Rate of loss of cloud droplets by coalescence in warm clouds, J.
 Geophys. Res., 111, D21205, doi:10.1029/2006JD007553.
- 83

84 **Detailed comments**

- Section 2.1. Add information on the distance of the Arauco measurement site from the sea, from the
 town of Arauco, the paper mill, the Curanilahue measurement station and the rest of the CCOPE
- 87 campaign area.
- A distance scale is provided in Fig. 1 (revised manuscript). Also, a city Coronel (population
 110,000), and two small cites Lebu (population 24,000) and Cañete (population 32,000) are included in
- 90 the revised Fig. 1.
- 91 L145-146 "... CPC concentrations were recorded once per second and once every 10 seconds (Table 1)."
- 92 The expression "CPC concentrations" would mean there are many Condensation Particle Counters
- 93 flying in the air. That is not quite correct. Use "... CPC data were recorded..."

94 Corrected

- 95 Another thing I don't understand, is the logic of saving data once per s and once per 10 s. The 1-s data
- 96 has it all, from it 10-s data can be picked up if needed. What is the logic?

97 The text was revised:

- 98 "The CPC counts particles larger than $D = 0.010 \,\mu\text{m}$ (Table 1) up to a maximum concentration of 10,000
- 99 cm⁻³. The UHSAS measures scattering produced when aerosol particles are drawn through light
- emitted by a solid state laser (λ = 1.05 μ m). By reference to a calibration table (Cai et al. 2008; Cai et al.
- 101 2013), the UHSAS microprocessor converts scattered light intensity to particle size and accumulates
- the derived sizes in a 99 channel histogram. Channel widths are logarithmically uniform ($\Delta log_{10}D =$
- 103 0.013) over the instrument's full range ($0.055 < D < 1.0 \mu m$). UHSAS data were recorded every 10
- 104 seconds and CPC data were recorded once per second (Table 1)."

The expressions "*CPC concentration*" and "*UHSAS concentration*" have been used in some sentences
also later. As I wrote above, these should be rewritten. For example title of section 4.1 should rather
be "Comparison of particle number concentrations..."

108 Corrected.

- L256-258 " ... 194 classify as clean sector. For both sites we required a clean sector wind speed > 1.5 m
 s-1 in addition to the clean sector directional criteria (Fig. 2)."
- You started wind measurements at Arauco on 19 June. Did you use only the aerosol data after that in this comparison?
- 113 Yes.
- 114 L286-289 " During this two-hour data segment, centered on 00 UTC June 9 (9 pm local time), winds were light at
- 115 Arauco and Curanilahue (< 2 m s.1) and the wind direction was variable at Curanilahue (Arauco Site wind direction
- 116 measurements are only available after 19 June 2015; Sect. 2.1)."
- 117 You wrote that wind measurements at Arauco started on 19 June. How can you then write that the
- 118 wind at Arauco was < 2m/s on 9 June?
- 119 Meteorological measurements (minus wind direction) were acquired from 29 May to 14 August 120 and meteorological measurements (including wind direction) were acquired 19 June to 14 August. This
- is stated in Section 2.1 (original and revised manuscript).

The distance between Arauco and Curanilahue is approximately 25 km, the measurement site of Curanilahue is at > 100 m ASL and there are quite a few valleys and hills higher than 100 m ASL between the two sites. So the local winds at these sites may have been completely different. How justifiable is it to use Curanilahue in interpreting Arauco data?

127 Reviewer #1 also commented on this, and we responded. Wind speeds were light at both
128 locations and direction was variable at Curanilahue. A graph of the data is provided below. In general,
129 the effect of wind on aerosol is very difficult to interpret.

133 Section 4.3

134 In calculating the N/V ratio, justify using N_{UHSAS} and not N_{CPC} for N?

135 We rewrote this section of the manuscript. We feel the revision justifies what you commented136 on:

137 "In this section we analyze two ASD moments (Section 3.3). These are symbolized NuHsAs and VuHsAs, 138 respectively. The ratio of N_{UHSAS} (aerosol concentration) and V_{UHSAS} (aerosol volume) – generically the 139 N/V ratio - is of interest for several reasons. First, for both operational and theoretical reasons the N/V140 ratio is evaluated for particle diameters larger than ~ 0.1 μm (VD00; Hegg and Kaufman 1998, hereafter 141 HK98), and importantly, the model developed to evaluate aerosol exchange between an overlying free 142 troposphere (FT) and the marine boundary layer (MBL) successfully predicts the N/V ratio in the MBL 143 (VD00). Second, a value of the ratio can be derived by fitting measurements of N and V (HK98). Third, 144 aerosol mass loading, and thus an aerosol volume corresponding to an assumed particle density ¹, are 145 relatively easy to evaluate. A method routinely used to evaluate aerosol mass loading involves pulling 146 aerosol-laden air through a filter and evaluating the accumulated mass gravimetrically. Fourth, the 147 product of an N/V ratio and an ambient aerosol volume (aerosol mass) has been proposed as a scheme 148 for estimating cloud droplet concentration in marine stratocumulus clouds (HK98 and VD00). HK98 used a passive cavity aerosol spectrometer probe (PCASP) to evaluate N, V and the N/V ratio. 149 150 Since the UHSAS counts down to a smaller diameter (0.055 μ m) than the PCASP (0.12 μ m), it is

151 expected that the *N/V* ratios we derive using the UHSAS will be larger than those in HK98. The main

reason for this is that decreasing the lower-limit diameter increases *N* more than *V* (VD00). "

Hegg, D. A., and Y. J. Kaufman, Measurements of the relationship between submicron aerosol
number and volume concentration, J. Geophys. Res., 103, 5671-5678, 1998

- van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear
 analytical relationship between aerosol accumulation number and sub-micron volume, explaining their
 observed ratio in the clean and polluted marine boundary layer, Tellus, 52B, 439-451, 2000
- 158

¹ In the case of ambient particles containing hygroscopic materials, density values range between 1.5 and 1.8 g cm⁻³ (McMurry et al. 2002)

159 What did HK98 and VD00 use?

160 This information is provided in Sect. 4.3. First we present *N/V* ratios derived with the lower-

161 limit diameter set at the minimum particle diameter detected by the UHSAS. Next, we repeat the

analysis with the lower-limit diameter equal to the value applied by HK98. Results are in Tables 3 and

163 4. The "headline" of these Tables provides the distinction. Additionally, VD00 integrate from minimum

164 diameter = $0.08 \,\mu$ m, but we do not consider that case.

166 Section 4.4

167 L377-385 This is an important part of the paper and it should be understood properly in order to 168 understand the parameterization FAC(SS) presented later. Now it is not quite clear to me. You have 169 earlier presented some of the simplest possible aerosol equations, Eqs. (1) - (4), which is fine, they are 170 good to be shown. But now when it comes to a clearly more complicated issue, equations are missing which is not logical. And on line 379 it is written " ... kappa–Köhler formula of Petters and Kreidenweis 171 (2007, their Eq. (11))" but their Eq. (11) shows the relationship of growth factor, dry particle diameter, 172 173 kappa, and relative humidity. How is this used to "...interpret a FAC's lower-limit diameter as an upper-limit 174 SS" as was stated on line 377? Is the referred equation right? Write the proper equation and explain the steps of 175 the calculation in more detail so that readers can repeat the calculation for their own data.

The relevant equation from Petters and Kreidenweis (2007) was cited incorrectly. This is
changed in the revised manuscript. For calculating critical SS, corresponding to prescribed values of dry
diameter and kappa, we used Eq. 6 (Petters and Kreidenweis 2007). This is corrected in the revised
manuscript. Additionally, our explanation is enhanced by inclusion of Eq. 5 (revision).

180 Here is the revised text:

"Our first step is to select a particle diameter, apply this as a lower-limit diameter in an integration of
the UHSAS size distribution, and divide the integral by the coincident CPC-measured concentration.
The resultant is referred to as the *fractional aerosol concentration* (*FAC*).

184
$$FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{1,\mu m} (dN / d \log_{10} D) \cdot d \log_{10} D$$
 (5)

185 Figs. 7a - b have graphical representations of *FAC*(*D*=0.055 μm) and *FAC*(*D*=0.120 μm).

In a second step we interpret a *FAC*'s lower-limit diameter as an upper-limit *SS*. We do this by applying a value for the kappa hygroscopicity parameter, which we set at $\kappa = 0.5$, and by applying the kappa– Köhler formula of Petters and Kreidenweis (2007, their Eq. (6)). This transformation from lower-limit *D* to upper-limit *SS* converts the *FAC* in Fig. 7a to *FAC*(*SS* = 0.41 %) and the FAC in Fig. 7b to *FAC*(*SS* = 0.13 %). We also evaluated how a range of the kappa parameter (0.3 < κ < 0.7) translates to a range of *SS*. Our upper-limit κ comes from airborne measurements made over the Southeast Pacific Ocean during summer (Snider et al., 2017), and our lower-limit κ is the value recommended by Andreae and
Rosenfeld (2008) for simulating aerosol indirect effects over continents."

194

Additionally, we rewrote the paragraph explaining how FACs are derived for onshore trajectories. Therevised paragraph is this:

197

"The FACs in Figs. 7a – b are two of the many available from CCOPE. One way to aggregate these is to 198 199 calculate a FAC for each of the 20 onshore trajectories. For example, if we select the lower-limit diameter at $D = 0.055 \mu m$, plot numerator values (Eq. (5)) vs denominator values (Eq. (5)), and fit with 200 the equation $Y = a \cdot X$, the "a" we derive is the FAC(D = 0.055 µm) for a particular trajectory. FACs 201 202 calculated in this way, and with lower-limit D selected = $0.120 \mu m$, are presented in the seventh 203 columns of Tables 3 and 4. Correlation coefficients presented in the eighth columns of these tables mostly exceed 0.5. By averaging over the 20 onshore trajectories, we calculated the overall averages 204 205 presented at the bottom of the two tables. These overall averages are $FAC(D = 0.055 \ \mu\text{m}) = 0.35 \pm 0.13$ 206 (Table 3) and $FAC(D = 0.120 \ \mu\text{m}) = 0.13 \pm 0.07$ (Table 4). This decrease of the FAC results because a larger lower-limit D (Eq. (5)), implies a smaller numerator (Eq. (5)), and thus a smaller FAC(D)." 207

208

210 Section 4.5

Refer also to O'Dowd, C. D. and de Leeuw, G. (2007) and consider comparing your results also with the parameterization they presented

213 O'Dowd, C. D. and de Leeuw, G.: Marine Aerosol Production: a review of the current knowledge, Phil.

214 Trans. R. Soc. A., 365,1753–1774, doi:10.1098/rsta.2007.2043, 2007

O'Dowd and de Leeuw (2007) summarize the sea spray research of Geever et al. (2005) and
Clarke et al. (2006). The latter two references are not compiled in Lewis and Schwartz (2004) (hereafter
LS04). We reference LS04 and Clarke et al. (2006) in the manuscript (original and revised).

Clarke et al. (2006) report a particle size-dependent flux function. As discussed in de Leeuw et
al. (2011) (their section 6.5), a *size-dependent flux* can be transformed to a *concentration*,
corresponding to a specified range of particle size, but this requires a steady-state, an assumed value
for atmospheric residence time, and an assumed value for the depth of the MBL. Geever et al. (2005)
investigated sea spray from particles smaller than 1 µm, but did not report a size-dependent flux
function.

Using the Clarke et al. (2006) parameterization with a range of wind speeds (3, 6, and 12 m/s), we transformed to concentrations assuming residence time = 3 day and MBL depth = 500 m (de Leeuw et al. (2011); their section 6.5). The SSA concentrations we calculated are within a factor = 3 of the CCOPE curve in Fig. 9. Specifically, the calculated values are smaller at 3 m/s (Fig.9-to-calculated ratio = 1.3) and larger at 12 m/s (Fig.9-to-calculated ratio = 0.33). Given that there is significant variability in residence time and MBL depth, and in the wind speed scaling applied in Clarke et al. (2006), the result in Fig. 9 (manuscript) seems reasonable.

Summary: Because of assumptions necessary to transform a size-dependent flux to a
 concentration, we have not compared our result to sea spray research other than the comparison to
 wind-speed-dependent concentrations presented in O'Dowd and Smith (1993).

Clarke, A., V. Kapustin, S. Howell, K. Moore, B. Lienert, S. Masonis, T. Anderson, and D. Covert,
Sea-salt size distribution from breaking waves: Implications for marine aerosol production and optical
extinction measurements during SEAS, J. Atmos. Ocean.Technol., 20, 1362–1374, 2003

237	Geever, M., C. D. O'Dowd, S. van Ekeren, R. Flanagan, E. D. Nilsson, G. de Leeuw, and Ü. Rannik,
238	Submicron sea spray fluxes, Geophys. Res. Lett., 32, L15810, doi:10.1029/2005GL023081, 2005
239	de Leeuw, G., E. L Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O'Dowd, M. Schulz,
240	and S. E. Schwartz, Production flux of sea spray aerosol, Rev. Geophys., 49, RG2001,
241	doi:10.1029/2010RG000349, 2011
242	O'Dowd, C. and G. de Leeuw, Marine aerosol production: a review of the current knowledge,
243	Phil. Trans. R. Soc. A., 365,1753–1774, doi:10.1098/rsta.2007.2043, 2007
244	O'Dowd, C.D., and M.H. Smith, Physicochemical properties of aerosols over the Northeast
245	Atlantic: evidence for wind-speed-related submicron sea-salt aerosol production, J.Geophys. Res.,98,
246	1137-1149, 1993

- Fig 1. Add a distance scale.
- Fig. 1 (revised manuscript) has a distance scale. The revised map is shown below. Small citesCañete and Lebu, and the city Coronel, are included in the revised Figure 1.

Fig. 3b. Why is the y axis reverse? Why is the lowest pressure 920 hPa? A sensible scale would be 990-1020 hPa.

An air parcel's barometric pressure is output by the HYSPLIT model. Fig. 3b (original manuscript) has this pressure on the Y axis. Pressure, decreasing upward on the Y axis, is a proxy for altitude. In the revised Fig. 3b (see below), the MSL altitude of the air parcel is plotted. MSL altitude was calculated using the pressure output by HYSPLIT (parcel barometric pressure) and the ICAO equation for the Standard Atmosphere (1993). MSL altitude increases if a larger sea-level is pressure applied in the ICAO equation. This sensitivity is ~ 8 m / hPa.

International Civil Aviation Organization (ICAO), Manual of the ICAO Standard Atmosphere:
extended to 80 kilometres (262500 feet), 3rd ed., ISBN-92-9194-004-6, 1993

288 Fig. B1. What is the vertical dashed line at ~11:33 UTC?

This is explained in the original manuscript (Appendix B). Readers are referred to Appendix B at
L194. The first paragraph of Appendix B (revised manuscript) was revised for clarity. Here is the
revised text:

²⁹² "For each of the onshore trajectories (Sect. 3.1), a two-hour segment, centered on the trajectory arrival

time was analyzed. An example is in Figs. B1a – e. The first panel (Fig. B1a) shows the sequence of

294 CPC values sampled every second (i.e., 1-s samples referred to as *fast N_{CPC}*), and Fig. B1b shows CPC

values sampled every 10 seconds (i.e., 10-s samples referred to as *slow* N_{CPC}). The following procedure

was used to attenuate the narrow perturbations that were likely the result of local aerosol emissions (e.g.,

within the time interval indicated by vertical dashed lines in Figs. B1a, B1b, and B1d)."

- 1 Reviewer-2
- 2 We appreciate your review and critique of the manuscript. Thank you.
- 3 Please note: Line numbers stated here are from the original manuscript.

4 General Comments:

- 5 The paper describes aerosol data obtained in a 3-month observational study at a coastal site in
- 6 Chile. Aerosol observations in this part of the world are rare so the data should be of interest to
- 7 the community. Hence, I support publication of this work.
- 8 I offer some comments below that the authors can consider in revision. In general, I think some of
- 9 the discussion of standard instruments and approaches could be stream-lined or moved to the
- 10 Appendix.
- 11 The analyses and findings are fairly straightforward. Implications could be strengthened by
- 12 additional comparison to observations that are clearly "clean marine".
- 13 This was addressed by revising the final sentences of Section 4.1:
- 14 "These averages are also statistically different (p < 0.01), and again, the Arauco average is larger
- 15 than that at THD. Based on averages presented in this section, and information provided in Table
- 16 2, two summary statements are warranted: 1) During wintertime, the THD classifies as a
- 17 moderately-polluted marine site, and the Arauco Site classifies between moderately-polluted
- 18 marine and heavily-polluted marine. 2) These sites are not representative of conditions well
- 19 removed from anthropogenic influence."

20 Specific Comments:

- Line 52: it's not clear how these aerosol indirect effects differ, as described here; please clarify. The
- 22 Albrecht reference may refer to hypothesized increasing cloud lifetime and cloud cover due to
- 23 increased aerosol?
- 24 We revised this:
- 25 "Consequently, upward reflection of solar radiation by liquid-only clouds (Twomey 1974), and upward
- 26 reflection attributable to cloud fractional coverage (Albrecht 1989), increase with increased aerosol
- 27 abundance."

Line 61: perhaps the VOCALS study should be cited as a contribution to Southern Hemisphere fieldwork exploring aerosol-cloud interactions.

The references we picked contrast Southern and Northern Hemisphere aerosol and cloud properties. We are not aware of a VOCALS-related publication that does that. There is reference to VOCALS in Sections 4.4 (Snider et al. 2017; manuscript bibliography).

Line 70: I think you mean that the presence of SSA is associated with the presence of giant CCN that
 promote drizzle production.

We do not use the modifier "giant" when referring to a subclass of the aerosol. We did change the text to stress that most of the CCN are smaller than the class of SSA particles (D > 0.5 um) that we focus on. Here is how the paragraph is rewritten:

38 "We emphasize the following topics: 1) The parameterized relationship between sea salt aerosol (SSA) 39 particles (diameter > 0.5 μ m) and wind speed; 2) The role as cloud condensation nuclei (CCN) of 40 particles that are both smaller and more numerous than the above-mentioned SSA; 3) The parameterized relationship describing CCN activation spectra (Rogers and Yau, 1989; chapter 6), and 4) 41 the potential application of the SSA and CCN parameterizations in numerical modelling of wintertime 42 Southern Hemispheric clouds and precipitation. Motivating our investigation are modeling studies 43 (Feingold et al. 1999), and analyses of field measurements (Gerber and Frick 2012), indicating that the 44 reduction of rainfall due to increased CCN can be negated by SSA particles." 45

46

Line 132: the particle size overestimate due to not being fully dried is discussed and a ballpark % given. However, it seems the data were not corrected for this. The CCN estimate will therefore be affected since critical supersaturation is very sensitive to size. Why wasn't this factored in? (Since a kappa is assumed, the data could be corrected for water content if RH is known.) Could this overestimate be used to add uncertainties into the parameterization?

53 Our analysis of the 20% particle-size overestimate is in the figure below. The pink and black 54 data points, and their uncertainties and fit lines, are replicated from Fig. 8 (manuscript). In 55 addition, gray circles are plotted at critical SS values corresponding to diameters 20% smaller (kappa = 0.5 is assumed). This demonstrates that a decreased lower-limit diameter, and the 56 57 resultant increased fractional aerosol concentration (FAC), propagate to an insignificant departure 58 of the perturbed data points (gray circles) from the FAC relationship in Fig. 8. Certainly, the 59 perturbed points remain within the uncertainties described in Section 4.4. This explains why we 60 did not factor in a 20% particle-size overestimate into our analysis of uncertainty in Fig. 8.

Line 136: what height was the inlet? (this is specified only later on line 175, as 2 m) It seems to me that the aerosol inlet was much lower than is typically done for aerosol sampling campaigns (e.g., THD has an aerosol inlet at 10m). What is the impact on the data?

65 Our main concern was keeping rain out of the Arauco inlet. We accomplished this by 66 sampling below an eave on the west side of the residence at the Arauco Site (L136). In the 67 revision, we modified the sentence starting on L174:

68 "An important distinction between the sampling at THD and Arauco is the above ground level

69 (a.g.l.) height of the aerosol inlets. This is 10 and 2 m a.g.l. at THD and Arauco, respectively. We

70 cannot state with any certainty if the lower-height sampling at Arauco made those measurements

71 unrepresentative."

72

Line 141: there is a lot of detail about the CPC principle of operation, yet this is a very commonly
applied and simple instrument. In general I think the descriptions of instrumentation could be
much briefer.

The two paragraphs were shortened and merged. However, relevant connections to the
 CPC at THD, maximum detectable concentration, and data recording were retained.

78 Here is the revised text:

"The CPC counts particles larger than *D* = 0.010 μm (Table 1) ¹ up to a maximum concentration of 10,000 cm⁻³. The UHSAS measures scattering produced when aerosol particles are drawn through light emitted by a solid state laser (λ = 1.05 μm). By reference to a calibration table (Cai et al. 2008; Cai et al. 2013), the UHSAS microprocessor converts scattered light intensity to particle size and accumulates the derived sizes in a 99 channel histogram. Channel widths are logarithmically uniform ($\Delta log_{10}D$ = 0.013) over the instrument's full range (0.055 < *D* < 1.0 μm). UHSAS concentrations were recorded every 10 seconds and CPC concentrations were recorded once per second (Table 1)."

¹ The CPC minimum detectable diameters we report are in fact diameters that a CPC detects particles with efficiency = 50 %. The CPC detection efficiency is a steep function of particle diameter (Weidensholer et al. 1997).

Line 161: the presence of the paper mill immediately render this as a non-pristine site. Later, on lines 476, the prevalence of wood burning is mentioned. Even with onshore winds, complex coastal flows will likely result in influences from these aerosol sources. Probably it needs to be stated upfront that this site is not representative of a "clean marine" location even when data are segregated by sector.

This is stated, after relevant analysis, in two places in the original manuscript: 1) L279 to
L282, and 2) L307 to L311. We feel this is sufficient. Also, please see our reply to your General
Comment.

Line 182: there is no mention of topography in the description of the site and surroundingarea. This seems critical to understanding how the site is affected by transport.

96 The topography is provided in Fig. 1. Also, we assert that further analysis of satellite 97 retrievals are needed to address this outstanding issue. Please see Sect. 5 where we discuss 98 satellite-based cloud droplet concentration retrievals in Bennartz (2007).

99 Line 191: Just a comment: in the end there are only a few days (five days?) of data with
100 onshore flow + UHSAS data that can be used to characterize the "marine" sector.

101 As we state on L191 to L192, there are 20 onshore trajectories that overlap with the availability 102 of UHSAS measurements. Table 3, which is discussed later in the manuscript, has the dates and 103 times of the onshore trajectories. These occurred on seven different days in June, 2015. 104 Please note that the arrival times are static: 00, 06, 12, and 18 UTC.

- Line 231-233: I don't think these equations are needed in the text perhaps in the
- 107 supplement if you think they are necessary, but they are pretty standard.
- 108 Yes they are standard, however, our analysis and presentation relies on these
- 109 moments (zeroth, second, and third), and our CCN parameterization relies on an integral
- similar to Eq. 2. We prefer to leave these definitions.
- Line 265: the T-test is a fairly standard statistical test and doesn't need a lot of description.
- 112 Apparently, there are a few tests in the category of "t-test". We prefer this one, and document
- 113 by citing Havlicek and Crain (1988).

Line 434: internal mixing is probably not a good assumption as claimed, since many observations have shown that organics content of marine aerosol increases with decreasing size. However, it is hard to justify another assumption here, and perhaps the best way to address is to discuss some prior observations and add estimates of uncertainty?

119 Given that our parameterizations are aimed at multi-dimensional models of aerosol 120 and cloud and multi-dimensional models of aerosol, cloud, and precipitation, where the 121 mixing state in the activation scheme is nearly always "internal", we do not see merit in 122 exploring this issue. Further, we note that aerosol dynamics calculations confirm this 123 assumption provided coagulation (of aerosol particles) and condensation (of trace gas onto 124 aerosol particles) has gone on for 24 hours (Fierce et al. 2017; their Figure 2). The action of 125 coalescence scavenging (Wood et al. 2006), occurring within clouds, is ignored in the calculations of Fierce et al. (2017), and would further shorten the time needed for the 126 127 internal mixing assumption to be valid. Please note, we cite Fierce et al. (2017) in this 128 paragraph of the manuscript.

Fierce, L., N. Riemer, and T.C. Bond, Toward Reduced Representation of Mixing State
for Simulating Aerosol Effects on Climate. Bull. Amer. Meteor. Soc., 98, 971–980,
https://doi.org/10.1175/BAMS-D-16-0028.1, 2017

Wood, R. (2006), Rate of loss of cloud droplets by coalescence in warm clouds, J.
Geophys. Res., 111, D21205, doi:10.1029/2006JD007553.

135 CCN parameterization: why aren't the size distributions used more directly, and why fit with 136 the exponential relationship? The latter is clearly not physical despite its long history of use 137 on the community, although for marine stratus that do not reach high supersaturations, it is 138 reasonable within the expected supersaturation bounds.

Size distributions are used in a manner that is direct. This is explained in the revised
Section 4.4. Our explanation is enhanced by addition of Eq. 5 (revision).

141 What we develop is a power-function relationship between a CCN activation spectrum and supersaturation: $N(SS) = N_{CPC} \cdot FAC(SS) = N_{CPC} \cdot C \cdot SS^k$. As is the case for all power functions 142 relating cumulative CCN concentration (N(SS)) and supersaturation (SS), cloud droplet 143 144 concentration can be calculated with the activation spectrum parameters (C and k) and with 145 measured (or assumed) updraft velocity (e.g., Johnson 1981). Thus, an analytical link between 146 CCN, cloud updraft, and cloud microphysics is established. Caveats associated with this approach, and why such a calculation of droplet concentration can differ somewhat from a 147 148 calculation based on a numerical parcel model, are discussed in Johnson (1981).

Johnson, D.B., 1981: Analytical Solutions for Cloud-Drop Concentration. J. Atmos. Sci.,
38, 215–218, https://doi.org/10.1175/1520-0469(1981)038<0215:ASFCDC>2.0.CO;2

152 What about comparing with other published spectra for coastal aerosol?

As far as we can tell, no published CCN activation spectra are available for the Central Chilean Pacific coast (e.g., Schmale et al. 2018). Our group has published *summertime* measurements of CCN spectra (Snider et al. 2017; their Table 2). These were acquired over the subtropical Southeast Pacific, within the summertime marine boundary layer (Snider et al. 2017; Figure 1). A comparison is shown below. Since this is an open response, we have elected to show the comparison here, but not as an addition to the manuscript. First we compare our parameterized fractional aerosol concentration (*FAC*) function to the analysis in Andreae (2009), and then we compare CCN activation spectra.

160 Fig. a (see below) reproduces the parameterized FAC curve presented in the manuscript (Fig. 8). 161 As we discussed in the manuscript, this was derived using size distribution and CPC measurements 162 (please see Eq. 5 in the revised manuscript), and using the kappa–Köhler formula of Petters and 163 Kreidenweis (2007, their Eq. (6)). The value κ = 0.5 is assumed for the curve we show in Fig. a. A data 164 point derived using values in Table 2 of Andreae (2009) is also presented. Different from our approach, the measurements Andreae (2009) analyzed are from a set of CCN(SS=0.4%) and CPC measurements. 165 Those measurements were acquired at a variety of locations. The locations are classified as Clean 166 167 Marine, Clean Continental, Polluted Marine, and Polluted Continental (Andreae 2009). The averaged 168 N(SS=0.4%) / N_{CPC} ratio for these conditions is 0.36 (Andreae 2009; their table 2). At the large SS end of our parameterization (Fig. a), we see reasonable agreement between with Andreae (2009). 169

Two activation spectra – derived as $N_{CPC} \cdot FAC(SS) = N_{CPC} \cdot C \cdot SS^k$ (Section 4.4) - are shown in Fig. b (see below). These go with upper and lower quartile values of the N_{CPC} ensemble described in the Supplementary Material (manuscript). Also presented is the averaged CCN activation spectrum based on the 36 spectra from Table 2 of Snider et al. (2017).

At SS = 0.3 % there is consistency between the Southern Hemisphere (SH) averaged summertime spectrum (Snider et al. 2017) and SH wintertime spectrum, provided the latter is compared using the lower-quartile- N_{CPC} value (see previous paragraph). However, these averaged spectra have different slopes and they therefore diverge at SS < 0.3 %. A smaller slope in the summertime setting could be due to a less prominent Aitken mode (summertime), compared to a more prominent Aiken mode (wintertime). 180 Although this comparison is limited, we do not see a significant discrepancy between the FAC 181 parameterization we developed, and the approach of Andreae (2009) (Fig. a). Some discrepancy is 182 apparent between the CCN activation spectra we derive, for relatively clean wintertime conditions, with $N_{CPC} = 789$ cm⁻³, and the averaged CCN spectrum in marine conditions over the Southeast Pacific, 183 albeit during summer and at lower latitude. This discrepancy increases with decreasing SS. More 184 185 comparison data is needed to fully validate the FAC parameterization we developed in our manuscript. 186 Andreae, M.O., Correlation between cloud condensation nuclei concentration and aerosol 187 optical thickness in remote and polluted regions, Atmos. Chem. Phys, 9, 543-556, 2009 Petters, M. D., and S. M. Kreidenweis, A single parameter representation of hygroscopic growth 188 and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 1961–1971, 2007 189 190 Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., 191 Pöhlker, M. L., Brito, J., Bougiatioti, A., Kristensson, A., Kalivitis, N., Stavroulas, I., Carbone, S., Jefferson, 192 A., Park, M., Schlag, P., Iwamoto, Y., Aalto, P., Äijälä, M., Bukowiecki, N., Ehn, M., Frank, G., Fröhlich, R., 193 Frumau, A., Herrmann, E., Herrmann, H., Holzinger, R., Kos, G., Kulmala, M., Mihalopoulos, N., Nenes, 194 A., O'Dowd, C., Petäjä, T., Picard, D., Pöhlker, C., Pöschl, U., Poulain, L., Prévôt, A. S. H., Swietlicki, E., Andreae, M. O., Artaxo, P., Wiedensohler, A., Ogren, J., Matsuki, A., Yum, S. S., Stratmann, F., 195 Baltensperger, U., and Gysel, M.: Long-term cloud condensation nuclei number concentration, particle 196 197 number size distribution and chemical composition measurements at regionally representative observatories, Atmos. Chem. Phys., 18, 2853-2881, https://doi.org/10.5194/acp-18-2853-2018, 2018. 198

202 Figure 6: perhaps add local wind speed and direction to this figure?

203 We feel the verbal description – provided in the manuscript - is adequate. The graph is 204 provided below, but this graph is not in the revised (or original) manuscript. In general, the 205 effect of wind on aerosol is very difficult to interpret.

214

215 **Technical Corrections:**

Line 482: "was" should be "were"

217

218 Corrected

1 Wintertime Aerosol Measurements during the Chilean Coastal Orographic

- 2 **Precipitation Experiment**
- 3
- 4 Sara Lynn Fults ¹
- 5 Adam K. Massmann²
- 6 Aldo Montecinos³
- 7 Elisabeth Andrews ^{4, 5}
- 8 David E. Kingsmill ⁵
- 9 Justin R. Minder²
- 10 Rene´ D. Garreaud⁶
- 11 Jefferson R. Snider ^{1,7}
- 12

14

- 13 ¹ University of Wyoming, Laramie, WY
- 15 ² University at Albany, Albany, NY
- 17 ³ Universidad de Concepción, Concepción, Chile
- ⁴ NOAA ESRL Global Monitoring Division, Boulder, CO
 ²⁰
- 21 ⁵ University of Colorado, Boulder, CO
- ⁶ Universidad de Chile, Santiago, Chile
- 24 25 ⁷Corresponding Author

26 Abstract

27	The Chilean Coastal Orographic Precipitation Experiment (CCOPE) was a three-month
28	field campaign (June, July and August 2015) that investigated wintertime coastal rain events.
29	Reported here are analyses of aerosol measurements made at a coastal site during CCOPE. The
30	aerosol monitoring site was located near Arauco, Chile. Aerosol number concentrations and
31	aerosol size distributions were acquired with a Condensation Particle Counter (CPC) and an
32	Ultra High Sensitivity Aerosol Spectrometer (UHSAS). Arauco CPC data were compared to Deleted: concentrations
33	values, measured at the NOAA observatory Trinidad Head (THD) on the North Pacific Coast of Deleted: those
34	California. The winter-averaged CPC concentration at Arauco is $2971 \text{ cm}^{-3} \pm 1802 \text{ cm}^{-3}$; at THD Deleted :
35	the average is $1059 \text{ cm}^{-3} \pm 855 \text{ cm}^{-3}$. Despite the typically more pristine Southern Pacific region,
36	the Arauco average is larger than at THD ($p < 0.01$). Aerosol size distributions acquired during Deleted: measurements
37	episodes of onshore flow were analyzed with Köhler theory and used to parameterize cloud
38	condensation nuclei activation spectra. In addition, sea salt aerosol (SSA) concentration was
39	parameterized as a function of sea surface wind speed. It is anticipated these parameterizations
40	will be applied in modeling of wintertime Chilean coastal precipitation.
41	

46 **1 Introduction**

47	Forecast error due to incomplete understanding of atmospheric aerosols is evident in the	
48	predictions of many atmospheric models. As an example, general circulation models (GCMs) are	
49	used to forecast the Earth system's response to emissions of both aerosols and greenhouse gases.	
50	In spite of several decades of GCM development, the effect of aerosols on future climate remains	
51	uncertain (Boucher et al. 2013), particularly when compared to the greater certainty in climate	
52	forcing from anthropogenic greenhouse gases (e.g., Hansen 2009, his Fig. 10).	
53	Aerosols perturb the abundance of cloud droplets and rain drops within clouds warmer	
54	than 0 °C (liquid-only clouds). Consequently, upward reflection of solar radiation by liquid-only	
55	clouds (Twomey 1974), and upward reflection attributable to cloud fractional coverage (Albrecht	
56	1989), increase with increased aerosol abundance. Commonly referred to as aerosol indirect	
57	effects on climate, these processes decrease the amount of solar energy absorbed by the Earth	
58	system, and thus oppose global warming due to greenhouse gases. Other aerosol indirect effects,	
59	for example those due to aerosols nucleating ice in mixed-phase clouds (McCoy et al., 2014),	
60	augment greenhouse gas warming.	
61	Because of its lower population and lower intensity of anthropogenic aerosol emissions,	
62	the Southern Hemisphere has been explored as a region for conducting studies of aerosol indirect	
63	effects and for exploring contrasts with the Northern Hemisphere (Schwartz, 1988). This study	
64	contributes to previous investigations of Southern Hemispheric aerosols during winter (Gras,	
65	1990; Gras 1995; Yum and Hudson 2004). We emphasize the following topics: 1) The	
66	parameterized relationship between sea salt aerosol (SSA) particles (diameter $> 0.5 \mu m$) and	
67	wind speed; 2) The role as cloud condensation nuclei (CCN) of particles that are both smaller	
68	and more numerous than the above-mentioned SSA; 3) The parameterized relationship	

Deleted: Via this interaction, both upward reflection of solar radiation by cloud cover (Albrecht 1989), and upward reflection by individual cloud elements (Twomey 1974) increase with increased aerosol abundance.

Deleted: Because of its lower population and lower intensity of anthropogenic aerosol emissions, the Southern Hemisphere has been explored as a region for conducting studies of aerosol indirect effects and for exploring contrasts with the Northern Hemisphere (Schwartz, 1988; Gras, 1990; Gras 1995; Yum and Hudson 2004). This study contributes to those previous wintertime investigations of Southern Hemispheric aerosols.

80	describing CCN activation spectra (Rogers and Yau, 1989; chapter 6), and 4) the potential
81	application of the SSA and CCN parameterizations in numerical modelling of wintertime
82	Southern Hemispheric clouds and precipitation. Motivating our investigation are modeling
83	studies (Feingold et al. 1999), and analyses of field measurements (Gerber and Frick 2012),
84	indicating that the reduction of rainfall due to increased CCN can be negated by SSA particles.
85	Measurements made with a Condensation Particle Counter (CPC), an instrument that
86	reports the concentration of particles with diameter (D) larger than ~ 0.01 μ m, have formed the
87	basis of many previous investigations of aerosol abundance (Gras 1990; Brechtel et al. 1998;
88	Dall'Osto et al. 2009; Andreae 2009). These studies also evaluated air parcel back trajectories
89	and demonstrated that marine source regions are characterized by distinctly smaller
90	concentrations than continental regions. Measurements of aerosol size distributions (ASDs) can
91	also aid understanding of the contrast between marine and continental conditions (Brechtel et al.
92	1998; Birmili et al. 2001; Raes et al. 1997). The latter studies investigated accumulation mode
93	particles, centered at ~ 0.1 μ m, and particles sizing in a mode at a distinctly smaller central
94	diameter (~ 0.05 μm). This smaller mode is commonly referred to as the Aitken mode. In marine
95	settings, the coexistence of both modes has been attributed to in-cloud conversion of gas-phase
96	sulfur dioxide (SO ₂) to aerosol-phase sulfate (Hoppel et al. 1994), to coalescence scavenging
97	occurring within clouds (Hudson et al. 2015), and to new particle formation (Covert et al. 1992;
98	Petters et al. 2006). The latter process occurs in environments with sufficiently enhanced ratios
99	of SO ₂ relative to aerosol.
100	The present work is an analysis of CPC and ASD measurements acquired at a coastal site
101	on the Central Chilean Pacific coast during the Southern Hemisphere winter (June, July, and

102 August). Aerosol measurements were made during the Chilean Coastal Orographic Precipitation

Deleted: We emphasize the following topics: 1) The parameterized relationship between sea salt aerosol (SSA) concentration and sea surface wind speed; 2) The concentration of aerosol particles that are both smaller and more numerous than the SSA, and their role as cloud condensation nuclei (CCN); 3) The parameterized relationship describing CCN activation spectra (Rogers and Yau, 1989; chapter 6), and 4) the potential application of the SSA and CCN parameterizations in numerical modelling of wintertime Southern Hemispheric clouds and precipitation. Motivating our investigation are modeling studies (Feingold et al. 1999), and analyses of field measurements (Gerber and Frick 2012), indicating that the reduction of rainfall due to increased CCN can be negated by SSA particles.

Deleted: CPC

Deleted: CPC concentrations

ł	Deleted: concentrations and
(Deleted: s
(Deleted: d

122	precipitation and meteorology (Massmann et al. 2017).
123	This paper is organized into the following sections: Section 2 has descriptions of the
124	aerosol and meteorological instruments used to make surface measurements during CCOPE, and
125	Sect. 3 describes our analysis methods. Section 4 includes four topics: 1) Analysis of CPC
126	measurements and comparison to Coastal North Pacific measurements, 2) development of a
127	relationship between size-integrated aerosol concentration and size-integrated aerosol volume,
128	and comparison to similar relationships derived for summertime stratocumulus regimes, 3)
129	development of a parameterization of CCN activation spectra, and 4) development of a
130	parameterization of SSA number concentration. In Sect. 5, we compare our findings to previous
131	work, and in Sect. 6 we conclude with an outlook for how our parameterizations could be applied
132	in modeling of wintertime Central Chilean Pacific coast clouds and precipitation.
133	2 Measurements
134	2.1 Measurement Site
135	During CCOPE, a CPC (model 3010; TSI 2000a) and an Ultra High Sensitivity Aerosol
136	Spectrometer (UHSAS) (DMT 2013) were operated at a residence (37.25° S, 73.34° W, 55 m
137	above mean sea level (MSL)) near Arauco, Chile (population 35,000). Arauco is a coastal town
138	on the Central Chilean Pacific coast. Our measurement site, hereafter the Arauco Site (Fig. 1),
139	was selected because of our aim to characterize aerosols advecting onto South America from the
140	Southeast Pacific. Related to this, our measurements were coordinated with investigations of

Experiment (CCOPE) of 2015. CCOPE investigated aerosol properties and coastal orographic

storm track and rainfall here can be strongly enhanced by the Nahuelbuta Mountains (Garreaud

rainfall inside the domain portrayed in Fig. 1. This study region lies in the South Pacific winter

5

141

121

Deleted: A

144	et al. 2016; Massmann et al. 2017). During CCOPE, several rainfall events were studied using
145	profiling radars and a precipitation disdrometer deployed at Curanilahue (Fig. 1), and a network
146	of precipitation gauges. The Arauco Site is located on a forested hill; most of the population of
147	Arauco lives east of the Arauco Site at an elevation less than 20 m MSL.
148	Salient characteristics of the CPC and UHSAS are provided in Table 1. These
149	instruments were operated inside the residence at the Arauco Site. In addition, a 3-meter
150	meteorological tower was deployed adjacent to the residence. Thermodynamic state (i.e., T, P,
151	and humidity) and horizontal wind speed and direction were measured on the tower. CPC and
152	meteorological measurements (minus wind direction) were acquired from 29 May to 14 August
153	(Table 1), UHSAS measurements were acquired from 29 May to 28 June (Table 1), and wind
154	direction measurements were acquired from 19 June to 14 August.

155 2.2 Instrumentation

Here we discuss characteristics of the CPC and UHSAS, sampling of the ambient 156 157 CCOPE aerosol, data acquisition of CPC and UHSAS measurements during CCOPE, and use of the recorded UHSAS histograms to calculate ASDs. Additional information about the UHSAS is 158 159 provided in Appendix A. In that appendix we discuss how we validated, in a laboratory, the UHSAS's determination of test aerosol concentration and particle size. During those validation 160 studies we intentionally dried the test aerosols to a relative humidity (*RH*) \leq 15%. Consequently, 161 the effect of aerosol-bound water on either the physical size or the refractive index of the test 162 particles was negligible. UHSAS sizing of partially dried haze droplets ($RH \le 60$ %), sampled 163 from the ambient atmosphere during CCOPE, and an associated particle size overestimate, is 164 165 also discussed in Appendix A. In Appendix A, we estimate the particle size overestimate to be ~ 20 %. 166

167	During CCOPE, the CPC and UHSAS sampled ambient aerosol through a section of		
168	copper tube (length = 3 m, inner diameter = 0.003 m, volumetric flow rate = 34 cm ³ s ⁻¹). The		
169	inlet end of the tube (hereafter, the sample tube) was secured below an eave on the west side of		
170	the residence at the Arauco Site. The Reynolds number (Re) of the flow within the sample tube		
171	was 960 and thus well below the value ($Re = 2300$) where laminar flow changes to turbulent		
172	flow. Particle transmission efficiencies were evaluated using Eq. (7.29) in Hinds (1999). These		
173	are 78% for $D = 0.01 \ \mu\text{m}$ particles and $\ge 99\%$ for $D = 0.1 \ \mu\text{m}$ and $D = 1 \ \mu\text{m}$ particles.		
174	The CPC counts particles larger than $D = 0.012 \ \mu m$ (Table 1) ¹ up to a maximum		Formatted: Font: Italic
175	concentration of 10,000 cm ⁻³ . The UHSAS measures scattering produced when aerosol particles		Formatted: Superscript
176	are drawn through light emitted by a solid state laser ($\lambda = 1.05 \ \mu m$). By reference to a calibration		
177	table (Cai et al. 2008; Cai et al. 2013), the UHSAS microprocessor converts scattered light		
178	intensity to particle size and accumulates the derived sizes in a 99 channel histogram. Channel		
179	widths are logarithmically uniform ($\Delta \log_{10} D = 0.013$) over the instrument's full range (0.055 < D_		Formatted: Subscript
	·	$\overline{\ }$	Formatted: Font: Italic
180	$\leq 1.0 \ \mu$ m). UHSAS data were recorded every 10 seconds and CPC data were recorded once per		Formatted: Font: Italic
181	second (Table 1).		Deleted: The CPC counts
182	Eq. (1) was used to calculate the ASD.		(Table 1) ² by detecting scat are drawn through light emi Prior to detection, the partic factor of 10 via alcohol com
			in the CPC was 16 cm ³ s ⁻¹ .

183
$$\left(\frac{dN}{d\log_{10}D}\right)_{i} = \frac{\Delta n_{i}}{\dot{V} \cdot \Delta t \cdot \Delta \log_{10}D}$$

184 Here Δn_i is the "i th" component of the count histogram and \dot{V}_i is the aerosol flowrate. During 185 CCOPE, the UHSAS aerosol flow rate and the particle count histogram were recorded once 186 every ten seconds (Table 1), and hence, the sample interval (Δt in Eq. (1)) is 10 s.

Formatted: Subscript
Formatted: Font: Italic

(1)

Deleted: The CPC counts particles larger than $D = 0.010 \ \mu m$ (Table 1)² by detecting scattering produced when aerosol particles are drawn through light emitted by a solid state laser ($\lambda = 0.78 \ \mu m$). Prior to detection, the particle diameter is increased by at least a factor of 10 via alcohol condensation. The aerosol sample flowrate in the CPC was 16 cm³ s⁻¹. The CPC can detect a maximum concentration of 10,000 cm³. During CCOPE, CPC concentrations were recorded once per second and once every 10 seconds (Table 1). The UHSAS measures scattering produced when aerosol particles are drawn through light emitted by a solid state laser ($\lambda = 1.05 \mu m$). By reference to a calibration table (Cai et al. 2008; Cai et al. 2013), by interaction of anisotration target (can be called a set to be called a set of the UHSAS microprocessor converts scattered light intensity to particle size and accumulates the derived sizes in a 99 channel histogram. Channel widths are logarithmically uniform ($\Delta log_{10}D =$ 0.013) over the instrument's full range ($0.055 < D < 1.0 \ \mu m$). During CCOPE, the aerosol sample flow in the UHSAS was controlled at 0.34 cm³ s⁻¹.

¹ The CPC minimum detectable diameters we report are in fact diameters that a CPC detects particles with efficiency = 50 %. The CPC detection efficiency is a steep function of particle diameter (Wiedensohler et al. 1997).

204 3 Analysis

205 3.1 Air Mass Classification and Air Parcel Trajectories

206 Locations close to the Arauco Site are shown in Fig. 1. A significant pollution source in

207 the region is the Arauco paper mill which releases 600 ton/yr of SO₂ (Arauco Woodpulp 2010).

208 When winds had an easterly component, the paper mill may have affected air quality at the

209 Arauco Site. Other pollution sources are Concepción (population 950,000), Coronel (population

210 <u>110,000), Curanilahue (population 32,000), Lebu (population 24,000), and Cañete (population</u>

211 <u>32,000</u>. In addition, many residences in the region, including the residence where we operated

- the CPC and UHSAS, burn wood for residential heating.
- 213 In a subsequent section, we compare CPC data, from the Arauco Site to values measured 214 at NOAA's Trinidad Head (THD) observatory in Northern California (41.05° N, 124.2° W, 107 m MSL). The THD dataset includes contamination from local sources (e.g., campfires lit by day 215 visitors at the Trinidad State Beach Picnic Ground). Additionally, Mckinleyville, CA (population 216 15,000) and Arcata, CA (population 18,000) are the two coastal population centers reasonably 217 close to THD. Both are southeast of the THD, at distances between 15 and 25 km. Northern 218 219 California's large population centers (San Francisco Bay Area and Sacramento) are ~ 300 km 220 southeast of the THD. An important distinction between the sampling at THD and Arauco is the above ground level (a.g.l.) height of the aerosol inlets. This is 10 and 2 m a.g.l. at THD and 221 222 Arauco, respectively. We cannot state with any certainty if the lower-height sampling at Arauco 223 made those measurements unrepresentative.
- Wind measurements made at the Arauco Site (Sect. 2.1) and the THD were used to conditionally sample the CPC measurements. At Arauco, wind directions from 180° to 330°
- were chosen as the clean sector. At THD, the clean sector was chosen from 210° to 360° . The

Deleted: Curanilahue (population 32,000) and
Deleted: ; this includes several municipalities adjacent to Concepción
Deleted

Deleted: concentrations

Deleted: An important distinction between the sampling at THD and Arauco is the above ground level (a.g.l.) height of the aerosol inlets. This is 10 and 2 m a.g.l. at THD and Arauco, respectively.
235	clean sectors at Arauco and THD are shown in Fig. 2. Three factors entered into our selection of
236	the clean sectors: 1) Inclusion of winds from either true south (Arauco Site) or true north (THD),
237	2) the same range of angles (150°) at both sites, and 3) exclusion of wind from the directions of
238	regional population centers.
239	Additionally, we used HYSPLIT back trajectories (NOAA 2016) to conditionally sample
240	Arauco Site aerosol measurements associated with onshore-moving air. The back trajectories
241	were initialized at 00, 06, 12, and 18 UTC. In addition to these static arrival times, trajectories
242	were calculated with the coordinates of the Arauco Site ³ and with wind fields from the Global
243	Data Assimilation System. The spatial resolution of the wind data is 0.5°. Position along a
244	trajectory was evaluated hourly. Trajectories that were over the ocean continuously for three
245	days before landfall, and had a direction within the clean sector one hour before arriving at
246	Arauco, were classified as "onshore" trajectories. There are 20 onshore trajectories that overlap
247	with the availability of CCOPE UHSAS measurements.
248	In subsequent sections, a set of 20 two-hour data segments, centered on the onshore
249	trajectory arrival times, are further analyzed. Appendix B describes the numerical filter we used
250	to derive the aerosol properties analyzed in Sect. 4.2, 4.3, 4.4, and 4.5. The filter attenuates
251	aerosol property variability occurring on time scales shorter than 100 s. We developed the filter
252	to remove narrow "spikes" in the concentration sequences (CPC and UHSAS) which seem to
253	have originated from local sources of aerosol pollution. The Supplementary Material has plots of
254	filtered aerosol properties corresponding to each of the 20 two-hour segments. Four of these
255	were impacted aerosol variability at scales larger than 100 s. In general, these features were not

 $^{^{\}rm 3}$ Trajectory starting altitude was set at 60 m MSL (5 m above the Arauco site)

256	attenuated by the numerical filter. In these instances we discarded (subjectively) portions of the
257	two-hour segment and retained a subset for the analyses conducted in Sect. 4.3, 4.4 and 4.5.
258	Trajectory altitude is important for determining the presence of SSA particles. Onshore
259	trajectories originating from relatively close to the sea surface, and thus classified as onshore
260	"sea surface" trajectories, were required to have pressures > 980 hPa over their three-day
261	advection to the Arauco Site. Eighteen of the 20 onshore trajectories were also sea surface
262	trajectories. An example of a sea surface trajectory is shown in Figs. 3a - b. The sea surface wind
263	speed (U), analyzed in Sect. 4.5, is the average of the six hourly trajectory speeds in the six-hour
264	window ending six hours before the trajectory arrived at the Arauco site. The averaging interval
265	is shown in Fig. 3b. Two onshore trajectories, classified as "aloft", had pressures substantially
266	smaller than 980 hPa over their three-day advection to the Arauco Site.

267 3.2 Sea Salt Aerosol

Correlated values of SSA concentration and sea surface wind speed are reported in many publications. In a review of the topic, Lewis and Schwartz (2004; hereafter LS04) used a particle's deliquesced wet size, evaluated at 80% relative humidity, to group SSA particles into three size classes. In field studies conducted at a coastal site, Clarke et al. (2003) demonstrated that particles sizing in the middle of LS04's small particle size class - those with a dry diameter larger than 0.5 μ m or a RH = 80% wet diameter larger than 1 μ m – had a composition that was dominated by sea salt (NaCl).

By restricting our focus to segments of the CCOPE data associated with sea surface
trajectories (Sect. 3.1), we will analyze UHSAS measurements of particles with *D* > 0.5 μm
(*N*>0.5) and will assume that this subset of the ASD corresponds to SSA particles. This lowerlimit size is a factor of two smaller than the *RH* = 80% diameter corresponding to the middle of 10

Deleted: -derived concentrations

280	LS04's small SSA class. This is because we assumed that particle size decreased as the aerosol	
281	stream warmed from its ambient temperature to the temperature of the UHSAS measurement.	
282	Support for this assumption is provided in Appendix A.	
283	3.3 Moments of the Aerosol Size Distribution	
284	In our analysis, we calculated three moments of the UHSAS-measured ASDs. These are	
285	the aerosol concentration (N_{UHSAS}), aerosol surface area (S_{UHSAS}), and aerosol volume (V_{UHSAS}).	
286	We symbolize these moments as integrals (Eq. $(2) - (4)$).	
287	$N_{UHSAS} = \int (dN/dlog_{10}D) \cdot dlog_{10}D \tag{2}$	
288	$S_{UHSAS} = \pi \int D^2 \left(\frac{dN}{dlog_{10}D} \right) \cdot \frac{dlog_{10}D}{dlog_{10}D} $ (3)	
289	$V_{UHSAS} = (\pi/6) \int D^3 (dN/dlog_{10}D) \cdot dlog_{10}D $ (4)	
290	In these formulae the group $(dN/dlog_{10}D) \cdot dlog_{10}D$ represents the concentration of aerosol	
291	particles with diameter between $log_{10}D$ and $log_{10}D + dlog_{10}D$. Hence, when plotted versus the	
292	logarithm of particle diameter, the area under the $dN/dlog_{10}D$ curve is proportional to the size-	
293	integrated concentration. This is demonstrated in Figs. 4a – b where the size-integrated	
294	concentration is ~ 300 cm ⁻³ in onshore-moving air (Fig. 4a), and the concentration is	Deleted: (NUHSAS)
295	approximately four times larger (~ 1100 cm ⁻³) in air thought to be contaminated by continental	
296	sources (Fig. 4b). Also apparent is the right-tail of an Aitken mode, at ~ 0.06 μ m in Fig. 4a	
297	(onshore-moving air), the absence of an Aitken mode in Fig. 4b (continental air), at least at	
298	diameters detectable by the UHSAS ($D > 0.055 \ \mu m$; Table 1), and the presence of an	
299	accumulation mode at ~ 0.1 μ m in both airmasses (Figs. 4a – b). Two aspects of these results, i.e.	
300	the absence of an Aitken mode plus the dominance of an accumulation mode, in polluted coastal	
301	air, is consistent with ASDs reported in Raes et al. (1997) and in Dall'Osto et al. (2009).	

4 Results

304	4.1 Comparison of CPC <u>data from the Arauco Site and the THD</u>		Deleted: Concentrations at
305	In this section, CPC-measured concentrations from the Arauco Site and from NOAA's		Deleted: Arauco site
306	THD observatory are compared. At THD, <u>CPC measurements were made</u> using a TSI 3760		Deleted: concentrations are compared to concentrations measured at
307	condensation particle counter. The minimum particle diameter detected by the TSI 3760 ($D =$		Deleted: concentrations were measured
308	0.015 um Wiedenschler et al. 1997) is slightly larger than that in the TSI 3010 ($D = 0.012$ um		Deleted: 1
500	$\frac{1}{2}$	\leq	Deleted: TSI 1996
309	Table 1). We ignored this distinction.		Deleted: 0
310	The THD dataset spans the years 2002 to 2014. Because CCOPE was a wintertime field		
311	study, only December, January, and February THD data are used in the comparison. There are		
312	24,346 data points (hourly averaged) from THD and 5,541 classify as clean sector. In		
313	comparison, there are 745 data points from the Arauco Site (hourly averaged) and 194 classify as		
314	clean sector. For both sites, we required a clean sector wind speed > 1.5 m s $^{\text{-1}}$ in addition to the		
315	clean sector directional criteria (Fig. 2). Because the numerical filter (Sect. 3.1) requires 1 Hz		
316	CPC measurements, and since 1 Hz measurements are unavailable in the THD data archive, the		
317	filter was not applied to either of the data sets analyzed in this section.		
318	In the following paragraph we compare hourly-averaged CPC-measured concentrations		
319	from the Arauco Site and THD. Because the number of data points in these data sets is different,		Deleted: hourly averages of CPC measurements
320	a particular statistical comparison methodology was applied. The approach followed here		
321	compares the Arauco and THD average concentrations by applying the Student's t-distribution		
322	method (t-test) explained in Havlicek and Crain (1988; their Eq. (10.6) and (10.7)). The		
323	statistical hypotheses are: A) Null hypothesis: averages are equal, and B) Alternate hypothesis:		
324	averages are different. We also applied the non-parametric Wilcoxon Rank-Sum Test (rs_test;		Deleted: the
325	Interactive Data Language, Harris Geospatial Solutions, Inc.). Statistical inference that we derive		

336	based on the Wilcoxon Rank-Sum Test (not shown) is consistent with what we describe below		
337	using the t-test.		
338	Two aspects of the Arauco/THD comparison are presented here; more detail is available		
339	in Fults (2016). First, clean sector measurements are compared. The mean N_{CPC} at Arauco is		Deleted: concentrations
340	2759 cm ⁻³ (standard deviation σ = 1827 cm ⁻³). The mean and σ at THD are 858 ± 729 cm ⁻³ . Fig. 5		
341	shows the Arauco and THD N_{CPC} probability distribution functions. Of note is the larger mode		
342	concentration and broader distribution at Arauco. Based on our t-test comparison, the Arauco		
343	average is larger than the THD average ($p < 0.01$). Second, Arauco and THD <u>concentrations</u> are		Deleted: concentrations
344	compared without regard to wind direction. The average at the Arauco Site is 2971 cm ⁻³ \pm 1802		
345	while at THD the average is 1059 cm ⁻³ \pm 855 cm ⁻³ . These averages are also statistically different		
346	(p < 0.01), and again, the Arauco average is larger than that at THD. <u>Based on averages</u>		
347	presented in this section, and information provided in Table 2, two summary statements are		
348	warranted: 1) During wintertime, the THD classifies as a moderately-polluted marine site,		
349	and the Arauco Site classifies between moderately-polluted marine and heavily-polluted		
350	marine. 2) These sites are not representative of conditions well removed from anthropogenic		
351	influence,		Deleted: Furthermore, based on the averages presented in this section, and the information presented in Table 2, we classify THD
252	4.2 Continental Contamination		as a moderately-polluted marine site, and the Arauco Site as between moderately-polluted marine and heavily-polluted marine.
552	4.2 Continental Containnation		
353	In this section we probe why aerosol properties varied strongly during four of the 20		
354	onshore trajectories. Among these, the example presented in Figs. 6a - c exhibits the largest		
355	degree of CPC and UHSAS variability. During this two-hour data segment, centered on 00 UTC		
356	June 9 (9 pm local time), winds were light at Arauco and Curanilahue ($\leq 1 \text{ m s}^{-1}$) and the wind	_	Deleted: < 2
357	direction was variable at Curanilahue (Arauco Site wind direction measurements are only		
358	available after 19 June 2015; Sect. 2.1).		
	13		

366	Over the ocean, 12 to 6 hours prior to 00 UTC June 9, the HYSPLIT wind speed was 8.3
367	m s ⁻¹ and the HYSPLIT direction was westerly (Fig. 3a). In terms of UHSAS measurements
368	(Figs. 6a – c), an obvious feature is the variability in the sequences of N_{UHSAS} , V_{UHSAS} , and S_{UHSAS} .
369	The S_{UHSAS} is largest during an enhancement at ~ 00:37 UTC. The question arises: Can winds
370	over the ocean and the resultant SSA production cause this variability, or must continental
371	aerosol sources be evoked to explain this? This was addressed by calculating aerosol surface
372	areas as a function of wind speeds that bracket the HYSPLIT-derived wind speed (8.3 m s ⁻¹). The
373	basis for this calculation is the S-on-U parameterization described in LS04 (their Fig. 22). The
374	calculation indicates that S can range between 6 μ m ² cm ⁻³ (U = 6.3 m s ⁻¹) and 15 μ m ² cm ⁻³ (U =
375	10.3 m s ⁻¹). Since the upper-limit of the predicted variation is small compared to S_{UHSAS} at ~
376	00:37 UTC (Fig. 6c), and at other times in Fig. 6c, and because the wind speed variation applied
377	in the calculation is an order of magnitude larger than the variation in the HYSPLIT-derived
378	wind speed ($\pm 0.1 \text{ m s}^{-1}$), it is concluded that the aerosol enhancements seen in Figs. 6a – c are
379	not due to a wind speed increase over the ocean. Rather, we surmise that aerosols emitted by
380	continental Chilean sources were sampled during portions of the segment in Fig. 6. Vertical
381	dashed lines indicate the subset of the two-hour segment we picked (subjectively) as being
382	representative of onshore-moving air that was not affected, or only moderately affected, by
383	emissions from continental Chilean sources. However, we do not expect our conditional
384	sampling (based on HYSPLIT) and subjective picking (e.g., Fig. 6) to select aerosol properties
385	representative of pristine marine air. Rather, we view these strategies as way to isolate aerosol
386	properties associated with onshore-moving air that was less affected by continental sources
387	compared to the other portions of the CCOPE data set.

Deleted: b

Portions of three other two-hour segments were also discriminated into a period of onshore-moving air that was less affected by continental aerosols compared to an adjacent portion (or portions) of the two-hour data segment. This is shown in the Supplementary Material. Only measurements seen plotted between the vertical dashed lines in the Supplementary Material are analyzed in Sect. 4.3, 4.4, and 4.5.

- 394 4.3 Using N/V ratios to Parameterize Cloud Droplet Concentration,
- 395 In this section we analyze <u>two</u> ASD moments (Sect. 3.3). These are symbolized N_{UHSAS}
- and V_{UHSAS} , respectively. The ratio of N_{UHSAS} (aerosol concentration) and V_{UHSAS} (aerosol volume)
- 397 generically the *N/V* ratio is of interest for several reasons. First, for both operational and
- 398 <u>theoretical reasons the *N/V* ratio is evaluated for particle diameters larger than ~ 0.1 μ m (VD00;</u>
- 399 <u>Hegg and Kaufman 1998, hereafter HK98), and importantly, the model developed to evaluate</u>
- 400 <u>aerosol exchange between an overlying free troposphere (FT) and the marine boundary layer</u>
- 401 (MBL) successfully predicts the <u>N/V ratio in the MBL (VD00). Second, a value of the ratio can</u>
- 402 be derived by fitting measurements of N and V (HK98). Third, aerosol mass loading, and thus an
- 403 <u>aerosol volume corresponding to an assumed particle density</u> $\frac{4}{2}$, are relatively easy to evaluate. A
- 404 method routinely used to evaluate aerosol mass loading involves pulling aerosol-laden air
- 405 through a filter and evaluating the accumulated mass gravimetrically. Fourth, the product of an
- 406 <u>*N/V* ratio and an ambient aerosol volume (aerosol mass) has been proposed as a scheme for</u>
- 407 estimating cloud droplet concentration in marine stratocumulus clouds (HK98 and VD00),
- 408 HK98 used a passive cavity aerosol spectrometer probe (PCASP) to evaluate N, V and the
- 409 *N/V* ratio. Since the UHSAS counts down to a smaller diameter (0.055 μ m) than the PCASP

Deleted: s

	Formatted: Font color: Text 1
	Deleted: the
	Formatted: Font color: Text 1
	Deleted: defined by Eq. (2) and (4)
	Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: Italic

Formatted: Font color: Text 1

Deleted: models that evaluate exchange between a marine boundary layer (MBL) and an overlying free troposphere (FT) successfully predict the *NV* ratio in the MBL (van Dingenen et al., 2000; hereafter VD00). Second, a value of the ratio can be derived by fitting measurements of *N* and *V* (Hegg and Kaufman 1998, hereafter HK98). Third, aerosol mass loading, and thus an aerosol volume corresponding to an assumed particle density

Formatted: Font color: Text 1

Deleted: are relatively easy to evaluate. A method routinely used to evaluate aerosol mass involves pulling aerosol-laden air through a filter and evaluating the accumulated mass gravimetrically. Fourth, the product of an *N/V* ratio and an ambient aerosol volume has been proposed for estimating cloud droplet concentrations in marine stratocumulus clouds (HK98 and VD00).

⁴ In the case of ambient particles containing hygroscopic materials, density values range between 1.5 and 1.8 g cm⁻³ (McMurry et al. 2002)

426	$(0.12 \mu m)$, it is expected that the <i>N/V</i> ratios we derive using the UHSAS will be larger than those
427	in HK98. The main reason for this is that decreasing the lower-limit diameter increases N more
428	than <i>V</i> (VD00).

As in HK98, linear least-squares regression analysis with an equation of the form $Y = a \cdot X$ 429 430 was used to derive N/V ratios. Values of N_{UHSAS} and V_{UHSAS} entered into the regressions were 431 derived with the lower-limit diameter set at 0.055 µm (Table 3) and 0.12 µm (Table 4). The latter 432 allows comparison to N/V ratios in HK98. Tables 3 and 4 show the ratios and the fact that all of 433 the Pearson correlation coefficients (r) are positive. With the exception of trajectories arriving at 12 UTC June 5 and 06 UTC June 8 (Table 3), and at 00 UTC June 9 (Table 4), all of the N/V 434 correlations are statistically significant at p < 0.01. 435 As expected, the average N/V ratio in the fifth column of Table 3 ($417 \pm 297 \,\mu\text{m}^{-3}$) is 436

437 larger than that in HK98 ($223 \pm 76 \,\mu\text{m}^{-3}$). These averages are different at p = 0.01. Table 4 has 438 results based on the larger lower-limit diameter ($0.12 \,\mu\text{m}$). In that comparison, the Arauco *N/V* 439 ratio ($159 \pm 100 \,\mu\text{m}^{-3}$) does not differ significantly from HK98's (i.e., p > 0.01).

Application of the N/V ratio to aerosol-cloud-precipitation modelling requires knowledge 440 441 of the aerosol volume, or alternatively, knowledge of the aerosol mass loading and the aerosol 442 particle density. The aerosol volume is then multiplied by an average N/V ratio (e.g., the average at the bottom of the fifth column of Table 4), and their product is taken to be the modelled cloud 443 droplet concentration (HK98 and VD00). This is straight forward, at least from the perspective of 444 incorporating an aerosol-induced cloud feedback into a simulation, but it suffers from requiring 445 446 additional information about the aerosol (aerosol volume). Because the UHSAS was unavailable 447 for much of CCOPE (Table 1), aerosol volume is also unavailable. Another drawback is the

448 implicit assumption that only aerosol particles larger than the lower-limit diameter (e.g., 0.12 µm 449 in Table 4) form cloud droplets. 550 4.4 Using Size Distribution and Nere to Parameterize CCN Activation Spectra Deleted: ASP and Nov. Measurements 551 Andreac (2009) analyzed a set of aerosol concentration measurements obtained from Deleted: ASP and Nov. Measurements 552 collocated CPC and CCN instruments. Andreae's CPC measurements represent the concentration Deleted: Table 1 553 of particles no smaller than a particular diameter (~ 0.01 µm; Sect. 2.2), and his CCN Deleted: Table 1 554 the latter is SS = 0.4 % in Andreae (2009). Similar to the relationship between CCN concentration, at SS = 0.4 % and CPC Deleted: : 565 concentration (Andreag, 2009; his Fig. 2), we now describe how CPC and UHSAS data from Deleted: : Deleted: : 566 concentration, (Andreag, 2009; his Fig. 2), we now describe how CPC and UHSAS data from Deleted: : Deleted: : 567 Similar to the relationship between CCN concentration particles is a CPC-measured aerosol concentration. Deleted: : Deleted: : 568 concentration, Sin or aerosol and precipitation during CCOPF. We envision phis assessment will be advanced when our activation spectra are used to initialize numerical models. Deleted: : for: Tode			
449 in Table 4) form cloud droplets. 450 4.4 Using Size Distribution and Nere to Parameterize CCN Activation Spectra Deleted: ASD and Ner: Measurements 451 Andreae (2009) analyzed a set of aerosol concentration measurements obtained from Deleted: ASD and Ner: Measurements 452 collocated CPC and CCN instruments. Andreae's CPC measurements represent the concentration Deleted: Table 1 453 of particles no smaller than a particular diameter (-0.01 µm; Sect. 2.2), and his CCN Deleted: Table 1 454 measurements represent the concentration of particles that activate cloud droplets at a water Particles Table 1 455 vapor supersaturation (S5) no larger than a particular value (Rogers and Yau, 1989; chapter 6). Deleted: . 456 Similar to the relationship between CCN concentration, at SS = 0.4 % and CPC Deleted: . 457 Similar to the relationship between CCN concentration spectra. In the Deleted: . 458 concentration, (Andreag, 2009; his Fig. 2), we now describe how CPC and UHSAS data from Deleted: . 459 parameterization we develop a function, that describes CCN activation spectra. In the Deleted: . 450 parameterization we develop the advanced when our activation spectra are used to initialize numerical models. Deleted: full. (D 451 While only	448	implicit assumption that only aerosol particles larger than the lower-limit diameter (e.g., 0.12 μ m	
44. Using Size Distribution and Neec to Parameterize CCN Activation Spectra Deleted: ΔSD and Nee Measurements 450 4.4. Using Size Distribution and Neec to Parameterize CCN Activation Spectra Deleted: ΔSD and Nee Measurements 451 Andreae (2009) analyzed a set of aerosol concentration measurements obtained from Image: Concentration 453 of particles no smaller than a particular diameter (= 0.01 µm; Sect. 2.2), and his CCN Deleted: ΔSD and Nee Measurements 454 measurements represent the concentration of particles that activate cloud droplets at a water Pace Nee Nee Nee Nee Nee Nee Nee Nee Nee N	449	in Table 4) form cloud droplets	
4.4 Using <u>Size Distribution and Neve</u> to Parameterize CCN Activation Spectra Deleted: ASD and New Measurements 451 Andreae (2009) unalyzed a set of aerosol concentration measurements obtained from 452 collocated CPC and CCN instruments. Andreae's CPC measurements represent the concentration 453 of particles no smaller than a particular diameter (~ 0.01 µm; Sect 2.2), and his CCN 454 measurements represent the concentration of particles that activate cloud droplets at a water 455 vapor supersaturation (SS) no larger than a particular value (Rogers and Yau, 1989; chapter 6). 456 The latter is SS = 0.4 % in Andreae (2009). 457 Similar to the relationship between CCN concentration, at SS = 0.4 % and CPC 458 concentration (Andreag, 2009; his Fig. 2), we now describe how CPC and UHSAS data from 459 CCOPE can be used to develop a function, that describes CCN activation spectra. In the 450 parameterization we develop, the independent variable is a CPC-measured aerosol concentration. 451 While only estimates, the activation spectra we obtain represent an important step toward 452 evaluating how CCN affected cloud and precipitation during CCOPE. We envision this 453 assessment will be advanced when our activation spectra are used to initialize numerical models. 454 <i>FAC(D)</i> = $\frac{1}{N_{ccc}}} \cdot \frac{\pi}{b}$	445		
451 Andreae (2009) analyzed a set of aerosol concentration measurements obtained from 451 Andreae (2009) analyzed a set of aerosol concentration measurements represent the concentration 452 collocated CPC and CCN instruments. Andreae's CPC measurements represent the concentration 453 of particles <i>no smaller than</i> a particular diameter (~ 0.01 µm; Sect. 2.2), and his CCN Deleted: Take 1 454 measurements represent the concentration of particles that activate cloud droplets at a water Vapor supersaturation (SS) <i>no larger than</i> a particular value (Rogers and Yau, 1989; chapter 6). 455 The latter is SS = 0.4 % in Andreae (2009). Similar to the relationship between CCN concentration (Andreae, 2009), this Fig. 2), we now describe how CPC and UHSAS data from Deleted: • 460 parameterization we develop a function, that describes CCN activation spectra. In the Deleted: • Deleted: • 461 While only estimates, the activation spectra we obtain represent an important step toward Deleted: • Deleted: • 462 evaluating how CCN affected cloud and precipitation during CCOPE. We envision this Deleted: • Deleted: • 463 assessment will be advanced when our activation spectra are used to initialize numerical models. Deleted: • Deleted: • Deleted: • 464 Our first step is to select a particle diameter, apply this as a	450	4.4 Using Size Distribution and N _{CPC} to Parameterize CCN Activation Spectra	Deleted: ASD and NCPC Measurements
451Andreae (2009) analyzed a set of aerosol concentration measurements obtained from452collocated CPC and CCN instruments. Andreae's CPC measurements represent the concentration453of particles <i>no smaller than</i> a particular diameter (~ 0.01 µm; Sect. 2.2), and his CCN454measurements represent the concentration of particles that activate cloud droplets at a water455vapor supersaturation (SS) <i>no larger than</i> a particular value (Rogers and Yau, 1989; chapter 6).456The latter is SS = 0.4 % in Andreae (2009).457Similar to the relationship between CCN concentration, at SS = 0.4 % and CPC458concentration (Andreae, 2009; his Fig. 2), we now describe how CPC and UHSAS data from459CCOPE can be used to develop a function, that describes CCN activation spectra. In the451While only estimates, the activation spectra we obtain represent an important step toward452evaluating how CCN affected cloud and precipitation during CCOPE. We envision this453assessment will be advanced when our activation spectra are used to initialize numerical models.454Our first step is to select a particle diameter, apply this as a lower-limit diameter in an integration of the UHSAS size distribution, and divide the integral by the coincident CPC- measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> feld Code Changed455 <i>FAC(D)</i> = $\frac{1}{N_{coc}} \cdot \frac{T}{n} (dN / d \log_m D) \cdot d \log_m D$ measured to be bare papphican on other any houndar direct and bare steppental more papphices and papers file code Changed456Figs. 7a - b have graphical representations of <i>FAC(D</i> =0.055 µm) and <i>FAC(D</i> =0.120 µm),<			
452 collocated CPC and CCN instruments. Andreae's CPC measurements represent the concentration 453 of particles <i>no smaller than</i> a particular diameter (~ 0.01 µm; Sect. 2.2), and his CCN Deleted: Table 1 454 measurements represent the concentration of particles that activate cloud droplets at a water Period: 1 455 vapor supersaturation (SS) <i>no larger than</i> a particular value (Rogers and Yau, 1989; chapter 6). Deleted: Table 1 456 The latter is SS = 0.4 % in Andreae (2009). Deleted: s 457 Similar to the relationship between CCN concentration, at SS = 0.4 % and CPC Deleted: s 458 concentration (Andreag, 2009; his Fig. 2), we now describe how CPC and UHSAS data from Deleted: s 459 parameterization we develop a function, that describes CCN activation spectra. In the Deleted: s 451 while only estimates, the activation spectra we obtain represent an important step toward Deleted: fig. (a) 452 our first step is to select a particle diameter, apply this as a lower-limit diameter in an Integration of the UHSAS size distribution, and divide the integral by the coincident CPC- 468 $FAC(D) = \frac{1}{N_{coc}} \cdot \frac{T}{n} (dN / d \log_m D) \cdot d \log_m D$ (S) Felted: fig. 7a) 469 Figs. 7a - b have graphical representations of $FAC(D=0.055$ µm), and $FAC(D=0.120$ µm), Figs. 7a - b have	451	Andreae (2009) analyzed a set of aerosol concentration measurements obtained from	
453of particles <i>no smaller than</i> a particular diameter (~ 0.01 µm; Sect. 2.2), and his CCNDeleted: Table 1454measurements represent the concentration of particles that activate cloud droplets at a water455vapor supersaturation (SS) <i>no larger than</i> a particular value (Rogers and Yau, 1989; chapter 6).456The latter is SS = 0.4 % in Andreae (2009).457Similar to the relationship between CCN concentration at SS = 0.4 % and CPC458concentration (Andreag, 2009; his Fig. 2), we now describe how CPC and UHSAS data from459CCOPE can be used to develop a function that describes CCN activation spectra. In the460parameterization we develop, the independent variable is a CPC-measured aerosol concentration.461While only estimates, the activation spectra we obtain represent an important step toward462evaluating how CCN affected cloud and precipitation during CCOPE. We envision this463assessment will be advanced when our activation spectra are used to initialize numerical models.464Our first step is to select a particle diameter, apply this as a lower-limit diameter in an465integration of the UHSAS size distribution, and divide the integral by the coincident CPC-466measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> 467 $\frac{FAC(D)}{N_{crc}} = \frac{1}{D} (dN/d \log_m D) \cdot d \log_m D$ 468 $\frac{FAC(D)}{N_{crc}} = \frac{1}{D} (dN/d \log_m D) \cdot d \log_m D$ 469Figs. 7a - b have graphical representations of $FAC(D=0.055 \ µm)$, and $FAC(D=0.120 \ µm)$,469Figs. 7a - b have graphical representations of $FAC(D=0.055 \ µm)$, and $FAC(D=0.$	452	collocated CPC and CCN instruments. Andreae's CPC measurements represent the concentration	
457 of particles no anime infinite particular dunicle (COF particles gradients in Sector 2007) 458 measurements represent the concentration of particles that activate cloud droplets at a water 459 vapor supersaturation (SS) no larger than a particular value (Rogers and Yau, 1989; chapter 6). 456 The latter is SS = 0.4 % in Andreae (2009). 457 Similar to the relationship between CCN concentration at SS = 0.4 % and CPC 458 concentration (Andreag, 2009; his Fig. 2), we now describe how CPC and UHSAS data from 459 CCOPE can be used to develop a function, that describes CCN activation spectra. In the 460 parameterization we develop, the independent variable is a CPC-measured aerosol concentration. 461 While only estimates, the activation spectra we obtain represent an important step toward 462 evaluating how CCN affected cloud and precipitation during CCOPE. We envision this 463 assessment will be advanced when our activation spectra are used to initialize numerical models. 464 formate: fort: fluic 465 integration of the UHSAS Size distribution, and divide the integral by the coincident CPC- 466 <i>fAC(D)</i> $\frac{1}{m} (dN/d \log_m D) \cdot d \log_m D$ 467 <i>fAC(D</i> $\frac{1}{m} (dN/d \log_m D) \cdot d \log_m D$ 468 <i>FAC(D)</i> $\frac{1}{m} ($	153	of particles no smaller than a particular diameter (~ 0.01 µm; Sect 2.2) and his CCN	Deleted: Table 1
454 measurements represent the concentration of particles that activate cloud droplets at a water 455 vapor supersaturation (SS) no larger than a particular value (Rogers and Yau, 1989; chapter 6). 456 The latter is $SS = 0.4$ % in Andreae (2009). 457 Similar to the relationship between CCN concentration at $SS = 0.4$ % and CPC 458 concentration (Andreae, 2009; his Fig. 2), we now describe how CPC and UHSAS data from Deleted: s 459 CCOPE can be used to develop a function, that describes CCN activation spectra. In the Deleted: s 460 parameterization we develop, the independent variable is a CPC-measured aerosol concentration. Deleted: s 461 While only estimates, the activation spectra we obtain represent an important step toward Deleted: data 462 evaluating how CCN affected cloud and precipitation during CCOPE. We envision this Deleted: fig. (2) 463 Our first step is to select a particle diameter, apply this as a lower-limit diameter in an integration of the UHSAS size distribution, and divide the integral by the coincident CPC- measured concentration. The resultant is referred to as the fractional aerosol concentration field Cde Changed First line: 0.5" 468 $FAC(D) = \frac{1}{N_{exc}} \cdot \frac{\sqrt{1}{b}} (dN/d \log_m D) \cdot d \log_m D$ (5) Image: distribution or subter the theore-time diameter is the integration or subuset frithe theore-time dimage: distribution or	433		
vapor supersaturation (SS) no larger than a particular value (Rogers and Yau, 1989; chapter 6).455The latter is $SS = 0.4$ % in Andreae (2009).457Similar to the relationship between CCN concentration at $SS = 0.4$ % and CPC458concentration (Andreae, 2009; his Fig. 2), we now describe how CPC and UHSAS data from459CCOPE can be used to develop a function that describes CCN activation spectra. In the460parameterization we develop, the independent variable is a CPC-measured aerosol concentration.461While only estimates, the activation spectra we obtain represent an important step toward462evaluating how CCN affected cloud and precipitation during CCOPE. We envision this463assessment will be advanced when our activation spectra are used to initialize numerical models.464Our first step is to select a particle diameter, apply this as a lower-limit diameter in an integration of the UHSAS size distribution, and divide the integral by the coincident CPC- measured concentration. The resultant is referred to as the fractional aerosol concentration $FAC(D) = \frac{1}{N_{crec}} \cdot \frac{1}{p} (dN/d \log_m D) \cdot d \log_m D$.468 $FAC(D) = \frac{1}{N_{crec}} \cdot \frac{1}{p} (dN/d \log_m D) \cdot d \log_m D$. $D \cdot d \log_m D$. $D \cdot d \log_m D$.469Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mum)$, and $FAC(D=0.120 \ \mum)$.469Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mum)$, and $FAC(D=0.120 \ \mum)$.470	454	measurements represent the concentration of particles that activate cloud droplets at a water	
456The latter is $SS = 0.4$ % in Andreae (2009).457Similar to the relationship between CCN concentration, at $SS = 0.4$ % and CPC458concentration (Andreag, 2009; his Fig. 2), we now describe how CPC and UHSAS data from459CCOPE can be used to develop a function, that describes CCN activation spectra. In the460parameterization we develop, the independent variable is a CPC-measured aerosol concentration.461While only estimates, the activation spectra we obtain represent an important step toward462evaluating how CCN affected cloud and precipitation during CCOPE. We envision this463assessment will be advanced when our activation spectra are used to initialize numerical models.464Our first step is to select a particle diameter, apply this as a lower-limit diameter in an465integration of the UHSAS size distribution, and divide the integral by the coincident CPC-466measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> 467 fAC_{0} .468 $FAC(D) = \frac{1}{N_{coc}} \cdot \frac{im}{b} (dN/d \log_{10} D) \cdot d \log_{10} D$ 469Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mum)_{a}$ and $FAC(D=0.120 \ \mum)_{a}$.469Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mum)_{a}$ and $FAC(D=0.120 \ \mum)_{a}$.47	455	vapor supersaturation (SS) no larger than a particular value (Rogers and Yau, 1989; chapter 6).	
457Similar to the relationship between CCN concentration, at $SS = 0.4$ % and CPCDeleted: s458concentration, (Andreag, 2009; his Fig. 2), we now describe how CPC and UHSAS data fromDeleted: s459CCOPE can be used to develop a function, that describes CCN activation spectra. In theDeleted: s460parameterization we develop, the independent variable is a CPC-measured aerosol concentration.Deleted: s461While only estimates, the activation spectra we obtain represent an important step towardDeleted: indicated is462evaluating how CCN affected cloud and precipitation during CCOPE. We envision thisDeleted: indicated is463assessment will be advanced when our activation spectra are used to initialize numerical models.Deleted: foot: Talle.464Our first step is to select a particle diameter, apply this as a lower-limit diameter in an integration of the UHSAS size distribution, and divide the integral by the coincident CPC- measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> Field Code ChangedFormatted: j. para_no_indent. Deleted: i. j. para_no_indent Deleted: i. j. para_no_indent468 $FAC(D) = \frac{1}{N_{ccc}} \cdot \frac{i f}{b} (dN / d \log_{10} D) \cdot d \log_{10} D$ (5)Field Code Changed469Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mu m)$, and $FAC(D=0.120 \ \mu m)$.(6)Deleted: as Deleted:	456	The latter is $SS = 0.4$ % in Andreae (2009).	
458concentration (Andreag, 2009; his Fig. 2), we now describe how CPC and UHSAS data fromDeleted: s459CCOPE can be used to develop a function, that describes CCN activation spectra. In theDeleted: s460parameterization we develop, the independent variable is a CPC-measured aerosol concentration.Deleted: s461While only estimates, the activation spectra we obtain represent an important step towardDeleted: s462evaluating how CCN affected cloud and precipitation during CCOPE. We envision thisDeleted: that463assessment will be advanced when our activation spectra are used to initialize numerical models.Deleted: reg (2)464Our first step is to select a particle diameter, apply this as a lower-limit diameter in an integration of the UHSAS size distribution, and divide the integral by the coincident CPC- measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> Formatted: Joar_no_indent468 $FAC(D) = \frac{1}{N_{crc}} \cdot \int_{D}^{T} (dN / d \log_m D) \cdot d \log_m D$ (5)Formatted: Joar_no_indent469Figs, 7a - b have graphical representations of $FAC(D=0.055 \ \mum)$ and $FAC(D=0.120 \ \mum)$,To4747	457	Similar to the relationship between CCN concentration at $SS = 0.4$ % and CPC	Deleted: s
450ConcentrationConcentrationConcentration451CCOPE can be used to develop a function, that describes CCN activation spectra. In theDeleted: concentrations452parameterization we develop, the independent variable is a CPC-measured aerosol concentration.Deleted: our development461While only estimates, the activation spectra we obtain represent an important step towardDeleted: our development462evaluating how CCN affected cloud and precipitation during CCOPE. We envision thisDeleted: fag. (2)463assessment will be advanced when our activation spectra are used to initialize numerical models.Deleted: foot: Italic464Our first step is to select a particle diameter, apply this as a lower-limit diameter in an integration of the UHSAS size distribution, and divide the integral by the coincident CPC- measured concentration. The resultant is referred to as the fractional aerosol concentration (FAC),FaC(D) = $\frac{1}{N_{crc}} \cdot \int_{p}^{m} (dN / d \log_{10} D) \cdot d \log_{10} D$ 469Figs. 7a - b have graphical representations of FAC(D=0.055 µm) and FAC(D=0.120 µm), 17Fac	158	concentration (Andreae 2009; his Fig. 2) we now describe how CPC and UHSAS data from	Deleted: s
459 CCOPE can be used to develop <u>a</u> function, that describes <u>CCN</u> activation spectra. In the 460 <u>parameterization we develop</u> , the independent variable is a CPC-measured aerosol concentration. 461 While only estimates, the activation spectra we obtain represent an important step toward 462 evaluating how CCN affected cloud and precipitation during CCOPE. We envision this 463 assessment will be advanced when our activation spectra are used to initialize numerical models. 464 Our first step is to select a particle diameter, apply this as a lower-limit diameter in <u>an</u> 465 integration of the UHSAS size distribution, and divide the <u>integral</u> by the coincident CPC- 466 measured concentration. The resultant is referred to as the <u>fractional aerosol concentration</u> 467 (<u>FAC</u>). 468 $FAC(D) = \frac{1}{N_{crcc}} \cdot \frac{im}{b} (dN / d \log_{10} D) \cdot d \log_{10} D$ 469 Figs. 7a - b have graphical representations of <u>FAC(D=0.055 µm</u>), and <u>FAC(D=0.120 µm</u>). 47	430	concentration (Andreac, 2007, ins 14g. 2), we now describe now effect and offisition date from	Deleted: concentrations
460parameterization we develop, the independent variable is a CPC-measured aerosol concentration.Deleted: our development461While only estimates, the activation spectra we obtain represent an important step towardDeleted: infat462evaluating how CCN affected cloud and precipitation during CCOPE. We envision thisDeleted: envision this463assessment will be advanced when our activation spectra are used to initialize numerical models.Deleted: concentration464Our first step is to select a particle diameter, apply this as a lower-limit diameter in anEnvironmeted: Font: Italic465integration of the UHSAS size distribution, and divide the integral by the coincident CPC-Formatted: Font: Italic466measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> Field Code Changed467(FAC)_(A)(A)468 $FAC(D) = \frac{1}{N_{crc}} \cdot \int_{D}^{1/m} (dN/d \log_{10} D) \cdot d \log_{10} D$ (5)Image: An output of the around a fraction of the arosol population rosmaller than the lower-limit diameter in the fraction of the arosol population rosmaller than the lower-limit diameter in the fraction of the arosol population rosmaller than the lower-limit diameter in the close of the gray shading.Image: An output of the around a fraction of the around a fraction of the arosol population rosmaller than the lower-limit diameter in the close of the gray shading.469Figs. 7a - b have graphical representations of <i>FAC</i> (D=0.055 µm) and <i>FAC</i> (D=0.120 µm).Image: An output of the arosol population rosmaller than the lower-limit diameter in the close of the gray shading.	459	CCOPE can be used to develop <u>a function</u> that describes CCN activation spectra. In the	Deleted: s
461 While only estimates, the activation spectra we obtain represent an important step toward 462 evaluating how CCN affected cloud and precipitation during CCOPE. We envision this 463 assessment will be advanced when our activation spectra are used to initialize numerical models. 464 Our first step is to select a particle diameter, apply this as a lower-limit diameter in an 465 integration of the UHSAS size distribution, and divide the integral by the coincident CPC- 466 measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> 467 (<i>FAC</i>), 468 $FAC(D) = \frac{1}{N_{crc}} \cdot \int_{D}^{trm} (dN / d \log_{10} D) \cdot d \log_{10} D$ (5) 469 Figs. 7a - b have graphical representations of <i>FAC</i> (D=0.055 µm), and <i>FAC</i> (D=0.120 µm), 47	460	parameterization we develop, the independent variable is a CPC-measured aerosol concentration.	Deleted: our development
Initial construction of the unservent and on spectra are obtained by contractDeleted: that462evaluating how CCN affected cloud and precipitation during CCOPE. We envision thisDeleted: taq. (2)463assessment will be advanced when our activation spectra are used to initialize numerical models.Deleted: taq. (2)464Our first step is to select a particle diameter, apply this as a lower-limit diameter in anFormatted: Font: Italic465integration of the UHSAS size distribution, and divide the integral by the coincident CPC-Formatted: Font: Italic466measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> Field Code Changed467(FAC),Frigs. 7a - b have graphical representations of FAC(D=0.055 µm) and FAC(D=0.120 µm),Figs. 7a - b have graphical representations of FAC(D=0.055 µm) and FAC(D=0.120 µm),Deleted: tat	461	While only estimates, the activation spectra we obtain represent an important step toward	
462 evaluating how CCN affected cloud and precipitation during CCOPE. We envision this 463 assessment will be advanced when our activation spectra are used to initialize numerical models. 464 Our first step is to select a particle diameter, apply this as a lower-limit diameter in an 465 integration of the UHSAS size distribution, and divide the integral, by the coincident CPC- 466 measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> 467 (<i>FAC</i>), 468 $FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{V_{CP}} (dN / d \log_{10} D) \cdot d \log_{10} D$ (5) 469 Figs. 7a - b have graphical representations of <i>FAC</i> (<i>D</i> =0.055 µm) and <i>FAC</i> (<i>D</i> =0.120 µm), 47	401	while only estimates, the activation speeda we obtain represent an important step toward	Deleted: that
463 assessment will be advanced when our activation spectra are used to initialize numerical models. 464 Our first step is to select a particle diameter, apply this as a lower-limit diameter in an 465 integration of the UHSAS size distribution, and divide the integral by the coincident CPC- 466 measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> 467 (FAC) , 468 $FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{1/m} (dN/d \log_{10} D) \cdot d \log_{10} D$ (5) 469 Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mu m)$, and $FAC(D=0.120 \ \mu m)$, 47	462	evaluating how CCN affected cloud and precipitation during CCOPE. We envision this	Deleted: Eq. (2)
463 assessment will be advanced when our activation spectra are used to initialize numerical models. 464 Our first step is to select a particle diameter, apply this as a lower-limit diameter in an 465 integration of the UHSAS size distribution, and divide the integral by the coincident CPC- 466 measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> 467 (<i>FAC</i>). 468 $FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{1/m} (dN / d \log_{10} D) \cdot d \log_{10} D$ (5) 469 Figs. 7a - b have graphical representations of <i>FAC</i> (<i>D</i> =0.055 µm), and <i>FAC</i> (<i>D</i> =0.120 µm).			Deleted: resultant size-integrated UHSAS
464 Our first step is to select a particle diameter, apply this as a lower-limit diameter in an 465 integration of the UHSAS size distribution, and divide the integral by the coincident CPC- 466 measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> 467 (<i>FAC</i>), 468 $FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{L_{PP}} (dN / d \log_{10} D) \cdot d \log_{10} D$ (5) 469 Figs. 7a - b have graphical representations of <i>FAC</i> (<i>D</i> =0.055 µm), and <i>FAC</i> (<i>D</i> =0.120 µm), 47	463	assessment will be advanced when our activation spectra are used to initialize numerical models.	Example Contentiation
464 Out first step is to select a particle dialited; apply this as a lower-finit dialited in an 465 integration of the UHSAS size distribution, and divide the integral by the coincident CPC- 466 measured concentration. The resultant is referred to as the fractional aerosol concentration 467 $(FAC)_{,}$ 468 $FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{1/m} (dN / d \log_{10} D) \cdot d \log_{10} D$ 469 Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mu m)$, and $FAC(D=0.120 \ \mu m)_{,}$ 47	161	Our first stan is to sale to partial diameter apply this as a lower limit diameter in an	Formatted: Font: Italic
465 integration of the UHSAS size distribution, and divide the integral by the coincident CPC- 466 measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> 467 $(FAC)_{\star}$ 468 $FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{1/m} (dN / d \log_{10} D) \cdot d \log_{10} D$ (5) 469 Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mu\text{m})_{\star}$ and $FAC(D=0.120 \ \mu\text{m})_{\star}$	404	Our mist step is to select a particle diameter, appry tins as a lower-mint diameter m <u>an</u>	Deleted: Two examples of this are presented in Figs. $7a - b$ where
466 measured concentration. The resultant is referred to as the <i>fractional aerosol concentration</i> 467 (<i>FAC</i>), 468 $FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{1/m} (dN / d \log_{10} D) \cdot d \log_{10} D$ (5) 469 Figs. 7a - b have graphical representations of <i>FAC</i> (<i>D</i> =0.055 µm), and <i>FAC</i> (<i>D</i> =0.120 µm), 17	465	integration of the UHSAS size distribution, and divide the integral by the coincident CPC-	we define the UHSAS-to-CPC concentration ratio as a <i>fractional</i> aerosol concentration (FAC).
466 measured concentration. <u>The resultant is referred to as the <i>fractional derosol concentration</i> 467 (<i>FAC</i>), 468 $FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{1 \mu m} (dN / d \log_{10} D) \cdot d \log_{10} D$ (5) 469 Figs. 7a - b have graphical representations of <i>FAC</i>(<i>D</i>=0.055 µm), and <i>FAC</i>(<i>D</i>=0.120 µm), 17</u>	166		Formatted: j_para_no_indent, Indent: First line: 0.5"
467 (FAC), 468 $FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{1/m} (dN / d \log_{10} D) \cdot d \log_{10} D$ (5) 469 Figs. 7a - b have graphical representations of FAC(D=0.055 µm), and FAC(D=0.120 µm), 17	466	measured concentration. <u>The resultant is referred to as the <i>fractional aerosol concentration</i></u>	Field Code Changed
468 $FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{1/m} (dN / d \log_{10} D) \cdot d \log_{10} D$ (5) 469 Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mu\text{m})$ and $FAC(D=0.120 \ \mu\text{m})$.	467	(FAC).	Formatted: j_para_no_indent
468 $FAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D}^{1/m} (dN / d \log_{10} D) \cdot d \log_{10} D$ (5) 469 Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mu\text{m})$, and $FAC(D=0.120 \ \mu\text{m})$.		<u>verney</u>	Deleted: We symbolize these
469 Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mu\text{m})$, and $FAC(D=0.120 \ \mu\text{m})$. 17	169	$FAC(D) = \frac{1}{1} \int_{0}^{1} \frac{dM}{d\log D} d\log D $ (5)	Deleted: as
469 Figs. 7a - b have graphical representations of FAC(D=0.055 μm), and FAC(D=0.120 μm),	400	$IAC(D) = \frac{1}{N_{CPC}} \cdot \int_{D} (uv + u \log_{10} D) \cdot u \log_{10} D $ (3)	Deleted: (Fig. 7a)
469 Figs. 7a - b have graphical representations of $FAC(D=0.055 \ \mu\text{m})$, and $FAC(D=0.120 \ \mu\text{m})$.		·/	Deleted: as
	469	Figs. 7a - b have graphical representations of FAC(D=0.055 μm), and FAC(D=0.120 μm),	Deleted:) (Fig. 7b). As is illustrated, a <i>FAC</i> can be interpreted as the fraction of the aerosol population <i>no smaller than</i> the lower-limit diameter at the left-edee of the gray shading
		17	

In a second step we interpret a FAC's lower-limit diameter as an upper-limit SS. We do
this by applying a value for the kappa hygroscopicity parameter, which we set at $\kappa = 0.5$, and by
applying the kappa-Köhler formula of Petters and Kreidenweis (2007, their Eq. (6)). This
transformation from lower-limit D to upper-limit SS converts the FAC in Fig. 7a to FAC(SS =
0.41 %) and the FAC in Fig. 7b to $FAC(SS = 0.13 \%)$. We also evaluated how a range of the
kappa parameter ($0.3 < \kappa < 0.7$) translates to a range of SS. Our upper-limit κ comes from
airborne measurements made over the Southeast Pacific Ocean during summer (Snider et al.,
2017), and our lower-limit κ is the value recommended by Andreae and Rosenfeld (2008) for
simulating aerosol indirect effects over continents.
The FACs in Figs. 7a – b are two of the many available from CCOPE. One way to
aggregate these is to calculate a FAC for each of the 20 onshore trajectories. For example, if we
select the lower-limit diameter at $D = 0.055 \ \mu m$, plot numerator values (Eq. (5)) vs denominator
values (Eq. (5)), and fit with the equation $Y = a \cdot X$, the "a" we derive is the $FAC(D = 0.055 \ \mu m)$
for a particular trajectory. FACs calculated in this way, and with lower-limit D selected = 0.120
um, are presented in the seventh columns of Tables 3 and 4. Correlation coefficients presented in
the eighth columns of these tables mostly exceed 0.5. By averaging over the 20 onshore
trajectories, we calculated the overall averages presented at the bottom of the two tables. These
overall averages are $FAC(D = 0.055 \ \mu\text{m}) = 0.35 \pm 0.13$ (Table 3) and $FAC(D = 0.120 \ \mu\text{m}) = 0.13$
\pm 0.07 (Table 4). This decrease of the FAC results because a larger lower-limit D (Eq. (5)),
implies a smaller numerator (Eq. (5)), and thus a smaller FAC(D).
What we refer to as <i>ensemble-averaged FAC</i> s were <u>derived</u> by <u>selecting from all 20</u>
onshore trajectories the numerator- and denominator-values represented in Eq. (5), The selected

513 data pairs were fitted in the manner discussed previously. In addition, upper and lower quartile

Deleted: 11

Deleted: The *FACs* in Figs. 7a – b are two examples of the many available from CCOPE. We derived averaged *FACs*, corresponding to each of five *N*_{UBSAS}(*D*) sets (corresponding to five selected lower-limit diameters ($D = 0.055, 0.070, 0.095, 0.120, and 0.200 \mu$ m)), by plotting *N*_{UBSAS}(*D*) versus *N*_{CPC} and fitting the data with the equation $Y = a \cdot X$ where Y = N_{UBSAS}(*D*), X = N_{CPC}, and "a" is the averaged FAC.¶

Averaged *FACs* are presented in the seventh columns of Tables 3 and 4 where we symbolize these as *FAC*(*D* = 0.055 µm) and *FAC*(*D* = 0.120 µm), respectively. Correlation coefficients presented in the eighth columns of these tables mostly exceed 0.5. By averaging over each of the 20 onshore trajectories, and noting that four of these were limited to a time interval shorter than the nominal two hours (Sect. 4.2 and Tables 3 and 4), we calculated the overall averages presented at the bottom of the two tables. These overall averages are *FAC*(*D* = 0.055 µm) = 0.35 ± 0.13 (Table 3) and *FAC*(*D* = 0.120 µm) = 0.13 ± 0.07 (Table 4). This decrease of the *FAC* results because a larger lower-limit *D* (Eq. (2)), implies a smaller *N*_{UHSAS}(*D*), and thus a smaller *FAC*(*D*).

Formatted: Font: Not Italic

Deleted: calculated

Deleted: combining

Deleted: N_{CPC} and $N_{UHSAS}(D)$ values from all of the onshore trajectories

538	values of the fitted slopes were calculated by applying the technique of Wolfe and Snider (2012;	
539	their Fig. 4d). We evaluated four ensemble-averaged FACs corresponding to four selected	
540	diameters ($D = 0.070$, 0.095, 0.120, and 0.200 µm). The FAC at $D = 0.055$ µm was eliminated	
541	from this analysis because Kupc et al. (2018) showed that UHSAS measurements, at $D \le 0.070$	Deleted:
542	μ m, are negatively biased. Results are presented as circles in Fig. 8 and vertical error bars	
543	represent the quartile range. Values plotted on the abscissa correspond to the four diameters,	
544	each transformed to an SS using the kappa–Köhler formula with $\kappa = 0.5$, and horizontal error	
545	bars extend from most hygroscopic ($\kappa = 0.7$), at the left-most limit, to least hygroscopic ($\kappa =$	
546	0.3), at the right-most limit.	
547	In Fig. 8 we used power laws of the form $FAC(SS) = C \cdot SS^k$ (i.e., the form commonly used	
548	to parameterize CCN activation spectra (Twomey 1959)) to fit the points. The change in the	
549	slope of the fit function, seen here at $SS = 0.15\%$, seems consistent with analyses demonstrating	
550	that in polluted marine cloud conditions, albeit during summertime, the exponent " k " in the	
551	Two mey power fit function is ≥ 1 and ≤ 1 at $SS < 0.1$ % and SS > 0.1 %, respectively (Hudson	
552	and Nobel 2014; data from the MASE project in their Fig. 1).	
553	Our parameterized CCN activation spectrum (Fig. 8) is relevant to cloud-aerosol-	
554	precipitation modeling for several reasons. First, some numerical models treat SS as a prognostic	
555	variable and thus require initialization with a CCN activation spectrum (e.g., Khairoutdinov and	
556	Kogan 2000). Similarly, some models initialize with a particle size-dependent ASD function and	
557	use Köhler theory to derive a model-initializing CCN activation spectrum (e.g., Lebo et al.	
558	2012). As described in these two references, these models initialize with a nonspecific CCN	
559	activation spectrum. If those models were used to investigate wintertime clouds and precipitation	
560	on the Central Chilean Coast, our parameterization could be applied as a CCOPE-specific	

Deleted: -measured concentrations

562	initialization. Second, since we have measurements of N_{CPC} for the totality of CCOPE (Table 1),	
563	and we have shown how an ensemble-averaged CCN activation spectrum can be developed with	
564	N_{CPC} as the input parameter – i.e. as $N(SS) = FAC(SS) \cdot N_{CPC}$ – our parameterization can be used	
565	to estimate activation spectra for the complete CCOPE campaign. Third, model initiation with a	
566	specific CCN activation spectrum, as opposed to initialization with a regime-dependent droplet	
567	concentration (e.g., Thompson et al. 2004), is justified by sensitivities to cloud droplet activation	
568	reported in several publications (Cooper et al. 1997; Hudson and Yum, 1997; Snider et al.,	
569	2017).	
570	An assumption implicit in our development is that particles were internally mixed within	
571	each of the four particle size classes. This seems justified by our use of HYSPLIT to	
572	conditionally sample (Sect. 3.1), and by the fact that the sampled airmasses were resident in the	
573	marine boundary layer for hours to days while subject to a variety of processes (Brownian	
574	coagulation and reactive uptake of SO2, among others) that produce aerosols consistent with the	
575	internal mixture assumption (Fierce et al. 2017). An aspect of our measurements also supports	Deleted: the
576	the internal mixture assumption. Fig. 7b shows that number concentration corresponding to the	
577	0.120 to 1 μ m class is dominated by particles with diameters at the lower end of that class.	
578	Hence, the contribution of freshly emitted SSA particles, generally thought to size at dry	
579	diameters larger than 0.5 μ m (Clarke et al. 2003; LS04), and with a κ = 1.2 (Berg et al. 1998), is	
580	typically small. A different bias would result if particles with κ values smaller than the lower-	
581	limit value ($\kappa = 0.3$) contributed significantly to <u>the size-integrated concentration in Eq. (5)</u>	Deleted: a
582	Burning biomass is an important source for such low-hygroscopicity particles (Carrico et al.	Deleted: n N _{UHSAS} (D) class
583	2005). Our conditional sampling (Sect. 3.1), combined with our filtering of the CPC and UHSAS	
584	measurements (Sect. 3.1 and Appendix B), reduces this concern.	

588 4.5 Regression of $N_{>0.5}$ and Sea Surface Wind Speed

589	As discussed in Sect. 3.2, $N_{>0.5}$ represents the concentration of particles larger than 0.5			
590	μ m. We now support our conjecture that particles grouped into the $N_{>0.5}$ subset are indeed SSA.			
591	We do this by analyzing the correlation between $N_{>0.5}$ and sea surface wind speed (U). Sect. 3.1			
592	explains how we used HYSPLIT to derive U.			
593	Values of $N_{>0.5}$, corresponding to the 18 sea surface trajectories (Sect. 3.1), are plotted			
594	against U in Fig. 9. Linear least-squares regression analysis with a model equation of form			
595	$\ln(N_{>0.5}) = \ln(N_o) + a_N \cdot U$ was used to derive the coefficients N_o and a_N (O'Dowd and Smith			
596	1993; LS04). The fitted coefficients are $N_o = 0.15$ cm ⁻³ and $a_N = 0.38$ and the derived function			
597	(black curve) is shown in Fig. 9. The dashed black curves represent the 95% confidence interval			
598	(Romano 1977; his Eq. (4.2.3.f)). Also plotted (pink line) is the function derived by O'Dowd and			
599	Smith (1993) for dried <u>SSA</u> particles with diameter between 0.38 and 0.84 μ m. Given that the			
600	O'Dowd and Smith (1993) function (their Fig. 7a) is associated with statistical uncertainty			
601	comparable to what we estimate for our data set, we are only moderately confident that the			
602	function we derived is a consequence of wind-generated SSA. Two caveats require mentioning.			
603	First, a fraction of our data points (~ 25%) lie either above or below our confidence interval (Fig.			
604	9). Meteorology can contribute to this variability, as when sea surface winds establish a SSA			
605	population, and the wind subsequently slacks, or speeds up, prior to advection onto the continent.			
606	This is expected because the atmospheric residence time of $D \sim 0.5 \mu\text{m}$ particles, in the absence			
607	of precipitation, is several days (LS04, p. 76). Also, our unintentional sampling of particles			
608	generated over the continent is a concern. We have taken steps to eliminate those sources of			
609	contamination (Sect. 3.1 and Appendix B), but our methods are not foolproof.			

Deleted: during ship-based sampling

610 5 Discussion

612	The measurements analyzed here are, to the best of our knowledge, the first to	
613	characterize <u>aerosol microphysical properties</u> on the Central Chilean Pacific coast during winter.	 Deleted: aerosol concentrations and aerosol size distributions
614	Since the measurement site was relatively close to a population center (Arauco, Chile), and a	
615	SO_2 emitting paper mill, and because wood burning is an important source of residential heat in	
616	this region, we suspect that our measurements are influenced by these land sources. We	
617	mitigated against this by focusing on data collected during periods of onshore flow. Additional	
618	steps were taken to minimize contamination from land-based aerosol sources. These procedures	
619	are explained in Sect. 3.1, 4.2, Appendix B, and in the Supplementary Material.	
620	A point of comparison is the summertime measurements reported in HK98. Their data	
621	were collected during airborne sampling over the western Atlantic in air that had advected from	 Deleted: was
622	the United States. HK98's averaged aerosol surface area (131 ± 93 μ m ² cm ⁻³ ; their Table 2) is	
623	clearly larger than that for our 20 onshore trajectories (42 \pm 27 μ m ² cm ⁻³ ; results not shown).	
624	However, a more relevant comparator would be low altitude measurements made off the Central	
625	Chilean Pacific during winter. As far as we know, the desired data set is not available. Values of	
626	aerosol surface area in the FT over the North and South Pacific are generally $< 10 \ \mu m^2 \ cm^{-3}$	
627	(Clarke 1992), suggesting that even during onshore flow the Arauco Site is affected by	 Deleted: measurements are
628	anthropogenic sources. We have assumed these sources are Chilean, however, a contribution	
629	from long range transport cannot be ruled out.	
630	The larger winter-averaged CPC concentration at Arauco, compared to THD, is evidence	 Deleted: time
631	for stronger continental contamination at the former, Since N_{CPC} is a parameter in our	 Deleted: Arauco
632	parameterization of CCN activation spectra (Sect. 4.4), we conclude that cloud droplet	
633	concentrations in low level marine clouds (stratocumulus) formed in the vicinity of Arauco are	
634	larger than in similar clouds near THD. If true, this conclusion would be opposite the general	

640	situation in Southern Pacific boundary layer clouds where cloud droplet concentrations are	
641	statistically less than in their Northern hemispheric counterparts (Bennartz 2007). Relevant to	
642	this, Bennartz (2007) comments on a coast-normal droplet concentration gradient that is stronger	
643	on the Central Chilean coast compared to the California/Oregon coast. We presume that the	
644	gradient exists because of the larger concentration of aerosols over continents (Andreae and	
645	Rosenfeld, 2008), and because of aerosol removal that occurs within and below marine	
646	stratocumulus clouds. In addition, Bennartz (2007) demonstrates that the coast-normal droplet	
647	concentration gradient is larger off the Central Chilean coast, compared to California/Oregon	
648	coast, in part because oceanic concentrations, ~ 2000 km offshore, are generally smaller in the	
649	south compared to the north Pacific. Whether the southern hemispheric gradient is also enhanced	
650	by larger aerosol concentrations over coastal Central Chile, compared to coastal California and	
651	Oregon, is an open question. Further analysis of the satellite retrievals analyzed by Bennartz	
652	(2007), with segregation into wintertime and summertime categories, as well as measurements	
653	conducted at an offshore island location, or acquired using aircraft or ships, are needed to	
654	address this question.	_
l 655		

Deleted: resolve

657 6 Conclusions

658	Analyses presented here are based on Condensation Particle Counter (CPC)			
659	measurements made during one winter season (June, July and August 2015) on the Central			
660	Chilean Pacific coast (38 ° S). Also analyzed are aerosol size distribution measurements made			
661	with an Ultra High Sensitivity Aerosol Spectrometer (UHSAS). UHSAS measurements are			
662	available from 29 May to 28 June (Table 1). Limitations of this study are proximity of the			
663	measurement site to a population center (Arauco, Chile) and a SO ₂ emitting paper mill, sampling			
664	of particles emitted from residences close to where our instruments were operated, and the			
665	incomplete drying of the sampled aerosol particles. This first attempt to make CPC and ASD			
666	measurements on the Central Chilean Pacific coast during winter was exploratory and our results			
667	should be considered preliminary.			
668	We compared CPC-measured concentrations from the Arauco Site to values acquired at			
669	the NOAA observatory Trinidad Head (THD) on the North Pacific Coast of California. The			
670	averaged CPC concentration is larger at the Arauco Site and that difference is evident in an			
671	Arauco/THD comparison based on air arriving from all wind directions and from clean sector			
672	directions. In addition, we conditionally sampled UHSAS-measured size distributions and			
673	derived parameterized descriptions of sea salt aerosol (SSA) and cloud condensation nuclei			
674	(CCN) for periods of onshore flow. In these parameterizations the input parameters are			
675	respectively sea surface wind speed and CPC-measured concentration.			
676	In the context of CCOPE, there are two precipitation regimes that impact the Central			
677	Chilean Coast and the Nahuelbuta Mountains during winter (Massmann et al. 2017). The first of			
678	these have radar-derived echo tops at ~ 2 km MSL and produce rain by direct conversion of			

cloud droplets to rain drops. The second have higher echo tops, extending to temperatures colder

Deleted: We compared the Arauco Site CPC measurements to values acquired at the NOAA observatory Trinidad Head (THD) on the North Pacific Coast of California. Averaged CPC concentrations are larger at the Arauco Site and that difference is evident in Arauco/THD comparisons based on air arriving from all wind directions and from clean sector directions. In addition, we conditionally sampled the UHSAS measurements and derived parameterized descriptions of sea salt aerosol (SSA) and cloud condensation nuclei (CCN) for periods of onshore flow. In these parameterizations the input parameters are respectively sea surface wind speed and CPC-measured aerosol concentration.

24

691	than 0 °C and produce rain that is, at least in part, initiated by ice phase processes. Investigation
692	of the rain produced in the shallow regimes is an active area research; it is thought that SSA and
693	the CCN play important roles (Feingold et al. 1999; Gerber and Frick 2012). The deep regimes
694	form precipitating hydrometeors (ice particles) at cloud temperatures < 0 °C. Again, aerosols
695	play a role, but there are many facets to this and first-order effects are not yet agreed on. Perhaps
696	foremost is the role played by aerosol acting as ice nuclei. Measurement of an ice nuclei
697	activation spectrum, development of an ice particle parameterization, and incorporation of the
698	parameterization into a numerical model are needed to explore this dimension of the problem.
699	Because they modulate cloud droplet size, the development of graupel, and influence latent
700	heating (e.g., Tao et al. 2012), the CCN and SSA likely also play a role in the deep regimes.
701	Thus, we anticipate that modeling of both precipitation regimes will benefit from the CCN and
702	SSA parameterizations presented here.

703 Author Contribution

Jeff Snider, Jason Minder, David Kingsmill wrote successful proposals that funded this research. Sara Fults, Adam Massman, Aldo Montecinos, and David Kingsmill performed the field measurements. Rene´ Garreaud and Aldo Montecinos provided logistical support during the field phase of the project. Elisabeth Andrews provided data from THD. Sara Fults wrote her MS dissertation and this was adapted to this manuscript by Jeff Snider. All authors contributed to the editing of this manuscript.

710 Acknowledgments

We thank Freddy Echeverría-Cabezas for his assistance during CCOPE, Matthew
Burkhart for building the aerosol data acquisition system, Zhien Wang for providing a graduate
assistantship, Nicholas Mahon for shipping logistics, and the Departamento de Geofísica at the
Universidad de Concepción. This work was supported by the United States National Science
Foundation Physical and Dynamic Meteorology Division under Awards AGS-1522277 and
AGS-1522939.
Data Availability

CCOPE CPC and UHSAS data, and a data reader (Interactive Data Language, Harris
 Geospatial Solutions, Inc.), are at http://www-das.uwyo.edu/~jsnider/CCOPE/.

721	Appendix A	Deleted: :
722	Because the RH at the Arauco Site was often in excess of 80 % (Fig. A1c), particles	
723	entering the sample tube (Sect. 2.2) were haze droplets (Rogers and Yau 1989). As these haze	
724	droplets transit the sample tube they experience an increase in temperature, an RH decrease, and	
725	thus a decreased D . The lowest RH experienced by a haze droplet is at the point of detection	
726	where the aerosol temperature is presumed to be the internal "box temperature" measured by the	
727	UHSAS. The <i>RH</i> at this point is	
	$RH_U = \frac{RH_A \cdot e_s(T_A)}{(m_A)}$	
728	$e_s(I_U) \tag{A1}$	
729	where T_U is the internal UHSAS temperature, e_s is saturation vapor pressure (temperature	
730	dependent), and RH_A and T_A are the ambient RH and temperature, respectively. In nearly all of	
731	the UHSAS sampling during CCOPE, the RH_U was less than 60 % (Fig. A1d). This suggests that	
732	the haze droplets detected by the UHSAS were partially dried. Partial drying of the haze droplets	
733	is supported by calculations (Lewis and Schwartz 2004; their Fig. 8) showing that a $D = 4 \mu m$	Deleted: thermodynamic
734	NaCl haze droplet reaches its equilibrium size ($D = 2 \mu m$) in 0.1 s subsequent to a step-change of	
735	RH from 98 % to 80 %. Because 0.1 s is small relative to the average residence time of haze	
736	droplets within the sample tube (0.8 s), we ignored the possibility of a kinetic limitation to drying	
737	and we assumed that the haze droplets relaxed to their equilibrium size at RH_U prior to the time	
738	they were detected. Since we do not know the chemical composition of the haze droplets, their	
739	equilibrium size is <u>uncertain</u> , but calculations corresponding to $RH_U = 60\%$ and a haze droplet	Deleted: not specifiable
740	composed of sodium sulfate indicate that the equilibrium size is 30% larger than the	
741	corresponding dry particle size (Snider et al. 2017; their Fig. A2b). Three factors interact to	
742	partially compensate for a size overestimate due to incomplete particle drying; 1) Particle sizing	Deleted: during CCOPE

747	performed by the UHSAS was calibrated using polystyrene latex particles (refractive index $n =$
748	1.57 at $\lambda = 1.05 \ \mu m$ (Marx and Mulholland 1983)); 2) Liquid water ($n = 1.32$ at $\lambda = 1.05 \ \mu m$
749	(Irvine and Pollack, 1968)) makes a significant contribution to the mass of a haze droplet at RH =
750	60% (here again we are assuming the above-mentioned sodium sulfate composition for the
751	completely dried particle); and 3) Assuming the same scattering intensity, an $n = 1.6$ particle
752	sizes 10% smaller than an $n = 1.4$ particle (Cai et al., 2008; their Fig. 1). Accepting the 10% as
753	an underestimate, and the above-mentioned 30% as an overestimate, we conclude that particle
754	sizes reported by the UHSAS were overestimated by 20%. We did not correct for this sizing bias.
755	Laboratory testing of the UHSAS and CPC is documented in Figs. A2a – b, and in Figs.
756	A3a - b. We evaluated consistency among measurements made with the UHSAS, the CPC, and a
757	Scanning Mobility Particle Scanner (SMPS; TSI 2000b). In all of these tests, the RH of the test
758	aerosols was < 15 %. An example ASD derived using the UHSAS (pink) and the SMPS (black)
759	is shown in Fig. A2a. In this test the three instruments (UHSAS, CPC and SMPS) were sampling
760	mobility-selected ammonium sulfate particles with $D = 0.075 \ \mu\text{m}$. The refractive index of this
761	material at $\lambda = 1.05 \ \mu m$ is $n = 1.51$ (Toon et al., 1976). It is evident that the mode diameter
762	measured by the UHSAS is smaller than that reported by the SMPS ($D = 0.075 \ \mu$ m). This
763	difference is qualitatively consistent with the smaller refractive index of the test material
764	(ammonium sulfate), compared to the larger refractive index of the polystyrene latex particles
765	used by the factory to calibrate the UHSAS (DMT, 2013). Fig. A2b shows a test with $D = 0.71$
766	μ m polystyrene latex particles. As expected, the mode diameter in the UHSAS size distribution
767	is in agreement with the mode size in the SMPS size distribution.
768	An additional feature of our laboratory testing is the multi-modal structure in the SMPS

size distribution at $D < 0.5 \ \mu m$ (Fig A2b). This structure results because the particle diameter

771	on the test particle's charge state. The multi-modal structure at $D < 0.5 \ \mu m$ corresponds to		
772	particles carrying 5, 4, 3, and 2 fundamental charges, but each with physical diameter equal 0.71		
773	μ m. As stated in the previous paragraph, the latter is the diameter of the polystyrene test		
774	a particles.		
775	Figs. A3a - b summarize all of the lab testing we conducted in support of CCOPE. In Fig.		
776	A3a, N_{UHSAS} is plotted vs N_{CPC} for tests with $D < 0.2 \ \mu\text{m}$ and Fig. A3b has tests with $D > 0.2 \ \mu\text{m}$.		
777	On average, concentrations differ by \pm 6 % in Fig. A3a ($D < 0.2 \ \mu m$) and by \pm 10 % in Fig. A3b		

inferred by the SMPS depends on the physical diameter of the test particles, and on also depends

778 $(D > 0.2 \ \mu m)$.

779

780	Appendix B,	Deleted: :
781	For each of the onshore trajectories (Sect. 3.1), a two-hour segment, centered on the	
782	trajectory arrival time was analyzed. An example is in Figs. B1a – e. The first panel (Fig. B1a)	
783	shows the sequence of CPC values sampled every second (i.e., 1-s samples referred to as fast	
784	N _{CPC}), and Fig. B1b shows CPC values sampled every 10 seconds (i.e., 10-s samples referred to	
785	as <i>slow N_{CPC}</i>). The following procedure was used to attenuate the narrow perturbations that were	
786	likely the result of local aerosol emissions (e.g., within the time interval indicated by vertical	
787	dashed lines in Figs. B1a, B1b, and B1d),	Deleted: For each of the onshore trajectories (Sect. 3.1), a two- hour segment, centered on the trajectory arrival time was analyzed.
788	First, the fast N_{CPC} values were used to determine, for each 10 s of the sequence, a	An example is in Figs. B1a – e. Fig. B1a shows the sequence of CPC values sampled every second (i.e., 1-s samples referred to as <i>fast</i> N _{CPC}), and Fig. B1b shows CPC values sampled every 10 seconds
789	concentration relative standard deviation (σ / <x>). Second, if the relative standard deviation was</x>	(i.e., 10-s samples referred to as <i>slow N_{CPC}</i>). The following procedure was used to attenuate the narrow perturbations (e.g., within the time interval indicated by vertical dashed lines in Figs.
790	greater than 0.02 both the slow N_{CPC} measurement (sampled once every 10 second) and the ASD	B1a, B1b, and B1d) that were likely the result of local aerosol emissions.
791	measurement (also sampled once every 10 second; Table 1) were discarded. Fig. B1c and Fig.	
792	B1e show the N_{CPC} and N_{UHSAS} sequences after application of the filter. These two filtered	
793	sequences (N_{CPC} (filtered) and N_{UHSAS} (filtered)), and the filtered values of aerosol surface area	
794	(<i>S</i> _{UHSAS}), aerosol volume (<i>V</i> _{UHSAS}), and <i>D</i> > 0.5 μ m concentration (<i>N</i> _{>0.5}) are the focus of the bulk	
795	of our analysis.	

808 References

809 810	Albrecht, B. A., Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227 – 1230, 1989			
811 812 813 814	Andreae, M.O., Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys, 9, 543-556, 2009			
815 816 817	Andreae, M.O. and D. Rosenfeld, Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13 – 41, 2008			
818 819 820	Arauco Woodpulp, accessed 16 December 2018 at: http://web.arauco.cl/_file/file_3382_pulp%20catalog.pdf, 2010			
821 822 823	Bennartz, R., Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res., 112, D02201, 2007			
823 824 825 826 827	Berg, O. H., E. Swietlicki, and R. Krejci, Hygroscopic growth of aerosol particles in the marine boundary layer over the Pacific and Southern Oceans during the First Aerosol Characterization Experiment (ACE 1), J. Geophys. Res., 103, 16535-16545, 1998			
828 829 830	Birmili, W., A. Wiedensohler, J. Heintzenberg, and K. Lehmann, Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology, J. Geophys, Res. Atmos., 106, 32005–32018, 2001			
832 833 834 835 836 827	Boucher, O., and Coauthors, Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)], Cambridge University Press, Cambridge, United Kingdom, 2013			
837 838 839 840 841	Brechtel, F. J., S. M. Kreidenweis, and H. B. Swan, Air mass characteristics, aerosol particle number concentrations, and number size distributions at Macquarie Island during the First Aerosol Characterization Experiment (ACE 1), J. Geophys. Res. Atmos., 103, 16351–16367, 1998			
842 843 844 845 846	Cai, Y., J.R. Snider and P. Wechsler, Calibration of the passive cavity aerosol spectrometer probe for airborne determination of the size distribution, Atmos. Meas. Tech., 6, 2349- 2358, 2013			
847 848 849 850	Cai, Y., D.C.Montague, W.Mooiweer-Bryan and T.Deshler, Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: Laboratory and field Studies, J.Aerosol Sci., 39, 759-769, 2008			

851	Carrico, C.M., S.M.Kreidenweis, W.C.Malm, D.E.Day, T.Lee, J.Carrillo, G.R.McMeeking, J.L.				
852	Collett, Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite				
853	National Park, Atmos. Environ., 39, 1393-1404, 2005				
854					
855	Clarke, A., Atmospheric Nuclei in the Remote Free-Troposphere, J. Atmos. Chem., 14, 479-488,				
856	1992				
857	Clarke, A., V. Kapustin, S. Howell, K. Moore, B. Lienert, S. Masonis, T. Anderson, and D.				
858	Covert, Sea-salt size distribution from breaking waves: Implications for marine aerosol				
859	production and optical extinction measurements during SEAS, J. Atmos. Ocean.				
860	Technol., 20, 1362–1374, 2003				
861					
862	Cooper, W.A., R.T. Bruintjes, and G.K. Mather, Calculations pertaining to hygroscopic seeding				
863	with flares, J. Appl. Meteor., 36, 1449 – 1469, 1997				
864					
865	Covert, D. S., V. N. Kapustin, P. K. Quinn, and T. S. Bates, New particle formation in the				
866	marine boundary layer, J. Geophys. Res., 97(D18), 20581–20589,				
867	doi:10.1029/92JD02074, 1992				
868					
869	Dall'Osto, M., and Coauthors, Aerosol properties associated with air masses arriving into the				
870	North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period:				
871	an overview, Atmos. Chem. Phys. Discuss., 9, 26265–26328, 2009				
872	• • • • •				
873	Diesch, J. M., F. Drewnick, S. R. Zorn, S. L. Von Der Weiden-Reinmüller, M. Martinez, and S.				
874	Borrmann, Variability of aerosol, gaseous pollutants and meteorological characteristics				
875	associated with changes in air mass origin at the SW Atlantic coast of Iberia, Atmos.				
876	Chem. Phys, 12, 3761-3782, 2012				
877	• • • •				
878	DMT, Ultra High Sensitivity Aerosol Spectrometer (UHSAS) Operator Manual, Boulder, CO,				
879	2013				
880					
881	Feingold, G., W. R. Cotton, S. M. Kreidenweis, J. T. Davis, and J. A. T. D. Avis, The Impact of				
882	Giant Cloud Condensation Nuclei on Drizzle Formation in Stratocumulus: Implications				
883	for Cloud Radiative Properties, J. Atmos. Sci., 56, 4100-4117, 1999				
884					
885	Fierce, L., N. Riemer, and T.C. Bond, Toward Reduced Representation of Mixing State for				
886	Simulating Aerosol Effects on Climate. Bull. Amer. Meteor. Soc., 98, 971–980,				
887	https://doi.org/10.1175/BAMS-D-16-0028.1, 2017				
888					
889	Fults, S., Aerosol measurements during the Central Chilean Orographic Precipitation				
890	Experiment, M.S. Thesis, Department of Atmospheric Science, University of Wyoming,				
891	2016				
892					
893	Garreaud, R., M.Falvey, and A.Montecinos, Orographic precipitation in coastal southern Chile:				
894	Mean distribution, temporal variability, and linear contribution, J. Hydrometeor., 1185 -				
895	1202, 2016				
896					

897 898	Gerber, H. and G.Frick, Drizzle rates and large sea-salt nuclei in small cumulus, J. Geophys. Res., 117, D01205, 2012	
900 901	Gras, J.L., Baseline atmospheric condensation nuclei at Cape Grim 1977-1987, J. Atmos. Chem., 11, 89-106, 1990	
902 903 904 905	Gras, J. L., CN, CCN and particle size in Southern Ocean air at Cape Grim, J. Atmos. Res., 35, 233–251, 1995	
906 907 908	Hansen, J., The Faustian Bargain: Humanity's Own Trap, Storms of My Grandchildren, Bloomsbury, 320 pp., 2009	
909 910 911	Havlicek, L.L., and R.D. Crain, Practical Statistics for the Physical Sciences, American Chemical Society, 512 pp., 1988	
912 913 914	Hegg, D. A., and Y. J. Kaufman, Measurements of the relationship between submicron aerosol number and volume concentration, J. Geophys. Res., 103, 5671-5678, 1998	
915 916 917	Hinds, W. C., Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles, John Wiley & Sons, INC, 483, 1999	
918 919 920 921	Hoppel, W. a., G. M. Frick, J. W. Fitzgerald, and R. E. Larson, Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have, J. Geophys. Res., 99, 14443–14459, 1994	
922 923 924	Hudson, J.G. and S. Yum, Droplet spectral broadening in marine stratus. J. Atmos. Sci., 54, 2642–2654, 1997	
925 926 927	Hudson, J.G., and S.Nobel, CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds, J. Atmos. Sci., 312-331, 2014	
928 929 930	Hudson, J.G., S.Noble, and S.Tabor, Cloud supersaturations from CCN spectra Hoppel minima, J. Geophys. Res. Atmos., 120, 3436–3452, doi:10.1002/2014JD022669, 2015	
931 932 933	International Civil Aviation Organization (ICAO), Manual of the ICAO Standard Atmosphere: • extended to 80 kilometres (262 500 feet), 3rd ed., ISBN-92-9194-004-6, 1993	Formatted: Indent: Left: 0", Hanging: 0.5"
934 935 936	Irvine, W.M. and J.B. Pollack, Infrared optical properties of water and ice spheres, Icarus, 8, 324 – 360, 1968	
937 938 939	Khairoutdinov, M. and Y. Kogan, A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus, Mon. Wea. Rev., 128, 229 - 243, 2000	
940 941 942	Kupc, A., Williamson, C., Wagner, N. L., Richardson, M., and Brock, C. A.: Modification, calibration, and performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and volatility measurements during the Atmospheric	

943 944	Tomography Mission (ATom) airborne campaign, Atmos. Meas. Tech., 11, 369-383, https://doi.org/10.5194/amt-11-369-2018, 2018
945 946 947 948 949	Lebo, Z. J., Morrison, H., and Seinfeld, J. H., Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment?, Atmos. Chem. Phys., 12, 9941-9964, 2012
950 951 952	Lewis, E. R., and S. E. Schwartz, Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models, American Geophysical Union, 413 pp., 2004
953 954 955	Marx, E. and G.W. Mulholland, Size and refractive index determination of single polystyrene spheres, Journal of Research of the National Bureau of Standards, 88, 321 – 338, 1983
955 956 957 958 959 960	Massmann, A.K., J.R. Minder, R.D. Garreaud, D.E. Kingsmill, R.A. Valenzuela, A. Montecinos, S.L. Fults, and J.R. Snider, 2017, The Chilean Coastal Orographic Precipitation Experiment: Observing the Influence of Microphysical Rain Regimes on Coastal Orographic Precipitation. J. Hydrometeor., 18, 2723–2743, <u>https://doi.org/10.1175/JHM- D-17-0005.1</u> , 2017
961 962 963 964 965	McMurry, P.H., X.Wang, K.Park, and K.Ehara, The relationship between mass and mobility for atmospheric particles: A new Technique for measuring particle density, Aerosol Sci. Technol., 36, 227–238, 2002
966 967 968 969	McCoy, D.T., D.L. Hartmann, and D.P. Grosvenor, Observed Southern Ocean Cloud Properties and Shortwave Reflection. Part I: Calculation of SW Flux from Observed Cloud Properties. J. Climate, 27, 8836–8857, <u>https://doi.org/10.1175/JCLI-D-14-00287.1</u> , 2014
970 971 972 972	NOAA, HYSPLIT Trajectory Model, NOAA Air Resources Laboratory, Silver Spring, MD, Accessed 1 August 2016, [Available online at https://ready.arl.noaa.gov/HYSPLIT.php], 2016
974 975 976	O'Dowd, C.D., <u>and M.H.</u> Smith, Physicochemical properties of aerosols over the Northeast Atlantic: evidence for wind-speed-related submicron sea-salt aerosol production, J.Geophys. Res., 98, 1137-1149, 1993
978 979 980 981	Petters, M. D., J. R. Snider, B. Stevens, G. Vali, I. Faloona, and L. M. Russell, Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer, J. Geophys. Res. Atmos., 111, 1–15, 2006
982 983 984	Petters, M. D., and S. M. Kreidenweis, A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 1961–1971, 2007
985 986 987 988	 Raes, F., R. Van Dingenen, E. Cuevas, P. F. J. Van Velthoven, and J. M. Prospero, Observations of aerosols in the free troposphere and marine boundary layer of the subtropical Northeast Atlantic: Discussion of processes determining their size distribution, J. Geophys. Res., 102, 21315, 1997

989		
990	Rogers, R. R., and M. K. Yau, A Short Course in Cloud Physics. 3rd ed. Permagon Press, 304	
991	pp., 1989	
992		
993	Romano, A., Applied Statistics for Science and Industry, Allyn and Bacon Inc., pp. 385, 1977	
994		
995	Schwartz, S.E., Are global cloud albedo and climate controlled by marine phytoplankton?,	
996	Nature, 336, 441-445, 1988	
997		
998	Snider, J.R., D.Leon and Z.Wang, Droplet Concentration and Spectral Broadening in Southeast	
999	Pacific Stratocumulus, J. Atmos. Sci., 74, 719-749, 2017	
1000		
1001	Tao, WK., JP. Chen, Z. Li, C. Wang, and C. Zhang, Impact of aerosols on convective clouds	
1002	and precipitation, Rev. Geophys., RG2001, 2012	
1003		
1004	Thompson, G., R.M. Rasmussen and K. Manning, Explicit forecasts of winter precipitation using	
1005	an improved bulk microphysics scheme. Part I: Description and sensitivity analysis, Mon.	
1006	Weather Rev., 132, 519 – 542, 2004	
1007		
1008	Toon, O.B., The optical constants of several atmospheric aerosol species: Ammonium sulfate,	
1009	aluminum oxide, and sodium chloride, J. Geophys. Res., 81, 5733 - 5748, 1976	
1010		
1.		
1011	ISI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a	-
1011 1012	ISI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a	
1011 1012 1013	TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b	
1011 1012 1013 1014	TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000a	
1011 1012 1013 1014 1015	TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974	
1011 1012 1013 1014 1015 1016	TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974	
1011 1012 1013 1014 1015 1016 1017	TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds	
1011 1012 1013 1014 1015 1016 1017 1018	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 	
1011 1012 1013 1014 1015 1016 1017 1018 1019	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer, Tellus, 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer, Tellus, 52B, 439-451, 2000 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer, Tellus, 52B, 439-451, 2000 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer, Tellus, 52B, 439-451, 2000 A. Wiedensohler, D. Orsini, D. S. Covert, D. Coffmann, W. Cantrell, M.Havlicek, F. J. 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer, Tellus, 52B, 439-451, 2000 A. Wiedensohler, D. Orsini, D. S. Covert, D. Coffmann, W. Cantrell, M.Havlicek, F. J. Brechtel, L. M. Russell, R. J. Weber, J. Gras, J. G. Hudson & M. Litchy, 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer, Tellus, 52B, 439-451, 2000 A. Wiedensohler, D. Orsini, D. S. Covert, D. Coffmann, W. Cantrell, M.Havlicek, F. J. Brechtel, L. M. Russell, R. J. Weber, J. Gras, J. G. Hudson & M. Litchy, Intercomparison Study of the Size-Dependent Counting Efficiency of 26 Condensation 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer, Tellus, 52B, 439-451, 2000 A. Wiedensohler, D. Orsini, D. S. Covert, D. Coffmann, W. Cantrell, M.Havlicek, F. J. Brechtel, L. M. Russell, R. J. Weber, J. Gras, J. G. Hudson & M. Litchy, Intercomparison Study of the Size-Dependent Counting Efficiency of 26 Condensation Particle Counters, Aerosol Science and Technology, 27:2, 224-242, DOI: 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer, Tellus, 52B, 439-451, 2000 A. Wiedensohler, D. Orsini, D. S. Covert, D. Coffmann, W. Cantrell, M.Havlicek, F. J. Brechtel, L. M. Russell, R. J. Weber, J. Gras, J. G. Hudson & M. Litchy, Intercomparison Study of the Size-Dependent Counting Efficiency of 26 Condensation Particle Counters, Aerosol Science and Technology, 27:2, 224-242, DOI: 10.1080/02786829708965469, 1997 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer, Tellus, 52B, 439-451, 2000 A. Wiedensohler, D. Orsini , D. S. Covert , D. Coffmann , W. Cantrell , M.Havlicek , F. J. Brechtel , L. M. Russell , R. J. Weber , J. Gras , J. G. Hudson & M. Litchy. Intercomparison Study of the Size-Dependent Counting Efficiency of 26 Condensation Particle Counters, Aerosol Science and Technology, 27:2, 224-242, DOI: 10.1080/02786829708965469, 1997 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer, Tellus, 52B, 439-451, 2000 A. Wiedensohler, D. Orsini, D. S. Covert, D. Coffmann, W. Cantrell, M.Havlicek, F. J. Brechtel, L. M. Russell, R. J. Weber, J. Gras, J. G. Hudson & M. Litchy, Intercomparison Study of the Size-Dependent Counting Efficiency of 26 Condensation Particle Counters, Aerosol Science and Technology, 27:2, 224-242, DOI: 10.1080/02786829708965469, 1997 Wolfe, J. P., and J. R. Snider, 2012: A relationship between reflectivity and snow rate for a high- 	
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031	 TSI, Inc., Condensation Particle Counter Instruction Manual, St. Paul, Minnesota, 2000a TSI, Inc., Model 3080 Electrostatic Classifier Instruction Manual, St. Paul, Minnesota, 2000b Twomey, S., Pollution and the Planetary Albedo, Atmospheric Environment, 8, 1251–56, 1974 Twomey, S., The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243-249, 1959 van Dingenen, R., A. O. Virkkula, F. Raes, T. S. Bates, A. Wiedensohler, A simple non linear analytical relationship between aerosol accumulation number and sub-micron volume, explaining their observed ratio in the clean and polluted marine boundary layer, Tellus, 52B, 439-451, 2000 A. Wiedensohler, D. Orsini, D. S. Covert, D. Coffmann, W. Cantrell, M.Havlicek, F. J. Brechtel, L. M. Russell, R. J. Weber, J. Gras, J. G. Hudson & M. Litchy, Intercomparison Study of the Size-Dependent Counting Efficiency of 26 Condensation Particle Counters, Aerosol Science and Technology, 27:2, 224-242, DOI: 10.1080/02786829708965469, 1997 Wolfe, J. P., and J. R. Snider, 2012: A relationship between reflectivity and snow rate for a high-altitude S-band radar, J. Appl. Meteor. Climatol., 51, 1111–1128, 2012 	

Deleted: TSI Inc., accessed 19 December 2018 at: https://www.artisantg.com/info/PDF_5453495F33373630415F3 33736325F446174617368656574.pdf, 1996¶ Yum, S. S., and J. G. Hudson, Wintertime/summertime contrasts of cloud condensation nuclei
 and cloud microphysics over the Southern Ocean, J. Geophys. Res., 109, 1-14, 2004

1041 Table 1. Aerosol Instruments

Instrument and Reference	Aerosol Property Measured	Particle Diameter Range, µm	Aerosol Flow Rate, cm ³ s ⁻¹	Data Acquisition Rate, Hz	Data Availability (2015)		
CPC Model 3010	Aerosol Concentration	<i>D</i> > 0.01 <u>2</u>	17	1	29 May to 14 Aug		Deleted: 0
(TSI 2000a)							Deleted: and
UHSAS	Aerosol Size						0.1
(DMT 2013)	Distribution	0.055 < D < 1	0.34	0.1	29 May to 28 June		

Citation and Location	Measurement Site Characteristics	Air Mass Classification	Averaged CPC Concentration, cm ^{-3 a}
Gras (1990) Cape Grim, Tasmania 40.68 °S; 144.7 °E	Oceanic Wintertime	Remote Marine	100
Brechtel et al. (1998) Macquarie Island (Southwest Pacific) 54.50 °S; 159.0 °E	Oceanic Summertime	Remote Marine	700
Diesch et al. (2012) Portugal 37.11 °N; 7.735 °W	Coastal Continental Late Autumn	Moderately-polluted Marine Heavily-polluted Marine Continental	1000 7000 10000
This Study Arauco, Chile 37.25 °S; 73.34 °W	Coastal Continental Wintertime	Between moderately-polluted Marine and Heavily-polluted Marine	3000
This Study Trinidad Head, CA 41.05 °N; 124.2 °W	Coastal Continental Wintertime	Moderately-polluted Marine	1000

1047 Table 2. Classification of Air Mass Type

1048

1049 ^a Values rounded to one significant digit

A				N				Mumhan
Intival	Tyme			IN _{UHSAS}	b	$FAC(D=0.055 \ \mu m)$		Number
HOUR,	Туре			OII V UHSAS	r		r	OI Complete
UIC		UIC	UIC	Slope,				Samples
				μm				
06	Sea Surface	050500	050700	93.	0.54	0.59	0.65	139
12	Sea Surface	051100	051134	64.	0.10	0.19	0.59	63
18	Sea Surface	051700	051900	110.	0.66	0.41	0.63	342
00	Sea Surface	052300	060100	298.	0.81	0.51	0.96	316
06	Sea Surface	060500	060700	60.	0.53	0.18	0.89	677
12	Sea Surface	061100	061300	91.	0.60	0.16	0.65	647
18	Sea Surface	061700	061900	107.	0.33	0.18	0.81	476
00	Sea Surface	062300	062325	234.	0.81	0.36	0.97	133
06	Sea Surface	080500	080700 🖕	163.	0.06	0.29	0.52	542
12	Sea Surface	081100	081300	358.	0.75	0.28	0.76	504
18	Sea Surface	081700	081900	450.	0.88	0.42	0.90	416
00	Sea Surface	090020	090033	764.	0.45	0.34	0.98	72
06	Sea Surface	090500	090700	703.	0.68	0.23	0.96	554
12	Sea Surface	091100	091300	714.	0.89	0.44	0.94	532
18	Sea Surface	091700	091900	675.	0.78	0.39	0.53	592
00	Sea Surface	092300	100100	519.	0.37	0.22	0.68	618
06	Aloft	100500	100700	857.	0.96	0.39	0.82	617
18	Sea Surface	101700	101900	825.	0.86	0.37	0.19	622
00	Sea Surface	110006	110031	834.	0.96	0.50	0.99	61
00	Aloft	262300	270100	420	0.68	0.47	0.93	647
	11010	202000	<x></x>	417	0.00	0.35	0.70	0.7
			σ	297		0.13		
				0.71		0.15		

1051	Table 3. Statistics for Onshore Trajectories (D integration in Eq. (2), (4), and (5) is from 0.055 to 1 μ m)
1052	

1054 ^a DDHHMM indicates the start and end times (day in June 2015, hour, minute) of the data segment

^b Pearson product moment for the $N_{UHSAS}(D=0.055 \ \mu\text{m})$ on $V_{UHSAS}(D=0.055 \ \mu\text{m})$ correlation, ^c Data recording ended at DDHHMM = 080646, i.e., 14 min before the stated end time

1055 1056

Deleted: ¶ ^c Pearson product moment for the $N_{UHSAS}(D=0.055 \ \mu\text{m})$ on N_{CPC} correlation

Deleted: d

able 4.	Statistics for	Unshore Trajectorie	Formatted: Font: (Default) Times New Roman, 12 pt							
rrival		Start DDHHMM ^a ,	End DDHHMM ^a ,	N _{UHSAS}		<i>FAC</i> (<i>D</i> =0.120 μm)		Number		Deleted: Eq. (2) and (4)
Hour, UTC	Туре	UTC	UTC	on V_{UHSAS} Slope, μm^{-3}	r ^b		r,	of Samples		Deleted: °
06	Sea Surface	050500	050700	60.	0.74	0.37	0.47	139		
12	Sea Surface	051100	051134	40.	0.31	0.12	0.36	63		
18	Sea Surface	051700	051900	64.	0.76	0.23	0.49	342		
00	Sea Surface	052300	060100	113.	0.84	0.17	0.84	316		
06	Sea Surface	060500	060700	34.	0.67	0.10	0.78	677		
12	Sea Surface	061100	061300	44.	0.77	0.07	0.42	647		
18	Sea Surface	061700	061900	42.	0.61	0.06	0.24	476		
00	Sea Surface	062300	062325	107.	0.93	0.15	0.92	133		
06	Sea Surface	080500	080700 🖕	89.	0.72	0.12	0.02	542		Deleted: d
12	Sea Surface	081100	081300	139.	0.79	0.09	0.53	504		
18	Sea Surface	081700	081900	202.	0.92	0.17	0.83	416		
00	Sea Surface	090020	090033	184.	0.12	0.06	0.78	72		
06	Sea Surface	090500	090700	228.	0.58	0.06	0.87	554		
12	Sea Surface	091100	091300	262.	0.92	0.14	0.73	532		
18	Sea Surface	091700	091900	257.	0.89	0.12	0.41	592		
00	Sea Surface	092300	100100	204.	0.83	0.06	0.32	618		
06	Aloft	100500	100700	323.	0.96	0.11	0.82	617		
18	Sea Surface	101700	101900	279.	0.91	0.10	0.08	622		
00	Sea Surface	110006	110031	346.	0.97	0.16	0.96	61		
00	Aloft	262300	270100	171.	0.65	0.18	0.88	647		
			<x></x>	159		0.13				
			σ	100		0.07				
			σ / <x></x>	0.63		0.55				

Table 4. Statistics for Onshore Trajectories (D integration in Eq. (2), (4), and (5) is from 0.120 to 1 µm) 1064

1065

^a DDHHMM indicates the start and end times (day in June 2015, hour, minute) of the data segment 1066

^b Pearson product moment for the $N_{UHSAS}(D=0.120 \ \mu\text{m})$ on $V_{UHSAS}(D=0.120 \ \mu\text{m})$ correlation. ^c Data recording ended at DDHHMM = 080646, i.e., 14 min before the stated end time

1067 1068

Deleted: ¶ ^c Pearson product moment for the $N_{UHSAS}(D=0.120 \ \mu\text{m})$ on N_{CPC} correlation Deleted: d

1283 on the meteorological tower; c) *RH* measured on the meteorological tower; d) Derived *RH* inside

1284 UHSAS.

1285

1306 particles.

1352 integrated concentration; e) filtered 10-s UHSAS measurements of size-integrated concentration.