Supporting Information

Fig. S1 Correlation of NH₃ concentrations at the first layer and NH₃ columns from the GEOS-Chem in 2014.

Fig. S5 A case study of sensitivities of NH₃ surface concentrations with respect to different heights between 40m and 60m.

Fig. S6 Land use types. The land use data used in this study are 0.5 km MODIS-based Global Land
Cover Climatology. The successfully full name for each land use type are water, Evergreen Needleleaf
Forests, Evergreen Broadleaf Forests, Deciduous Needleleaf Forests, Deciduous Broadleaf Forests,
Mixed Forests, Closed Shrublands, Open Shrublands, Woody Savannas, Savannas, Grasslands,
Permanent Wetlands, Croplands, Urban and Built-Up, Cropland/Natural Vegetation Mosaic, Permanent
Snow and Ice, Barren or Sparsely Vegetated.

(a) Fire Counts in January (b) Fire Counts in April

Fig. S9 Monthly variations of raw fire counts and ground NH₃ concentrations in major biomass burning
regions including Central Canada (CC), central South America (CSA), Africa north of Equator (ANE),
Africa south of Equator (ASE), South East Asia (SEA) and Central Russia (RU).

55 Land use

To identify the differences of surface NH₃ concentrations in different land use, we 56 used the Global Mosaics of the standard MODIS land cover type data product 57 (MCD12Q1). The MODIS land cover type product (MCD12Q1) is generated based 58 on an ensemble supervised classification algorithm (Friedl et al., 2010). The data set 59 boundaries are -180.0 °~180.0 ° and -64.0 °~84.0 °, organized as an array of values 60 uniformly spaced across latitude and longitude with the indexed as [0, 0] at 84.0 ° 61 latitude, -180.0° longitude. Spatially aggregated land use data during 2001-2012 are 62 presented at two spatial resolutions: 5'×5' resolution comprising 1776 rows×4320 63 columns at a geographic pixel size of approximately 0.083333 °, and 0.5×0.5 ° 64 resolution comprising 296 rows ×720 columns of 0.5 ° pixels. The land use data used 65 in this study are 0.083333° MODIS-based Global Land Cover Climatology. The 66 successfully full name for each land use type are water, Evergreen Needleleaf Forests, 67 Evergreen Broadleaf Forests, Deciduous Needleleaf Forests, Deciduous Broadleaf 68 Forests, Mixed Forests, Closed Shrublands, Open Shrublands, Woody Savannas, 69 Savannas, Grasslands, Permanent Wetlands, Croplands, Urban and Built-Up, 70 Cropland/Natural Vegetation Mosaic, Permanent Snow and Ice, Barren or Sparsely 71 Vegetated. 72

73

74 Surface NH₃ concentrations in different land use types

In terms of different land use types, the surface NH₃ concentrations in China were 75 highest in the cropland (4.6 μ g N m⁻³), followed by urban land (3.9 μ g N m⁻³), forest 76 land (2.7 μ g N m⁻³), grass land (1.8 μ g N m⁻³) and water (1.9 μ g N m⁻³) (**Table S1**); in 77 the US, the surface NH_3 concentrations in the cropland were 2.5 $\mu g \; N \; m^{\text{-3}} \; y^{\text{-1}},$ which 78 were obviously higher than the values of 1.8, 1.4, 1.7 and 1.1 μ g N m⁻³ in urban, 79 forest, grass and water lands, respectively; in Europe, the surface NH₃ concentrations 80 in the urban land (2.3 μ g N m⁻³ y⁻¹) were similar to the value in the cropland (2.6 μ g N 81 $m^{-3}v^{-1}$). 82

In China, US and Europe, high surface NH₃ concentrations in the cropland area were 84 reasonable because the agriculture is the major source of the global NH₃ emissions 85 with N fertilizations, and high NH₃ emissions in the cropland lead to high surface NH₃ 86 concentrations. However, high surface NH₃ concentrations were also observed in the 87 urban area in China, US and Europe. This result is mainly due to that the vehicles can 88 89 emit considerable NH₃ since there are no vehicle emission standards to regulate NH₃ to date. Our results confirm that the urban is also a major source of NH₃ in the city 90 91 around the globe, which is consistent with the measurements by a previous study (Sun et al., 2017) using the mobile laboratory observations to characterize NH₃ in the US 92 and China. On the other hand, the high surface NH₃ concentrations in urban area can 93 also related with long distance transmission from the suburban areas (intensive 94 livestock production or N fertilizer application) due to the rapid urbanization 95 shortening the distance between suburban and urban regions (Gu et al., 2014). 96

97

98 Table S1 Surface NH₃ concentrations in different land use types in China, US and Europe.

	5			21	,	1	
	Crop	Urban	Forest	Grass	Water	Mean	
China	4.60	3.93	2.67	1.78	1.93	2.38 (0.22-15.11)	
US	2.51	1.78	1.44	1.67	1.07	1.52 (0.14-10.59)	
Europe	2.29	2.59	1.90	1.34	1.07	1.79 (0.04-9.49)	

100 **Reference**

- 101 Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A.,
- and Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements and
 characterization of new datasets, Remote Sensing of Environment, 114, 168-182,
- 104 https://doi.org/10.1016/j.rse.2009.08.016, 2010.
- 105 Geddes, J. A., Martin, R. V., Boys, B. L., and van Donkelaar, A.: Long-term trends
- worldwide in ambient NO₂ concentrations inferred from satellite observations,
 Environmental Health Perspectives (Online), 124, 281, 2016.
- Gu, B., Sutton, M. A., Chang, S. X., Ge, Y., and Chang, J.: Agricultural ammonia
 emissions contribute to China's urban air pollution, Frontiers in Ecology and the
 Environment, 12, 265-266, 2014.
- 111 Sun, K., Tao, L., Miller, D. J., Pan, D., Golston, L. M., Zondlo, M. A., Griffin, R. J.,
- 112 Wallace, H. W., Leong, Y. J., Yang, M. M., Zhang, Y., Mauzerall, D. L., and Zhu, T.:
- 113 Vehicle Emissions as an Important Urban Ammonia Source in the United States and
- 114 China, Environmental Science & Technology, 51, 2472-2481,
- 115 10.1021/acs.est.6b02805, 2017.
- 116 Van, D. A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C., Lyapustin,
- 117 A., Sayer, A. M., and Winker, D. M.: Global Estimates of Fine Particulate Matter
- using a Combined Geophysical-Statistical Method with Information from Satellites,
- 119 Models, and Monitors, Environmental Science & Technology, 50, 3762, 2016.